
 

 

Abstract 
Soil maps are essential resources to soil 

scientists and researchers in any fields related to 
soil, land use, species conservation, hunger 
reduction, social development, etc. However, 
creating detailed soil maps is an expensive and 
time consuming task that most developing nations 
cannot afford. In recent years, there has been a 
significant shift towards digital representation of 
soil maps and environmental variables that has 
created the field of predictive soil mapping (PSM), 
where statistical analysis is used to create 
predictive models of soil properties. PSM requires 
less human intervention than traditional soil 
mapping techniques, and relies more on computers 
to create models and predict properties. However, 
because most of the funds for soil research come 
from developed nations, the research in this field 
has mostly focused in temperate zones where these 
nations are located. The areas of the world with 
more needs in terms of hunger and poverty are 
mostly located in the tropics, and require different 
statistical models because of the unique 
characteristics of their weather and environment. 
This paper reports on collaborative work with a 
group of soil scientists from the International 
Center for Tropical Agriculture (CIAT) and a 
group of computer scientists from Carnegie Mellon 
University to develop statistical soil models for 
Honduras. The reported work leverages the 
knowledge of the soil science and computer 
science communities, and creates a model that 
contributes to the state of the art for PSM. 

1 Introduction 
The world is currently witnessing a growing demand for 

technological innovation to empower developing 
communities [Sachs, 2002]. Inspired by the current demand 
for advanced technology relevant to developing 
communities, this paper focuses on the topic of applying 
Machine Learning techniques to the problem of soil 
mapping in the tropics. Soil maps are essential resources to 

soil scientists and researchers in any fields related to soil, 
land use, species conservation, hunger reduction, social 
development, etc. However, creating detailed soil maps is an 
expensive and time consuming task that most developing 
nations cannot afford.  

In recent years, there has been a significant shift towards 
digital representation of soil maps and environmental 
variables that has created the field of predictive soil 
mapping (PSM) [Scull, et al., 2003]. In PSM, statistical 
analysis is used to create predictive models of soil 
properties, thus requiring less human intervention than 
traditional soil mapping techniques, and relying more on 
computers to create models and predict soil properties. 
However, because most of the relevant funding is provided 
by developed nations, soil research has mostly focused on 
temperate zones (where these nations are located). Thus, the 
results produces by this research has not been relevant to the 
tropics; one area of the world with more needs in terms of 
hunger and poverty. The tropics require significantly 
different statistical models because of the unique 
characteristics of their weather and environment. 

The task of addressing PSM relevant to the tropics thus 
became the focus of a research partnership between 
technologists at TechBridgeWorld [Dias, et al., 2005] at 
Carnegie Mellon University, and soil scientists from the 
International Center for Tropical Agriculture (CIAT). More 
specifically, the goal of the project was to develop statistical 
soil models for Honduras. The partnership was established 
as part of TechBridgeWorld’s “V-Unit” program1, and was 
constructed to leverage the knowledge of the soil science 
and computer science communities, and create a model that 
matches or advances the state of the art for PSM, with 
relevance to tropical countries. 

1.1 Background 
The International Center for Tropical Agriculture (CIAT) 

is a not-for-profit organization that conducts socially and 
environmentally progressive research aimed at reducing 
hunger and poverty and preserving natural resources in 
developing countries through partnerships with farmers, 
scientists, and policy makers. One of CIAT’s current areas 
of interest is soil modeling, because the lack of accurate soil 
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data limits their ability to visualize catchment hydrology at a 
scale amenable to community-based management, target 
soil-sensitive crops confidently within new areas, and 
explain complex patterns of changing land use that 
underwrite landscape resilience. CIAT has done some 
research for soil modeling based on climate data alone 
[Corner, et al., 2002]. The addition of elevation data (and 
derived features) as well as land-cover should significantly 
increase the accuracy of the prediction. Additionally, the use 
of newer data mining, modeling and prediction algorithms 
could make better use of the existing data. 

TechBridgeWorld is an initiative within Carnegie Mellon 
University that innovates and implements technology 
solutions to meet sustainable development needs around the 
world. Through strong collaborations with partners in 
developing communities, they explore and enhance the role 
of technology globally, focusing on two main principles: 
sharing expertise to create innovative and locally suitable 
solutions, and empowerment of indigenous populations to 
create sustainable solutions. Through these efforts 
TechBridgeWorld creates technology accessible and 
relevant to all2. 

1.2 Traditional soil maps 
Currently, 68% of the countries of the world have soil 

maps at 1:1,000,000 or better [Nachtergaele, 1996]. 
However, these countries only represent 31% of the world’s 
land surface. Most of the remaining 69% corresponds to 
developing countries. Even though there are ongoing efforts 
to create a world map at 1:1,000,000, at the current pace it 
would take 100 years to accomplish this task.  

For those areas without detailed coverage, the best 
available soil maps date to 1974, when the Food and 
Agricultural Organization (FAO) soil map was published. 
This map provides worldwide coverage at 1:5,000.000 and 
is based on Soil Taxonomy [Staff, 1975], which classifies 
the soils in 12 main categories (soil orders) with 
subcategories. Fig. 1 shows the FAO world map for 
Honduras. 

 
Fig. 1. FAO soil map for Honduras 

The FAO soil map of the world is a valuable tool because 
of its coverage, but it has significant drawbacks: it was 
made with information and technology of 1960; since then, 
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there have been significant changes in technologies such as 
GPS, remote sensing and geographic information systems 
(GIS). Another limitation, which is shared with traditional 
soil survey techniques, is the classification of soils as 
distinct categories.  

Most modern soil scientists believe that it is more 
appropriate to model the soil as a combination of elements 
that vary continuously. At large scales, traditional soil maps 
are able to capture some of the characteristics of the soil, but 
at smaller scales, the attempt to classify the soil tends to fail, 
since soil attributes do not cluster perfectly: a cut on the 
basis of one attribute may split the variance of another 
attribute near its peak. The failure of traditional soil survey 
techniques to produce accurate results at smaller scales 
significantly limits the soil information available to 
programs that attempt to help small communities and that 
implement community-based management of resources. 

Furthermore, traditional soil maps depend on subjective 
expert opinion which varies significantly depending on the 
person creating the maps and the soil classification used. 
The maps are therefore predominantly qualitative, and 
depend on poorly specified predictive models that are not 
updatable.  

1.3 Predictive Soil Mapping for the Tropics 
Statistical Soil Modeling is the development of statistical 

soil models for large areas based on soil samples and digital 
maps of environmental variables. It is also known in the 
literature as predictive soil mapping (PSM).  

Recent scientific advances in soil-landscape modeling 
have demonstrated the power of predictive modeling of soil 
characteristics (including texture, moisture, pH, and some 
nutrients) at the fine scale. These advances are built on 
statistically defined relationships between observable 
features of the landscape as well as understanding of the 
physical processes and controls behind soil formation. At 
the same time, significant advances have been made in the 
availability of high resolution global data on many of the 
driving mechanisms of soil variability, especially terrain, 
climate and land-cover. 

There is a significant amount of research in predictive 
soil mapping. For a thorough review of existing approaches 
to predictive soil mapping see references [Scull, et al., 2003; 
Nachtergaele, 1996] and [Heuvelink and Webster, 2001]. 
However, most of the work in predictive soil mapping has 
been done for temperate zones, corresponding to North 
America, Europe and Australia. This is due in part to the 
fact that most of the funding for agricultural research is 
generated from these regions. Most of the developing world 
is, however, located in the tropics. This includes significant 
portions of Africa, Asia, and Central and South America. 
Very little research has been done in developing appropriate 
PSM techniques for the tropics, since there is not much 
funding, and there are few institutions doing research for 
this region. The tropics have very different climate patterns 
than temperate zones, therefore PSM models developed for 



 
North America, Europe or Australia cannot be directly 
applied. 

Some of the unique climate characteristics of the tropics 
are the following: temperature stays almost constant during 
the year, and the main factor determining temperature is 
elevation. It is possible to find places with 100o F 
temperatures year-long, but it is also possible to find snow 
covered places year-long.  There are only two seasons, a wet 
season and a dry season. The duration of the day is also 
almost constant since the sun trajectory on the sky 
throughout the year does not vary much.  

1.4 Existing Approaches 
Most existing approaches to predictive soil mapping use a 

technique called Kriging [Krige, 1951; Matheron, 1962]. 
Ordinary Kriging is a form of weighted local spatial 
interpolation that uses a Gaussian model for the data. Its 
main drawbacks are the fact that it does not use knowledge 
of soil materials or processes, and that it requires a large 
number of closely-spaced samples in order to produce 
satisfactory results. There are extensions to this method that 
allow the use of ancillary data, but they are difficult (if not 
impossible) to extend to more than one ancillary variable.  

Some of the most promising approaches to PSM are 
expert systems and regression trees[Corner, et al., 2002]. 
Expert systems use expert knowledge to establish rule-based 
relationships between environment and soil properties. 
Often they do not use soil data to determine soil-landscape 
relationships, but some approaches do. Regression Trees are 
decision trees with linear models in the leaves. They create a 
piecewise linear representation of the predicted variable. 
Using this method Henderson [Henderson, et al., 2005] 
obtained the best results in the literature, which are able to 
explain more than 50% of the variance of several soil 
properties such as pH, clay content and sand content.  

2 Gaussian Processes for Predictive Soil 
Mapping 

Based on data and resources availability relevant to the 
tropics, we chose Honduras as a case study. Honduras is a 
small tropical country (112,000 km2) for which CIAT has a 
relatively good database of soil samples (2670 samples). In 
spite of its small size, Honduras has coastal and 
mountainous areas, elevations from 0 to 2870 meters, and 
temperatures from 10 to 30 degrees Celsius.  

The goal was to model and predict variations in pH 
content, clay content and sand content in the topsoil. The 
input variables available for training and prediction were 32 
terrain and climate-related variables such as elevation, 
slope, curvature, mean temperature, temperature ranges, 
mean precipitation, precipitation ranges, vegetation index, 
etc. Each one of these variables was as a digital map at 
resolutions varying from 90 m to 1 km.  

We chose the approach of Gaussian Processes (GPs), a 
powerful, non-parametric regression technique with solid 

probabilistic foundations. The main advantages of GPs over 
other approaches is that they provide well defined 
confidence intervals, which are very important for soil 
scientists to assess the quality of the model; and that they 
allow the use of spatial interpolation and ancillary features 
to create the model. 

GPs can be seen as a generalization of Gaussian 
distributions to function space, which is of infinite 
dimension. Even though they are not new, they have 
regained relevance as a replacement for supervised neural 
networks [MacKay, 1997; Gibbs, 1997]. GPs are equivalent 
to several other mathematical approaches including neural 
networks with infinite number of hidden units, radial basis 
functions with infinite number of basis functions, least 
squares support vector machines and kernel ridge 
regression.  

2.1 Covariance function  
The idea with Gaussian processes is to put a prior in the 

probability of the interpolating function given the data. 
Since this prior is Gaussian, a GP is defined by its 
covariance function. The covariance function and its 
hyperparameters define the family of functions that can be 
chosen by the GP for interpolating the data. The covariance 
function selected was the squared covariance with a linear 
term as shown below: 

 
 
 
 
 
 
 
 
 
 
 
 

2.2 Learning the hyperparameters 
The covariance function depends on a set of 

hyperparameters that need to be determined. The best way 
to determine the hyperparameters is to learn them from the 
data. We would like to maximize the likelihood of a 
prediction given the training data and the parameters. We 
used a modified version of the NetLab matlab toolbox to 
accomplish this.  

2.3 Variable Selection 
One of the main drawbacks of Gaussian processes is that 

they are computationally intensive to train, since each 
iteration of the training algorithm requires inverting an NxN 
matrix, where N is the number of samples (2670 in our 
case). In order to keep training time low and to prevent 
overfitting we decided to use a small training set: 20% of 
available soil samples. 60% of the samples were used for 
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validation, and the remaining 20% were used as an 
independent test set.  We used greedy search for the most 
promising variables based on the R2 score* of the validation 
set. When several variables had similar R2 values, we asked 
the soil scientists at CIAT to select the variable they thought 
was most important to include in the model. We continued 
adding variables until the R2 score of the model stopped 
improving. With this configuration it takes approximately 
27 hours to select variables and create each model. This 
process only takes place once, unless new variables become 
available and they need to be added to the model. 

After the variables are selected, we use the training and 
validation data to create a new model, and run the 
hyperparameter learning procedure starting with the 
hyperparameters that performed best in the small training 
sets. 

2.4 Prediction 
Once a model is chosen, the next step is to use that model 

to generate soil maps for an area of interest. In order to do 
this, features from digital maps of the area are used as the 
inputs to the model, therefore creating a predicted map for a 
soil component. We generated maps for pH, sand content, 
and clay content in the topsoil of Honduras. Even though 
the prediction stage of GPs is much faster than the training 
stage, the much larger amount of points for which a 
prediction is required make the process very 
computationally intensive. With the current implementation, 
using a Pentium 4 @1.8GHz, it takes 21ms to generate the 
prediction for one location. The time required to generate a 
map depends on the size of the map and its resolution. For 
Honduras (112,000 km2), it takes 40 minutes to generate a 
map with 1km grid size, 3.4 days with 90m grid size and 30 
days with 30m grid size. If we were to generate a map of 
Africa it would take 7.2 days, 2.4 years and 22 years 
respectively. However, this assumes that all the calculations 
take place on a single computer, which is not likely to be the 
case. If multiple computers are available, each one could 
process a much smaller area therefore reducing the total 
time required proportionally to the number of computers 
available. 

3 Results 

3.1 Accuracy of Current Techniques 
In order to understand the significance of the results 

achieved, it is important to be aware of the accuracy of 
current techniques for soil mapping. According to the soil 
scientists at CIAT, a rule of thumb is that a soil survey is 
good if the map units have the right soil more than 50% of 
the time. Most measurements have a variability of 20% or 
more between laboratories [Nachtergaele, 1996] and most 
quantitative prediction methods explain less than 10% of 

                                                           
* R2, or coefficient of determination is a measure of the 

percentage of variance that a model explains.  

variation. The most important exception is the results from 
Henderson in Australia which explain up to 50% of the 
variance of pH in soil and are the motivating force behind 
the current effort for PSM at CIAT. 

3.2 pH in Topsoil 
pH in Topsoil was the variable that produced the best 

results. Two different models were created: one that 
includes the x and y location of the samples as variables 
(i.e.: uses spatial interpolation), and one that does not. The 
model that uses spatial interpolation performed better, but 
the one that does not use it gives better insight into the 
driving factors for pH determination.  

The variables found to be relevant for the model with 
spatial interpolation were x and y (spatial location of the 
sample) and P5 (maximum temperature of warmest month). 
The R2 for this model is 0.4544 (for the test data). In this 
case, the model can explain approximately 45% of the 
variance in the data. From a Computer Science or 
Engineering perspective, this number seems very low. 
However, for soil prediction and from a Soil Science 
perspective, it is a great achievement comparable to be the 
best results published in the literature. 

Fig. 2 shows the performance of the model for the 
training set (80%) and the test set (20%). The figure on the 
left shows the comparative performance of the model vs. a 
mean predictor. The x coordinate is the bound, in pH units, 
and the y coordinate is the percentage of the predictions that 
fit within the predicted value +/- the bound. For example, 
95% of the predictions will fall within 1 pH unit of the 
predictions for the training set. This number is slightly 
lower for the independent test set (92%) and much lower for 
a mean predictor (80%).  The figure on the right shows 
actual values versus predicted values. In an ideal case, both 
would be the same (solid, green line), but in practice there 
will always be dispersion around the y axis. The more 
dispersion, the worse the model is.  

 

 
Fig. 2. Model performance for pH in topsoil 

 
 
Fig. 3 shows the predicted pH maps for Honduras, and 

the 67% confidence interval (1-sigma). Most of the 



 
predictions have a 67% confidence interval of about 0.5 pH 
units, which was considered very good by the soil scientists 
at CIAT. 

 Fig. 4 shows the performance of the model created for 
pH when no spatial interpolation is used. The variables used 
by the model are P5 (Maximum temperature of warmest 
month), P2 (Mean diurnal temperature range), P16 
(Precipitation of wettest quarter), and geology class of 
parent material. The R2 for this model is 0.3652 (for the test 
data), which is significantly lower than for the previous 
model, but is still considered useful. 

Fig. 5 shows the predicted pH maps and the 67% 
confidence intervals when no spatial interpolation is used. 
Most of the predictions now have a 67% confidence interval 
of about 0.6, which is still satisfactory. 

 

 
Fig. 3. Predicted map of pH in topsoil and 67% confidence 

interval 

 
Fig. 4. Model performance for pH in topsoil without spatial 

interpolation 

3.3 Sand and Clay Content in Topsoil 
The models for sand and clay content didn’t have as good 

performance as those for pH in topsoil. While the results 
using spatial interpolation were acceptable and still 
comparable to some existing approaches, these results had 

more limited predictive value. The R2 for sand was 0.2350 
(with spatial interpolation) and 0.1026 (without spatial 
interpolation). For clay, R2 was 0.1667 (with spatial 
interpolation) and 0.1403 (without spatial interpolation). 

There are several possible causes for the reduced 
performance of the sand and clay models. One of the most 
plausible explanations is that the clay and sand content are 
not as spatially correlated as pH, therefore requiring higher 
resolution input variables to accurately predict their 
variations. 

 
Fig. 5. Predicted map of pH in topsoil and 67% confidence 

interval, without using spatial interpolation 

4 Conclusions and Future Work 

4.1 Impact 
We have shown the feasibility of performing predictive 

soil mapping for the tropics by using Gaussian processes. 
Not only is it feasible, but we were able to contribute to the 
state of the art in predictive soil mapping. Gaussian 
processes are an excellent technique for predictive soil 
mapping, since they produce quantitative predictions with 
solid confidence intervals, combine pedogenic3 factors with 
spatial interpolation, allow for complete coverage of an area 
and enable continued improvement. 

By applying computer science and AI techniques to other 
fields, and by working together with scientists from these 
fields, we were able to achieve much more than either group 
alone would have achieved in the limited time frame of the 
project. TechBridgeWorld enabled this joint work, which 
brought state-of-the-art machine learning algorithms to a 
scientific community that would be otherwise limited to off-
the-shelf solutions to their statistical problems.  

From the point of view of the soil scientists at CIAT, this 
work provided them with invaluable insight on the 
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feasibility of low-cost, large-scale, predictive soil mapping 
for the developing world.  

From the point of view of the computer scientists at 
Carnegie-Mellon University, this work provided a unique 
opportunity to apply computer science knowledge to the 
developing world. It shows that this knowledge can be 
applied to many fields that are beyond military, space and 
industrial applications. And it shows that a short-time effort 
can be very productive if it is applied in the right place, at 
the right time, with the right partners.  

4.2 Future Work 
Even though the results exceeded the expectations for the 

work, there is much to be done in the future. One of the 
main negative results obtained was that none of the 
variables derived from recently-acquired 90-m elevation 
maps were relevant to the final models. This could indicate 
that more effort is required in calculating the derived 
variables and ensure that we are taking full advantage of the 
information they provide. Other groups that have worked in 
PSM have devoted significant efforts to generating derived 
variables. There are also a few variables used by other 
groups in the literature that were not available for this 
project, especially hyperspectral imagery. An important next 
step would be to obtain these variables and evaluate the 
impact they have on the models. Another important step 
would be to compare the results obtained with the leading 
approach: regression trees. Because of the time constraints 
of this project, the comparison between the two approaches 
could not be carried out. However, it would be very 
important to use the same data set with both approaches and 
make a direct comparison between them. 

This project opened an array of possibilities for joint 
work between TechBridgeWorld and CIAT. There are a 
number of projects in which CIAT researchers need 
expertise in statistical methods, machine learning or 
computer vision. 

Some of the areas for possible collaborative work are: 
• Monitoring and management of agricultural fields and 

natural resources from low cost flying platforms using 
Computer Vision 

• Generation of digital elevation maps from low-cost 
flying platforms 

• Automated image mosaicing 
• Segmentation of individual tree crowns 
• Detection and monitoring of diseases in plants 
• Development of weather insurance schemes for small-

holder farmers in developing countries 
• Species/crop distribution modeling for targeting 

conservation and identifying new opportunities for 
farmers 

• Temporal analysis of land cover data 
 

As in this project, without partnership with groups such 
as TechBridgeWorld they would be limited to off-the-shelf 
solutions to their problems. A better solution would be for 

AI researchers to see these problems as new domains for 
which new or improved algorithms should be developed. 
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