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Execubve summary 

1- Dunng drought the avolddnce mechdnlsms leadmg lo redueed water loss m caSS,lva 

lre a"oclaled wlth hehotroplsm and droopmg 

] Pelldant la secheresse les mecamsmes d'evlfemellt de perle d eau chez la manlOc 

sonl {l5S0CleS a helIO tropDme el a la po; tu re tombante des feutlles 

2- Under water de[¡clency, young ¡eaves aehleve a reasonable rate of photosynthesls 

whlCh 15 hkely 10 be of pnmary Importanee m acchmallon to drought slnee old ¡eaves are 

dlmost totally photosyntheucdlly macUve 

2 Pendalll un deflclI hydrlque les Jeunes feutlles presente'u une aCI/Vlte 

pholOsynthettque correcte ce qUl semble élre de premlere lmportance pour la plante lors de 

son acdlmalatlOn a la secheresse alors que les v/ellles feuLlles SOllt presque photo 

svnthettquement macllves 

3- Hlgher le veIs of carbohydrates, free arnmo aClds and orgamc aClds found m Icaves of 

water starved plants contnbute to a decrease In the osmOlle potenhal of tbe tlssues In order to 

plotect cellu!ar structure 

3 Les plus fortes teneurs en carbohydrates en ac¡des ammes libres el en aCIdes 

orgalllques renconlrees dalls les fewlles de plante en deflcll hydnque colllnbuem a 

I abmssemelll dll pOlenlle[ osmotlqlle des ItSSllS afm de proteger [es Slructures cellulatres 

4- Water stress of cassava plants has a posltlve effeet on the development and 

reproductlOn of P herrem Drought-stressed plants are phYSlOloglcalIy more sUllable for 

mealybugs because plant nutnents are more concentrated and better balanced 

4 Le stres, hydrtque chez le mallloc a Ull ejJe! poswf sur le developpement el la 

reproducllOn de P herrcm Les plames stressees sonl physlOlog/quemenl plus convellables 

flUX eOéhemlle, paree que les nlllnmellts y sollt plus concentres el m¡eux eqUilibre; 

5- Water stress of caSS.1va plants has a negallve ll1f1uence on the success of pdlaslllsm 

regardless of the pamslIOId specles used In blologlcal control of P herrenl and 00 the slze of 

progeny dependlng on the parasltold ,pecles 

5 Le Slres, hydnque (hez le mantoc a un ejfel negatif sur le sueces de paraSltlsme 

tndependamment de 1 espece de parasltmdes wtllsee en ltllte blOloglque contre P herreol el 

Hlr la tat/le des descendants selon I e~pece de parasllOlde 
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6- RecommendatlOn In drought-stncken areas the use of A COCCOlS as blOloglcal agcnt 

lO control P herrem populatlon IS recommcnded The culture of drought toleranl caSS,lVa 

genolypes should not Illfluence the blologlcal control 

6 RecommandatlOn Dans les zones de secheresse, 1 utlllsatlOn de A COCCOIS comme 

agenl de lutte blOloglque pour contróler la populatlOn de P herrem est reeommalldee La 

culture de genotypes de mamoe tolerants a la ¡echeresse ne de vral t pas znfiuencer le controle 

blOloglque 
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General IntroductJon 

The purpose of this report 15 to mentloned the mam results obtdmcd In the collaboratlve 

[RD-CIA T prOJect entltled mfluence of drought In the relatlonshlps between the cassava 

mealybug dnd ito hos! plant 

In South Amenca (especial1y In Northeast Brazll), ¡he eassava mealybug Pilenawccus 

herrem Cox & Wllh,lITIS (Hemiptera Pseudococc¡dae) ¡S an ¡mportant pest of cassava 

Mamilot esculenta Crantz (Euphorbluceae) parttcularly dunng drought penod, when the 

msect populatlon meredses (Bcllottl et al 1983 Noronha, 1990) To control thls mealybug, 

three encyrtld parasIlolds Apoanagyrus (Epldlllocarsls) dlverslcorms Howard AenaslUS 

vexans Kernch and Acerophagus COCC01S Smlth (Hymenoptera Encyrtldae) are bemg srudlcd 

at the Internatlonal Centre for TropIcal Agnculture (CIAT) Calt Colombia They were 

released In sClm-and are as of the Braz¡)¡an states Bahla and Pernambuco In 1994 and 1995 

(Smtth & Bellottl 1996 Bertschy, 1998) Desplte the presence of cassava mealybug 

parasttolds mcreases m pest populatlOlls on cassava are often reported dunng long dry 

seasons CA C Bellottl and W M G Fukuda, personal observatlOns) Tbese mereases eould be 

due to blochelTlIcal changes In the cassava ¡caves mduced by water deflc¡ency resultmg m a 

posltlve effeet 011 pest development and a negatlve effeet on parasltold development andlor 

thelr searchmg behavlOur 

Therefore our proJect was focused on the Importance 01' drought toleraole mcchamsms 

and the changes they mlght tngger In plant physlology or blOChemlstly and what change, thls 

mlght tnggcr In mealybug development and In the success of paraslt!sm of thlee parasltOlds 

and thelr development 
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Part 1 
Photosynthesls m drought-adapted cassava 

IntroductlOn 

Because of the essentlal role of wdter In planl Inetabo]¡srn plant growth 1, often 

" plOportlOoal to water aVdllablllty A prolonged penod of severe drought mdy result 10 tlssue 

dehvdralJon and death However, even 10 the absence of severe water shortage freguent 

vanatlon rn both enVlronrnentdl water ava¡]abIllty and water regulrements cause regular and 

Ir ansltory water shOrlage In plants Those specles well-sUlted to very dry habltats develop 

speclal and very effectlve strateglcs (shor! seasonal cycles, CAM metabohsm or dchydratlOn 

tolerance) (Chdpm 1993) Mo,t plants reael to water deflclency by a range of phYSlOloglcal 

and 100rphologlcal adaptatlOns Short and medJUm-tcrm acchmatlOn lS pnmanly based on 

phYSlologlcal responses leadlng to reduced water loss (stomatal closure) and utlllsatlOn 

(depressed cel! expanslOn) Long-term acclnnatlOn mvolves anatormcal modlflcatlons to 

reduce transplratlOn and mamtam water acqulsltlon (mamly the reductlOn of the evuporatlve 

surface and mcreased root development) (Davles and Zhang, 1991 Delaunay and Yerma 

1993) 

A lower rate of nct C02 asslmllatlon m plants suffermg from water stress has been 

oflen reponed (Kalser, 1987) Both stomatal and non-stomatal factors are thought lO 

contnbute to the cffeets of drought on C02 asslmllatJol1 Recently pubhshed results tend to 

mdlcate thal stomatal closure lS the mam factor smce the photosynthetlc apparatus lS largely 

unaffected by water hmltatlon 10 whole plants 01' by dlreet deslccatlOn In eXClsed Icaves 

(Cormc el al 1992, Tourneux and PeltJer, 1995) Stomataí behavlOUJ' IS CruCldl because 

changes lO stomatal aperture affeel water 1055 proportlOnally more Ihan C02 fl xatlon henee 

lmprOVIng water use efflclency (WUE) (MartIn and RUlz-Torres, 1992, Glmenez el al 

1992) 

Cas,ava Malllhol esculenta WhlCh must endure several months of natural drought 

dUl mg lt, seasonal eycle IS tolerant to long penods of water shortage The plant reslst" 

drought by reduclllg ltS leaf canopy and closmg as swmata TblS lS combllled wlth d strong 

hehotroplc response whereby the plant onents lts lcaves In such a way th lt they seek 

máXImum I1ght JnterceptlOn when the vapour pressure deflclt (VPD) IS smal! and solár 

radlUIlon 15 low However they lntercept less hght at mldday whcn ¡he VPD dnd soldr 

rddldtlon are hlgh Thls behaVlour lS observed m mature led\eS of well-watercd planto but 1;, 

much more pronounced tn pLmto suffermg from shortdge of water (Cock el al 1985 Y dO el 

al 1988, [J-Stldfklwy el al 1992a 1992b EI-Sharkawy 1993) 
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Cilla fluolescence analy'>ls can be used to momtor changes m tlle funcllOnmg anel the 

regulalion of Ihe photosynthettc apparalu\ Tlle yleld of Chla fluOle;cence lS detel mlTled by 

two dlstlnct quenchlng processe, the photochemlcal qucnchlng (qP) dnd the 

nonphotocnemlcal quenchmg (qNP) The qP lS due to Lhe oper,Hlon of Lhe photosynthetlc 

eleclron transport The qNP arlses from nonradluuvc dlSSlputlve processes whlch fllnctlon In 

the regul,¡tlOn of lhe photo<¡ystem II (PSII) photochemlstry Thcse processes compete 

effectlvely wlrh the excltanon energy transfel processes m psn lcadmg to Icduced quantum 

yleld but allowmg PSlI to remmn relatlvely oxydlzed when the transport of electrons IS low 

(Bradbury and Baker 1981 Schrclber el al 1986 Horton and Hdgue 1988, Foyer el al 

1990 Genty el al , 1990) Effectlvely, qNP has be en shown to dlsslpale the excess of energy 

In lea ves expenencmg vanous stresses, but the mechaOlsm ¡S not general and dlffer" among 

specles, and accordmg lo Ihe type of stress and the adaptatlOn of the plant (Genty el al 1987 

KhmTIls el al 1990 Ogren 1990, Baker 1991, Scheuermann el al, 1991 Jeffenes 1994) 

In the present study the effcet of water stress on photosynthes¡s m lea ves of drought­

adapted cassava plants was exammed Smce the helIotrop¡c response and droopmg prevents 

¡he ¡eave, of water-deflelenl cassava [rom bemg exposed to hlgh Irrad¡ance, one may as sume 

that the photosynthetlc apparatus In such Icaves IS no! adapted to strong I¡gh! mtensny 

Another obJectlve of the study was therefore 10 examme Ihe susceptlblilly of PSI! to hlgh 

I1ght through lts actlVlty esttmated In VIVO from Chla flllorescence measurements 

Results 

Shoot development was markedly affected by 45 days of water deflclency (Table 1) 

The stems stopped growmg from lhe onsel of the penod of water ilmltatlOn Tlle number af 

leaves per plant decreased because of a dramatlc acceler.ltlOn of leaf ;cnescence and f,1l1 and 

a sllbstantlal decrease In Icaf emergence In addmon the ared of lhe lea ves that emerged and 

expanded dunng the drought penod was about half that of the control AlI these 

mOd¡[¡cdtlons led to a strongly reduced leaf canopy and corre;,pand lO an adaptlve reactlOn of 

cassaVd lo allevlate water stress These data obtatned 10 a glasshouse are 10 agreement wlth 

prevlOus fmdmgs m fleld expenments (Cock el al, 1985 Yao el al , 1988 EI-Sharkawyel 

al 1992a El-Sharkawy 1993 and our own observallOns m Ihe Congo ORSTOM Centre 

SI \zzdvllle dunng the dry season) Thls demonstrates that our expenmental condlt!ons 

-; film!c fle1d condlllons well 

The exposule of plants to water stress dld not result m a <;Igmflcant decredse In water 

pOlentl~1 In ellhcr young or old le.lves meJ!>ured before dawn and dI mldd ly ThlS Wd" 

ob,crved uSlI1g a hydraulte pre<,q (Table 2) or by ¡he pressur<c bomb techmque (Sehol mder el 

al 1965 dd¡~ not shown) W dlcr Ilmltdt!on sltghtly decreascd \VC .lnd RWC In young Ie,¡ves 



Tablc 1 Shoot chMacten,tlcs of 4-month-old Cd'"av" plant, grown wlth hlgh or low water dvall"blllty for 4S d.!ys The total 
numbe¡ ot fallen and emerged leaves per plan! the ,¡red 01' mdture Icave;, expdnded dunng the treatment and the helght of plant 
,tems were determmed Al the begmnlllg Oflhe expenment, plant helght was ca 9S cm wllh 19 leaves Data are mean, t SE 

Trealment Fallen ledves Emerged leaves Are.! of m,Uure HClght of ~tem 
leaves 
cm2 cm 

Control 6t09 12 ± O 9 129 t 76 141t22 
Stress 13 t09 5t04 66t80 97 ±2 2 

T able 2 Ledf water status measured before dawn dlld at m¡dday III young dml old le,lVes of control or water-stressed Cdssava plants 
Data are means t SE WC water canten! (g/g dry wc¡ght), RWC relallve water content and o/L le,lf water potent¡al (b1rs) 

WC RWC 

Control p lants Pre-dawn Mul-day Pre-dawn lVlId-day Pre-dawn Mld day 
y oung lea ves 53t03 42±01 091 t O 02 091 t O 03 -o 6 t O 07 -09±0 10 

Mature lea ves 36tOl 35t02 094tOOl 088 t O 04 -3 2t0!3 -33 ± O 34 

we RWC 'I'L 
Stressed plants Pre-dawll lVhd-day Pre-dawn Mld-day Pre-dawn MleI-day 

YOllllg le ¡ve;, 39t02 37tOl O 87tO 01 086 t O 01 -o 9 t O 16 -07±OIO 

Mature lea ves 38±04 3St03 095 tOOO3 090tOOl -31±020 -23tO 15 

'. \1 
J 
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whereas no dlffercnce m ¡he,e paramete¡:, was ob,erved In old le lve" (Table 2) TlllS 

probab!y was due to ¡he fael that the stomata of young leaves of water deflclent plams were 

pdrtlally open thus allowmg net C02 a"lmIlallon but al so wdter 10,s ("ee below) 

F¡gure 1 ¡lIu,trates the response of photosynthesls (oxygen evolutlOn) to photon flux 

densIIy for leaf d¡scs wllh d ,aturatmg C02 level In control ,md water ,tressed plants the 

young leaves exh¡blted a hlgher maxlmum ¡ate of C02 asslmilatlOl1 than old leaves Water 

stress reduced photosynthesls m young leaves al a h¡gh PPFO ¡he ute at 1000 ¡.tmol quanta 

m-2 s-I bemg only 75% of thal of the control however there were large V.lnatlOns w¡thm 

Icaves of the same water trealment The photosynthetlc capaclty of old lea ves wa, very low 

and Similar m control or stressed plants 

Stomatal conductance mcreased untll mldday In young leaves of control plants (FIgure 

2) lt was always slgmf¡cantly hlgher than ID old lea ves, whose conductance reached a 

relatlvely constan! value after 3 h dunng the hght penod Stomatal conductance was very 10\\ 

under water hmItatlon mespeetlve of Jeaf age A smal!, transl\ory merease was nevertheless 

detectable m young Ieaves at the begmmng of the mOl mng 

In Icaves of control plants under low hght lOtenSlty (PFO lOtercepted respectlOg the 

natural onentatlOn of the leaves) the net photosynthes¡s (Pn) was almost 5 tImes hlgher m 

young le,lves than In old lcaves (Table 3) Under water deflclt Pn decreased by 66% In young 

Icaves and by more than 90% m old leaves Thus Pn WdS greater m lhe young lea ves of 

plants under stress than 10 old leaves of plants wJth no stress Pn wa~ greater (about two-fold) 

m both types of Ieaves of control plants at hlgh (1000 ¡.tmol m-2 $-1) \han at low madJance 

In contrast Pn were hardly detectable at hlgh mudlance m stressed plants l!TeSpectlve of leaf 

agc Shortage of water had only a weak depresslve effcct-·lf any-on lcaf chlorophyll 

content but lt m.lrkedly mcreased II! VlIJo phosphoglycolate phosphatase actlvlty whlch was 

cxtremely low m control lea ves (Table 3) 

The relallve contnbutlOns of photochemlcal (qP) and non-photochemlcal (qNP) 

quenchmg m determmmg <jlPSII dunng the mductlon of photosynthe<;ls 111 attached lcaves are 

shown m FIgure 3 In young Icaves al low madwnce the steady-state values of qP and qNP 

al the end of the InductlOll penod were falrly slmdar In stressed and control plants and hence 

: the values of the quantum yleld of clectron transport, <1>PSII were comparable Upon 

tr.1n,ltlon [rom low to hlgh mudlUllee qNP was hlgher In steddy state m both types of plants 

= The mercase m qNP was not modlfled by drought Value, of qP decrea,ed wlth Illcreased 

llf.ldJance Th¡q IS the normal respome of qP to mcreasmg lrradlance However 111 control 

plant, the ehange III hght cdused a substdntlal and rapld but trJn,¡enl fall In qP whlch 

,ubsequcntly paltldlly recoveled The dccrea,e wa, gredter 111 stre~sed plant" ,md qP d,d nOI 
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Figure 1 Effee! of water Imutatlon 00 bght saturatlOn curves of 02 evolutlon 111 young and old ¡eaves of 
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Table 3 Photosynthe'IS In normal alr chlorophyll content~ dnd 11l vl/ro ph()~ph()glyco!ale pho~phata~e actlvltle, of leave~ of C,IS~,lva 
piaras grown under ~uff¡c¡em or hmtted water aVdll,¡bIltty Net photo¡,ynlhe"l'> W.l~ detennmed 4-5 harte¡ d.lwn al low and hlgh lrfadl.lnCe 
(PFD of ca 300 limol m 25 I and 1000 ,u.molm 2$ 1 respecllvely) Measurements were made ID young and mature Jeaves Data are means ± 
SE 

Net photosynthesls 
rumo! CO2 m 2 <; 1) 

Irradmnce 300 fimo! m 2" 1 1000 J-lmol m 2 ~ I 

Control Stre,s Control Stre", 
y oung leave~ 122 i O 5 40i09 239 ±05 01 i006 

Mature Ieaves 26+06 02 + 009 40±OI nd* 
*nd non detectable tr*' traces of actlvlty 

• • 

Chlorophyll 
(mg m 2) 

Control Stress 
676 ± 123 617±44 

467 i 82 454±J14 

Phosphoglycolate 
phosphatase 

(nmol (mg Ch\) 1 mm 1) 

Control Stress 
tr'* 337 i 146 

tr'* 218 ± 25 
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FIgure 3 Effecl 01' w1ter defluency on Chla fluorescence di room lemperdture The "hemH"al quenclul1g coefflclenl (qP) lhe non-chemlcdJ 
quench10g coefflLlenl (qNP) und the guantum efflclency 01 PSll phorochcll1l'-.try (rpPSlI) wcre oh\elved dunng !hL mdllUlon ph hL 01 
phOlo<,ynthe'.l\ II low !f1 ddl mee (220 fimol m-2 <,-1) wtth 1 \uh,equent tr.m\1I10n 10 hlgh (1 000 ~tmol m-2 \-1) IITddlanCc The expenment\ 
were carned out wllh attached young (o 0) or old (O,~) leave\ 01 \t1c'>,>cd (d.lIk -,ymbol&) or control (opcn symbols) cassava planls Arrow;, 
lI1dlcdle the pOIn! of tr,m~!tlon m trradtance D.n,¡ ,¡re me,lI1~ ± se 
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recover On the contnry II contll1ued to faH and rcachcd very low vdlue, Accordmgly at 

hlgh lrr,ldldnce In young Icaves <j>PSII was severely affecled as a result of wdter stress 

Chla fluorescence analysl~ revealed substanttal dlfferences between old and young 

leaves The steddy state va\ues reached by qP dnd <j>PSIl In the control plants al low Irradlance 

were \ower In old leaves than In young lcaves Water deflclency depressed these parameters 

further lO old !caves Al hlgh madlance m old leaves qP and <jlPSlI were very low ll1 both 

control and stressed plants 

DISCUSSlOn 

Bolh the photosynthetlc capaclly at saturated C02 (Figure 1) and Pn ll1 normal alr found 

lO old leaves (Table 3) are unusual sine e data obtamed by other studles on ca:,sava grown out­

door m pots 01' In the fleld showed Ihal similar age of leaves tndeed have hlghest rales of 

photosynthetlc capaclly al saturaled C02 and Po (El-Sharkawy pers com) These low rates 

1lI our expcnments could be due 10 the shade effeet In the glasshouse where the plants were 

grown In faet our sludy was made under a solar trradlance lllfenor to 500 ¡.tmol m -2 s-l 

wlch was qUIte low compared to the expcnmental cOndltlOnS used by El-Sharkawy el al 

(l992b) wlth a ,olar Irradtance of 1200 to 2000 ¡J.mol m-2 5- 1 However lt IS welllnown III 

cassaVd ¡hat old leaves dlsplayed lower rates of these parameters than young Icaves (EI~ 

Sharkawy pers com ,De Tafur el al, 1997) 

The old Ic,\Ves of plants grown wlth sufflc¡enl water supply appeared to have a weak 

capactty for the ulilizauon of absorbed hght lndeed, the response of old Icaves to lOCreaslllg 

Irradlance III an atrnosphere saturated III C02 c1early shows that the photosyntheuc apparatus 

of ¡hese Icaves was not effectlve At low hght mtenslty III alr, thelr phOEosynthetlc actlvlty 

WdS low and f1uorescence analysls revealed lneffectlve PSIl photochemlstry wlth relatlvely 

low qP and <jlPSIl values Under hlgh madlance, C02 aSSlmllatlOn by old Jeaves was 

tncreased and they dlsplayed very low qP and q,PSIl values The low qP values were 

probably due to Insufflclent photosynthetlc electron utll!satlon and energy dlsslpatlOn (Krall 

and Edwards, 1992) ThlS means Ihat the pnmary electron acceptor of PSI!, QA, was strongly 

red"ced III old leaves under strong hght 

In contrd~t wlth old leaves, young Icaves of control plants exhlblted hlgh leve!;, of 

photosynthetlc actlvJtles under hoth saturatlng C02 and In dlr These Icaves al so dl<;played 

f1uoresc<Cllce parameters usually observed wlth healthy leaveq both under low dnd hlgh PPFD 

[ndLcd followmg a transltlon frorn low to hlgh Irradldnce, they dlsplaycd normal behavlOur 

\Vlth enhanced Pn and qNP values allowlng qP to remaln rel.ltlvely hlgh and preventlng 

• excc"lve dccumulatlOn of I!ght-generated reduct1nt Nevertheless the rale 111 photo,>yntl1esls 

In comblnatlon wllh the ledf are.! deten11lned eMbon upt.lke Owmg 10 lhe re,pectlve 
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piOportlOn'i of the two types of leave, (old and young) overall photo<,ynthc'il<, !!1 wcll­

wdtered plnnts was mJtnly aecounted for by C02 dS,tffillatlOn In old le<lve~ 

Cassavd plants adapt lo water shortage by a rdpld lurge decrea"e In thelr eVdpordllve 

wrfdce They also reaet by par!lally c10stng Ihelr stomala, and hence trlCredsmg WUE (Cock 

et al 1985 Chaves and Peletra 1992 EI-Shdrkawy el al, 1992a EI-Sharkawy 1993) 

These Slre,s aVOIdance mechamsms are no! ,pecldl Jn themselves but they are marked dnd 

extremely effectIve Jn Ihls specles Indeed Ihe waler status of the remalomg lea ves (young 

dnd old) was bule affected after 45-d water deflctl Such remarkable stable 1eaf water 

potemlal Hl cassava undergomg changes m water envlronment has already been descnbed 

(Cock et al 1985 EI-Sharkawy 1993 , De Tafur et al 1997) However ,ome C02 uptdke 

was matntatned only In lhe young leaves under low Itght tntenslty whereas Pn In old leaves 

was almost mi Thls probably resulted from stomatal factors (see FIgure 2) SlOce the 

photosynthetlc capaclty of the old ¡caves (C02 saturated photosymhesls) was not greatly 

dffected by water shortage Thus, In water-depnved plants both lhe acceleratlon of rhe 

sheddmg of old leaves and the pronounced decrease In the photosynthetlc actlVlty of these 

Icaves mean that most of the carbon nutntlOn of the plant as a whole had to be proVlded by 

the young Icaves These leaves clearly playa central role 1Il rhe adaptatlOn of cassava to the 

stressful cnvlronment 

It has been suggested that the photosynthetlc capaclty IS normally affected only In 

leaves suffenng from severe water stress wlth a RWC value 01' less Ihan 70 % (KaIser 1987 

Corl1!c el al 1989 Havaux 1992) The photosynthetlc capaclty of young leaves of water­

deflclent cassava plams was decreased by 25% desplte thelr relatlvely hlgh RWC 

PhotOlnhlbltlon can affect the rate of !tght saturated pholo:,ynthesls (Long et al 1994) A 

decrease m the ratio of the vdnable to ¡he maxtma1 f1uorescence (Fv'/Fm 1 e (Fm -Fo )/Fm) 

IS regarded as Showlllg thal [he leaf h lS becn photomh¡blted (BJorkman and Powles 1984 

Long et al 1994) Our measurements of the Fv'/Fm ratIo showed tl1<\t photolllhlbttlOn could 

not mamly account for the decreased capaclty of lhese Icaves as compared to the control 

(Fv/Fm was about 05 for both types of plants) The decreased photosynthetlc capacIly of 

young Icaves may have resulted from a reductlOn m the Calvm cycle capactty as has been 

reported In some speclcs under water stress (Ogren, 1988 Martm and RUlZ-Torres ! 992 

Glmenez et al 1992) However In splte of thlS decredse the cdpablhty of the phoro,ynthetlc 

machlIlery remamed largely m excess of that requlred to support rhe observed photosynlhettc 

rate, (Figure I and Table 3) and the decrease m Pn ob"erved m young Icave, followlng water 

<,hort<lgc rcwlted mamly from thclr very low stomatal conductance to C02 (FIgure 2) 

Young lCdve,> dlspldyed conSl,>tent bUI reduced Pn under water stre's and low hgllt No 

;,lgnlhc,lnt dtffuence between ,tre;" dnd non-stres;, condltlon, W lS deteded III ¡he Chla 
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fluOIc"cence palametcr~ (FIgure 3) That the reductlOn In Pn dld not notdbly rnfluence qP ,tnd 

~PSII m,1Y reslIlt from an merease In ¡he rate of reaetIons (other than tho;,e of the Calvm 

cycle) whlch consume photosynthetlcally generdted eleclrolls Photore,plrallon and the 

reJsslTllilatlOn of the resultant C02 IS assumed lO dram off electrons, although It lB not alwayó 

the mam process for avoldrng over-reductlon of the electron transport Chdlll (Genty el al , 

1987 Hdvaux 1992 Blehler and Fock, 1996) Intelestrngly rn cassava leaves, Indlrect 

eVldence of a posslble mercase m rale of photoreSplratlon durrng drought stress wa, den ved 

from /11 varo measurements of the actlvlty of phosphoglycolate phosphatase (Table 3) an 

enzyme that IS Illvolved m hydrolysls of the phosphoglycolate formed by RuBP oxygenatIon 

wlllch mltIates the photoresplratory pathway Furthermore, the extremely low values of 

phosphoglycolate phosphatase actlVlty 10 control Icaves are not surpnsrng because It 15 well 

known ¡har cassava leaves have low photoreSplranon under well watenng COndltlons (EI­

Sharkawy and Cock 1990, EI-Sharkawy et al 1992b) 

Under hlgh madlance and water Irnlltatlon the photosynthetlc actlvlty of young Icave> 

WdS dramallcally mhlblted (Table 3) and PSI! actlvlly was markedly affected (FIgure 3) Thls 

IS shown by rhe very low values of qP and íf¡PSII Ir Ihus appedrs tha! young lea\es of plants 

whose water supply 15 IImiled are solely adapted to low IIght mtensny In ¡hese leaves 1t 

appears that partlclpatlon of energy-dlsslpatmg mechanlsms such as pilotoreSplratloll 

Mehler type reactlon and other couId not compensate for the laek of phorosynthetlc eleclrons 

ulliJsatlOll by C02 a5s1mllallon under hlgh Irradlance and normal alr Slmultaneously, the 

capaclty for eXCltatlOn energy dJSSlpatlOn 1ll PSII was not sufflClently lOcreased to allow QA 

to remaJn oXldl,ed The maxlmum value of qNP rn C3 plants IS about O 8 (WCIS and Berry, 

1987) That qNP had already reached thls value In the control plants mlght explam why It dld 

not funher mcrease wlth water stress Undcr hlgh Irradlance and normal a¡r thetr 

photosynthcllC dctlVlty IS mhlblted and they dIsplay a hlgh potentlal for over-reductlon of 

PSII and thus for photomhlbltlon 

The drought reslstdnce strategy of cassava IS complex The aVOldance mechamsms 

leddmg to reduced water loss are assocrated wlth heltotroplsm and droopmg ThlS allows the 

leaves to moderate the mtercepllon of ltght when lrradrance lS hlgh (El-Sharlawy ilnd Cock 

1984) Under Ihese condltlons, young leaves achleve a reasonable rate of photosynthesls 

whlch IS llkely to be of pnmary Importan ce m accltmatton to drought Slnce old ICdves are 

dlmost totally photosynthellcaJly mactlve It appears from the present data lh lt young Iedves 

hdve nellher ¡he ablilty lO use hlgh lrradrance for cdrbon asslmllallOn due to stomatal 

Ilfmtdllon flor lhe cdpaclty to dls~lpate surplus ltght energy under w.lter stress Thu~ the 

stlOng hellotroplc respome and drooprng of ca,sava Icaves mus! be seen as a photoprotcctlve 

,trategy necessdry lO prevenl rnhlbltlon of photosynthe"l> and ltghl ,tress 
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Part 11 
EstJmatlOn of carbon and mtrogen modIficatlOn dunng water 

deficlency In lea ves of mamhot esculenta crantz 

Introductlon 

In early work cassava was classlfled as a C3-C4 mtermedJate (EI-Sharkawy &. Cock 

j 987) Later 1t was demonstrated thal lhe plant d1splayed C3 photosynthem (Edwards el al 

1990) Nevenheless leaves of Mamhot spec1e, have dlstlnct green bundle sheath cells whlch 

are unusuaJ In e3 Jcaves and they show partIcular photosynthes1S charaClenstICS (Angelov et 

al 1993) It could be posslble Ihat dunng waler def1clency cassava photosynthes1s change 

from C3 mto C4 

Th1S study 15 focused on some changes In e and N metabollsms thal water IImltatlon 

may mgger m cassava lea ves 

Reslllts and dlscusslon 

C concentratlon In dry mater was not affected by lhe water avaIlab1)¡ty (Table 4) For 

both genotypes lhe dl3e values were lugher 10 young leaves as compared lo old leaves Al! 

¡hese values were lTIcreased under water hmllallOn Ir IS well known that ,tomatal 

conductance IOfluences dl3e SlOce sromata aperture reduces dlscnm1natJon agamst 13C 

dunng C02 f1xatlOn Thus, ¡he posluve effects of drought on d 13C m lea ves could result from 

rhe lowest conductance of these organs m water hmIled plants In add1tlOn lhe hlgh dl3e 
values m young leaves of droughl-adapted cassava plants was assoclated wlth a hlgh PEP 

Case act1VJty (T able 6) The later enzyme expresses a low ¡sotope fracllOnatlOn Smce young 

Icaves C,h1b1ted hlgher stomalal conductance ¡han old le.lVes m water hmlted pl::um the hlgh 

(lljC values m young leaves could al so result from mtenslve carbon fl,allon through PEP 

Case acl1ylty However m control plams (l 13C was hlgher 10 young leaves as comp ¡red wJth 

old leaves PEP Case aCtlVlty was not dlfferent suggestlOg some stomatal effee! m relallOn lO 

the late of C02 f1xat1on by the photoreducllve cycle 

For both genotype'i and leaf age<;, Ihe al5N values were lower bUl the N concentratlOn 10 

dry mater was shghtly h1gher under low water avmlabJt1ty (T<tble 4) Thls was assoclated wlth 

hlgher free ammo aCld levellO stressed plants (Table 5) Senne glutdmlc aCld, glutammc and 

drglnIne reached very hlgh Icvels The ammo aCld compo'>ltlon wa, also affected \hmvmg J 

deueJse !TI áSpdrtlC aCld glutamlc aC1d and alanme proportlOn and an mcre I"C m that of 

,"pdr,lgIne dnd argInlOe (FIgure 4) 



Table 4 Natmull;,otope compOSltlom, «(l13e and (l15N) dnd proportlons of carbon and mtrogen of 
young and old ledvcs of two cassava vunetles (CM 1585-13 dnd CM 507-37) grown under 
;,ufflctent (NS) or Itmlted (S) water uVa!lablhty (medn from flve !cdves) 

Vancty Treatment Age of Icaves {)!3C (llsN %C %N 
CM 1585-13 NS Young -282 29 510 54 

Old 310 40 510 30 
S Young -242 1 8 514 58 

Old -265 22 509 42 
CM 507-37 NS Young -297 42 510 58 

Old -301 40 48 1 35 
S Young -246 26 496 6 I 

01d -28 1 25 516 46 

Table 5 Flce ammo aCld contents (expressed In nmol/mg eh!) of young and old leaves of two 
cassava vanetlcs (CM 1585-13 and CM 507-37) grown undcr sufflClcnt (NS) or hmIted (S) water 
ava¡]ablltty (mean from flve leaves) 

CM 1585-13 CM 50737 
NS S NS S 

Young Old Young Old Young Old Young Old 
Asp 1028 635 1436 802 1182 393 1242 75 1 
Thr 398 214 637 512 402 217 785 269 
Ser 984 399 2034 945 958 338 2633 606 
Asn 154 nd* 114 O 462 678 207 351 5 1525 
Glu 1826 1488 2827 3157 1898 1358 293 O 2544 
Gtn 629 143 226 O 839 971 15 6 2059 729 
Pro 53 25 104 134 40 2S 108 11 3 
Gly 172 189 314 769 94 59 336 37 1 
Ala 79 O 416 1096 746 912 558 1165 443 
Yal 108 63 484 256 88 62 482 17 I 
Cys 189 128 34 O 326 23 O 88 359 309 
Met 08 nd* nd* 24 06 O 1 30 J 8 
¡le 1 4 24 83 85 1 3 1 5 139 86 
Leu 1 4 1 O 8 I 89 1 4 09 13 O 98 
Tyr 1 9 1 O 74 224 2 I 09 122 88 
Phe 55 32 107 123 S6 29 !O8 139 
Lys 23 30 123 79 26 3 1 165 69 
HIS 506 08 214 295 294 1 9 343 239 
Ar¡¡ 1836 1 2 4742 564 52 09 7344 2208 

Tourl 8806 3826 18096 10431 7935 3S~ 3 23992 1077 6 ,. . nd not determmed 
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hmlted (S) water aVallablltty) 



Table 6 Phosphoenolpyruvate carboxylase (PEP Case expressed m !lmol (mg Chl) I mm 1) 

sucrose phosphate >ynthase (SPS expressed m umol (mg Ch!) I mm 1) and phosphoglycol,ue 
phosphatase (PGP expressed In umol (mg Chl) 1 mm 1) actlvltles of young and old lea ves of two 
cassava vanetles (CM 1585-13 and CM 507-37) grown under sufflclent (NS) or Ilmned (S) wáter 
avallabllny (mean from flve leaves) 

CM 158513 - . -CM 50737 
NS S NS S 

Young Old Young OId Young Old Young Old 
PEP Case 04 07 44 08 08 03 56 24 

SPS 
Vmax 410 143 267 265 233 109 824 303 
Vhm 93 65 157 59 87 43 94 63 

PGP tr* tr* 168 1 37 tr* tr* 3582 68 O 

*tr traces of actlvJty 



12 

Glucose, fructose and SUCfOse showed modlflcatlOns of thelr accumulatlOn levels bU! the 

total amount of (he three carbohydrates ¡ncrea"cd followmg water llmltdtlOn (data not ,hown) 

ThIS was assoclated wllh hlgher SUCfOse phosphale syntlldse actlVlty (bOlh maxlmal and 

llmited actlVity, Table 6) 

Phosphoglycolate amoum m leaves was depressed under water IlmllatlOn (data nol 

shown) ThiS was assocIated wilh higher phosphoglycolate phosphatase acliVIty suggestmg 

lllgher photoreSp¡ratlOn (Table 6) An merease m malate succmate and cltr ate leve], was 'lIso 

observed In Icaves of water depressed plants (data not shown) ThiS was assoclated wlth 

h¡gher PEP case actlVlty (Table 6) 

The h¡gher levels of carbohydrates free ammo aCId, and orgamc aCIds found In leaves 

of water starved plams contnbute lO a decrease m the osmollc pOlentlal of the tlssues morder 

lo protect celluJar structures Furthermore there 15 no eVIdence lha! cassava dIsplay a C3-C4 

mtermedIate photosynthesIS or change tls photosyntheSIs mIo C4 dunng water shortage An 

alternalIve hypotheslS 1$ that the hIgh phosphoenolpyruvate carboxylase aCltVIty found under 

water ImulatIOn 15 due lo an Increase In photoreSpIratIOn leadmg 10 an accelerallon of 

reSpIratory ammomum asslmIlatlOn requmng a hlgh anapleuretlc phosphoenolpyruvate 

carboxylase functIomng 
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Part 111 
Influence of eassava plants under water stress on the cassava mealybug 

and three pal'asrtOld speCles 

IntroductlOn 

Mattson & Hdack (1987) reported lhat drollght-stressed pldn!!> are oflen more ~lIltable 

for lnseet growth and reproductlOn becallse plan! 1111tnents <ire elther more coneentrated or 

better balanced Thus mcreasmg and/or lmprOV1ng ¡he balance of these nutnents should 

favour msect performance explammg m part the often-reported outhreak& of plant-eatmg 

msects on drought-stres,ed plants In Afnca, for example, mercase" In pest popllldtlons dre 

often obsened on eassava plants dunng long dry seasons wlth another cassava rnealybug 

specles Phenacoccus manlhotl MatIle-Ferrero (Hemlptera PseudOcoccIdae) 

(Neuenschwander el al 1990, Le Ru el al 1991) Under laboratory condllIons Fabres & Le 

Ru (1988) showed tha! P mam}¡ol¡ exhlblted a hlgher mtnnsIC rate of merease (re) on cassava 

plants under water stress, mducmg an mcrease In ¡he P mamholl populatlon 

The natural enemles of phytophagous Insects functlOn and develop In a multltrophlc 

context (Pnce el al 1980) Consequently theIr behavlOur and phYSIOlogy, WhICh determine 

theIr f!tness, are Influenced by many factors and stImulI den ved from the plant (fmt trophIC 

level) and the phytophagous host (second trophlc level) (VInson 1976, Takabayashl el al 

1991) A great number of sludIes have focllsed on the Inlerdctlons between plants and pests 

(Maxwell & Jenmngs 1980) and between pesls and parasltolds (Waage & Hassell 1982) In 

recent years a common theme of mtegrated control has been lO combine the selectlon of pldn! 

vdllety wlth bIologIcal control Ihcrefore It has becn necessaIy to sludy the mfluence of plants 

on mteractlon'i between herblvorous Insect pests and Ihelr parasltOlds (Van Emden 1987 

SOUl"SI &. Le Ru, 1998) The plant Influence; host habItat 10catlOn host searchmg by the 

n"tural enemy and the oVlpo!>ltlon behavlour of parasIlolds It aels ellher dIrectly Vid Its 

phYSlcal Mld chemlcal charactenstlcs 01 tndIrectly by means of ehenllcal eues denvcd [rom 

host (honeydew) actlVlty or nutntlOl1 (Ve! & DIcke, 1992 Godfray, 1994) 1t also aireeIS Ihe 

survIval of the parasltOld unul adlllt slage thereby InfluencIng lIS slze fecundlty dnd 

developmental time (Reed el al ,1991 SOUI%I & Le Ru 1998) In order to e,tlmate the 

pdfJSltOlds efflcIency m blologlcal control, 1I 1; thus nece5'ary to consIder the [¡rSI trophlC 

level (TIngle & Copland 1988 Van Ernden 1991, SOUISSI & Le Rll, 1998) 

Mattson & Hdack (1987) emphaslzed ¡hal drought provokes outbre,lks of le Ir-e Hmg 

lIhcch by provIdrng nulllllOnal condltlOns tha! favour the¡r gtüwth dnd Immunocompelence 

1 hc,e chdnges dho fdvOur the rnsecl;, e;,cape from regulallon by thcIr natllul encmlL' Under 

Ilbofdtory condll1ons lhe PMdSI!old t1pOCll1agyrt/5 lopez¡ De S.lnllS (Hymenopter,¡ 
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Encyrlldae) relcased In Afnca to control P manthott exhiba, a lower preference for 

p lr<lsltwng mC.llybug' reared on eassava p1ants under water stres, (B Le Ru, personal 

commulllc.mon) Furthermore SOUISSI & Le Ru (J998) showcd lhat cassaVd genotype 

mfluences lhe development of thls parasltold specles In the system under study It IS 

necessary to understand the droughHolerance meehanlsms of cassav<l the changes ¡hey mlght 

lngger In plant phYSlOlogy and blOchemlstry, and wh,tt effeet thesc changes have on the 

mealybug and ltS parasltOlds 

The purpose of lhls study was lO eva1uatc ¡he Influence of Cdssava plant, under tnduced 

water stress on P harem de\clopment and on the sueeess of parasltlsm of three parasltolds 

dnd thelr deveJopment The parasHolds speclcs sludled were A d¡VerSICOrms A vexans and 

A COCC01S The use of Ihe eassava gcnolype (mOle or les s dwught tolerant) and parasllOld 

speCles most sUltabJe for controllmg P herrem In dry areas IS dlscussed 

Results 

Development tIme of females to oVlsac formatlOn was slgmflcantly lower on bOlh 

genotypes when P herrem was reared on water-deflclent plants (Table 7) In eontrast [emaJe 

fecundny was hlgher On CM 507-37, a Similar tendency was observed for female fecundlty 

thus no statlstlcaJ slglllflcance \Vas obtamed 

For both cassava genotypes, the welght of mature femaJes and the mtnnslC rate of 

mercase (rrn) were slgmflcant1)' hlgher when P herrem W,lS reared on water-stressed cassava 

pldnts Furthermore, the wClght of adult females was hlgher on CM 507-37 regard1ess of the 

water trcatment 

Sex ratIO was mflueneed more by the genotype than the water treatment The ratIO was 

about 2 2 and 2 3 (maje female) on CM 507-37 and CMC 40, respeclIvely 

The rdte of pdraSItlSm W.l" generally lower In meaJybugs rcared on water stressed pJants 

(Table 8) In contra,l Ihe dedth rate \Vas generally hlgher No tendency Wa' observcd for the 

emergence and ;,\lfvlval rate parameters WhlCh were generally not mtluenced by the pJant, 

water status 

Furthermore when statIstlcdl ;'lgnrflcance was noted the encapsulauon rate was hlgher 

In meaJybugs reared on wdter-stressed plants and the developmental time was lower 

A companson among parasltOld 'pecres showed that the rate of parasltlsm of A COéCOIS 

regdrdless of the plant water status and genotype, was gener.lIly hlgher as compdred to the 

r.ltes of A vexans and A dlverslcorms 



1 ,lhll 7 BlOlogK<l1 eh 11 Ictcn~tlcs of P herrul/ female, re lred on C<l" IV.r pllllb glOwn wlth !>ulhclent (NS) or hmlted (S) water av.:nl,lblllty ,md 
re<;ul, 01 2 way ANOVA (genotype and water-trealment f.letor,) when there ., homogenelly of VdrhtnCe and d,lt.r nornl1lHy The development 11 
tIme (10 dJYs) to OVl,1C forrnatlon, the fecundny 01 mJture female, (total no of eggs lard pe. female) lhe IOtnns.c rate of Increase (rm) welght 
(m mg) and "ex r.rllo (% lemaJe) were deternllned (mean, ± SE followed by lhe no of rephc.lle, 10 parentheses) For each plant genotype 
dlfferent Ietters 10 the ,ame column (water avarlabllrty companson) mdlcale slgmflcance (P<O 05) denved from Student s Hest or from Mann­
Whltney U test for the developmentaf llme to oVlsac formatlOn and welghl 

C.rssava cultIvar Developmental trme Fecumhty rm Female welght % fenl'lle 
to oVlsac formahon 

CM 507-37 NS 23 3 ± O 05 (88)b 4202 ± 40 O (13)a 0286±0004 (l3)a 1 3 ± O 03 (88)a 48 1 ± 1 7 (7la 
S 227 ± O I (75)a 4966 ± 27 9 (9)a O 300 ± O 003 (9)b 1 5 + O 04 (75)b 549±58(6).1 

CMC40 l\S 23 3± O 2 (52)b 394 1 ± 34 9 (7)a O 285 ± O 004 (7)a 1 I ± O 04 (52)a 622 ± 4 1 (7)a 
S 22 4 ± O 05 (92)a 5325 ± 39 5 (10)b 0305 ± O 003 (I0)b 1 3± O 03 (92)b 611±36(6)a 

A~OVA 

genotype (A) 09005 06103 00171 
trealment (B) 00095 00001 04822 

AxB 04335 04098 03211 



T lbk 8 InlluLnLl of the \\ lllr In ... HmLn! uf Las~'wu rhnt\ on ... UlA",(,.~~ of p lr t<"ltl\m 'lnd no dcvdopmcnt 11 tmK 01 three plra~ltOld ;,pCC1CS of P herrefH 1 wo cassaVd 
LultiVar::. (CM 507 37 anu eMe 40) were grown under ~utflclent (NS) or lrmlted (S) water JVdll..tbthty f'or elGh panS!lOld spcucs ,md c1ch cassava cultivar dlÍferem 
lew:fs in the s-arne column (a h water avatlablhty compan;,ons) mdlcate blgnlfll.,ance (P<O 05) de:nved from CtH sqUJfC test or from Mann Whltney U tcM lar 
Jt. VI. IOpIlH...Illdl tune 

--l¡:~irasltOld Cassava Rate of Emergence Em .. apsulahon Survlvaf Dcath rute Total no of Oc velopmental 
cultl\'.lr paraslhsm ratl ratL rdte (from observed tune (m days, 

(%J' (%) (%) (%) JUhtxtwn IIlldlybugs ml.n ± ~¡')(n)h 
of 

OVlposltor 
or dlred 
fu...dlllg) 

(%) 

A COCCOl,i. CM 'l07 37 NS 617 b v 75 I .¡ O 643 319 J 77 20 7 ± O 2 (J6)a 
S 41 4 a v 748" () 122, 464 b 71 20 3 ± O 1 (22). 

CMC40 NS 608 b v 783 d O 142 a 25 O 1 86 207 ± O 1 (41)0 
S 462 a v 802. O 153 a 38 S b 82 202 + O 1 (30)a 

A \e\CUlt CM 5u7 J7 N~ 437 a u ?~ I el 79. !? 7 a 3271 81 316±03(LI)b 
S 320a v 695 I 401 30 () b 34 O 1 hU 237+04(18). 

CMC40 NS 595 b v 666 1 37d 22 O a 1481 80 23 O ± O 3 (32)b 
S 273 a ti 67 O a 143 b 143 a 441 b 82 207+01 (15)a 

i dnerSl(O"m CM 50737 NS 444 bu 676" 8 1 •• ly8 a 367 I 67 25 7 ± O 2 (20)b 
S 25 O a u 694, 25 O b 831 417 J n 222+04(14)a 

Clv!C 40 N' 407 b u 639« 167 a 1168 31 UJ 72 2Q±02(19)b 
S 31 2 a u 698 a 135 J 91a 462 b 82 228±06(18)a -afor each tassava cultIvar and eat..-h Wdter trcatmcrH <hHcrent It...ttcrs In lhe ;.,,Unl.- column (u v _ par..tj)ltoIJ \PCUI.~ tomp m~on-") mdlcdle !->lgmfh.lnce al 5% level den ved 

froIn d Chl ~quare test 
bfor A COCCOIS and A vexans developmental ttme for botb ~excs 
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Bdsed on tlle ,el( r"tlo and lbe Slze of progeny tibia these pardmeter, were not 

mflucneed by the W<iter %l!U, of (he pl,lO!S (T dble 9) For A dlverSICOTnIS alone the tibia 

length and thu:, progeny :'17C wele slgmflcantly lowcr on wdter-~trcs,ed pl,mt" 

DISCUSSlon 

Cassava pl.mts under water ,tress fdvollr P herrem developmcnt and reproductlon [n 

f.¡et the developmental time of females lo oVI,ac formatlOn was shorter, mOleover fecundIty 

the mtnnSle rate of merease (rm) and the welght of mature femdles were hlgher (Table 7) 

These data Indlcate a faster merease m the number of pests on eassava under Jow water 

avaIlabl]¡ty thereby explammg In part the mealybug outbreak on eassava durmg long dry 

seasons observed In the fleld by Bellottl el al (1983) and Noronha (l990) Furlhermore 

accordmg 10 the parameters evaluated In thls study (feeundlty, rm welght of females) the 

posltlve effeet of water-stressed cassava on P harem development and reproductlon could be 

related to nutntlOnal faetors, as suggested by Mattson and Haacl-- (1987), e g plant nutnents 

are ellher more concentrated or better balanccd In faet cassava Icaves under water deflClt 

eAhlba an Hlcreased level of sorne compounds such as free amlno aClds carbohydrates 

(suerose) and organlc aClds (mahc and SUCCInIC) contnbutmg 10 a decrea,e In the osmOlIe 

potennal of the tlssues 111 order 10 protect cellular structures (see Part Il) USlllg a blO-as,ay 

method lor mealybugs developed by Calatayud el al (1998), an merease 111 the level of these 

compounds III the dIe! and the use of a molar ratio (sucrose/free am1llO aCld,) at 2 5, found III 

cassava Icaves under low water avaüabliay (vs 5 for well-Irngated plants) favours P herrem 

glOwth (unpubhshed data CIAT, 1999) AIl these observatlOlls conflrm the faet that under 

water stress cassava favours P herrem growth and reproductlOll because plant nutnents are 

enher more concentrated or better balanced (rallo sucrose/flee ammo aelds) Nevertheless 

aecordmg to our results there IS no eVldence thU! more drought-tolerant cassava gcnotypes are 

more favourable to mealybug development and reproductIOn The smgle advantage tha! CM 

507 37 plS"sented as a mealybug host over CMC 40 WdS the wClght of the adult female whlch 

wa, hlgher under the same eondltlons Thls does not mean that the use of drought tolerant 

ca~,ava lO manage mealybug poplllatlOos should not be recommended beeause such 

genotypes should be more tolerant to meaJybug mfestatlons, whlch mduce water stress m 

cas"aVd (Calatayud el al 1994 P -A Calat<iyud, personal observattons) Furtherrnore 

accordmg to the results of the ,ex rdUOS (Table 7) the more drought-tolerant genotype CM 

507-37 appears less favourable to the female populatloll consldered as more re,ponslble for 

Ca"dV<i d Images by Poldllla el al (1999) 

Accordlng to the result, obuuned wlth the pau<;llOlds \Ucceqsful p Ird;,ltl,m 1> 

Inílucnccd by the plant s water st.ltus W dter-t>tressed c~"aVd pl.¡nt, Induce d decre ¡,'- !1l the 
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Table 9 Influence of water lrearmenl for cassava pldfilS on tIbia length (Jlm mean ± SE) and on 
sex ratio (represented by % females) of three parasltOld speclCs Two cassava cultlvars (CM 507-
37 and CMC 40) were grown under sufflclent (NS) or lllnlled (S) water avaIlabl}¡ty For each 
parasltOld specle, dlfferent letters m the same column (water-ava¡]abllIty compansons) IOdlcate 
slgn¡f¡cance (P<O 05) den ved [rom Mann-Whltney U test For the percent females the same 
Iclter 10 a column (water-avallabllIty compansons) mdlcate no slgmf¡cance (P>O 05) denved 
from Studenl s Hes! for A COCeOl! or from Chl-square test for A vemns 

ParasltOld Cassava TIbia lengths lIbIa lengths % 
cultIvar ofmate offemale fe mates" 

·A COGCOlS CM 507-37 NS 227 ± 4 a 234 ± 3 a ¡01±45a 
S 220 +4 a 735 + 2 a 704 + 3 8 a 

CMC40 NS 232±4 a 238 ± 4 a 812±39a 
S 236+6 a 239 + 3 a 780+34a 

A vexal1S CM 507-37 NS 427 ± 10 a 432 ± 6 a 714 a 
S 419 + 23 a 458 + 22 a 667 a 

CMC40 NS 42t±15a 451 ± 17 a 714 a 
S 410+12a 468'" II a 700 a 

A dlverslcorms CM 507-37 NS 618±t5b 100 O 
S 483 ± 12 a JOOO 

CMC40 NS 608 ±20 b lOO O 
S 494-21 a lOO O 

"For A CO~C01S mean ± SE 
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fdte of p,lraSlIl,m regdrdless of the parasltOld speCle, studled (Tdble 8) but thele I~ no 

eVldence chat more drought-tolerant caSS'lVd gcnotypes dre less favourable lo che succe" of 

p 11 Ntlsm In faet lowest paraSItlSm rates for both gcnolypes were obtallled on wdter-strc"ed 

planh 

Dunng host selectlOn pdrasIlOlcb use a vanety of eues lo as,ess che qualny of Ihelr 

hosls such as shape surface slructure and Internal and external chemlcal wbslances (waxy 

secretlons and honeydew) (Godfray ¡ 994) 111;' well known thal the quahty and qu,mtJty of 

lhese subslance" vary accordIng to the ;,peCles, vanety and plam reslstance level mfluenclng 

hose dlscnmlnutlOn by parasltOlds (TaJ...abayashl & Takahashl, 1993) Al the tIme of 

OVlposltlon the quahty of parasltOld hosts depends on thelr age or stage of developrnent, Slze 

condItlon and dIet (Godfray, 1994) In IhlS study lhe expenmental condItlons the genolype 

host age and slage of developmenl were ldenllcal for both cultlvars the dlet was the only 

varymg factor Our data demonserale that lhe dIet of P herrem Influences the pdra5!Usm rate 

01 parasltOld specles, suggestmg that water stress mfluences hos! dlscnmmatlOn by the 

pdf3SltOlds Furthermore, the most appropnate candldate among lhe parasItOld specles studled 

for blologlCaI control In drought-stncken areas could be A coccO/s In faet a hlgher rate of 

parasltlSm was obtamed wnh thll> speclcs 011 cassava under low water avallablhty (T dble 8) 

Whcn statlsllcal slgmflcance was obtamed hlgher encapsulatlOn races were observed 

wlth A vexans and A dlverslcorms when mealybugs were reared 011 water-stressed cassava 

plants (Table 8) As already noted by Bertschy (1998) no encapsulatlOl1 was observed wlth 

A COCC01S specles It IS well known that In the ablllty of lhe parasJtOld to res 1st the defence 

mecham,ms of the host, all known mechamsms to aVOld encapsulatlOn, used -eIlher by the 

female paraslto.d (dunng oogenesls 01' OVlpOSltlOn) or by the embryo (formatlOl1 of lytlC cells 

al lhe serosal level wlthout mtake of exogenous nutnents) (l\enon el al , 1988)- depend upon 

the ,peCles Furthermore lt has been demonstrated that mlensJty m the mealybug's lmmune 

reacllOn change<; wIlh the age and stage of the h051 (Sulhvan & l\euemchwander 1988 

ILlqueI 1990) older ho,ts encapsulate more often than younger ones because they eontam 

more hemocyles In our expenment, lhe mealybugs used wcre al lhe same dge and stagc The 

hlgher encapsuIatlon rdte recordcd on mealybugs reared on water-stressed planlS suggests that 

lhe trophle charactenstlcs of the plant may ¡nfluence the mtenSllY of the mealybug; lmmUllC 

rCdCllon dnd tbal cassava under water strcss could have a posltIve ¡nfluence on thls As 

mentIol1cd by Mdttson & KldCk (1987) drought enhances the Insect Immune systern 

In contrast two other pdr<lrneters (Table 8) dre no! favourahle lo mcalybllgs Thc death 

rale, In unly due to duce! feedmg by the parJSltold In our expenment (d Ita not shown) WJ, 

found to be hlgher In mcalybug, reared on WJter-s!re"ed plant~ Thl, conld be leldted lo 

,ome IrophlC qllJllty of the hosl enhanced when lhe cas,uva pIJO[,> dre under water ,tres s 
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conflrnung the fact th,ll successful parasltlsm 1, related to lhe ho;,t dlel Exccpt for A COCC01S, 

lhe developmental lime of p,¡rasItolds wa~ found to be lower m me,I1ybug, reared on water­

<,tres<;ed plant<; "[ hIS could be related lo ¡he fdet that ¡he deveJopmental tIme of P harem WdS 

10WLr on CdssaVd under low waler avail<lblhty 

Furthermore only In the ca,e of A d¡Va:'lCOrrlLI IIbld length .lnd thus progeny slze 

were reduced on water-stressed plan!:' (T .lble 9) WIth the cassav,¡ medlybug parasltold 

specles Apoanagyrus [apeZI, the number of oocytes contamed In lhe ovanoles of [emale:. 15 

posltlvely correlated wlth body Slze (Van DIJken el al, 1991) The larger Slze females IIve 

longer and have a greater probablhty of matlng successfully (KraaiJeveld & Van Alphen, 

1986) PrevIOU;, stud,es showed tha! female fltness mcrcases wlth adult ;,Ize (Kmg 1988 

VI,ser 1994) Our results wlth A d¡verslcomls suggest a lower expresslOn of the fttness on 

cassaVd under water-def,clt condmons 

As KraaIJcveld & Van Alphen (1986) h,¡ve emphaslzed wlth A lopeZI our parasltOld 

5peclcS are komoblom parasttolds, whose larvae develop 10 a host that contmues to feed and 

grow after havmg becn parasIIIsed Contrary lo IdlOblOnt parasItOlds the SIze of the lmago 

may be reJated to the growth of Ihe host (Wadge, 1982) For A dlVerslcorms, smaller adults 

were obtamed on C.lssava under water deflclt COndItIons (Table 9) whereas larger mealybugs 

were obtalllcd on rhese same plants (Table 7) These data mdlcates thar the abllny to regulate 

pdrasltold growth IS expressed dlfferently accordmg to the water status of rhe hos! pldnt Thl5 

observanon whlch 15 valld only for the asexual slram used m Ihls study, suggests that 

progeny 5lze of IhIS reproductlon type should be more sensJtlve to the fml trophlc level In 

the fmure, therefore, conslderatlOn of ¡he type of paraSltOld reproductlon should be useful m 

Ihe blOloglcal control of P herrem m drought-stncken areas 

In concluslOn we showed that waler stress of ca'sava pl<lnts has a posltlve cffeet on the 

devclopment and reprodllctlOn of P herrem females and a negatlve mfluence on bOlh lhe 

success of parasltIsm regardless of lhe parasltOld specles and on the SIze of paraSItOld 

progeny pependmg on the parasItOld speclcs explammg m part Ihe merease m mealybug 

populallons on cas,avas dunng long dry seaSOD> As mentloned by Mattson & Haaek (1987) 

w!J¡)e drought-stressed plants are physlologlcally more sUltable for phytophagom lnsects 

because plant nutnents are e,ther more concentrated 01 bettel balanced slml1ltdneou, drollght 

dl,favours natural enem!es of phytophagous m,ects Furthermore m drought-stneken arcas 

more drought-tolerant cassava genotypes should not be les~ favourable for controllmg P 

henelll populatlons and A COCC01S would be most appropnalc among the p'lrd>ltold ,peCles 

:.tudled 
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General concluslOn 

The drought reslstance Slrategy of ca;ódVd 1'; complex The aVOIdance mechanlsms 

le ldlng lO reduced water IOS5 are US'iocJated wlth hel!otlOplsm and droop.og Thl' allows lhe 

leJves to moderate Ihe tnterceptlon of l!ght when lrradlance IS hlgh Under these condltlOnS 

young Icaves ach.cve a reasonablc rale of photosynthesI5 whlch 15 hkely lO be of pnmdry 

Import.lnce 10 acchmatlOn lo drought ,mee old leaves are almost totally photosynthetlcally 

mactlve It appears that young ICdves have nelther the ablhty to use hlgh nradlunee for carbon 

asslmt1atlOn due to stomdtal hmltatlOn nor the capaclly lo dlsslpate surplus ltght energy under 

waler stress Thus, lhe slrong hehotroplC response and drooplng of cassava leaves mus! be 

seen as a photoprotectlve strategy nece,sary to prevent mhlbillon of photosynthesls and hght 

stress 

There 15 no eVldence that cassava dlsplays a C3-C4 lntermed¡ate metabollsm 01 change 

from C3 lo C4 under water shonage The hlgher level, of carbohydrates free ammo aClds and 

olgaOlc aClds found m leaves of water starved plants contnbule to decrease lhe osmolte 

pOlenual of plan! cells 10 preserve cc\lular Slructure 1 he hlgh phosphoenolpyruvate 

carboxylase actlvlly found under water hmltatlOn could be due 10 an merease In 

photoresplrallon leadmg lO an acceleratlOll of leSplratory ammomum assllmlallon reqUlnng a 

hlgh anapleuretlc phosphoellolpYluvate carboxylase functlOnmg 

Furthermore, water stress of cassava pldnts has a poslllve effeel on Ihe developmenl and 

reproduetlon of P herrem females and a negallve mfluence on both lhe success of parasltlSm 

regardless of Ihe parasltOld specles, and on the Slze of parasltOld progeny, dependmg on the 

parasllOld specles explalntng In part the mcrease In mealybug pOpulatlOns on cassavas durmg 

long dry seasons In faet whlle drought-stressed plants are physlOloglcally more sunable 1'01' 

phytophagous Insects because plant nutnents are caher more coneentrated or better balanced, 

slmultaneous droughl dlsfavours natural enemles of phylophagous mseclS Furthermore In 

drought-stncken are as more drought-tolerant cassava genotypes should not be less favourable 

for controll1ng P hel relll populallons, and A COCCOIS would be mo,! appropnate among the 

paIasltOld speCles S!UdlCd 
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