

The role of food systems in improving maternal and child nutrition in challenging African low-income settings

Paula Dominguez-Salas RVC / ILRI / LCIRAH

ISVEE, Merida, 5th November 2015

Pablo Alarcón

Barbara Häsler

Jonathan Rushton

INTERNATIONAL LIVESTOCK RESEARCH INSTITUTE

Delia Grace

Silvia Alonso

Paula Dominguez-Salas

Eric Fèvre

LONDON MEDICINE

Elaine Ferguson

Laura Cornelsen

Nutrition team

Douglas Angogo Judith Mwangangi Gideon Mwangi **Emma Osoro**

Livestock value chain team

James Akoko Patrick Muinde Maurice Karani...

Types of malnutrition

Key micronutrients supplied by animalsource foods (ASFs)

	Nutrient	ASF source	Consequences of deficits	Availability
	Vit A	Dairy Liver Eggs	Blindness, growth faltering, impaired development and immune system increased mortality.	Preformed vitamin A (retinol) - almost exclusive of ASFs. Plants contain pro-vitamin A carotenoids, less bioavailable.
	Iron	Meat, Fish (Heme iron) Dairy, Eggs (Non-heme iron)	Anaemia; Impaired growth, immune function, child cognitive development and school performance lower work capacity, maternal mortality	Heme-iron: higher availability (15-35% absorption) and enhances absorption of non-heme iron Non-heme iron: less bioavailable (2-20% absorption) inhibited by phytic acid and fiber of cereal diets.
	Calcium	Dairy Fish (with bones)	Nutritional rickets, increased effects of pre-eclampsia	Absorption inhibited by oxalates, phytates and fiber. High calcium (and casein) in milk inhibits absorption non-heme iron.
	Vit B2	Dairy Meat and organs Eggs Fish	Stunted growth, skin lesions, cheilosis, angular stomatitis, glossitis, neuropathy,	
	Zinc	Meat and organs Fish. Eggs, Dairy to a lesser extent	Pregnancy complications, low birth weight, impaired immune function, mortality, stunting	ASFs have higher bioavailability than plant sources. Protein increases absorption/ calcium, phytates and fiber inhibit.
	Vit B12	All ASFs -only in ASF	Megaloblastic anaemia, demyelinating disorder.	Impaired absorption in elderly

Objectives

Evaluate nutritional status & dietary adequacy

Assess consumer patterns, preferences & demand factors

Investigate determinants of LVC associated with poor nutrition & LVC potential/barriers

Assess potential of ASF in ensuring dietary adequacy

Scale –up research & Intervention design

Methods: Cross -sectional

HOUSEHOLD SURVEY

Maternal (non-pregnant women of reproductive age) and child (1-3y) nutrition:

- Anthropometry and hemoglobin
- 24-h recall

Consumption patterns of ASF

- ASFs consumption (what, when, why, who?)
- Expenditure in ASFs (how much)
- Supply of ASFs (from where and why)

Nairobi Slums malnutrition key findings:

- Underweight- Children: Stunting 41%; Wasting: 4%
- Overweight Women: Overweight: 19%; Obesity: 10%
- Anaemia: Children 74%; Women: 26%

Nairobi Slums malnutrition key findings:

- Underweight- Children: Stunting 41%; Wasting: 4%
- Overweight Women: Overweight: 19%; Obesity: 10%
- Anaemia: Children 74%; Women: 26%

Population-based diet recommendations -women

Nutrient % covered by the recommendations	Vit C	B1	В2	В3	В6	Fol	B12	Vit A	Ca	Fe	Zn	Cost/day [KES]	N
Best possible individual diet	273.4	166.8	238.5	145.5	192	220.7	869.9	847.7	100	81	427.6	229.2	11
No recommendations	9	69.3	79.3	54	62.1	33	336.1	30.2	12	21.7	150.6	80.1	3
1. 7p/wk Fruit	99.6	70.7	81.9	57	79.8	41.4	336.1	46	14.2	21.7	150.6	87.1	5
2. Rec 1 + 28p/wk Vegetables	186.2	81.9	91.9	64.4	98.8	50	336.1	130.9	18.9	24.3	154.2	91.9	7
3. Rec 1 +2 + 7 p/wk Pulses	193.9	114.5	94.8	64.4	109.5	130.5	336.1	130.9	24.8	30	163.5	91.9	8
4. Rec 1 + 2+ 3 + 28 p/wk Dairy	198.4	116	144.4	64.4	109.7	132.3	379.9	177.5	81.6	30	176.1	125.4	9
5. Rec 1 + 2+ 3 + 4 + 21 p/wk ASF	198.4	116	148.7	70.8	114.4	132.3	404.5	177.9	81.8	34.1	186.6	141.6	10
6. Rec 1 + 2+ 3 + 4 + 21 p/wk ASF (7 egg- 4 red meat- 4 poultry- 3 sausage)	198.4	126.8	172.3	89.8	140.7	146.4	1273.6	227.2	83.6	46.6	300	172.9	10

ASF own-price and income elasticities

ASF own-/ cross- price elasticities	Beef meat	Offal	Processed meat	Fresh milk	Fermented milk	Eggs	Fish	Other meats	Broiler chicken
Beef meat	-0.95**	-0.38**	0.22	-0.19*	0.18	-0.15	-0.30**	0.27	-0.01
Offal	-0.56**	-1.62**	0.09	0.07	0.43	0.52**	-0.03	0.17	-0.24
Processed meat	0.5	0.16	-1.34*	0.06	0.01	0.93**	-0.09	0.82*	-0.24
Fresh milk	0.009	0.11*	-0.003	-1.08**	9.15	0.03	0.1**	-0.09	0.15*
Fermented milk	0.47	0.65	0.03	0.85**	-2.4**	0 19	0.09	0.44	-0.06
Eggs	-0.26	0.76**	0.88**	-0.04	0.25	0.22	-0.14	0.82*	0.20
Fish	-0.20*	0.03	-0.04	0.38**	0.03	0.02	-1.09**	-0.44**	0.21
Other meats	0.29	0.14	0.41*	-0.19	0.21	0.44*	-0.49*	-0.81*	0.22
Broiler chicken	-0.05	-0.19	-0.15	0.07	-0.06	-0.14	0.16	0.49	-1.90**
Expenditure elasticities	1.35**	1.38**	0.81**	0.82**	0.28	1.17**	0.52**	0.98**	1.47**

HHs allocated on average 42% of their food expenditure to ASFs, of which 52% were allocated to dairy products and 13% to beef.

^{*}significant at least p<0.1; **p<0.05

ASF choice drivers: Why is it (not) consumed?

Dairy demand-supply considerations

98.5% of HHs

DEMAND

5.5 times/week/HH Why NOT

Why YES

Nutrition: 68%

Taste: 65%

4

Access: 73%

Price: 40%

-1.08 own-price

Value chain issues

- Key retailers:
 - Milk bars (raw, informal traders),
 - Kiosks (mainly processed, large companies),
 - Slum producers (raw).
- In some slums, factories sell milk about to expire at a cheaper price.
- Mainly women-dominated chain.

SUPPLY

- Processed milk is controlled by few large companies.
- Important wastage in large companies
- Informal sector: Food safety risks due to adulteration, lack of cold chain, inadequate transport, poor hygiene, antimicrobial use, lack of licensing, regulation and training.

Final remarks

- 'Triple burden' of malnutrition → think food systems backwards from consumer's nutrition gaps/problems
- Importance of ASFs in malnutrition → nutritionsensitive livestock value chain approaches are necessary
- Food choice drivers influence ASF strategies success: economic (price, income), biological (taste, health), physical (access, appearance), cultural (religion, peer)
- This supply-demand approach allows to identify safe entry points in the livestock value chains that optimise nutrition

THANK YOU!!

Initiative

