Prevalence and molecular characterisation of *Eimeria* species in Ethiopian village chickens

L. Luu¹, J. Bettridge^{1,2}, R. Christley¹, K. Melese³, D. Blake⁴, T. Dessie², P. Wigley¹, T. Desta^{2,5}, O. Hanotte^{,5}, P. Kaiser⁶, Z. Terfa^{2,7}, M. Collins¹ and S. Lynch^{1,2}

¹ Institute of Infection and Global Health, University of Liverpool, UK; ² International Livestock Research Institute, Addis, Ababa, Ethiopia; ³ Debre Zeit Agricultural Research Centre, Ethiopian Institute for Agriculture Research, Debre Zeit, Ethiopia; ⁴ Department of Pathology and Infectious Diseases, Royal Veterinary College, UK; ⁵ Centre for Genetics and Genomics, School of Biology, University of Nottingham, UK; ⁶ The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, UK; ⁷ Management School, University of Liverpool, UK

Eimeria

- Protozoan parasites are found worldwide and in all types of chicken production system
- 7 species are known, but are difficult to differentiate based on appearance under the microscope
- Some species cause severe disease and death, whilst others are only mildly pathogenic, but may reduce growth rates

Methods

- Faecal samples were collected from healthy adult chickens from two Ethiopian woredas in May (n=383) and October 2011 (n=384)
- Where possible, chickens sampled in May were resampled in October, giving 110 further samples
- McMasters counts were performed on each sample to quantify oocysts
 [1]
- A selection of samples from those collected in May from each woreda were speciated using real time PCR [2]

Detection of *Eimeria* oocysts in faeces

Weighing faecal samples in the Debre Zeit laboratory in preparation for parasite examination

- 427 (56%) of samples were positive for oocysts, but more samples were positive in October (65%) compared to May (47%)
- There was moderate clustering of positive birds within households, suggesting common risk factors or exposure
- There was no difference in overall prevalence between the regions or villages, but different species were more prevalent in each region
- Birds positive in May were just as likely to be positive in October as randomly-sampled birds, perhaps suggesting infection with different species, or immunologically distinct strains

Frequency of PCR detection of *Eimeria* species in chicken faecal samples

	Region				
Species		Jarso	evact	Mixed species infection (n = 23)	Single species infection (n = 13)
		(n = 25)			
E. acervulina	9 (40%)	10 (40%)	0.8	12 (52%)	1 (8%)
E. brunetti ¹	4 (18%)	5 (20%)	0.9	5 (22%)	0 (0%)
E. maxima	5 (22%)	15 (60%)	0.02^{2}	13 (57%)	4 (31%)
E. mitis	0 (0%)	7 (28%)	0.01^{2}	2 (9%)	2 (15%)
E. necatrix ¹	4 (18%)	2 (8%)	0.4	4 (17%)	0 (0%)
E. praecox	21 (95%)	9 (36%)	<0.001 ²	17 (74%)	6 (46%)
E. tenella ¹	3 (12%)	7 (28%)	0.3	3 (13%)	0 (0%)

¹Considered to be highly pathogenic [3].

- All seven species were detected, and highly pathogenic species were detected in 20/47 (43%) of samples
- Mixed infections were common (in 36 samples known to come from a single bird), and tended to occur with the most prevalent species in each region

Conclusions

- *Eimeria* oocysts, including those with the potential to be highly pathogenic, can be frequently detected in faecal samples from village chickens in the absence of clinical signs of disease
- There is variation in the prevalence of some species between regions, perhaps suggesting local risk factors associated with the birds, management or environment
- Further investigations are required to assess the role of *Eimeria* in clinical disease and subclinical effects on production in village chickens
- Research is also required as to whether interventions may have any positive impacts, or impact negatively by disrupting existing endemic stability

References

- 1. Permin A, Hansen JW: Epidemiology, diagnosis and disease control of poultry parasites. Food and Agriculture Organization of the United Nations: Rome; 1998.
- 2. Vrba V, Blake DP, Poplstein M: Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken. Vet Parasitol 2010, 174:183–190.
- 3. McDougald LR: Coccidiosis. In Diseases of poultry. 11th edition. Edited by Saif YM, Barnes J, Glisson JR, Fadly AM, McDougald LR, Swayne DE. Ames: Iowa State Press; 2003.

²Significantly different (p < 0.05).