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Outline 

• Stochastic processes 

• Exposure assessment 

– Fault tree 

– Value chain 

– Mixture, separation, growth and inactivation 

• Hazard characterization 

– Dose-response 
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Bayesian inference 
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Prior belief Learning from  
observations 

Current knowledge 

)( )|( Xl )|( Xf 
Prior distribution Likelihood function Posterior distribution 

Beta (23,59) Beta (2,29) Beta (25,88) 



Bayesian inference 
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Bayes’ Theorem 
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Bayes’ Theorem expressed in a different way 

The denominator normalizes the Posterior  
distribution to have a total area equal to one. 



Bayesian inference 
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Bayes’ Theorem 
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Bayes’ Theorem expressed in a different way 

So, 

)|()()|(  XlXf 

Likelihood function Prior distribution Posterior distribution 



Stochastic processes 

• Systems of countable events 

• There are three fundamental stochastic processes 

– Binomial process 

– Poisson process 

– Hypergeometric process 

 

6 

Binomial Process
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Binomial process 

• A random counting system where there are; 

–n independent identical trials  

– each one of which has the same probability of success p 

– which produces s successes from n trials 

7 

Number of

trials n

(NegBin)

Number of

successes s

(Binomial)

Probability of

success p

(Beta)



Binomial process 

Distributions for the binomial process 

• s = Binomial(n,p) 

• n = s + Negbin(s,p) if we know trials stopped in the sth success 

• n = s + Negbin(s+1,p) if don’t know trials stopped in the sth success 

• p = Beta(s+1,n-s+1) for a Uniform(0,1) prior 

• p = Beta(s+a, n-s+b) for a Beta(a, b) prior 

 

– and Negbin(1,p) = Geomet(p) 

– Binomial(1,p) = Bernoulli (p) 

http://www.epixanalytics.com/


Exercise for Binomial process 
Now start your @Risk 

1. 3% of salad in a local restaurant in area A is 
known to be contaminated with Cryptosporidium 
parvum. When you sample 50 salads, how many 
of them are contaminated with C. parvum?  

2. In the area B, a survey on prevalence of C. 
parvum in salad was conducted. Out of 156 
samples, 5 were contaminated. What is the 
prevalence? 

3. The probability of attending hospital if infected 
with C. parvum is 80%. We observed 53 patients 
who visited hospital and diagnosed with C. 
parvum infection in the outbreak last month. 
How many people were infected? 
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Poisson process 

Binomial Process

Poisson Process Hypergeometric Process
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Back to the map… 

http://www.epixanalytics.com/


Poisson process 

• There is a continuous and constant opportunity for an event 
to occur- this is explained by; 

– the number of events that may occur in a period t 

– the amount of “time” one will have to wait to observe α events 

– the average number of events that could occur, λ  
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Poisson process 

Distributions for the Poisson process 

•  = Poisson(*t)   P(=0) = Exp(-t) 
 

 

• t = Gamma(, b)  
 b = 1/(Average time between events) 

i.e. how much time until the next AI outbreak 

 

•  = Gamma(, 1/t)  

 with a ()  1/ prior 

    and Gamma(1, b) = Expon(b)  
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Exercise 

• Food poisoning was reported in a village A for 40 times last 5 
years. If food poisoning occurs regardless the season (a 
constant risk),  
– how many outbreaks would be observed in the next three months? 

– how many months does it take to have the next outbreak since last 
one (suppose we had an outbreak yesterday)? 

• If a bulk of raw milk contains 4 cfu/l of E. coli O157:H7,  
– how much milk can you drink before you ingest one E. coli? 

– what is the probability that you ingest at least one E. coli if you drink 
300ml of the milk? 
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Hypergeometric process 
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Hypergeometric process 

• When the population is not very large compared to the 
sample (population < 10 x sample size) 

• Out of a group of M individual items, D have a certain 

characteristic. Randomly picking n items from this group 

without replacement, where each of the M items has the 
same probability of being selected, is a hypergeometric 
process. 
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Hypergeometric process 

The hypergeometric format 
 M (total population)

D (infected)

n (selected)

s =number infected from selection

Examples: 

•Sampling sheep from an infected 

flock 

•Sampling food from a 

consignment 

•Defective items in a consignment 

•Capture-release-recapture surveys 
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Hypergeometric process 

Distributions for the hypergeometric process 

• s = Hypergeo(n, D, M) 
 

• n = s + InvHypgeo(s, D, M) 
 

• D, M have no standard distributions 
– Have to be worked out manually (see problems) 
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Exercise 

• In an informal market, Mrs A is selling 100 eggs of which 10 
are contaminated with Salmonella. You purchased 5 eggs from 
Mrs A. How many contaminated eggs are included? 
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Outline 

• Stochastic processes 

• Exposure assessment 

– Fault tree 

– Value chain 

– Mixture, separation, growth and inactivation 

• Hazard characterization 

– Dose-response 
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Fault tree 
• Fault tree is a systematic method for acquiring 

information about a system 
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Source: NASA. 2002. Fault tree hand book  
with aerospace applications.  



Points of fault tree analysis in food safety 

• How the illness can occur 
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Onset of  
illness 

Preceded by 

Infection Ingestion 

Purchase 

Production 

Preceded by Preceded by 

Or 

Direction of identification and diagraming 
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Illness due to Staphylococcal poisoning due to milk consumption 

A consumer is susceptible to SAET 

SA multiply to reach enough cfu producing ET 

Milk contains SA 

Milk contains SA at production Milk contaminated with SA 

By traders/handlers 

Milk shed by SA 

Mastitis cow 

Milk contaminated 

by a farmer 

Infected cow Human source 

Human source 

AND 

OR 

Initiating 

event 

Risk assessment for staphylococcal poisoning through 

consumption of informally-marketed milk in Debre Zeit, Ethiopia  
Makita K, Dessisa F et al. (2011) International Journal of Food Microbiology 



Outline 

• Stochastic processes 

• Exposure assessment 

– Fault tree 

– Value chain 

– Mixture, separation, growth and inactivation 

• Hazard characterization 

– Dose-response 
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Value chain 

A producer A consumer 

24 



Value chain 

Producers Consumers Middle men 

25 



Designing a study based on fault tree 

• Design a study to collect information on the ‘Nodes’ identified 
in fault tree analysis 

• ‘Nodes’ are similar to Critical Control Points (CCPs) in HACCP 

• It usually include below segments 

 

 

• In informal markets, marketing systems are sometimes not 
‘linear’, which means unpredictable 

• So combination of below techniques are useful 
– Rapid rural appraisal 

– Probabilistic survey using questionnaires 

– Tracing back, tracing forward 
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Consumer Retail shop Middle men Producer 



Categorizing actors 
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• Retail shops or middle men can be categorized 
even further 

• In terms of risk modeling, it is important to 
have separate ‘branches’ to predict behavior 
more precisely 

• Examples are shown in the next slide 



Actors in informal milk sales in Kampala, Uganda 

• Plus milk retail shop without refrigerator and dairy farmers selling at farms 

Shop with a bulk cooler Shop with a small refrigerator Boiling centre 

Trader with cans on a bicycle Roadside vendor Roadside vendor 

28 



Probabilistic survey 

29 

• Random selection of either small 
administrative units or shops or farmers in a 
probabilistic manner 

• Collect quantitative information (e.g. number 
of shops, farmers, quantity of sales) 

• Divide the quantity with sampling fraction in 
order to estimate the total amounts of sales in 
the study area 



Probabilistic survey 
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Fig.1. Map of Kampala showing the locations of 48 urban LC1s studied.  
Areas highlighted are peri-urban parishes. 

Source: Makita K. (2009). PhD Thesis.  
The University of Edinburgh 



Field survey – Importance of diagnostic tests 

My bitter experience in Campylobacter 
risk assessment…  

Nyama-choma in Tanzania 

<1st survey for prevalence> 
High prevalence using 
culture without rigorous 
identification 

<2nd survey for MPN> 
Low prevalence using PCR 
after culturing 



Tracing forward and/or backward 
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• Wholesale shops, abattoirs and markets 
identified in RRAs and interviews need to be 
trucked in order to complete the value chains 

• Interviews at such ‘hubs’ will give you the 
information on the chains after the ‘hubs’ 

• Tracking will fill the ‘gaps’ of quantitative 
information of sales 



Tracing forward and/or backward 
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Fig. 2. Spatial distributions of wholesale milk shop centres and 
milk boiling centres in Kampala 

 Source: Makita K. (2009). PhD Thesis.  
The University of Edinburgh 



Tracing forward and/or backward 
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Fig. 3. Spatial distributions of milk shops with a bulk cooler. 

 Source: Makita K. (2009). PhD Thesis.  
The University of Edinburgh 



Tracing forward and/or backward 
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Fig. 4. Spatial distributions of fresh milk shops with a small 
refrigerator 

Source: Makita K. (2009). PhD Thesis.  
The University of Edinburgh 
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Quantitative dairy value chain in Kampala, Uganda 

Source: Makita K. et al. (2010). How human brucellosis incidence in urban Kampala can be reduced most 
efficiently? A stochastic risk assessment of informally-marketed milk. PLoS ONE 5 (12): e14188. 
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Dairy value chain- RRA and interviews 

Makita K, Dessisa F et al. (2011) International Journal of Food Microbiology 



Outline 

• Stochastic processes 

• Exposure assessment 

– Fault tree 

– Value chain 

– Mixture, separation, growth and inactivation 

• Hazard characterization 

– Dose-response 
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Modular Process Risk Model 

Microbial processes 

•Growth 

•Inactivation 

 

Food handling processes 

•Mixing 

•Partitioning 

•Cutting 

•Cross-contamination 
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Separation 

• Separation in a value chain refers to sales to more 
than two customers 
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Bulk tank in a milk 
collection centre 

Traders with 
a bicycle 

Sales to 
customers 



Mixing 

• Mixing in a value chain refers to receiving from more 
than two sources 
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Bulk tank in a milk 
collection centre 

Urban smallholder 
dairy farmers 

Peri-urban commercial 
dairy farmers 



Inactivation 

• Inactivation in a value chain usually refers to heat 
treatment to kill pathogens (note: heat cannot 
inactivate heat-resistant toxins) 
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Milk sales to 
individual houses 

Raw milk from 
District A 

Raw milk from 
District B 

A boiling center 
in a town 

Wholesaler 
milk shops 

Milk sales to 
individual houses 



Bacterial growth 
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Mathematical modeling of growth 

• Several models exist 

– Logistic model 

– Michaelis-Menten model 

– Modified Gompertz model (Gibson et al., 1987) 

– Baranyi model (Baranyi and Roberts, 1994) 

– Modified logistic model (Fujikawa et al., 2003) 

• Several factors affect on bacteria growth- careful 
choice from literature is required 

– Temperature 

– pH 

– Water activity (aW) 

– Salinity 
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Contamination- a survey 

Isolation of  

S aureus 

Boiling 

before 

sales 

Milk collection 

centre (n=25) 

18 

(70.4%) 

0 

Dairy farm 

(n=170) 

74 

(43.6%) 

0 

Example: 

Boil milk 

before 

consumption 

Percentage 

Dairy farming 

households (n=170) 

116 68.2 

Consumers (n=25) 16 64.0 

Risk mitigation by consumers 

-participatory and interviews 



Example: 
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Cfu/ml 

Hour 

Stationary phase 

Exponential growth phase Lag phase 

Fujikawa and Morozumi (2006) 
modified logistic model 



Example 
Growth of Staphylococcus aureus in milk 

• Mathematical model of S. aureus growth in milk 
– Modified logistic model reported by Fujikawa and 

Morozumi (2006) 

– Experts say it also applies to meats 
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min

(1){
max
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N

N

N

N
rN

dt

dN


Where N is population of a microorganism at time t 
             r is rate constant or maximum specific rate of growth 
             Nmin is minimum cell concentration and set as slightly lower value than initial 
             concentration N0 

             Nmax is maximum concentration at stationary phase: 108.5 cfu/ml 
             c is an adjustment factor – variability of growth speed: 4.7±1.1 
             r0.5 = 0.0442T - 0.239 
             Where T is temperature in Celsius 



Modeling growth in @Risk 
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Time(h) Log N r dN/dt 

0 0.35916 0.234521 2.684E-06 

1 0.35916 0.234521 5.837E-06 

2 0.359162 0.234521 1.269E-05 

3 0.359164 0.234521 2.759E-05 

4 0.359169 0.409327 0.000104 

5 0.359189 0.409327 0.000319 

6 0.35925 0.409327 0.000973 

7 0.359434 0.409327 0.002964 

8 0.359997 0.409327 0.009008 

9 0.361701 0.409327 0.027184 

10 0.366805 0.409327 0.080358 

Time(h) Log N (D15) r (E15) dN/dt (F15) 

0 =N0 =(0.0442*T-

0.239)^2 

=E16*10^(D16)*(1-

10^(D16)/10^(Nmax))*(1

-(Nmin/10^(D16))^c) 

1 =LOG10(10^(D16)+F

16) 

=(0.0442*T-

0.239)^2 

=E17*10^(D17)*(1-

10^(D17)/10^(Nmax))*(1

-(Nmin/10^(D17))^c) 

2 =LOG10(10^(D17)+F

17) 

=(0.0442*T-

0.239)^2 

=E18*10^(D18)*(1-

10^(D18)/10^(Nmax))*(1

-(Nmin/10^(D18))^c) 

3 =LOG10(10^(D18)+F

18) 

=(0.0442*T-

0.239)^2 

=E19*10^(D19)*(1-

10^(D19)/10^(Nmax))*(1

-(Nmin/10^(D19))^c) 
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Risk mitigation by traditional milk fermentation- 
Modeling using reported data (Gonfa et al., 1999) 

Bacteria growth stops at pH 4.9 

1/pH=0.002 t (h)+1.187 (df=3, r2=0.90, p=0.009) 

Source: Makita et al., 2012 
 Int. J. Food Microbiol. 
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Stop of growth of S. aureus in milk by low pH 

(h) 

Stop of bacterial growth due to milk fermentation 



Outline 

• Stochastic processes 

• Exposure assessment 

– Fault tree 

– Value chain 

– Mixture, separation, growth and inactivation 

• Hazard characterization 

– Dose-response 
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Overview 

• Here we learn how to model the probability of 
infection/illness based on how much a person ingests 
pathogens 

• We learn different types of model 

• Later we work on an example of campylobacteriosis 

Ingestion of  
pathogen/toxin 

Infection 
Illness 
Death 

Illness 
Death 



The four most common no-threshold DR models 

D-R model Dose measure P(effect) 

Exponential  Mean dose  )exp(1 p  

Beta-Poisson Mean dose  

b
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Microbiology Dose-Response 

Data set for infection 
Black RE et al (1988), Experimental Campylobacter jejuni infections in humans. J infectious Diseases, 157(3), 472-479. 

Example Applications: C. jejuni 

Mean dose Tested Infected 
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Microbiology Dose-Response 

Beta-Poisson model. MLE fit has  = 0.145, b = 7.589 
 

Example Applications: C. jejuni 

Mean 
dose 

Infected
/Tested 

B-P MLE 
probability 

8x10
2 

5/10 49% 

8x10
3
 6/10 64% 

9x10
4
 11/13 74% 

8x10
5
 8/11 81% 

1x10
6
 15/19 82% 

1x10
8
 5/5 91% 
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Questions? 
 

Thank you for your efforts to catch up… 


