

Is my vaccination programme working?

Vaccine effectiveness: measuring vaccine protection in the field

Theo Knight-Jones

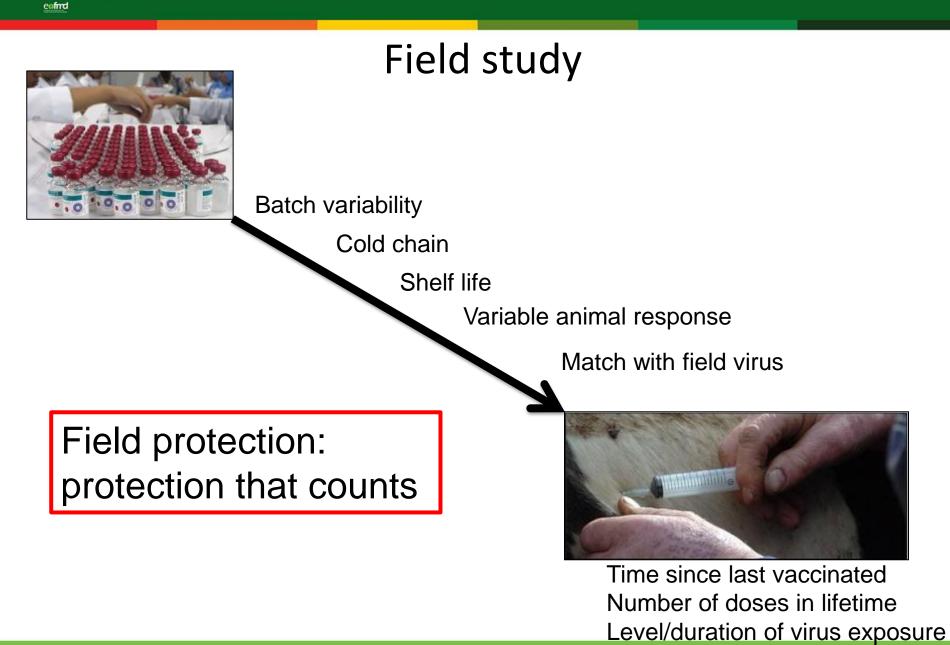
FAO-EU-EuFMD webinar for West-Eurasian veterinary services 15 January 2015

Contents of presentation

- Overview of traditional vaccine protection evaluation methods
- How to assess vaccine protection during an outbreak
- Overview of other vaccine effectiveness study designs

- Evaluation of FMD vaccines traditionally based on:
- 1. Challenge studies

- 2. Serological evaluation
 - Vaccine matching tests
 - Post vaccination SP antibody response peak response and over



- Evaluation of FMD vaccines traditionally based on:
- 1. Challenge studies
 - Control conditions and ensure adequate exposure
 - Small numbers and may not represent natural challenge
- 2. Serological evaluation
 - Vaccine matching tests
 - Post vaccination SP antibody response peak response and over

- Evaluation of FMD vaccines traditionally based on:
- 1. Challenge studies
 - Control conditions and ensure adequate exposure
 - Small numbers and may not represent natural challenge
- 2. Serological evaluation
 - Vaccine matching tests
 - Useful but imprecise test
 - Post vaccination SP antibody response peak response and over entire intervaccination interval
 - Useful but what field virus are you concerned about and how does this relate to the test and vaccine antigen
 - Have you correlated your antibody response with protection against the virus of concern in a challenge study

 The percentage reduction in incidence in vaccinated compared to unvaccinated individuals <u>under field conditions</u>

- The percentage reduction in incidence in vaccinated compared to unvaccinated individuals <u>under field conditions</u>
- Incidence risk
 - [percentage or proportion affected during defined period] – e.g. 0.01 or 1%
- Incidence rate
 - [number affected/sum of time at risk for all individuals] 0.2 cases/animal–year at risk

• Failure to vaccinate or a vaccine failure?

- Failure to vaccinate or a vaccine failure?
- 1. Are vaccinated animals protected from FMD?

2. Are the animals being vaccinated (adequately)?

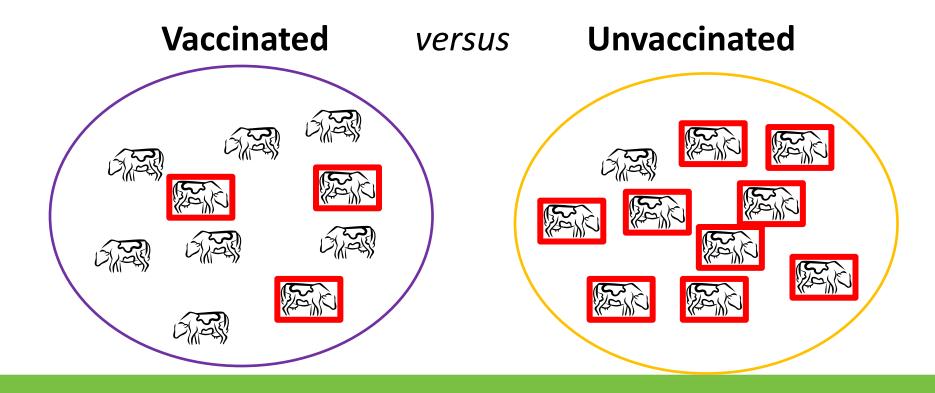
- Failure to vaccinate or a vaccine failure?
- Are vaccinated animals protected from FMD?
 Vaccine effectiveness

2. Are the animals being vaccinated (adequately)?

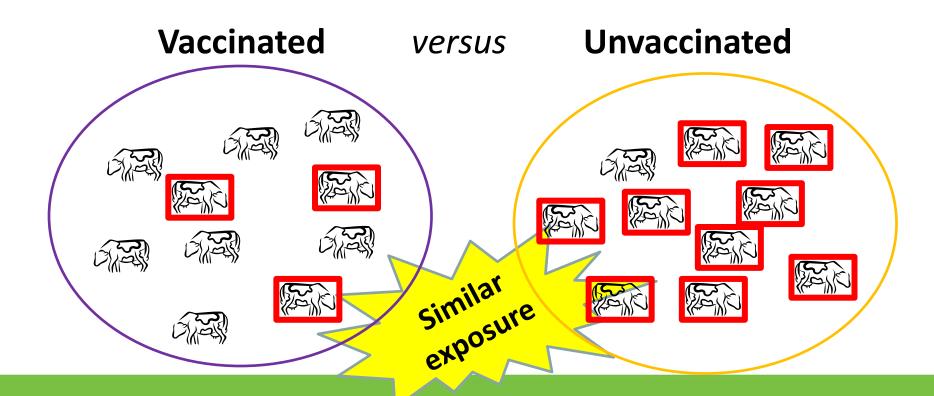
- Failure to vaccinate or a vaccine failure?
- Are vaccinated animals protected from FMD?
 Vaccine effectiveness

Are the animals being vaccinated (adequately)?
 Vaccine coverage

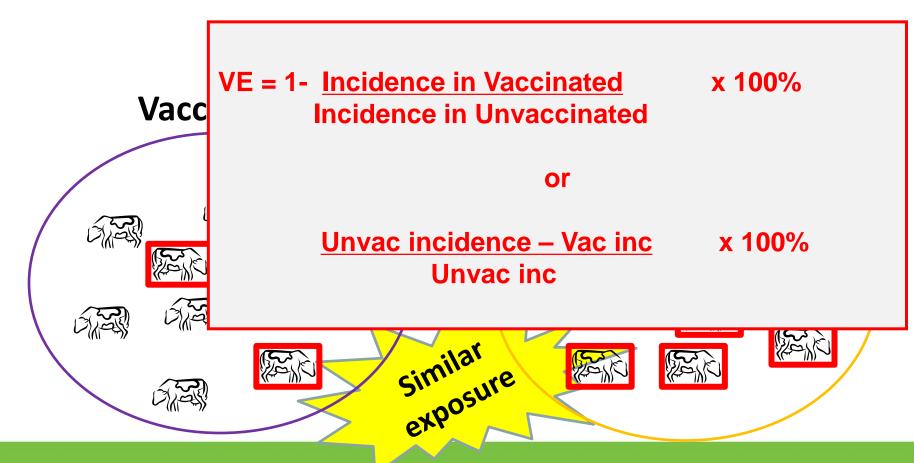
Vaccine failure or failure to vaccinate


- What is the bigger problem in your country?
 - Vaccine coverage
 - Vaccine effectiveness
 - Both
 - Don't know

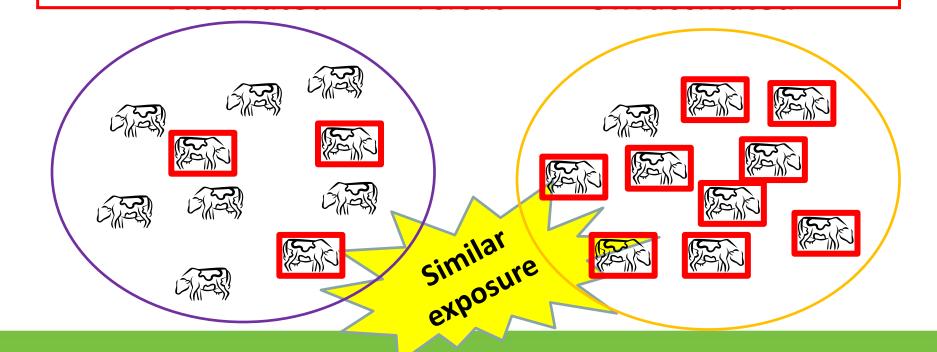
After an outbreak:

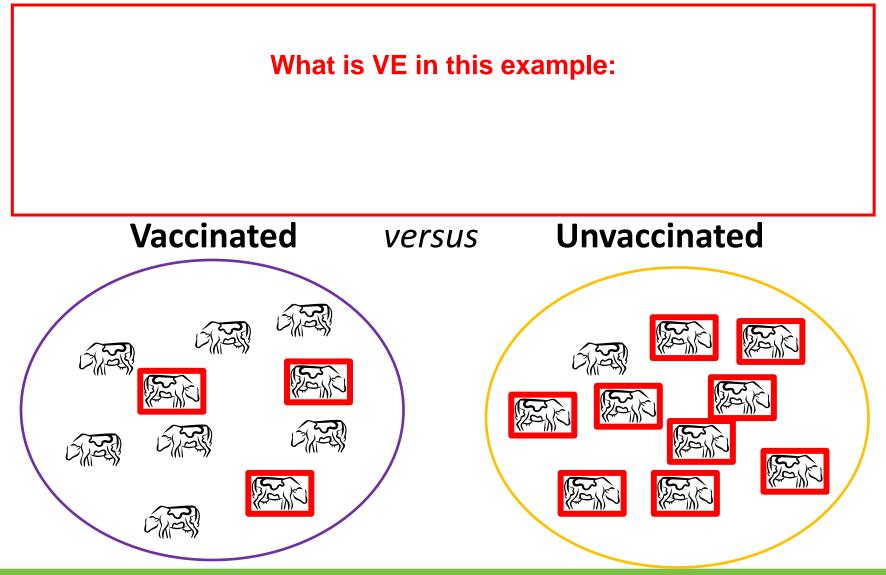

Compare incidence in vaccinated and unvaccinated

After an outbreak:


Compare incidence in vaccinated and unvaccinated

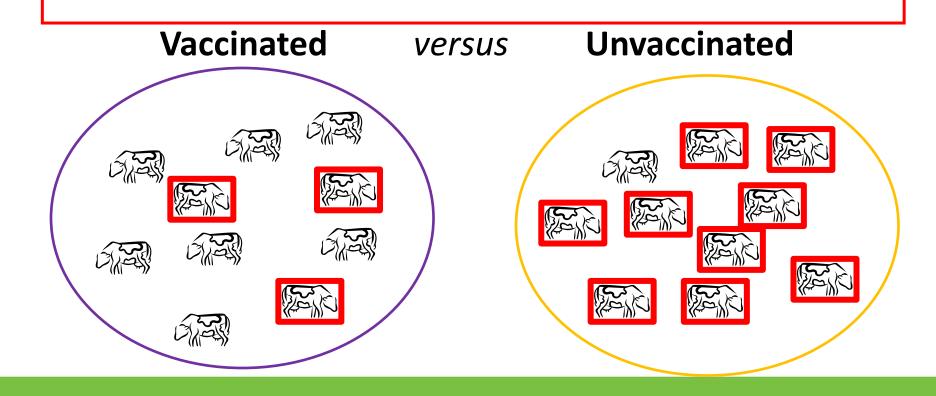
After an outbreak:

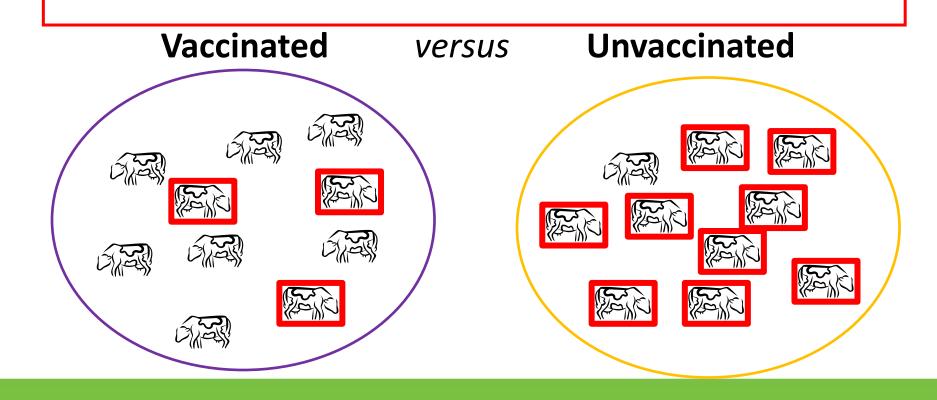

Compare incidence in vaccinated and unvaccinated



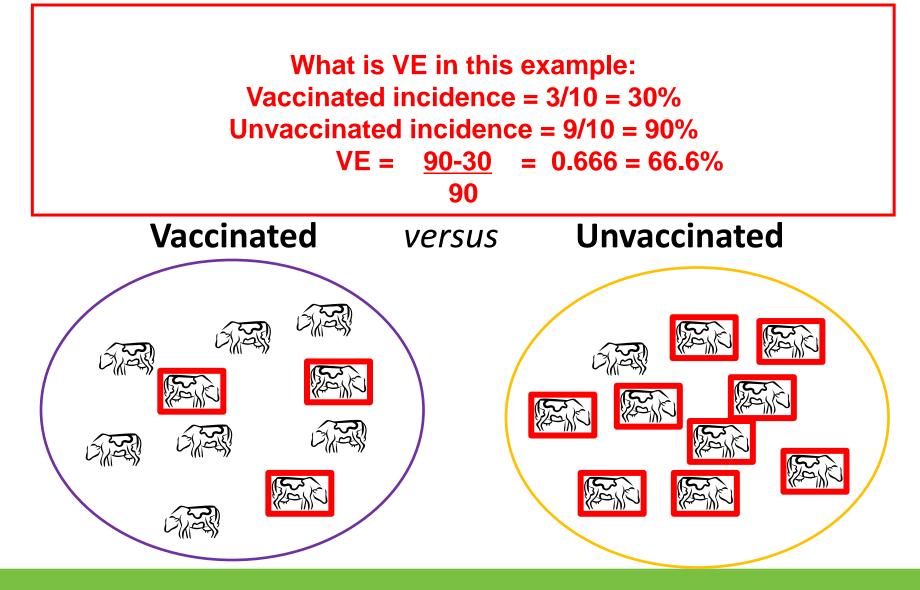
Vaccine efficacy -> under controlled trial

Vaccine effectiveness - > observational study (field study – program conditions)





What is VE in this example: Vaccinated incidence = 3/10 = 30%

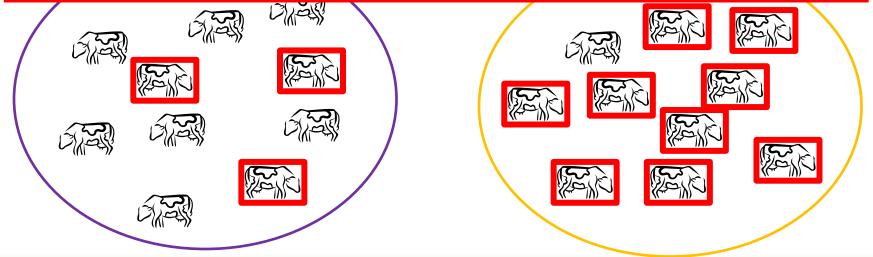


What is VE in this example: Vaccinated incidence = 3/10 = 30% Unvaccinated incidence = 9/10 = 90%

 What is VE in this example:

 Vaccinated incidence = 3/10 = 30%

 Unvaccinated incidence = 9/10 = 90%


 VE = 90-30 = 0.666 = 66.6%

 90

 or

 VE = 1 - 30 = 0.666 = 66.6%

 90

What is VE in this example: Vaccinated incidence = 3/10 = 30%Unvaccinated incidence = 9/10 = 90% <u>90-30</u> = 0.666 = 66.6% VE = 90 or VE = 1 - 30 = 0.666 = 66.6%**90** No K لك

VE 100% = complete protection with 0% incidence in vaccinated VE 0% = no protection – same incidence in vaccinated & unvaccinated

Question

80% of unvaccinated cattle had clinical FMD 20% of vaccinated cattle had clinical FMD

What is vaccine effectiveness?

a) 75% b) 60% c) 25% d) 40%

VE = <u>Unvac incidence – Vac inc</u> x 100% Unvac inc

Question

At an outbreak

80% of unvaccinated cattle had clinical FMD

20% of vaccinated cattle had clinical FMD

Protection against clinical disease Protection against infection (NSP if purified vaccine!) or infectiousness

a) 75% b) 60% c) 25% d) 40%

VE = <u>Unvac incidence – Vac inc</u> x 100% Unvac inc

Pathogen exposure

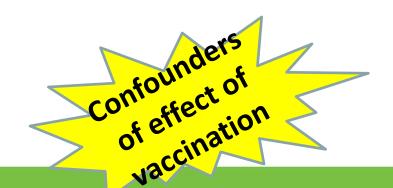
 What if only farmers whose animals have a high risk [of exposure to FMD virus] vaccinate their animals? e.g. dealers, use common grazing???

• Will vaccine effectiveness increase or decrease?

Pathogen exposure

 What if only farmers whose animals have a high risk [of exposure to FMD virus] vaccinate their animals? e.g. dealers, use common grazing???

• Will vaccine effectiveness increase or decrease?


This bias will decrease VE – vaccine may protect but vaccinated animals have a greater virus challenge than unvaccinated – unfair comparison

- Age
- Prior infection
- Number of times previously vaccinated
- Level of exposure [common or private grazing]
- Herd size?

- Age
- Prior infection
- Number of times previously vaccinated
- Level of exposure [common or private grazing]
- Herd size?

- Age
 - Assess different age groups separately
 - Exclude <7 months maternal immunity
- Prior infection
 - Exclude village or exclude old cattle if outbreak a few years a go
- Number of times previously vaccinated
 - Assess separately according to number of doses
 - Limitation May not be able to adjust for both age & number of doses – closely correlated?
- Level of exposure [common or private grazing]
- Herd size?

• Age

eafmd

- Assess different age groups separately
- Exclude <7 months maternal immunity
- Prior infection
 - Exclude village or exclude old cattle if o
- Number of times prev
 - Assess separately accord
 - Limitation doses – closen
- Level of exposure
- Herd size?

Ideally - vaccinated and unvaccinated are similar in terms of confounders – in reality differences will exist that must be adjusted for through design and during analysis

vac

a go

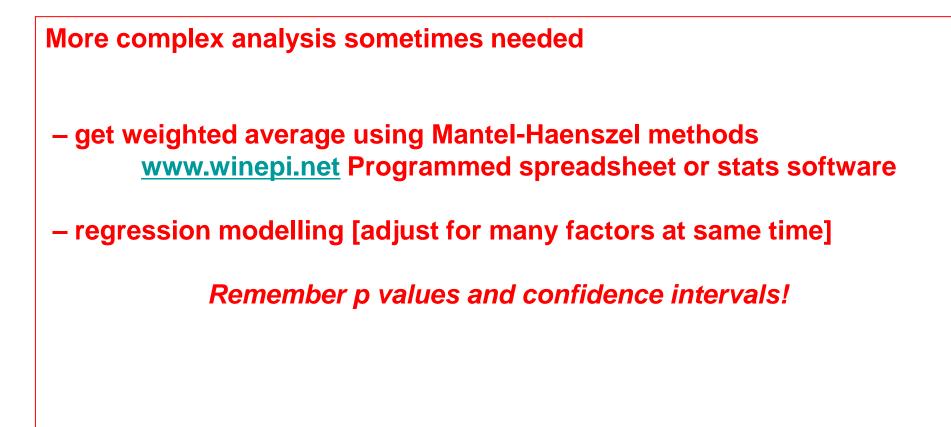
Example 1

Incidence risk by age:

Age	Vaccinated	Unvaccinated	VE
7-12 months	15%	60%	75%
13-24 months	25%	85%	71%
>24 months	5%	25%	80%
Overall	20%	80%	75%

In this example age makes little difference to VE So report crude VE unadjusted for age (75%)

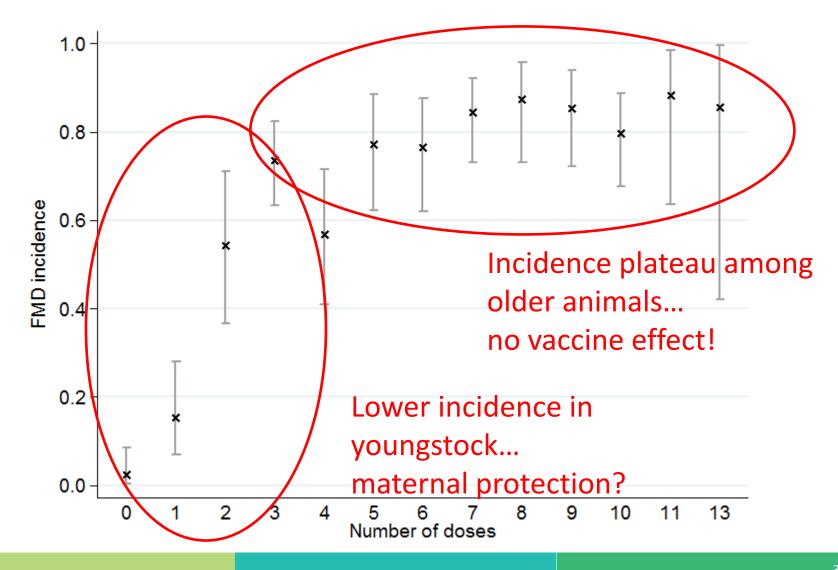
Example 2


Incidence risk by age:

Age	Vaccinated	Unvaccinate	d VE	
7-12 months	20%	30%	33%	
13-24 months	25%	100%	75%	$\mathbf{\lambda}$
>24 months	10%	25%	60%	
Overall	15%	90%	83%	
			Can still have unacceptat	

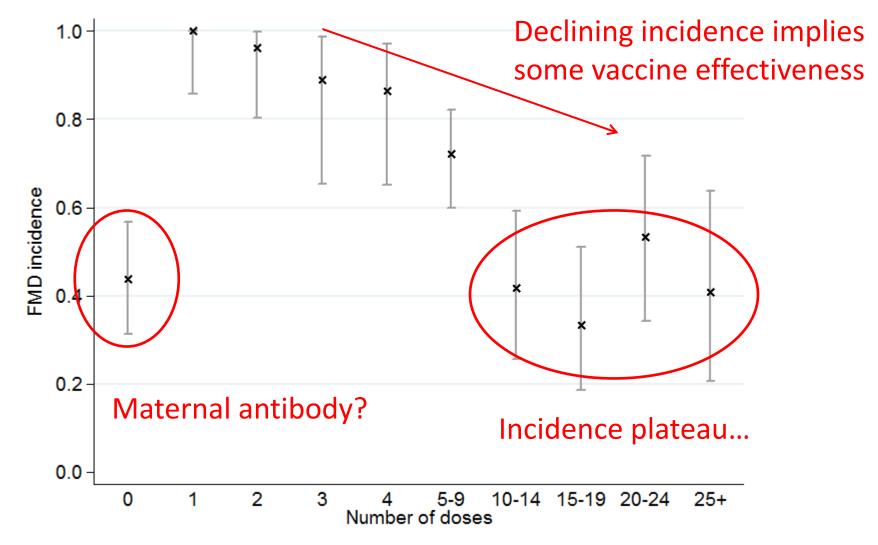
incidence in vaccinated even when good VE

Example 2



Simplest of all

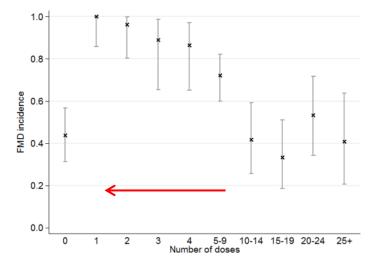
- What if no unvaccinated animals?
- Just looking at incidence by number of doses is useful


Farm 1 – Vaccine – Lyons, Kenya

"Incidence risk" versus "Number of lifetime doses"

Farm 2 – Vaccine – Lyons, Kenya

"Incidence risk" versus "Number of lifetime doses"



Possible reasons for incidence pattern on Farm 2

40% incidence in multiply vaccinated clearly reveals a problem....

- Potency?
- Match?
- Cold chain?

Suboptimal schedules as well?

Can have multiple reasons for poor VE!

Retrospective effectiveness – studies Turkey 2011/12

• Four VILLAGE outbreak investigations: Asia-1

Knight-Jones T.J., Bulut A.N., Gubbins S., Stark K.D., Pfeiffer D.U., Sumption K.J., Paton D.J. 2014 Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey. Vaccine (32), 1848-1855.

Sampling-Retrospective cohort

• Find outbreak of the right strain where the vaccine

has been used

- Timing: At or near the end of an outbreak
 - Time since vaccination is important
 - [too soon or too long after vaccination]

Sampling-Retrospective cohort

- 1. Within a village at end of outbreak:
 - 1. Select all or sample of affected households [households with cases or NSP positive - known virus exposure]
 - 2. Random or evenly spaced in village
 - 3. Sample several villages affected by outbreak [need at least 200-400 animals]
 - 4. Need vaccinated and unvaccinated animals for comparison
- 2. Within a household:
 - 1. Collect details of all cattle >5 months [may exclude more during analysis]
- 3. For each selected animal
 - 1. Ask owner about vaccination and FMD history
 - cross-ref with written records
 - 2. Examine for clinical signs
 - 3. Assess infection history by serology (<30 months)

Results

		Unvaccinated	Vaccinated	Unadjusted Vaccine effectiveness (95% CI)		
Vaccine	Investigation	FMD	/Total			
Shamir	1 - Ardahan	19/47 (40%)	188/249 (76%)	-87% (<u>140% to</u> -40%)		
	2 - Afyon-1	64/127 (50%)	14/91 (15%)	73% (51% to 85%)		
Sindh08	3 – Denizli	55/68 (81%)	134/337 (40%)	51% (41% to 59%)		
	4 - Afyon-2	71/124 (57%)	69/187 (37%)	36% (18% to 49%)		

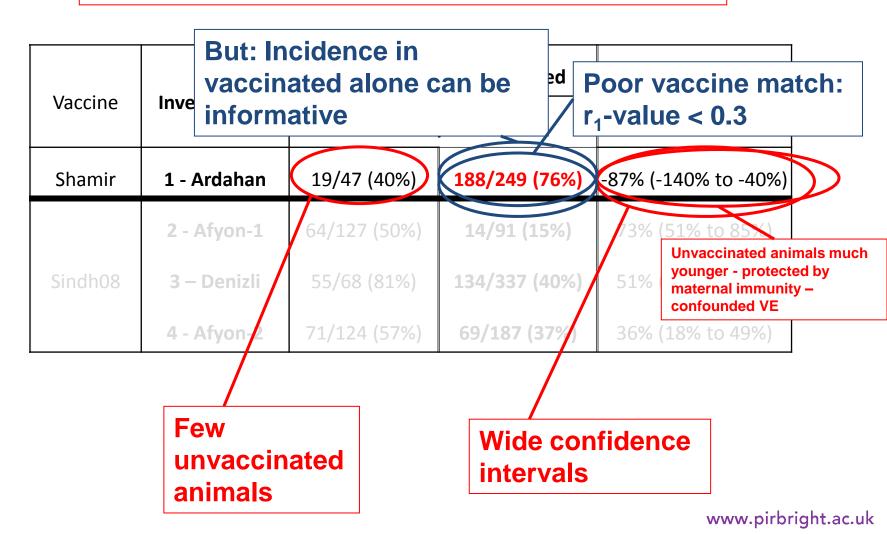
Need to adjust for other confounding factors – age, husbandry, etc...

www.pirbright.ac.uk

Asia-1: Multivariable model

Risk	Risk factor				
Decently	Sindh-08	69% [50% to 81%]			
Recently Vaccinated	Shamir	-36% [-137% to 22%]			
		Rate Ratio			
Avoid common grazin	0.2 [0.1-0.36]				
Age: Every month >15	months	0.98 [0.977-0.99]			
Herd size >30		0.25 [0.1 – 0.5]			
Random intercept: Vil	St dev of intercept = 6 / 1.4				

www.pirbright.ac.uk


Asia-1: Multivariable model

Risl	k factor	Vaccine effectiveness [95% CI]					
Recently Vaccinated	Sindh-08 69% [50% to 81%]						
	63% [29% to 81%] protection against infection						
Avoid common grazir	lg	0.2 [0.1-0.36]					
Age: Every month >15	5 months	0.98 [0.977-0.99]					
Herd size >30		0.25 [0.1 – 0.5]					
Random intercept: Vi	llage/Owner	St dev of intercept = 6 / 1.4	www.pirbright.ac.u				

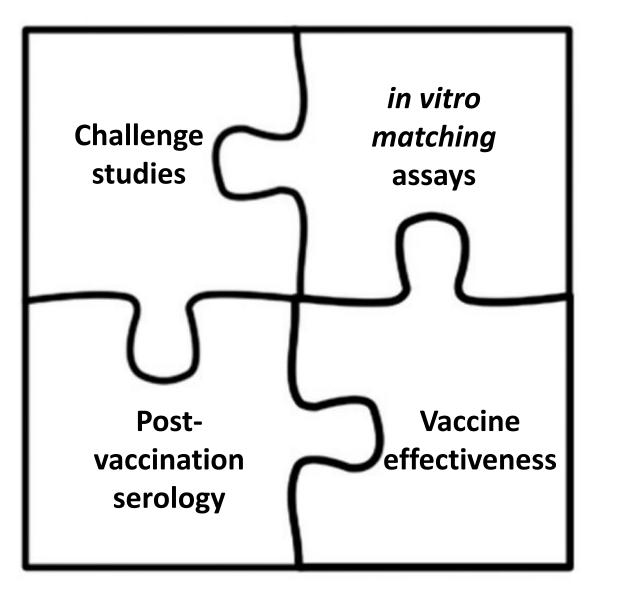
www.pirbright.ac.uk

Results

Several investigations for one vaccine preferable

- 1. Protection from Asia-1 field strain by standard potency Asia-1 Shamir vaccine was not detected in this outbreak
- 2. Reasonable protection from Asia-1 field strain by Asia-1 Sindh08 [TUR 11] vaccine

Conclusions


• Vaccine effectiveness:

"Give it a go!"

- Retrospective outbreak investigation is quick and simple
- Useful answers
- Gets you into the field

Learn things that nobody reports to HQ

FMD vaccine evaluation

Other...

Key References

Knight-Jones T.J.D. Vaccine effectiveness guide with VE calculator – from author or EuFMD or FAO-PVM?

Knight-Jones T.J.D., Bulut A.N., Gubbins S., Stark K.D., Pfeiffer D.U., Sumption K.J., Paton D.J. 2014 Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey. *Vaccine* **32**(16), 1848-1855 doi: <u>10.1016/j.vaccine.2014.01.071</u>

Knight-Jones T.J.D., Edmond K., Gubbins S., Paton D.J., 2014 Veterinary and human vaccine evaluation methods. *Proc R Soc B* **281**(1784) 20132839 doi: <u>10.1098/rspb.2013.2839</u>

Vaccine evaluation on large-scale dairy farms using routine prophylactic schedules for FMD Lyons, N.A., Knight-Jones, T.K.D., Bartels, C., Dulu, T.D., Stärk K.D.C., Sumption, K.J., Fine, P.E.M. **EuFMD Open Session 2014 online**

https://eufmd.rvc.ac.uk/mod/page/view.php?id=1388

Lyons NA, Stärk KD, van Maanen C, Thomas SL, Chepkwony EC, Sangula AK, Dulu TD, Fine PEM Epidemiological analysis of an outbreak of foot-and-mouth disease (serotype SAT2) on a large dairy farm in Kenya using regular vaccination. Acta Trop. 2014 Oct 24. pii: S0001-706X(14)00302-7 doi: <u>10.1016/j.actatropica.2014.09.010</u>

Lyons, N.A., Knight-Jones, T.K.D., Bartels, C., Dulu, T.D., Stärk K.D.C., Sumption, K.J., Fine, P.E.M. Vaccine evaluation on large-scale dairy farms using routine prophylactic schedules for FMD **EuFMD Open Session 2014 online** <u>https://eufmd.rvc.ac.uk/mod/page/view.php?id=1388</u>

Theo Knight-Jones Thesis Field evaluation of foot-and-mouth disease vaccination in Turkey (RVC/LSHTM) will upload to https://www.researchgate.net/profile/Theodore_Knight-Jones/contributions

FMD vaccine evaluation

What post vaccination monitoring do you do?

- Vaccine effectiveness
- Batch serology under controlled conditions
- Post-vaccination serology in the field
- Vaccine matching tests
- Challenge studies
- Evaluation of different dosing regimes
- Vaccine coverage
- Other?

VE designs

- Retrospective outbreak investigation
 - Rely on farmer & vet recollection and records
 - Are outbreaks non-representative cases of vaccine failure?
- Prospective
 - can create own vaccine groups and see what happens
 - Cohort, randomised trial
 - But what if no cases?
 - & prospective needs much more resources
 - Money & expertise & time
- If free zone monitor post-vaccination serology

pled	of small ruminants: animals – Examine	& sample ca						"X" when not	sure.		
	Ear tag	Age Y=years M=months	(M/F)	Group	Breed	number of doses	FMD in recent outbreak Y=yes N=no	Farmer: FMD signs H=hoof O= oral T=Teat	Days stopped eating	Clinical Exam: FMD signs *S=severe N=No	Sampled Y=Yes N=No
1											
2											
3									1		
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18									1		
19		1							1		
20											

*Severe Mouth lesions: Combined diameter >50% bredth of tongue

Version x - Include animals that died during outbreak [Mark with D]

Consent - I agree that this data can be used for this vaccine effectiveness study:

Any questions?

Thank you for your attention!