Foodborne hazards in the scientific literature: Results of a systematic literature review in East African countries

Silvia Alonso, Michael Ocaido, Maud Carron, Kristina Roesel and Delia Grace

Regional Conference on Zoonotic Diseases in Eastern Africa Naivasha, Kenya 9–12 March 2015

Introduction

- The study gathered information available in the published and grey literature on safety of:
 - dairy products and zoonoses from cattle in Tanzania
 - pork and zoonoses from pigs in Uganda
- Areas covered: prevalence, risk factors, control and impacts of a list of hazards in each value chain

- What is the prevalence and relative importance of each of the selected hazards in people, pigs, pork, dairy cattle, dairy products and wildlife?
- What type of impacts do each of the selected hazards have with respect to (i) economic burden/cost, (ii) DALYs, (iii) health, (iv) social and (v) environment?
- What are risk factors for each of the selected hazards in each of the selected populations?
- What are the available control strategies for each of the selected hazards and their effectiveness?

Methodology

- Four online databases were used: PubMed, CAB Direct, Web of Science and African Journals Online
- Hazards studied:

Food borne non-zoonotic	Food-borne zoonoses	Food borne and direct zoonoses
Salmonella typhi	Campylobacter spp	Leptospirosis
Mycotoxins	(Toxigenic) <i>E. coli</i>	Tuberculosis
Antibiotic residues	Salmonella spp	Brucellosis
	Staphylococcus spp	Rabies
	Clostridium perfringens	Anthrax
	Bacillus cereus	Rift Valley fever
	Cryptosporidium spp	Q fever (Coxiella burnetti)
	<i>Toxoplasma</i> spp	Trypanosomiasis

Methodology

- PRISMA 2009 flow diagram used to document the process
- Database prepared using Mendeley Desktop reference manager

Results

- Foodborne hazards are under-represented in published literature
- Most papers cover prevalence and risk factor studies, very few cover control options and impact
- Diverse research methods used and reporting is inconsistent; this makes it difficult to combine results
- For the dairy value chain, most studies done at the farm and retailer levels; very few involve consumers
- For the pork value chain, porcine cysticercosis is the most frequently studied foodborne hazard
- Studies on humans, with respect to pig zoonoses, focus on *Toxoplasma gondii*, but its relation to pork consumption has not been investigated

Results – dairy value chain

<i>Campylobacter</i> spp.	<i>C. jejunum</i> commonly isolated in meat samples, 5.6% in animals in Morogoro
Escherichia coli	6.3% of milk samples at retailers in Dar es Salaam were found to have <i>E. coli</i>
Staphylococcus aureus	Commonly isolated in milk samples in Morogoro; reported prevalence range 17–26%
Bacillus cereus	Found in 6.3% of milk samples collected from milk retailers in Dare salaam

Results – dairy value chain

<i>Cryptosporidium</i> spp.	A study in Tanga area found 50% and 63% of positive farms Another study in Tanga and Iringa estimated 20% and 21%, respectively,
	animal level prevalences much lower
<i>Leptospira</i> spp.	8.4% of patients with fever in Moshi were found to be suspected or confirmed cases of leptospirosis
	An abattoir survey conducted in Tanga found 26 out of 51 sampled animals (51%) to be positive to MAT for <i>Leptospira</i>

Results – dairy value chain

Bacillus cereus	29 out of 1450 milk samples sent to a lab in Dar es Salaam over 30 years positive
<i>Toxoplasma</i> spp.	In periurban areas, the farm level prevalence among smallholder dairy farmers was 4.8%, while the farm level prevalence among pastoralists in rural areas reached 48%
Tuberculosis	10% of blood samples from cattle tested at an abattoir in Tanga were found positive for tuberculin test
Q fever	A cross-sectional survey on seroprevalence of <i>C. burnetii</i> in different healthy hosts in periurban areas of Dar es Salaam found 3.9% prevalence among healthy humans The prevalence among cattle ranged from 18.8 to 27.2%; and 13.6 and 17.7% in goats and sheep, respectively

Results – pork value chain

Trypanosomosis	Pigs play a major role as reservoirs for <i>T. brucei rhodesiense</i>
Tuberculosis	<i>M. bovis</i> isolated from 2% of pigs in Mubende District, Uganda
	<i>M. avium, M. terrae</i> and <i>M. asiaticum</i> also isolated in the same area
Leptospirosis	4.43% in Morogoro Municipality
Campylobacteriosis	Thermophilic campylobacteria in 66.7% pigs and 10% in dressed carcasses

Results – pork value chain

Porcine	High prevalence in Kenya, Uganda and
cysticercosis	Tanzania
Echinococcosis	<i>Taenia hydatigena</i> up to 4% from abattoir surveys in Uganda

Inferences

- For now, difficult to draw firm conclusions but the results show the range of pathogens present in the value chains studied
- Systematic surveys required for comparative assessments

Acknowledgements

 Funding from the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) led by the International Food Policy Research Institute (IFPRI)