Parasites in food chains

Kristina Roesel and Delia Grace

Microsporidia in the Animal to Human Food Chain: An International Symposium to Address Chronic Epizootic Disease

9 August 2015 at University of British Columbia, Vancouver

Outline

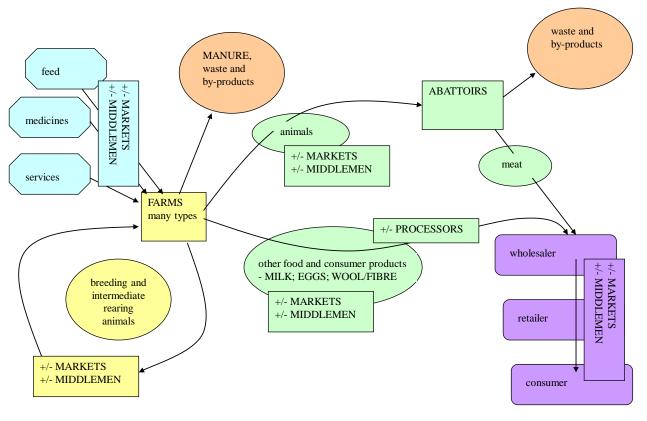
- 1. Diseases in complex food production systems
- 2. Selected parasites in food chains
- The global burden of foodborne parasitic diseases
- 4. Approaches in assessing and managing risks from foodborne parasitic diseases

1. Foodborne diseases

Distribution of wealth based on international purchasing power. Retrieved from: http://rachelstrohm.com/2011/05/11/a-different-look-at-global-income-inequality/

High-income countries

- 70% deaths >70 years
- Non-communicable conditions
- Roughly 15% illness caused by 4 FBD

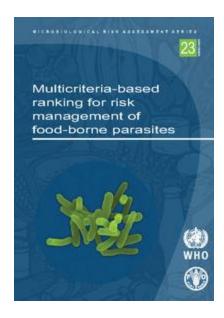

Low-income countries

- 40% deaths <15 years
- Communicable diseases
- Diarrhoea top 10 killer

1. Foodborne diseases

Organic/extensive farming

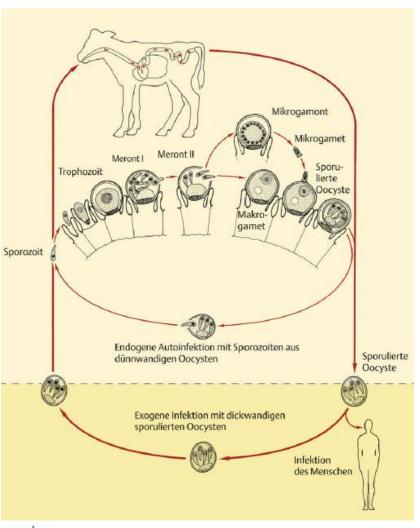
Urbanization Globalization


1. Foodborne diseases


 $Retrieved\ from: \underline{https://www.youtube.com/watch?v=1XBwjQsOEeg}$

taeniasis, toxoplasmosis Chagas disease

FAO/WHO (2014) Multicriteria-based ranking for risk management of foodborne parasites. Microbiological Risk Assessment Series

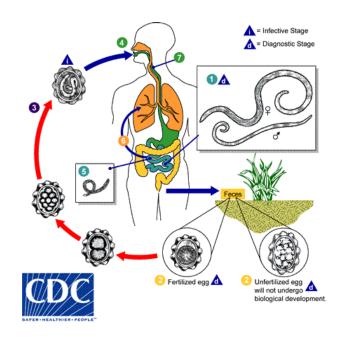


- Intestinal protozoa
- Intestinal nematodes
- Foodborne protozoa
- Foodborne trematodes
- Foodborne nematodes
- Foodborne cestodes

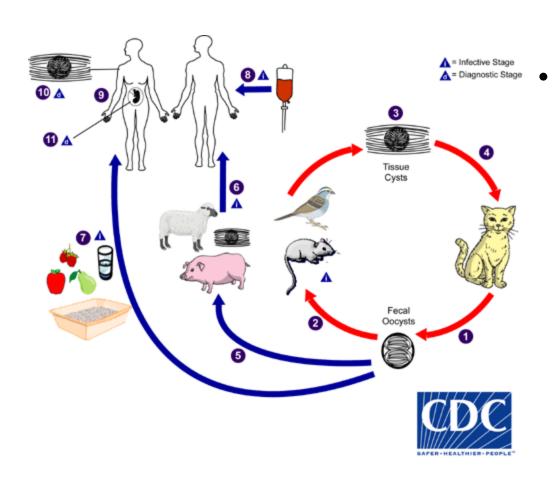
WHO (2007) First formal meeting of the Foodborne Disease Burden Epidemiology Reference Group (FERG): Implementing Strategy, Setting Priorities and Assigning the Tasks.

- intestinal protozoa

- Giardia, Entamoeba spp.
 - Americas
 - Source: drinking water
- Cryptosporidium spp.
 - Africa
 - Immunocompromised
 - Source: water, fruit, raw vegetables

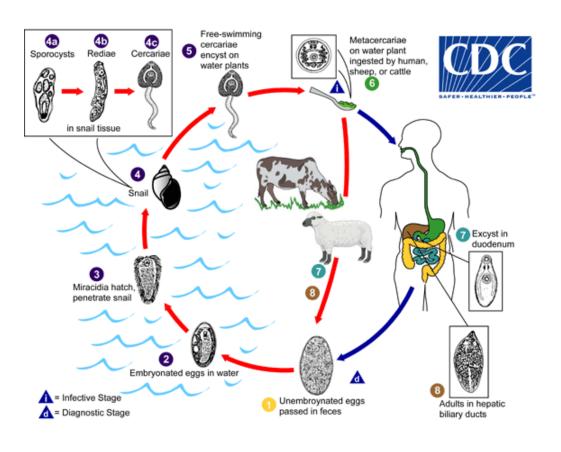


- intestinal nematodes



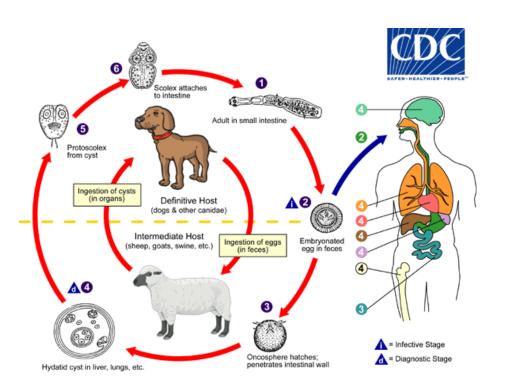
- Ascaris lumbricoides
 - Neglected tropical disease
 - Source: water, soil, pigs?

- foodborne protozoa

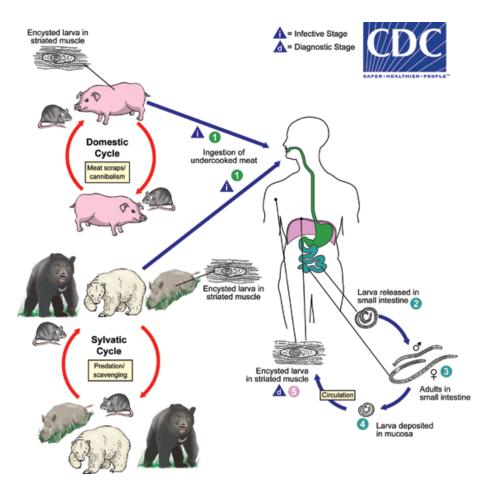


Toxoplasma gondii

- 2 human pathogen development stages
- Sources: water, soil, cat litter; undercooked meat
- Maternal infection, immunocompromised
- Livelong infectivity

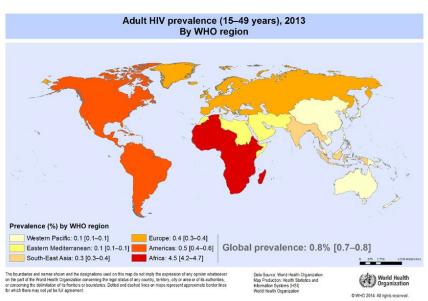

- foodborne trematodes

- Fasciola spp.
 - Source: water, plants
- Opisthorchis and Chlonorchis spp.
 - Source: freshwater fish
 - Severe sequelae


- foodborne cestodes

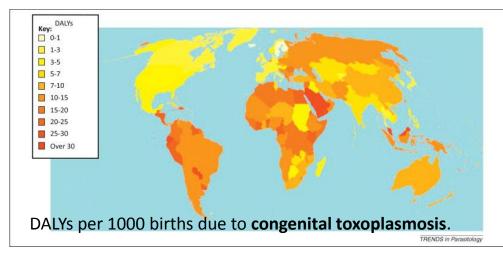
- Potentially fatal
- Taenia spp.
 - Source: Taeniasis vs. NCC
 - NTD imported to N. America
- Echinococcus spp.
 - Source: water, fruit, raw vegetables
 - Canadian dogs

- foodborne nematodes



- Trichinella spp.
 - Direct foodborne parasitic disease
 - Source: undercooked pork and game meat

3. The global burden of foodborne parasitic diseases


Retrieved from: http://www.who.int/gho/hiv/hiv 013.jpg?ua=1

YOPI

Common metric:

Years of life lost to premature death

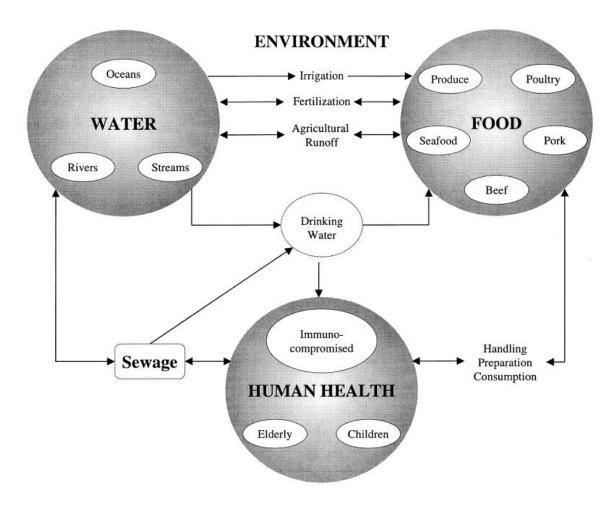
- + Years lived with disability
- = Disability Adjusted Life Year (DALY)

3. The global burden of foodborne parasitic diseases

	possible global burden (DALYs)	animal health costs
intestinal protozoa:		
Giardia, Entamoeba and Cryptosporidium spp.	? $\times 10^5 - 10^6$	unknown, but likely to be high
intestinal nematodes:		
Ascaris lumbricoides	1.3 x 10 ⁶	likely high if infective for pigs
foodborne protozoa:		
Toxoplasma gondii	2-8 x 10 ⁶	possibly substantial
foodborne trematodes:		
Fasciola, Opisthorchis, Clonorchis spp.	>0.5 x 10 ⁶	animal fasciolosis is very high
foodborne nematodes:		
Trichinella spp.	?	control programs are a large financial burden
foodborne cestodes:		
Echinococcus spp.	2-5 x 10 ⁷	US\$2 x 10 ⁹
Taenia solium	2-5 x 10 ⁶	unknown
for comparison:		
HIV	59 x 10 ⁶	
malaria	34 x 10 ⁶	
tuberculosis	34 x 10 ⁶	

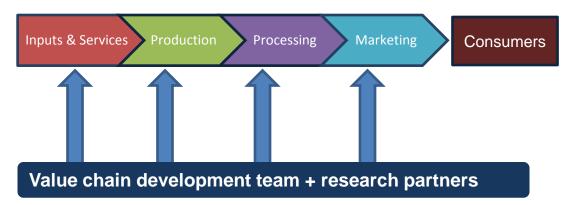
Possible magnitude of annual global burden of selected foodborne parasitic diseases (adapted from Torgerson et al., 2011)

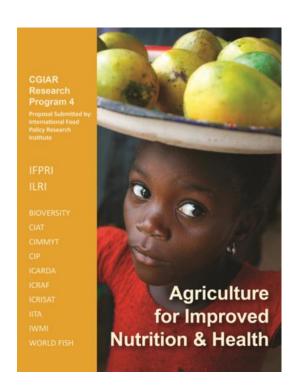
4. Approaches in assessing and managing risks from foodborne parasitic diseases


1. OneHealth/Ecohealth concepts

2. Integrated value chain research

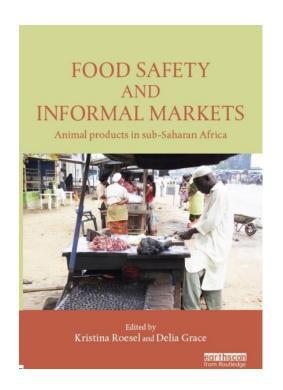
3. Participatory epidemiology

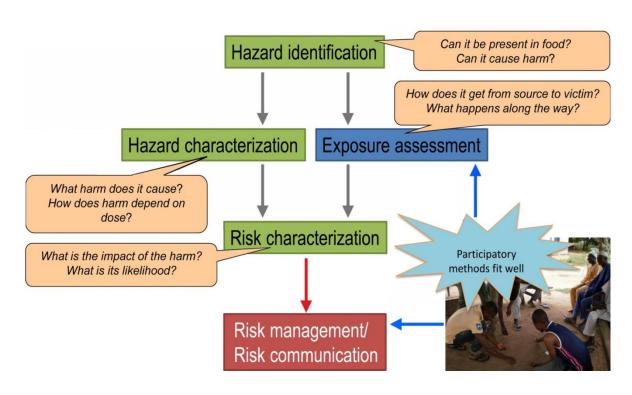

One Health



Integrated value chain assessment

R4D integrated to transform selected value chains In targeted commodities and countries.





Participatory epidemiology

CAC framework for food safety risk analysis, adapted by ILRI/BMZ Safe Food, Fair Food project (2008-2011)

Asante sana!

© Abubaker Lubowa ,Uganda Saturday Monitor

- CGIAR Research Program on Agriculture for Nutrition and Health (A4NH), led by the International Food Policy Research Institute
- CGIAR Research Program on Livestock and Fish, led by the International Livestock Research Institute
- Local and international research and investment partners
- OECD Trade and Agriculture Directorate for travel funding and SIP organizing committee for facilitation

Better lives through livestock www.ilri.org

ilri.org

PO Box 30709, Nairobi 00100, Kenya Phone: + 254 20 422 3000

Fax: +254 20 422 3001 Email: ILRI-Kenya@cgiar.org P O Box 5689, Addis Ababa, Ethiopia Phone: +251 11 617 2000 Fax: +251 11 617 2001 Email: ILRI-Ethiopia@cgiar.org

'Better lives through livestock' ILRI is a member of the CGIAR Consortium Offices in: Bamako . Beijing .

Hanoi . Hyderabad . Ibadan . Kampala . Maputo .

References

1 WHO (2007) First formal meeting of the Foodborne Disease Burden Epidemiology Reference Group (FERG): Implementing Strategy, Setting Priorities and Assigning the Tasks, 180WHO Library. 2 Thomas, M.K. et al. (2013) Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog. Dis. 10, 639-48 3 CDC (2011), 2011 Estimates of Foodborne Illness in the United States., Centers for Disease Control and Prevention. [Online]. Available: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html 4 Gajadhar, A.A. et al. (2006) Overview of food- and water-borne zoonotic parasites at the farm level. Rev. Sci. Tech. 25, 595-606 5 Ellin, D. (2003) Foodborne Parasites: A Review of the Scientific Literature. In Food Research Institute Briefings 6 Krause/Hendrick, ed. (2010) Zoonotic pathogens in the food chain, CABI. 7 MacKenzie, W.R. et al. (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med. DOI: 10.1056/NEJM199407213310304 8 Alarcón de Noya, B. et al. (2010) Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J. Infect. Dis. 201, 1308-1315 9 Simarro, P.P. et al. (2012) Human African trypanosomiasis in non-endemic countries (2000-2010). J. Travel Med. 19, 44-53 10 FAO/WHO (2014) Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series (MRA) 23. pp. 324 11 Slifko, T.R. et al. (2000) Emerging parasite zoonoses associated with water and food. Int. J. Parasitol. 30, 1379-1393 12 Sak. B. et al. (2008) First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic. Vet. Parasitol. 153, 220–224 13 Torgerson, P.R. et al. (2014) The global burden of foodborne parasitic diseases: An update. Trends Parasitol. 30, 20-26 14 Torgerson, P.R. and Macpherson, C.N.L. (2011) The socioeconomic burden of parasitic zoonoses: Global trends. Vet. Parasitol. 182, 79-95 15 Yoder, J.S.; Gargano, J.W.; Wallace R.M.; Beach, M.J. (2012) Giardiasis surveillance United States, 2009-2010. In MMWR 2012; 61, 5 pp. 13-23 16 Savioli, L. et al. (2006) Giardia and Cryptosporidium join the "Neglected Diseases Initiative." Trends Parasitol. 22, 203–208 17 Smith, H. V. et al. (2007) Cryptosporidium and Giardia as foodborne zoonoses. Vet. Parasitol. 149, 29-40 18 Xiao, L. and Feng. Y. (2008) Zoonotic cryptosporidiosis. FEMS Immunol. Med. Microbiol. 52, 309-323 19 Leles, D. et al. (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Parasit. Vectors 5, 42 20 Ndimubanzi, P.C. et al. (2010) A systematic review of the frequency of neurocyticercosis with a focus on people with epilepsy. PLoS Negl. Trop. Dis. 4(11), e870 21 Flegr, J. et al. (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect. Dis. DOI: 10.1186/1471-2334-2-11 22 Flegr, J. et al. (2000) Correlation of duration of latent Toxoplasma gondii infection with personality changes in women. Biol. Psychol. 53, 57-68 23 Lindová, J. et al. (2006) Gender differences in behavioural changes induced by latent toxoplasmosis. Int. J. Parasitol. 36, 1485–1492 24 Torrey, E.F. et al. (2007) Antibodies to Toxoplasma gondii in patients with schizophrenia: A meta-analysis. Schizophr. Bull. 33, 729-736 25 White, A.C. (2000) Neurocysticercosis: Updates on Epidemiology, Pathogenesis, Diagnosis, and Management. Annu. Rev. Med. 51, 187-206 26 Budke, C.M. et al. (2006) Global Socioeconomic Impact of Cystic Echinococcosis. Emerg. Infect. Dis. 12, 296-303 27 Torgerson, P.R. et al. (2010) The global burden of alveolar echinococcosis, PLoS Neal, Trop. Dis. DOI: 10.1371/journal.pntd.0000722 28 Peregrine, A.S. et al. (2012) Alveolar hydatid disease (Echinococcus multilocularis) in the liver of a Canadian dog in British Columbia, a newly endemic region. Can. Vet. J. 53, 515-518 29 Jenkins, E.J. et al. (2012) Detection of European strain of echinococcus multilocularis in North America. Emerg. Infect. Dis. 18, 1010-1012 30 Kociecka, W. (2000) Trichinellosis: human disease, diagnosis and treatment. Vet. Parasitol. 93, 365-383 31 2013 GBD Collaborators (2015) Global, regional and national levels of age-specific mortality and 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet DOI: 10.1016/S0140-6736(14)61682-2 32 ILRI/CIAT/ICARDA/WorldFish (2011) More Meat, Milk, and Fish by and for the Poor (CGIAR Research Program 3.7): A proposal submitted to the CGIAR Consortium Board by ILRI on behalf of CIAT, ICARDA and WorldFish., 33 Catley, A. (2005) Participatory epidemiology: a quide for trainers, African Union/Interafrican Bureau for Animal Resources. 34 Makita, K. (2014) Can participation improve food safety? In Food Safety and Informal Markets: Animal products in sub-Saharan Africa (1st edn) (Roesel, K. and Grace, D., eds), pp. 284, Routledge 35 Murray, C.J.L. et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197-2223 36 Torgerson, P.R. and Mastroiacovo, P. (2013) The global burden of congenital toxoplasmosis: a systematic review. Bull. World Health Organ. 91, 501-8 37 Fürst, T. et al. (2012) Global burden of human food-borne trematodiasis: A systematic review and meta-analysis. Lancet Infect. Dis. 12, 210-221 38 Murrell, K.D. and Pozio, E. (2011) Worldwide Occurrence and Impact of Human Trichinellosis, 1986 – 2009. Emerg. Infect. Dis. DOI: http://dx.doi.org/10.3201/eid1712.110896

39 WHO (2008), The global burden of disease: 2004 update., Global Burden of Disease Study. [Online]. Available: http://www.who.int/healthinfo/global burden disease/2004 report update/en/

