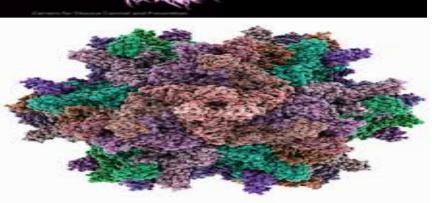
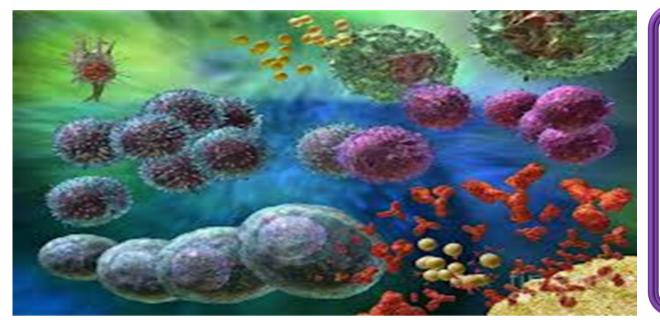


Identification of SNP markers for resistance to Salmonella and IBDV in **Indigenous Ethiopian Chickens**

A. Psifidi¹, G. Banos¹, O. Matika¹, T. Dessie², R. Christley³, P. Wigley³, J.M. Bettridge³, O. Hanotte⁴, T. Desta⁴, P. Kaiser¹

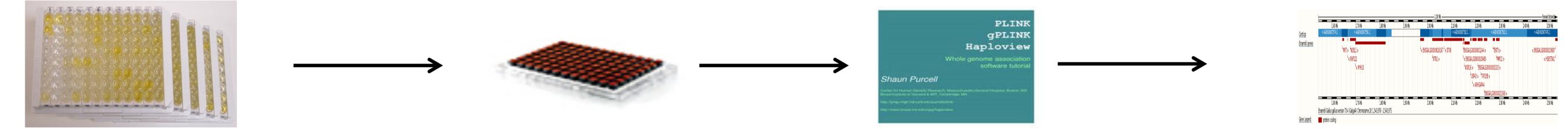
¹The Roslin Institute & R(D)SVS, University of Edinburgh, UK; ²International Livestock Research Institute, Addis Ababa, Ethiopia; ³Institute of Infection & Global Health, University of Liverpool, UK; ⁴School of Life Sciences, University of Nottingham, UK.


Introduction


- **Poultry** play an important role in the agriculture of Ethiopia. Indigenous chickens tend to be well adapted to their local environment.
- Infectious diseases have a major impact on productivity since there is limited use of prophylactic medication and vaccination.
- Salmonellosis, a zoonosis caused by a gram-negative enteric bacterium, and Infectious Bursal Disease (IBD), a highly contagious immunosuppressive

viral infection (caused by Infectious Bursal Disease virus (IBDV) have been identified as two of the most important infectious diseases in Ethiopian poultry.

- There is evidence of genetic variation associated with resistance to Salmonella in different chicken lines, but nothing is known for IBDV resistance.
- Breeding chickens resistant to Salmonella and IBDV provide an under-exploited, cost-effective and permanent approach to control these diseases.



Hypotheses and Objectives:

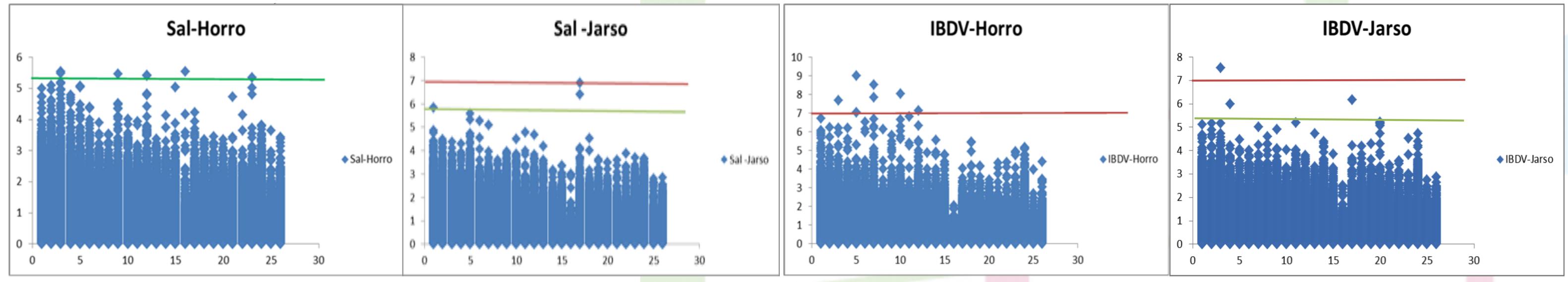
- Previous studies in inbred and outbred exotic chicken lines using whole genome microsatellite markers have identified QTLs (Quantitative Trait Locus) for Salmonella resistance.
- Our hypothesis is that there are QTLs for Salmonella and IBDV resistance circulating among indigenous Ethiopian chickens.
- Using two important indigenous chicken populations and high density whole-genome SNP (Single Nucleotide Polymorphism) arrays we will try to identify SNP markers for increased resistance to Salmonella and IBDV infection.

Materials and Methods

- Blood samples from **760** birds, 384 from **Horro** and 376 from **Jarso**, two geographical regions about 800 km from each other, were collected over two years.
- Phenotypes (serological data) were based on single tests of individual's sera using an in-house ELISA for Salmonella and a commercially available ELISA kit for IBDV.
- A high density whole genome SNP array (620K, Affymetrix) was used.
- A multidimensional scaling analysis (MDS) was performed using GenABEL software to identify if there are any genetic differences between the two chicken populations.
- A Genome-Wide Association Study (GWAS) was performed using PLINK and GEMMA software. Bonferroni correction for multiple testing was applied.
- Searching for genes of interest located close to the identified markers was performed using Ensembl database.

Phenotypes: ELISA data for Salmonella and IBD

Genotyping with 620K Affymetrix array


GWAS using PLINK and GEMMA software

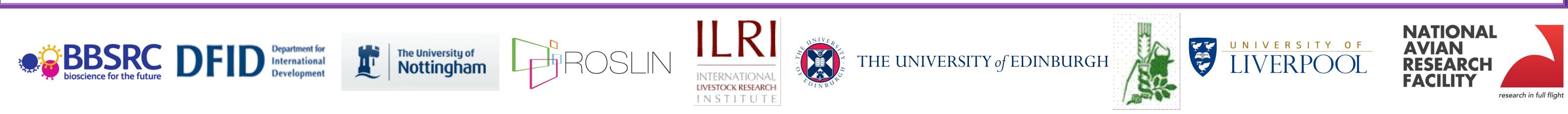
Searching for genes of interest using Ensembl

Results

GWAS results:

- The multidimensional scaling analysis showed that **Horro** and **Jarso** populations were **genetically distinct**.
- In Horro chickens, the genome-wide scan revealed 9 SNP with chromosome-wide significant association with Salmonella resistance and 7 SNP with genome-wide significant association with IBD resistance.
- In Jarso chickens, the genome-wide scan revealed 1 SNP with genome-wide and 2 SNP with chromosome-wide significant association with Salmonella resistance and 1 SNP with genome-wide and 3 SNP with chromosome-wide significant association with IBDV resistance.

Manhattan plot: x-axis shows the chicken chromosomes, y-axis the P values of the markers associated with Salmonella (Sal-Horro and Sal-Jarso) and IBDV resistance (IBDV-Horro and IBDV-Jarso),


the red line is the genome-wide threshold, the green line is the chromosome-wide threshold.

Conclusion

Different QTLs for Salmonella and IBDV resistance were identified in the two indigenous Ethiopian chicken populations; this is consistent with the **MDS** analysis which showed that the two populations are different genetically.

Almost all the markers identified for resistance were located close to candidate genes involved in the immune response.

Results of this study are encouraging for breeding for *Salmonella* and IBDV resistance in indigenous Ethiopian chickens. However, a different genomic selection programme should be developed for each of the two populations.

