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Abstract 47 

 48 

The cassava green mites Mononychellus tanajoa and M. mcgregori are highly invasive 49 

species that rank among the most serious pests of cassava globally. To guide the 50 

development of appropriate risk mitigation measures preventing their introduction and 51 

spread, this article estimates their potential geographic distribution using the maximum 52 

approach to distribution modeling. We compiled 1,232 occurrence records for M. tanajoa 53 

and 99 for M. mcgregori, and relied on the CliMond climate database as a source of 54 

environmental predictors. In addition to the distribution models, we conducted statistical 55 

analyses comparing the climates where they occur. The models predicted different 56 

potential distribution patterns for the two. Outside their native range in the Americas, M. 57 

mcgregori seems better adapted to survive in Southeast Asia and M. tanajoa to Africa. 58 

The statistical analyses suggested that unlike M. tanajoa, M. mcgregori can survive 59 

locations without a pronounced dry season, potentially explaining its predicted 60 

distribution across equatorial climates. Our results should help decision-makers assess the 61 

site-specific risk of cassava green mite establishment, and develop proportional risk 62 

mitigation measures to prevent their introduction and spread. These results should be 63 

particularly timely to help address the recent detection of M. mcgregori in Southeast 64 

Asia.   65 

 66 
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Mononychellus mcgregori, pest risk map, species distribution modeling  68 

 69 
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Introduction 70 

 71 

About 800 million people in the tropics depend on cassava (Manihot esculenta) as a 72 

source of food and income (Lebot 2009). Its production, however, can be severely limited 73 

by a complex of arthropod pests (Bellotti and van Schoonhoven 1978; Bellotti et al. 74 

1999). Top among these pests are a few Neotropical mite species of the genus 75 

Mononychellus, commonly known as the “cassava green mites” (Bellotti et al. 2012). The 76 

most notorious species is M. tanajoa, whose accidental introduction into Africa in the 77 

1970s reduced cassava yields by up to 80% (Yaninek 1988; Yaninek and Herren 1988). 78 

Although largely understudied, M. mcgregori follows in importance.  This species was 79 

first detected in China in 2008 (Lu et al. 2014a), and shortly thereafter begun causing 80 

yield losses reaching up to 60% (Chen et al. 2010: cited in Lu et al., 2014). A year later, 81 

M. mcgregori was reported in Vietnam and Cambodia (Bellotti et al. 2012; Vásquez-82 

Ordóñez and Parsa 2014), raising concerns over its potential spread throughout the 83 

region.     84 

Cassava green mites feed only on cassava (Bellotti et al. 2012). They are most 85 

abundant at the top of the canopy, from the shoot tip to the youngest unfolded leaves 86 

(Bellotti and van Schoonhoven 1978). Their feeding kills leaf cells and reduces 87 

photosynthesis, interfering with normal leaf development (Yaninek and Herren 1988). 88 

Under field conditions in the tropics, cassava green mites have overlapping generations, 89 

each completed in less than one month, and are most abundant during dry seasons and at 90 

the beginning of the rain season (Bellotti and van Schoonhoven 1978). Early rains cause 91 

a flush of new leaf growth that promotes their rapid population growth (Yaninek et al. 92 
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1989). Continued rains eventually help suppress them to sub-economic levels through a 93 

combination of plant compensation and rainfall mortality (Yaninek et al. 1989). Green 94 

mites can also be suppressed to sub-economic levels by phytoseiid mites (Bellotti et al. 95 

2012), which have been successfully deployed in classical biological control against M. 96 

tanajoa in Africa (Yaninek and Hanna 2003). A similar effort has been advocated to 97 

control M. mcgregori in Asia (Bellotti et al. 2012), but its potential remains to be 98 

investigated.  99 

Pest risk maps, based on models estimating climatic suitability for a species, are 100 

important decision-support tools for the management of invasive pests (Venette et al. 101 

2010). They can be based on two complementary approaches: (1) the mechanistic or 102 

deductive approach, which relies on the species’ physiological data (Kearney and Porter 103 

2009); and (2) the correlative or inductive approach, which relies on the species’ 104 

occurrence data (Elith and Leathwick 2009). When a pest’s biology is still poorly known, 105 

correlative models provide the most rapid and effective means to develop risk maps 106 

(Venette et al. 2010).  107 

This article responds to the need to better assess and address the risk of invasive 108 

cassava green mites, emphasizing the invasion of M. mcgregori in Asia. Our principal 109 

objective was to develop correlative models predicting their potential geographic 110 

distribution, therefore guiding site-specific risk mitigation strategies. The resulting risk 111 

maps could also be used to identify exploration sites for natural enemies with a high 112 

probability of establishment in the affected locations.   113 

 114 

Materials and methods 115 
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 116 

Occurrence data 117 

 118 

We compiled occurrence data (i.e. presence-only) from three sources. Native distribution 119 

records for both species originated from a database submitted by the International Center 120 

for Tropical Agriculture (CIAT, its Spanish acronym) to the Global Biodiversity 121 

Information Facility (GBIF; Vásquez-Ordóñez and Parsa 2014). Because this source 122 

covers areas where the species co-occur, and may be confounded without proper 123 

mounting, we only extracted specimen-based records from it. Exotic distribution records 124 

of M. tanajoa in Africa originated from a database compiled by the International Institute 125 

of Tropical Agriculture (IITA), as part of the monitoring efforts of their Africa-wide 126 

Biological Control Programme (ABCP; Yaninek 1988; Yaninek and Herren 1988). 127 

Exotic distribution records of M. mcgregori in Asia originated partly from specimen-128 

based records submitted to GBIF (Vásquez-Ordóñez and Parsa 2014) and partly from 129 

published records reporting its invasion in Hainan, China (Lu et al. 2012). This last 130 

source originally misreported the species as M. tanajoa, subsequently correcting its 131 

identification after submitting samples for verification to CIAT’s Arthropod Reference 132 

Collection. Subsequent publications by the authors report the species as M. mcgregori 133 

(e.g., Lu et al. 2014a).   134 

 135 

Environmental data 136 

 137 
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Our source of environmental data for species distribution modeling was the CliMond 138 

database (Kriticos et al. 2012), from which we derived 19 global bioclimatic variables 139 

summarizing annual trends, seasonality and extreme conditions during 1961-1990 at a 140 

10’ spatial resolution. We favored CliMond as a source of environmental data because it 141 

is thought to combine the best features of the WorldClim CRU climatic databases 142 

(Kriticos et al. 2012).  143 

 144 

Distribution modeling 145 

 146 

Our species distribution modeling relied on the maximum entropy approach implemented 147 

in Maxent (version 3.3.3k; Elith et al. 2011; Phillips et al. 2006; Phillips et al. 2004), one 148 

of the best performing methods to model presence-only occurrence data (Elith et al. 149 

2006). The bioclimatic variables were used as environmental layers to predict the 150 

occurrences. The models for both species were run selecting the auto features, logistic 151 

output and random seed, with the regularization multiplier maintained at 1 and the 152 

maximum number of background points maintained at 10,000. To ensure model 153 

convergence, we increased the maximum iterations to 5,000, maintaining the 154 

convergence threshold at 0.00001. The test values were obtained by running 15 155 

subsampled replicates of the model with 25% of observations held out for validation. We 156 

used the Area Under the Curve (AUC) to assess model performance and the jackknife 157 

functionality to assess variable importance. Following the guidelines of Thuiller et al. 158 

(2005), we considered models with 0.8<AUC<0.9 “fair,” 0.9<AUC<0.95: “good,” and 159 

0.95<AUC<1: “very good.” 160 
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 161 

Statistical analyses 162 

 163 

To test for differences between M. tanajoa and M. mcgregori climatic niches, we used 164 

the statistical software JMP (v 8.0.2.) to implement one-way analyses of variance 165 

(ANOVA) of each bioclimatic variable against a categorical variable for the two species.    166 

 167 

Results 168 

 169 

A total of 1,232 occurrence records for M. tanajoa and 99 for M. mcgregori were 170 

compiled. Their distribution shows some level of geographic overlap within their native 171 

range in South America (Fig. 1). Outside this range, M. tanajoa occurrence is restricted to 172 

Africa and M. mcgregori to Southeast Asia (Fig. 1).  173 

Maxent-based predicted distributions are presented in Figure 2. The average test 174 

AUC for the 15 replicate runs was 0.961 for M. tanajoa and 0.979 for M. mcgregori, 175 

indicating “very good” model performance. As would be expected for tropical species, 176 

their global distribution was best explained by (low) Temperature seasonality (> 40% 177 

contribution), followed by Annual precipitation for M. tanajoa and Isothermality for M. 178 

mcgregori (Table 1). The environmental variables that produced the highest gain when 179 

used in isolation were Temperature seasonality for M. tanajoa and Temperature annual 180 

range for M. mcgregori. On the other hand, the environmental variables that decreased 181 

the gain the most when omitted were Precipitation of the coldest quarter for M. tanajoa 182 

and again Temperature annual range for M. mcgregori.  183 
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On average, M. tanajoa and M. mcgregori were found in locations with relatively 184 

similar temperatures (Table 1). The locations differed, however, with respect to several 185 

precipitation variables, with M. mcgregori found in locations with greater and more 186 

continuous rainfall than M. tanajoa (Table 1). Interestingly, M. mcgregori was found in 187 

locations with no pronounced dry season, with up to 186 mm of rainfall in their driest 188 

month (Bio14; e.g., 6°03'23.4"N 75°11'06.4"W). Where it was reported as an invasive 189 

pest, however, rainfall in the driest month averaged 20 mm. By contrast, and despite a 190 

much larger number of observations, M. tanajoa was not found in any location with more 191 

than 85 mm of rainfall in its driest month. This difference is also reflected in the 192 

predicted distribution map (Fig. 2). For example, the Congo Basin, an area where high 193 

rainfall limits the establishment of the cassava mealybug Phenacoccus manihoti (Parsa et 194 

al. 2012), was rendered suitable for M. mcgregori but not for M. tanajoa (Fig. 2). The 195 

same is true for areas around the equator in Southeast Asia.  196 

 197 

Discussion 198 

 199 

Our main objective was to predict the potential distribution of M. tanajoa and M. 200 

mcgregori in order to guide the development of appropriate risk mitigation measures. 201 

These measures could include the passage of phytosanitary regulations, the establishment 202 

of pest-surveillance networks, and the development of emergency response plans to 203 

address their potential incursion (Venette et al. 2010). Our predictions should therefore be 204 

most valuable for high-risk locations where the species are still absent. In Southeast Asia, 205 
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for example, these locations include the south of Vietnam for M. tanajoa and Indonesia 206 

for M. mcgregori.  207 

Given the magnitude and spatial coverage of our database, we suspect the risk 208 

maps presented here represent the best approximation to M. tanajoa and M. mcgregori’s 209 

fundamental niche available to date. A previous effort to model M. tanajoa relied on only 210 

215 occurrence records (Herrera Campo et al. 2011), and generated broadly similar 211 

predictions to ours, albeit rendering high-rainfall locations more suitable for the species 212 

than our model. Our predictions, based on 1,232 records, rendered the same locations 213 

relatively unsuitable, but are more consistent with previous research demonstrating 214 

rainfall is a primary mortality factor limiting M. tanajoa populations (Gutierrez et al. 215 

1988; Yaninek et al. 1989). Previous models of M. mcgregori may be less reliable, as 216 

they utilized M. tanajoa and M. mcgregori occurrence records jointly as data inputs (Lu 217 

et al. 2014b; Lu et al. 2012), potentially confounding their predicted distributions.  218 

Our results suggest that unlike M. tanajoa, M. mcgregori typically occurs in 219 

locations with no pronounced dry season. Its ability to survive in those locations, 220 

however, does not necessarily imply an ability to reach economic status. It is generally 221 

believed that cassava green mites need a dry season lasting 2-6 months with rainfall 222 

below 60 mm/month to become economic pests (Bellotti et al. 2012; Bellotti et al. 1987). 223 

This condition is met across the locations where M. mcgregori was reported as an 224 

invasive pest in Asia. However, the extent to which M. mcgregori may impact cassava 225 

during the wet season, or in locations without a dry season, merits empirical attention.  226 

For locations where cassava green mites are already established as invasive pests, 227 

classical biological control by phytoseiid predators should be considered. Based on their 228 
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climatic homology to potential target areas, our predictions suggest Colombia’s inter-229 

Andean valleys rank among the best sites to import them from. Explorations conducted in 230 

Colombia during the mid 1980s identified 46 phytoseiid species associated with cassava 231 

mites (Bellotti et al. 1987). The list includes Typhlodromalus aripo, a predator introduced 232 

into Africa to target M. tanajoa, resulting in a highly successful case of classical 233 

biological control (Yaninek and Hanna 2003). Efforts to test the potential of T. aripo or 234 

an alternative phytoseiid predator against M. mcgregori in Asia are therefore warranted.  235 
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Figure 1. Global occurrence records for Mononychellus tanajoa and M. mcgregori.  356 

 357 

Figure 2. Predicted distribution maps for Mononychellus tanajoa (A, C) and M. 358 

mcgregori (B, D).  359 
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Table 1. Environmental predictor variables used to model Mononychellus tanajoa and M. mcgregori geographic distributions.  

1Temperatures are in ºC and precipitation in mm.  
2df=1329 

 

 

 

 

 

 

 

  Mean ANOVA
2
 Maxent % contribution 

Variable Description
1
 M. mcgregori M. tanajoa F p M. mcgregori M. tanajoa 

Bio01 Annual Mean Temperature 24.2 25.0 7.7 0.0056 0 0.5 

Bio02 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 10.1 10.2 0.7 0.3975 2.5 2.3 

Bio03 Isothermality (BIO2/BIO7) (* 100) 79.0 71.7 49.3 0.0000 25 4.8 

Bio04 Temperature Seasonality (standard deviation *100) 88.8 114.0 14.1 0.0002 43.1 55.2 

Bio05 Max Temperature of Warmest Month 30.7 32.4 24.1 0.0000 0 0.6 

Bio06 Min Temperature of Coldest Month 17.7 18.1 0.9 0.3343 4.1 0.7 

Bio07 Temperature Annual Range (BIO5-BIO6) 13.0 14.3 13.7 0.0002 4.1 4.1 

Bio08 Mean Temperature of Wettest Quarter 24.5 24.8 1.0 0.3170 0.1 1.9 

Bio09 Mean Temperature of Driest Quarter 23.4 24.8 14.7 0.0001 0.6 0.9 

Bio10 Mean Temperature of Warmest Quarter 25.1 26.4 15.4 0.0000 0.3 0.9 

Bio11 Mean Temperature of Coldest Quarter 22.9 23.4 2.3 0.1255 2.5 6.3 

Bio12 Annual Precipitation 1,758.7 1,388.9 40.9 0.0000 5 10.3 

Bio13 Precipitation of Wettest Month 265.1 247.7 3.5 0.0619 0.7 0 

Bio14 Precipitation of Driest Month 58.4 16.4 351.2 0.0000 6.8 2.6 

Bio15 Precipitation Seasonality (Coefficient of Variation) 49.8 69.0 85.2 0.0000 2.1 0.3 

Bio16 Precipitation of Wettest Quarter 701.6 638.6 6.4 0.0114 0.6 0.3 

Bio17 Precipitation of Driest Quarter 210.3 73.7 260.0 0.0000 0.1 0.2 

Bio18 Precipitation of Warmest Quarter 479.5 274.5 174.1 0.0000 1.1 4.9 

Bio19 Precipitation of Coldest Quarter 429.5 413.5 0.2 0.6379 1.1 3 



 17 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


