
INTRODUCTION & OBJECTIVES
Previous molecular systematic studies into the higher-level relationships of Apiaceae subfamily Apioideae have revealed a well-supported clade
comprising a morphologically heterogeneous assemblage of ten genera and 107 species (Arracacia, Coaxana, Coulterophytum, Dahliaphyllum,
Donnellsmithia, Enantiophylla, Mathiasella, Myrrhidendron, Prionosciadium and Rhodosciadium).  This clade is named after its largest and
earliest described genus, Arracacia (Downie et al., 2000, 2001).  Recent additions to the Arracacia clade, based on analysis of nrDNA ITS
sequences, include the Central and South American genera Neonelsonia (2 spp.) and Ottoa (1 sp.).  ITS data have also suggested that Niphogeton
(18 spp.),  Perissocoeleum (4 spp.) and Cotopaxia (1 sp.) may form a sister group to the clade or comprise its earliest diverging lineages.  No
obvious morphological synapomorphies are known for the group, although many genera are characterized by polyploid members, the presence of
petals with inflexed apices and a distribution in high montane temperate or sub-alpine habitats of Central and South America.  The results of
phylogenetic analysis of ITS sequences show that the largest genera of the clade, Arracacia, Prionosciadium and Rhodosciadium, are each highly
polyphyletic.  Additionally, previous efforts to delimit the genus Arracacia to the exclusion of other genera have been unsuccessful, resulting in a
taxonomy best described as provisional.

In this study, our main objective is to investigate the efficacy of 18 non-coding loci from the chloroplast genome in
resolving relationships within the taxonomically difficult Arracacia clade, as previous and concurrent studies using ITS
sequences result in poorly resolved and weakly supported trees.  Using an ITS-derived phylogeny for the group, eight
taxa from throughout the tree and one outgroup are chosen for inclusion in this pilot study.  The results will indicate
which cpDNA loci will be most useful for further investigation of relationships within the Arracacia clade.

MATERIALS & METHODS
170 accessions representing 101 taxa were examined for nrDNA ITS sequence variation and analyzed using maximum parsimony in PAUP* (Swofford, 2002).  ITS data
(excluding 5.8S) for 35 accessions of the Arracacia clade and outgroup taxa were obtained previously (Downie and Katz-Downie, 1996; Downie et al., 1998, 2002; Katz-
Downie et al., 1999; Sun et al., 2004; C. Calviño, unpublished data); data for all remaining accessions were obtained specifically for this study.  For the cpDNA study, eight taxa
representing major lineages within the Arracacia clade as inferred through ITS (Arracacia ebracteata, A. xanthorrhiza, Coaxana purpurea, Enantiophylla heydeana, Mathiasella
bupleuroides, Myrrhidendron donnell-smithii, Ottoa oenanthoides and Rhodosciadium argutum) and the outgroup taxon Aethusa cynapium were chosen.  Attempts to obtain all
18 non-coding cpDNA loci for each taxon were made.  For five of these regions, sequences of one or two of the taxa are missing (and are noted in Table 1).  Partitioned and
combined data matrices were analyzed using maximum parsimony.  Heuristic searches were implemented using random stepwise addition of taxa and tree-bisection-reconnection
(TBR) branch swapping.  One hundred bootstrap replicates were performed using the full heuristic search option, with TBR branch swapping, random stepwise addition of taxa
and MULTREES options in effect.  The effectiveness of each locus for resolving phylogeny was determined by its number of potentially informative characters (PICs = # of
substitutions + # of indels) based on Shaw et al. (2005, 2007), the number of parsimony informative substitutions and its ability to recover nodes of a fully resolved tree.
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Table 1.  Metrics and tree information resulting from sequence comparisons and maximum parsimony analyses of the 18 cpDNA regions investigated (A-R, Fig. 2) plus ITS.  Abbreviations:  L = length; in = ingroup; out =
outgroup; PI = parsimony informative; subst = substitutions; PICs = potentially informative characters; Seq Diver in = pairwise sequence divergence in the ingroup; BS = bootstrap support for the indicated node in a fully
resolved tree (Fig. 3a).  Nodes absent in the resultant strict consensus trees are indicated by “–” and nodes absent as a result of incomplete sampling are indicated by “N/A”.  The CI values do not include uninformative characters.

Fig. 1.  Strict consensus tree derived from maximum parsimony analysis of 170 ITS
sequences from the Arracacia clade and outgroups.  Numbers above branches are
bootstrap values; values <50% are not indicated.  The arrows point to the nine taxa
used in the cpDNA pilot study.
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Fig. 2. Map of the chloroplast genome of Daucus carota (Scandiceae subtribe
Daucinae), modified from Ruhlman et al. (2006).  Letters (A–R) adjacent to loci
correspond with the 18 regions compared in Table 1.
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Table 2.  Tree information resulting from maximum parsimony analyses of various partitioned and combined data sets.  BS = bootstrap support for the indicated node in a fully resolved tree (Fig. 3a). The CI values do not
include uninformative characters.  Abbreviations:  cpDNA all = all 18 examined cpDNA loci; LSC and SSC = all loci from the large and small single copy regions, respectively; Comb. #1 = psbJ–petA, rpl32–trnL & ndhA
intron; Comb. #2 = trnQ–5’ rps16, psbJ–petA, rpl32–trnL & ndhA intron; Comb. #3 = trnQ–5’ rps16, trnD–trnT, psbJ–petA, rpl32–trnL & ndhA intron; Comb. #4 = trnD–trnT, psbJ–petA,  rpl32–trnL & ndhA intron; Comb.
#5 = trnQ–5’rps16, trnD–trnT, rpl32–trnL & ndhA intron.
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Fig. 3. Strict consensus trees of (A) hypothetical relationships of a fully resolved tree with nodes labeled, (B) the combined 18 cpDNA loci (cpDNA all), (C) ITS region, (D) the trnQ–5’ rps16, trnD–trnT, psbJ–petA,
rpl32–trnL, and ndhA intron loci (Comb. #3) and (E) Comb. #3 & ITS.  Numbers at nodes are bootstrap values.
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Of the 18 cpDNA loci examined, the five regions producing the greatest number of parsimony informative substitutions, highest PICs values and greatest efficacy at resolving
the relationships of the taxa (Table 1) were the trnQ–5’ rps16 (C), trnD–trnT (H) and psbJ–petA (N) loci of the LSC region and the rpl32–trnL (Q) and ndhA intron (R) loci of
the  SSC region.  Although the ndhF–rpl32 (P) marker of the SSC region had the second highest PICs value and five parsimony informative substitutions, this region was
unable to resolve the relationships within the clade.  The most variable and potentially useful cpDNA locus was determined to be the rpl32–trnL region.  This region had 18
parsimony informative substitutions and 83 PICs and was able to recover three of the six nodes in a fully resolved tree (Fig. 3A).  This is in agreement with the findings of
Shaw et al. (2007) in which this region demonstrated the highest number of PICs.  In comparison with ITS, these regions are considerably less variable.  The ITS data produced
23 parsimony informative substitutions and 120 PICs and the pairwise sequence divergence within the ingroup taxa ranged from 4.35–11.67%; however, this region was only
able to recover three nodes (see Fig. 3C) and had a higher incidence of homoplasy.  As none of the loci were able to individually recover all six nodes, different combinations of
the loci were examined (Table 2).  Of the LSC and SSC combined loci, the latter recovered more nodes (five out of six), likely due to the region containing two highly variable
loci (rpl32–trnL and ndhA).  It is also noted that the more variable intergenic spacer regions, when combined, produced a tree with more well-supported nodes than the less
variable intron regions.  These results are also in agreement with Shaw et al. (2007) as their study suggested that intergenic spacers had a greater average percentage variability
than introns.  When gaps were included in the analysis of the combined cpDNA loci, the resulting tree was less resolved.  This was likely due to the high incidence of
homoplasy in the gaps data (see Gaps only in Table 2).  The analysis of the combined 18 cpDNA loci (Fig. 3B) was able to recover only five of the six hypothetical nodes; this
may be due, however, to the incomplete sampling of six of the loci.  The tree topology did not conflict with the tree recovered from ITS (Fig. 3C); however, the ITS tree was
less resolved and recovered three of the nodes.  There is no discordance between the ITS and cpDNA data sets.  When the five most variable cpDNA loci were combined (Fig.
3D), a fully resolved tree was produced with high BS support (>90%) for four of the nodes and moderately weak support (67 and 69%) for the remaining two.  When
psbJ–petA is removed from the analysis (Table 2), the same topology is produced with similar BS values, suggesting that the combined loci trnQ–5’ rps16, trnD–trnT,
rpl32–trnL and ndhA intron will equally resolve relationships.  When the five most variable loci were combined with ITS (Fig. 3E), a tree of identical topology and greater
node support was obtained.  This further suggests congruence of the cpDNA and nrDNA data sets.   Similar results were obtained when psbJ–petA is excluded (Table 2).

In conclusion, four regions have been identified as being potentially useful at resolving the relationships of the
Arracacia clade: trnQ–5’ rps16, trnD–trnT, rpl32–trnL and ndhA intron.
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