

International Center for Tropical Agriculture Since 1967 / Science to cultivate change

Productivity, MAZIWA ZAIDI environmental impacts and tradeoffs of livestock intensification options in Tanga region, Tanzania

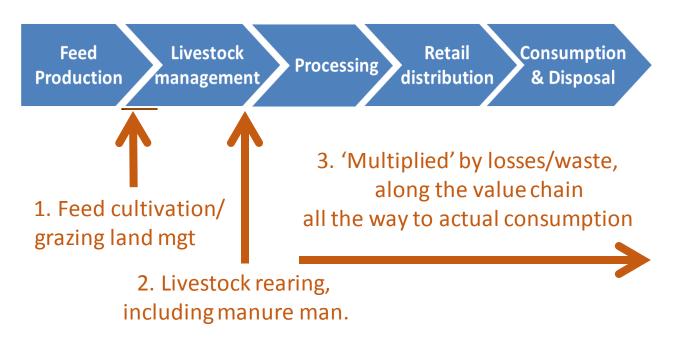
10th of December 2015, 3rd Tanga Dairy Stakeholders' platform meeting

Birthe Paul, An Notenbaert, Catherine Pfeifer, Joanne Morris, Julius Bwire, Amos Omore – and many more contributors

b.paul@cgiar.org

Presentation outline

- 1. Potential environmental impact assessment
- 2. Forage technologies and productivity
- 3. Conclusions


Environment, modeling and tradeoffs

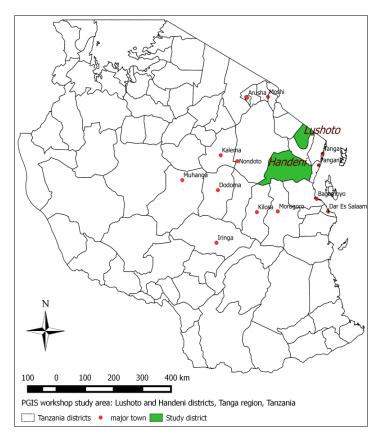
- Livestock's environmental impacts are widely discussed
- Farmers often face tradeoffs, eg between production and environment
- They influence adoptability, impact and sustainability of interventions
- There is no one silver bullet, capturing diversity is key
- Modeling needed to assess potential impacts (what-if)
- Ex-ante impact assessment can provide decision support

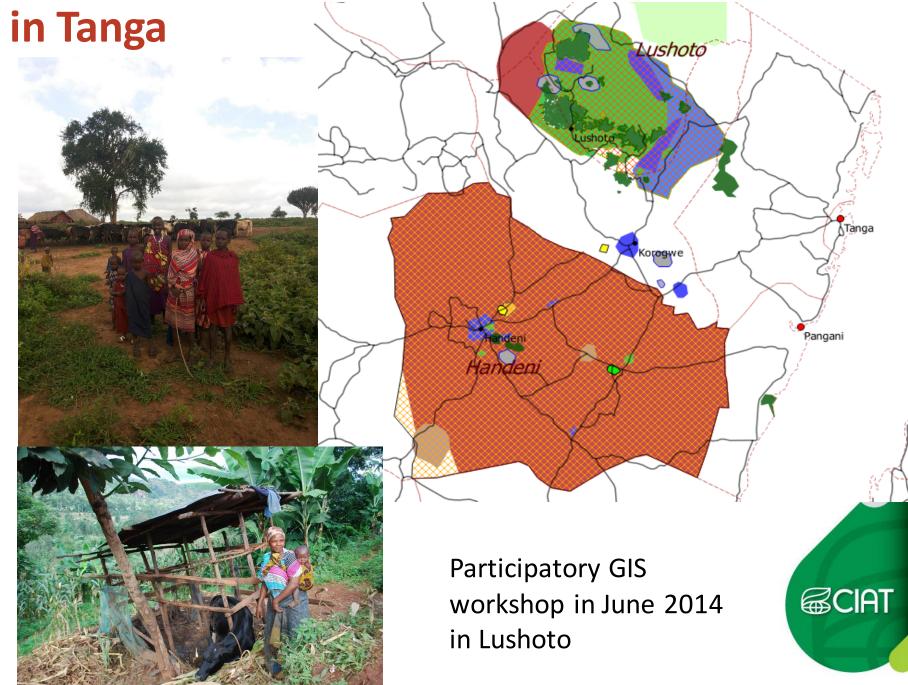
livestock's long shadow environmental issues and options

Environmental impacts along the value chain

Greatest environmental

impacts = 1 + 2

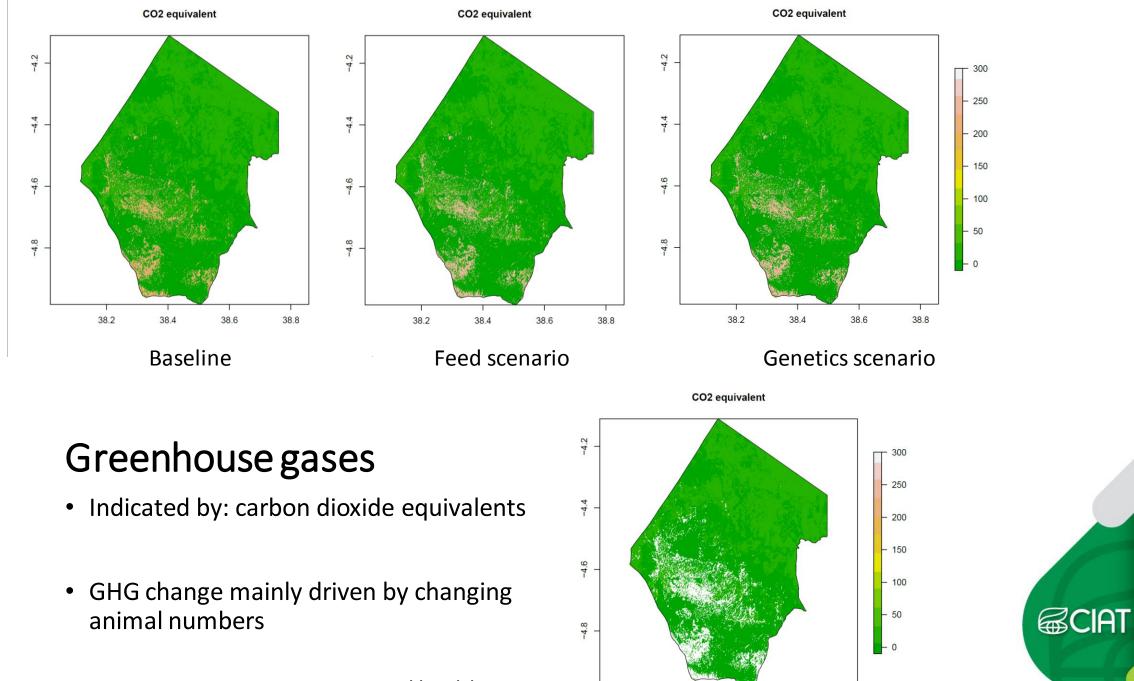

- 1. Water availability and quality
 - Available water
- 2. Soil and land health:
 - Soil erosion
 - Soil fertility
- 3. GHG emissions:
 - Methane, nitrous oxide, carbon dioxide


CIAT

- 4. Biodiversity loss:
 - Species diversity

Long-term sustainability needs to be assessed before designing large-scale livestock development projects. Quick ex-ante environmental impact assessment needed!

Farming systems in Tanga

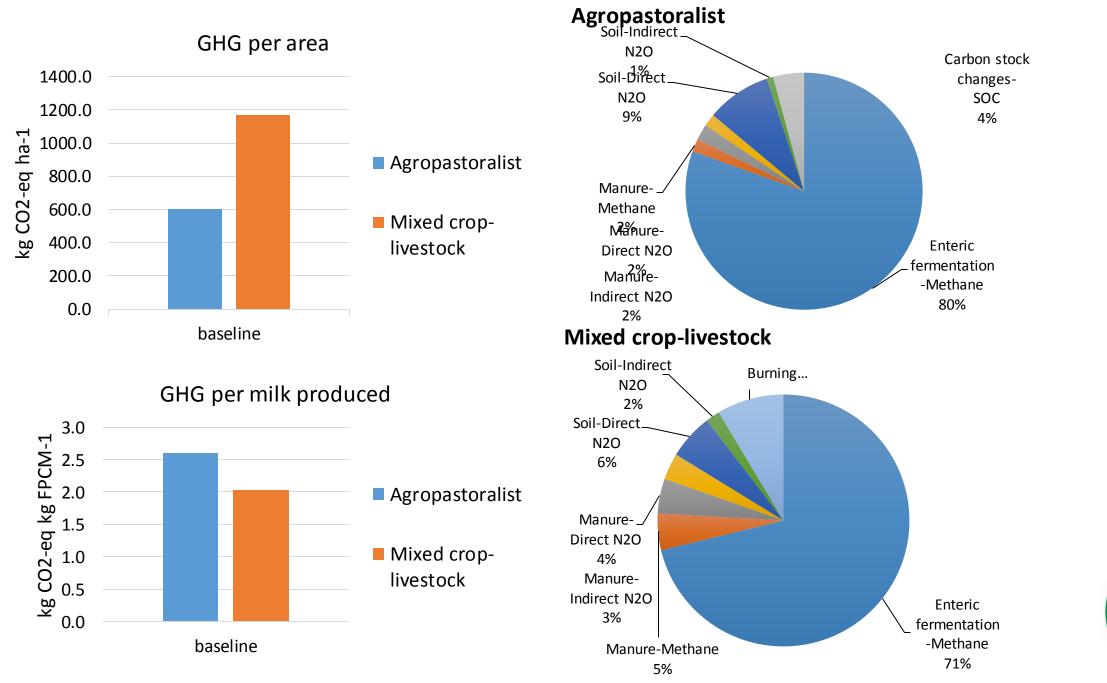


Scenario parameters

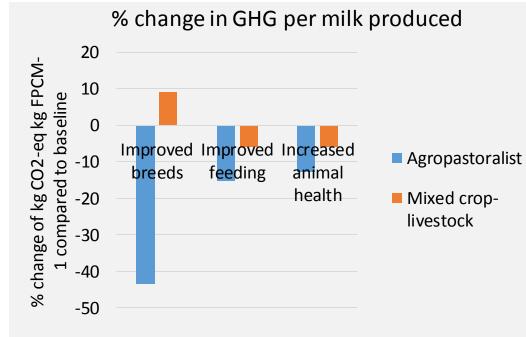
	Baseline	Feed scenario	Genetics scenario	Animal health scenario
Herd composition: Extensive (e) Semi-intensive (si)	84% 16%	84% 16%	84% 16%	76% 24%
Herd size increase	1	1	1	+80%
Liveweight increase	0% (e) 0% (si)	+7% (e) +6% (si)	+29% (e) +11% (si)	+14% (e) +6% (si)
Milk yield increase	0% (e) 0% (si)	+25% (e) +12% (si)	+50% (e) +4% (si)	+31% (e) +12% (si)
Feed basket %: natural pasture maize residue planted fodder maize bran oil seed concentr. hay	 (e) (si) 51 45 49 31 12 5 7 	 (e) (si) 41 40 39 26 20 12 5 7 10 		

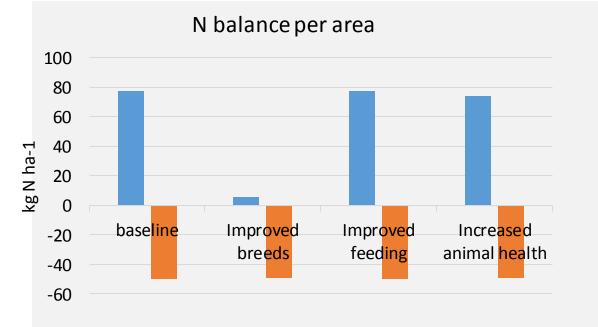
Scenarios based on Maziwa Zaidi village development plans

CIAT


38.2

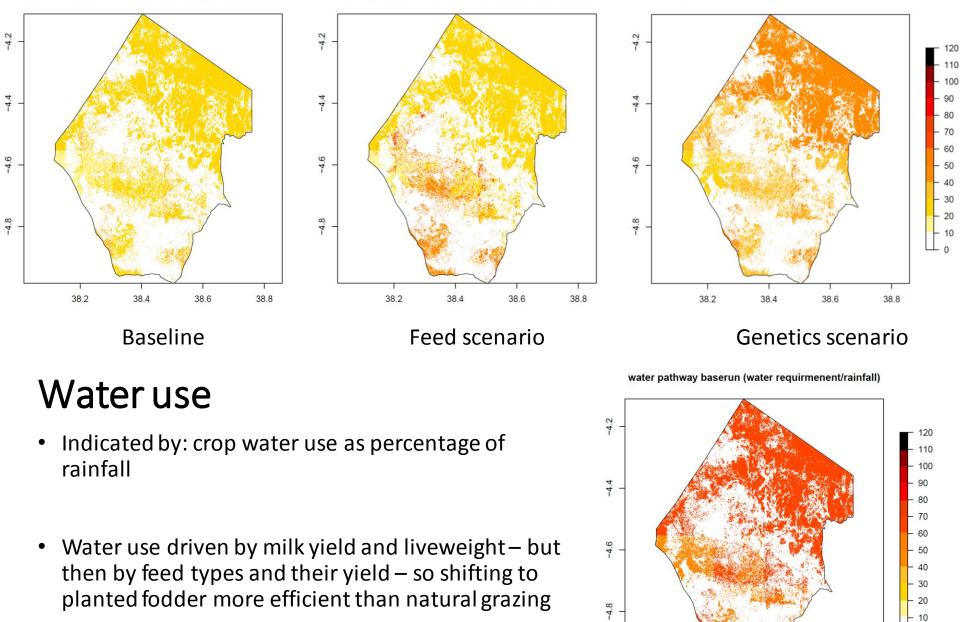
38.4


38.6


38.8

Animal health scenario

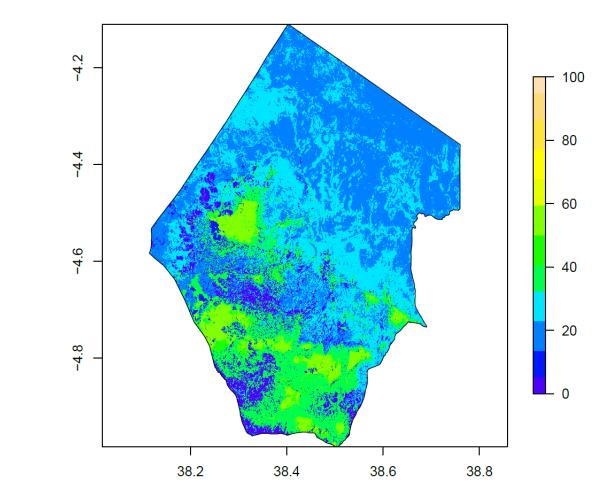
©CIAT


water pathway baserun (water requirmenent/rainfall)

water pathway baserun (water requirmenent/rainfall)

CIAT

38.8


Animal health scenario

38.2

38.4

38.6

biodiversity pathway baserun (biodiversity index)

CIAT

Biodiversity

 Indicated by: biodiversity index – percent of IUCN red list species in the area using the location as habitat

Presentation outline

- 1. Potential environmental impact assessment
- 2. Forage technologies and productivity
- 3. Conclusions

Village innovation platforms in Lushoto

 Country level meetings Tanzania (Dairy Development Forum) Regional dairy platform Morogoro Tanga meetings <u>Lushoto</u><u>Handeni</u> District policy Mvomero Kilosa making Kibaya Village Innovation Wami Ubiri Mbuzii Sokoine Platforms Twatwatwa Sindeni Manyinga Mbwade

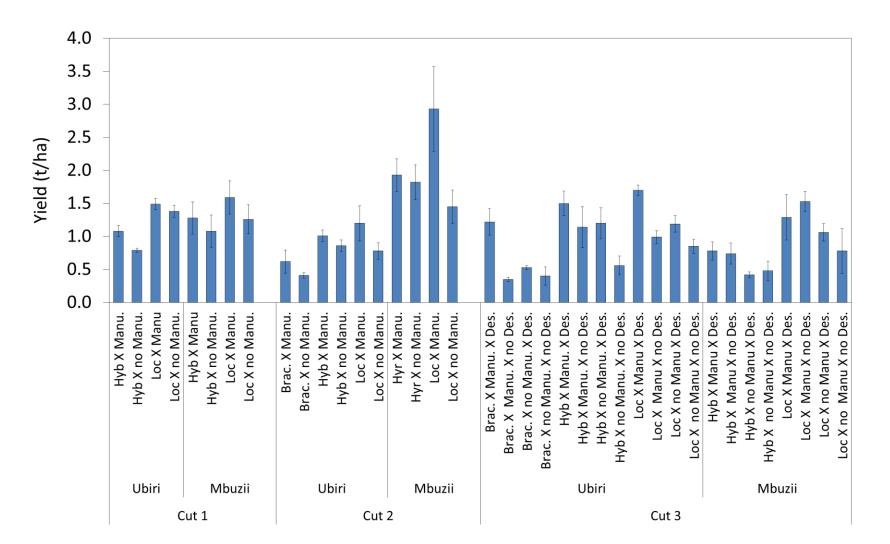
Dairy development in Tanzania with local innovation platforms: When and how can they be useful?

Birthe K Paul, Brigitte L Maass, FredWasseng Amos O. Omore and Godfrey Bwana

Farmers and livestock keepers in Tanzania face a range of problems, including feed shortages, land tenure issues, animal health and milk and meat marketing. Seventy percent of the milk produced in Tanzania comes from indigenous East African Zebu cattle, which produce an average of 0.5-2 litres of milk per day, while improved commercial breeds contribute 30% (4–10 litres/day). Small holder farmers have few animals of improved breeds, and most cannot afford artificial insemination.

Lives to ck productivity in many areas of Tanzania is severely limited by tsetse infestation, and farmers complain that preventing or treating other diseases such as East Coast fever, foot-and-mouth disease and worms is either too hard to get or too expensive. Most find it hard to obtain feed in sufficient quantity and quality to improve their milk production. The main feed constituents in all production systems (mixed crop-livestock agropastoralist and pastoralist) are natural grasses and herbs, either grazed or collected. But these plants are low in productivity, digestibility and protein content. Especially in the dry season, producers have to cover long distances in search for forage, and milk production levels drop steeply. Producers also lack markets to sell milk and meat, especially in rural areas where direct sales to neighbours is the most common marketing channel.

Box 1. Innovation platforms


An innovation platform is a space for learning and change. It is a group of individuals (who often represent organizations) with different backgrounds and interests: farmers, traders, food processors, researchers, government officials etc. The members come together to diagnose problems, identify opportunities and find ways to achieve their goals. They may design and implement activities as a platform or coordinate activities by individual members.

W hat role can local innovation platforms play in helping them solve these problems? Under what conditions are they useful, and what are the factors for success? Do we need innovation platforms at the village level, or can we work with producer groups?

This brief suggests some answers based on experiences from MilkIT, a project that aimed to improve the feeding of dairy cattle in Tanzania (Box 2).

ILRI Research Brief-September 2015

Randomized forage trials

Soil quality

Ubiri, Lushoto

	Bray P mg/kg	Total Nitrogen %	Total Carbon %	Soil organic matter (g/kg)	Recommendations
	4.53	0.20	1.74	30.02	1. Addition of P fertilizers: Very low
	5.81	0.27	2.66	45.81	levels indicate acute deficiency & most
	7.35	0.28	2.88	49.67	crops will respond to P fertilizers.
	2.46	0.21	1.87	32.22	2. Monitoring soil N levels and
samples	2.18	0.21	2.11	36.43	applying recommended rates of N
-	1.63	0.19	1.85	31.90	fertilizer; levels that are too high may leach into ground water causing
	2.74	0.23	2.13	36.74	contamination.
	1.36	0.21	2.00	34.50	3. Continuing with organic matter
	6.24	0.28	2.77	47.83	application to maintain soil organic
					matterlevels
AVERAGE	2.70	0.17	1.56	25.65	

Mbuzii, Lushoto

	Bray P mg/kg	Total Nitroge n %	Total Carbon %	Soil organic matter (g/kg)	Recommendations
	8.34	0.34	3.68	63.40	1. Addition of P fertilizers: Very low levels
	3.01	0.23	2.22	38.28	indicate acute deficiency & most crops will
	3.28	0.30	3.03	52.29	respond to P fertilizers.
samples	3.66	0.30	3.02	52.14	2. Monitoring soil N levels and applying
	2.17	0.26	2.57	44.31	recommended rates of N fertilizer; levels that are too high may leach into ground
	1.38	0.15	1.45	24.93	water causing contamination.
	1.32	0.13	1.04	17.88	3. Continuing with organic matter
	1.07	0.14	1.33	22.86	application to maintain soil organic matter
	1.11	0.14	1.25	21.60	levels
AVERAGE	2.45	0.20	1.94	33.44	

Forage experimentation

- Local Napier produced higher biomass than the hybrid, with a clearly higher biomass where manure was applied. Hybrid Napier produced more tillers.
- Biomass was generally higher where Napier was intercropped with Desmodium
- Bachiaria under either manure or Desmodium intercrop did not out-yield either of the Napier provenance
- In conclusion, intercropping with Desmodium with either of the grasses increases the dry matter yield per unit area which, especially under manuring. Therefore, smallholder dairy farmers should preferably grow Napier when intercropped with Desmodium for increased forage productivity.

B

Farmer forage experimentation

Site	Forages	Women (no.)	Men (no.)	Total (no.)	Forages received from TALIRI	
Ubiri	Received in 2014	11	14	25	Napier hybrid, Napier Kakamega II, Greenleaf	
	End of 2015	38	49	87	desmodium, Mulberry and Gliricidia sepium	
Mbuzii	Received in 2014	9	19	28	Napier hybrid, Napier Kakamega II, Greenleaf	
	End of 2015	9	19	28	desmodium, Mulberry Canavalia brasiliensis (only in demo plot)	

Presentation outline

- 1. Potential environmental impact assessment
- 2. Forage technologies and productivity
- 3. Conclusions

Conclusions

- Enteric fermentation is the largest contributor to GHG emissions
- Emission intensities are higher for mixed crop-livestock systems when measured per area, but lower per liter milk produced
- N balances are negative for mixed farming, and positive for agro-pastoralists due to the manure produced by the relatively big herd
- Livestock intensification strategies result in almost all cases in lower emission intensities, especially in the agro-pastoral system
- Improved livestock feeding through planted forages is a promising option, both for productivity (especially under intercropping and manure) and environment

CIAT

• Further work is done to assess farm and landscape scale tradeoffs between productivity and environmental impacts

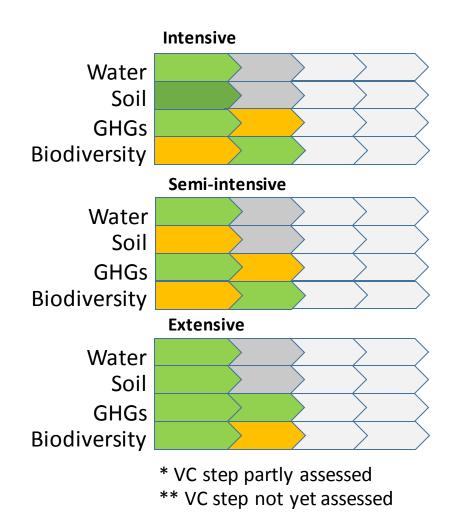
More MILKIT / MAZIWA ZAIDI

INSTITUTE

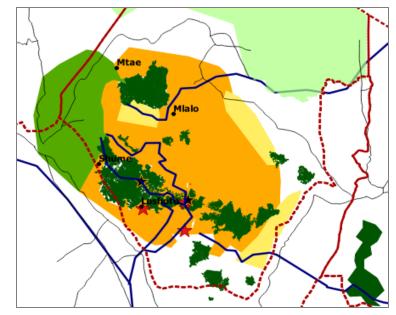
ROTHAMSTED RESEARCH

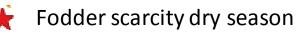
Research Program on Livestock and Fish

b.paul@cgiar.org



Member of the CGIAR Consortium


www.ciat.cgiar.org www.cgiar.org


Science for a food secure future

- District boundaryOther town
 - Important river
 - Forest

Low impact risk Slight medium impact risk Medium impact risk

