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Soil organic carbon as an indicator of soil health 
Maintaining soil organic carbon (SOC) content is recognized as an important strategy for a well 
functioning soil ecosystem (Palm et al. 2007; Lal, 2010; Vågen et al., 2012; Victoria et al., 2012). 
The UN Convention to Combat Desertification (UNCCD) recognizes that reduced SOC content 
can lead to land degradation, and ultimately low land and agricultural productivity. SOC is 
almost universally proposed as the most important indicator of soil health, not only because 
SOC positively influences multiple soil properties that affect productivity, including cation 
exchange capacity and water holding capacity, but also because SOC content reflects 
aboveground activities, including especially agricultural land management. Several studies have 
indicated that agriculture 
often leads to an overall 
decrease in SOC compared to 
the native land use 
(Schlesinger 1991; Smith, 
2008; Don et al., 2010) (Figure 
1). In addition, recent studies 
highlight that inherent soil 
properties (such as soil 
texture) form constraint 
envelopes which ultimately 
limit the soils’ ability to store 
carbon (Winowiecki et al., 
2015). Therefore, to be useful 
as an indicator, it is crucial to 
assess the importance of both 
inherent soil properties as well 
as external factors (climate, 

land cover, land management, 
etc.) on SOC dynamics across 
space and time.  

Need for monitoring and assessments of soil health 
Soil provides multiple ecosystem services, e.g., as a medium for plant and agricultural 
production, a filter for toxins and pollutants and by regulating the hydrologic cycle (Millennium 
Ecosystem Assessment, 2005). Since SOC is influenced by many factors, including land use and 

Figure 1: Processes affecting land degradation and agricultural productivity. 



inherent soil properties, all of which vary across space, there is a great need for systematic 
assessments of key land health indicators across multiple scales, which helps understanding the 
factors drive soil health. 
The Land Degradation Surveillance Framework (LDSF) is a well-established method for assessing 
multiple indicators at the same georeferenced location, and across landscapes (Figure 2). The 
LDSF is designed to provide a biophysical baseline at landscape level, and monitoring and 

evaluation framework for assessing 
processes of land degradation and the 
effectiveness of rehabilitation measures 
(recovery) over time (Vågen et al., 2013) 
(Figure 3). Each LDSF site has 160 – 1000 m2 
plots that are randomly stratified among 16 
- 1 km2 sampling clusters This hierarchical 
randomized sampling design allows for 
statistical modeling of key landscape 
variables in order to assess the health of the 
ecosystem including analysis on the drivers 
of SOC. 
Example variables measured include: tree 
and shrub densities, erosion prevalence, 
topographic position, herbaceous layer, 
percent bare ground, land use history, major 
land use (including cultivation) and land 

cover. Land cover was recorded in all plots using a simplified version of the FAO Land Cover 
classification System (LCCS), which was developed in the context of the FAO-AFRICOVER project 
(http://www.africover.org).  

Location of existing LDSF Sites in 
Ethiopia- ICRAF & CIAT 
Seven LDSF surveys were conducted through 
two different projects in 2011-2013 (Figure 3). 
For example, three LDSF sites were sampled 
within the Blue Nile Basin for the Challenge 
Program for Water and Food (CPWF). Data from 
these sites are available online (Winowiecki et 
al., 2015b) and are being published (Abegaz et 
al., 2016). Furthermore four LDSF sites were 
sampled as part of the Africa Soil Information 
Service (AfSIS) project funded by the Bill and 
Melinda Gates Foundation. Results from these 
surveys were also published (Vågen et al., 
2013a, Vågen et al., 2013b).  
 
 

Figure 2: Brief history of the Land Degradation Surveillance 
Framework. 

Figure 3: Land Degradation Surveillance Framework 
(LDSF) field guide. 



 

Figure 4: Location of the three LDSF sites in the CPWF Blue Nile project (left) and the four LDSF sites sampled with 
the AfSIS project (right) in Ethiopia. 

Figure 5 shows the variation in topsoil OC content for each of the sites, using the reference plots 
from each cluster (n=16 samples per site). Note the higher SOC in Merar compared to the other 
sites and the low variability within the Werota and Mega sites.  
 

 

Figure 5: Variability of topsoil OC between the seven LDSF sites in Ethiopia. 

 

 

 



Landscape-scale assessments of soil properties by mid-infrared 
spectroscopy (MIRS) 
 
Soil samples ~320 per site, were analyzed for mid-infrared (MIR) spectra at the ICRAF Soil and 
Plant Spectroscopy Laboratory in Nairobi, Kenya (http://www.worldagroforestry.org/research/land-

health/spectral-diagnostics-laboratory) (Figure 6). MIR is a well-established technique for the 
prediction of soil variables ( Terhoeven-Urselmans et al., 2010). MIR is also rapid and cost- 
effective, allowing for increased sample size, which enables landscape-scale assessments.  The 
prediction accuracy for these datasets were excellent (Vågen et al., 2013a). 

 

Figure 6: Soil samples were analyzed at the ICRAF soil-plant spectral diagnostics laboratory. 

State Factors of Soil Formation 
 
Hans Jenny (in 1941) published the equation of the state factors affecting soil formation, 
including climate, organisms, relief, topography and parent material. These factors contribute to 
the formation of soil and account for differences in soil types, including soil properties across 
landscapes. To explore the relationship between measured soil properties and state factors, we 

used mean annual precipitation 
(MAP) data obtained from the 
Tropical Rainfall Measuring Mission 
(TRMM) (1998-2011) downloaded 
from ICRAF’s landscapeportal.org 
for each of the seven sites (Figure 
7). Note the variation in MAP across 
the sites, with Mega having the 
lowest MAP. The other biophysical 
variables were collected in the field 
at each of the 160 LDSF plots per 
site, e.g., land cover, average slope 
and topographic position. Figure 8 
shows the variation in topsoil OC 
content for each land cover class, 
per site using the MIR predicted SOC 
values. The average topsoil OC 

Figure 7: Mean Annual Precipitation (MAP ) in mm for each site, 
downloaded from landscapeportal.org,  the TRMM data is from 1998-
2011. 

http://www.worldagroforestry.org/research/land-health/spectral-diagnostics-laboratory
http://www.worldagroforestry.org/research/land-health/spectral-diagnostics-laboratory
http://landscapeportal.org/


across the sites was 30 g kg-1 , note that the SOC content in Merar is above the average. Also 
note the high variability in Dambidolo grassland and cropland SOC. Overall grasslands had high 
variability across the sites and differences were observed between vegetation structures. 

 

Figure 8: shows the variation of SOC within each site by land cover/vegetation structure class. 

Addressing Complexity: Understanding Drivers of SOC 
Building on the equation derived by Jenny (1941) and using the data mentioned above, SOC was 
modeled using R Statistical Package to understand the factors affecting SOC dynamics in 
Ethiopia. Using a linear mixed model in the nlme package. Fixed effects: log(SOC) ~ MAP + 
avSlope + VegStructure_corr + PosTopoSeq +   Sand  and site as a random effect. The plots with 
VegStructure= “other” and “freshwater aquatic” were not included in the model and only 
topsoil plots were used, for a total of 1087 plots.  
 
Table One shows the most important variables – expressed as ln SOC g kg-1 for modeling SOC, 
most notably, MAP, sand, and vegetation structure (cropland, bushland and shrubland). As also 
illustrated in Figure 9. There is not a noticeable difference influence of the topographic position 
on SOC, as confirmed in the table. These results highlight the complexity of understanding 
drivers and patterns of SOC, for example between the various covariate. This highlights the need 
to assess multiple variables, simultaneously, in order to understand spatial patterns across the 
landscape. 



Table 1: Model results 

 
 
 

 
Figure 9: Boxplots of SOC by vegetation class and topographic position. Dotted line is the overall average SOC 
content (30 g kg-1). 



Effect of Cultivation & Land Degradation on SOC 
 
Cultivation also has an effect on SOC. If we isolate cultivated and non-cultivated plots in the 
model, e.g., Fixed effects: log(predSOC) ~ as.factor(PlotCultMgd)  and random effect: Site; we 
see that cultivation does have a strong effect (Table 2). There were 633 plots cultivated and 452 
non-cultivated plots in the data. This analysis does not include the management of these 
cultivated plots nor the crops cultivated.  
 
 
Table 2: Results of the model assessing the influence of cultivation on SOC. Note that cultivated plots have lower 
SOC content compared to non-cultivated plots, using data from all seven sites. 

 

 

Figure 10 shows the variation in the effect of cultivation, by site. Note that the relationship 
varies according to Site. For example, Dambidolo has higher SOC in cultivated plots, most likely 
because these plots were recently converted (<3 years ago). In addition to state factors, land 
degradation plays an important role in influencing SOC content (Vågen et al., 2013b, Winowiecki 
et al., 2016). Figure 11 is a tile graph between two different dimensions (cultivation and erosion) 
and shows that plots with lower erosion have higher SOC, whether that plot is cultivated or not. 
This analysis highlights the need to also include land degradation status when assessing SOC, in 
addition to the state factors. These data also highlight the complexity when assessing and 
predicting SOC, as well as the importance for establishing baselines for assessing the impact of 
interventions on SOC. 
 
 



 
Figure 10:Boxplots showing the variability in SOC in cultivated vs non-cultivated plots in each site. 

 
 

 
Figure 11: Tile graph showing the relationship between erosion and severe erosion. 



Creating a Decision Tree for SOC Dynamics 
The below decision tree was developed in R Statistical Package, using the party library: A 
Laboratory for Recursive Partytioning (Hothorn, Hornik, and Zeileis 2006). Figure 12 shows cut-
offs of MAP 1365 mm and then partitioning by vegetation structure and sand content. This tree 
highlights again (as in Table One) the role of MAP, sand, and vegetation structure (including crop 
management) in driving SOC. The boxplots at the bottom show the SOC content. Each circle also 
shows the level of signification for the partitioning. 
 
 
 

 
Figure 12: Decision tree using: MAP, vegetation structure and sand. This tree highlights the complexity of assessing 
SOC. 

 

Next Steps 
 
Future analysis should look at the change in carbon over time, in order to better assess the 
trajectories of SOC. This report only focused on existing data for Ethiopia and further analysis 
should include more diverse datasets, including information on crop management and land-use 
history. In addition, the concept of regional thresholds for SOC is still needed, acknowledging 
variability of acceptable levels needed to maintain essential soil functions on different soil types, 
for example. Furthermore, understanding how SOC influences land and agricultural productivity 
is required in order to quantify critical ecosystem services provided by soil. Therefore, 
comprehensive studies that acknowledge the complexity of SOC dynamics across diverse 
landscapes can help better address these questions.  
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