Participatory risk assessment I - Introduction -

'Learning Event' on risk analysis and participatory methods CSRS, November 28, 2014

Kohei Makita Associate Professor of Veterinary Epidemiology at Rakuno Gakuen University (OIE Joint Collaborating Centre for Food Safety) Joint Appointment Veterinary Epidemiologist at International Livestock Research Institute (ILRI)

Outline

- Food safety in informal market
- Participatory Risk Analysis
- Monte Carlo simulation
- Key distributions

Why food safety?

- Every year, at least 2 billion cases of diarrhea occur and 1.5 million children under 5 yrs die worldwide
- Poor, young, elderly, pregnant women and immunesuppressed most affected
- Food borne diseases include non-diarrheal <u>severe</u> zoonoses

Why animal source foods?

- Two-thirds of human pathogens are zoonotic many of these transmitted via animal source food
- Animal source food is a single most important cause of food-borne disease
- Many food-borne diseases cause few symptoms in animal host
- Many zoonotic diseases controlled most effectively in animal host/reservoir

Dominance of informal markets in developing countries

"Absence of structured sanitary inspection"

Informal ≠ Illegal

Outline

- Food safety in informal market
- Participatory Risk Analysis
- Monte Carlo simulation
- Key distributions

Risk analysis

A tool for decision-making under uncertainty

Pacific Americas Mississippi Americas Atlantic Americas East Atlantic Black Sea/ Wediterranean ** Asia/West Africa

Shorebird Fl

pH 10.00 Buffer Solution

PH4 WITTE SOLU

VINDUR

PH 3.00 Buffer Solution

OIE Import Risk Analysis

OIE Risk analysis for antimicrobial resistance

Hazard Analysis and Critical Control Point (HACCP) system

- Adopted by Codex Alimentarius Commission
- Science based and systematic system which identifies specific hazards and measures for their control to ensure the safety of food

Codex Alimentarius Commossion Food safety risk analysis

A tool for decision-making under uncertainty

*Risk is a probability of occurrence of a scenario and its size of impact (Vose, 2008)

Food safety risk analysis

in informal marketing system

Advantage of participatory risk assessment

- -Speed
- -Affordability
- -Flexibility in application
- -Understanding of culture
- Best control option
- Potential to change behavior

Food safety risk assessment

Codex Alimentarius Commission system

Codex Alimentarius Commission Risk assessment framework (CAC/GL-30 (1999))

Statement of purpose of risk assessment

- Clear statement of the specific purpose of the particular risk assessment
- Output form
 - Prevalence of illness
 - Annual incidence rate (eg. case/10,000)
- Preliminary investigation phase may be required

Hazard identification

- The identification of biological, chemical, and physical agents –
- capable of causing adverse health effects –
- and which may be present in a particular food or group of foods

Exposure assessment

- Assessment of the extent of actual or anticipated human exposure
- Based on potential extent of <u>food</u>
 <u>contamination</u> by a particular agent or its toxins, and on <u>dietary</u> information

Hazard characterization

- Qualitative or quantitative description of the <u>severity and duration</u> of adverse effects that may result from the ingestion of a microorganisms or its toxin in food
- A <u>dose-response</u> assessment should be performed if the data are obtainable

Factors that need to be considered in hazard characterization

- Factors related to the microorganism
 - Replication
 - Virulence and infectivity
 - Delay of onset following exposure
 - Attributes altering pathogenicity, e.g., high fat content of a food vehicle
- Factors related to the host
 - Genetic factors
 - Host susceptibility characteristics
 - Age, pregnancy, nutrition, immune status etc.
 - Population characteristics
 - Population immunity, access to and use of medical care etc.

Dose-response Assessment

 Determination of the relationship between the <u>magnitude of exposure</u> (dose) to a chemical, biological or physical agent and the <u>severity and/or</u> <u>frequency of associated adverse</u> <u>health effects</u> (response)

FIGURE 3.1. Adverse response as a result of increasing dose.

Risk characterization

- Integration of previous three steps to obtain a <u>**Risk Estimate**</u>
- A qualitative or quantitative estimate of the <u>likelihood and severity</u> of the adverse effects which could occur in a given population
- Degree of confidence: <u>uncertainty and</u> <u>variability</u>
- Influence of the estimates and assumptions by <u>sensitivity analyses</u>

Uncertainty and variability

 "Variability is a phenomenon in the physical world to be measured, analysed and where appropriate explained. By contrast, uncertainty is an aspect of knowledge"

Sir David Cox

Uncertainty and variability

_ikelihood

Uncertainty

- Assessor's lack of knowledge about the parameters that characterise the physical system that is being modeled
- Level of ignorance, degree of belief
- Sometime reducible through further measurement or study
- In our (food safety risk assessor) case;
 - Prevalence of pathogens/ antibodies in foods
 - Temperature of foods
 - Cooking and consumption behavior (could be dealt as variability if you know well)
 - Time from production to processing/ consumption

Variability

- A function of the system
 - In our (food safety risk assessors) case;
 - Variety in virulence
 - Variety in speed of bacteria multiplication
 - System of the value chain
 - Amount of foods passing through value chains
 - Seasonal variety
- Inter-individual variability
 - Height
 - Weight
 - Sex

Documentation

- Systematic documentation for communication to risk manager
 - Reporting the limitations is important in transparent process of the decision making
- Description of the model for other risk assessors to repeat and critique the work

Types of Risk assessment

- Qualitative risk assessment
 - Qualitative statement (Negligible, low, medium, high, extremely high etc.)
- Quantitative risk assessment
 - Deterministic risk assessment
 - Single point estimates
 - Stochastic risk assessment
 - Probability distribution

Outline

- Food safety in informal market
- Participatory Risk Analysis
- Monte Carlo simulation
- Key distributions

What is Monte Carlo simulation?

- Imagine this EcoHealth work;
 - Probability that vegetable A on farm is contaminated with Salmonella came from pig waste: 30% (P_A)
 - Probability of reduction of *Salmonella* prevalence by washing at home: 90% (P_B)
 - After washing, contaminated vegetable contains 20 Salmonella/g (CFU)
 - A person ingests 50g of salad of vegetable A at a time (Cons)
 - In the country, this salad is consumed once a week (Rate)
 - Dose-response (DR) relationship known
 - What is the probability of salmonellosis due to consumption of vegetable A as salad?

Probability of illness = $P_A x (1-P_B) x CFU x Cons x DR x Rate$

Deterministic model = $0.3 \times (1-0.9) \times 20 \times 50 \times DR \times 1/7$

Stochastic model assigns distributions for each parameter

Then how we calculate?

Then how the distribution of a risk is made?

- Assign stochastic distributions to each variable
- Pick up values randomly from each distribution based on the probability and calculate a risk
- Repeat the risk calculation automatically 5000-10,000 times until the results become stable (Monte Carlo simulation)

Outline

- Food safety in informal market
- Types of Risk Analysis (Codex, OIE, HACCP)
- Monte Carlo simulation
- Key distributions

Head or tail 0 or 1 Healthy or diseased **Binomial data**

Types of data

Animal breed Districts Categorical data

Bacteria load Number of animals **Count data**

Milk yield Body weight **Continuous data**

Parametric and non-parametric statistics

Parametric

Mean milk yield/cow

Non-parametric

E.g. Rank of psychological stress during FMD outbreak among vets

Parametric and non-parametric statistics

Parametric tests

Make assumptions about the underlying distribution of the observations and the **parameters** which define that distribution

Non-parametric tests

Does **not** make any distributional assumptions about the data

Mean, median and mode

Gamma distribution

• Mean

- Arithmetic mean
- Median
 - Central value of the observations which have been arranged in rank order
- Mode
 - The most commonly occurred observation in a set of observations

Х

Normal distribution

- Continuous data
- Two parameters
 - Mean

Where

- Standard deviation
- Mean, mode and median are same

Probability density function

Where y is any value from the distribution, \overline{y} is a mean, s is standard deviation

Binomial distribution

- Two parameters
 Trial, probability
- Logit-link
- (E.g.) 10% chicken carcasses is known to be contaminated with *Campylobacter*
- You sampled four carcasses
- How many were contaminated?

Probability mass function $\binom{n}{x} p^x (1-p)^{n-x}$

Where x success in n trials Probability *P* of success

Beta distributions

- Binomial/ Binary response data
- Two parameters
 - Trial
 - Success
- (E.g.) Prevalence of *E. coli* in foods
- (E.g.) Prevalence of brucellosis among cattle herds
 - Probability density function for Beta (a, b)

$$f(x) = \frac{x^{a-1}(1-x)^{b-1}}{\int_0^1 t^{a-1}(1-t)^{b-1}dt}$$

Poisson distribution

- Count data
- One parameter
 Shape
- Log-link
- (E.g.) Number of customer per day

Probability mass function

$$f(x) = \frac{e^{-\lambda t} (\lambda t)^x}{x!}$$

Gamma distribution

- Gamma (α,β)
- Two parameters
 - Number of events α
 - Time between events β
- Mean: αβ
- Variance: $\alpha\beta^2$

Probability density function

$$f(x) = \frac{\beta^{-\alpha} x^{\alpha-1} \exp(-x/\beta)}{\Gamma(\alpha)}$$

When

$$\Gamma(n) = \int_0^\infty t^{x-1} e^{-t} dt$$

Exponential distribution

Time

Key parametric distributions

- Normal distribution
- Binomial distribution
- Beta distribution
- Poisson distribution
- Gamma distribution
- Exponential distribution

There are more parametric distributions but they are key ones to relate other distributions used for food safety risk assessment

Any questions?

