# Paper 15: Integration of forage legumes into the cropping systems of Nigeria's subhumid zone

M.A. Mohamed-Saleem Forage Agronomist ILCA Subhumid Zone Programme

| Abstract                                                |
|---------------------------------------------------------|
| Introduction                                            |
| Undersowing of cereals with forage legumes              |
| Simultaneous sowing                                     |
| Alternative crop geometry to accommodate forage legumes |
| Contribution of forage legumes to food crop production  |
| Legume-based cropping techniques                        |
| Conclusions                                             |
| References                                              |

#### Abstract

The subhumid zone of Nigeria is increasingly being occupied by arable farmers and pastoralists. As a result, the traditional grazing land is declining, but the total potential fodder from crop residues could compensate for this loss, at least in terms of bulk. The nutritive value of crop residues can further be enhanced by inclusion of a forage legume in the mixed cropping system. However, in order to optimize the returns of both grain and fodder, the spatial and temporal requirements of the various components in the mixture need to be manipulated. Undersowing sorghum with stylo 6 weeks after planting the grain crop or sowing the two in alternate rows (interrow sowing) seems to achieve both the desired benefits, from grain for human consumption and from fodder for livestock consumption. But because land tenure is controlled by the arable farmers, who do not generally own livestock, there is no incentive to improve crop residues just for the benefit of pastoralists. It may be easier to persuade farmers to lease land to pastoralists if forage improvement using legumes is equally beneficial to subsequent crop production.

Grain yields of 2 tonnes more on a soil after 2 or 3 years under stylo than on continuously cropped soil suggest that the soil benefits from the planted legume are higher than benefits from natural fallow during a similar period. Hence, legume-based cropping has important implications for soil management, especially in areas where prolonged fallows are not practical due to population growth. Various crop combinations and cropping techniques are discussed.

#### Introduction

In the subhumid zone of Nigeria, the majority of the cattle owners are pastoralists, who are now settling and will continue to settle in the midst of arable farming communities. To a settled pastoralist, raising crops becomes as important as cattle keeping. There are also many mixed farmers in the subhumid zone, both within and outside Nigeria. Subhumid conditions are favourable for both cropping and livestock enterprises. However, arable farming is spreading at the expense of traditional grazing land. But increase of arable farming does not seem to discourage movement of livestock or their permanent residence within the zone. This imposes a strain on the dwindling grazing resources. Under present farming systems, cropped land deteriorates rapidly. Under these circumstances, development of integrated pasture-livestock-crop systems offers a

method of accommodating and improving both crop and livestock production.

#### Undersowing of cereals with forage legumes

Under the smallholder subsistence farming practised in the subhumid zone, a single household does not cultivate more than 2 to 3 ha at a time even if land is readily available. The small size of farms is primarily due to the labour required for various cultural operations.

Undersowing cereal crops with a forage legume appears to offer a simple method of enhancing the quality of grazing after grain harvest. It imposes minimum inconvenience to or change in the traditional cultural practices.

Experiments were carried out for 2 years (1980 and 1981) to determine the optimum time of undersowing various stylo cultivars into sorghum. <u>Stylosanthes guianensis</u> cv Cook and <u>S. hamata</u> cv Verano were chosen because they grow well under subhumid conditions. The experiments involved the following treatments:

- 1. Control, i.e. sole crop of sorghum  $(C_0)$ .
- 2. Sorghum plus stylo planted on the same day (C1).
- 3. Sorghum plus stylo planted after 3 weeks (C<sub>2</sub>).
- 4. Sorghum plus stylo planted after 6 weeks (C<sub>3</sub>).
- 5. Sorghum plus stylo planted after 9 weeks (C<sub>4</sub>).

In 1980, a local sorghum variety and <u>S. hamata</u> were used. Since phenotypic and genotypic variations were found in the local variety, the experiment was repeated in 1981 with sorghum (variety 5912) recommended by the Institute of Agricultural Research, Samaru, and <u>S. guianensis</u> cv Cook.

The time of undersowing was found to be critical and specific to the legume type. Planting <u>S</u>. <u>hamata</u> cv Verano after 3 weeks and <u>S</u>. <u>guianensis</u> cv Cook after 6 weeks caused minimum grain yield reductions and increased the quality of available fodder (Table 1). The crude protein (CP) cement of the total fodder from undersown plots was greater than that of the crop residue alone. Grain yield reductions were a function of the productivity of the introduced stylo (Figure 1).

Despite its simplicity and low cost, this technique will apply only to farmers with small numbers of stock because of the small areas that are cultivated. Thus farmers with a few small ruminants or two draught oxen should find it useful. Pastoralists with large herds will not appreciate its value for feeding purposes, but they may use it as a source of seed and for spreading the legume in fallow land following the last crop.

Figure 1. Relationship between grain and stylo yields.



\* Significant at P<0.01

Where farmers cultivate larger areas with the aid of animal power, undersowing cereals could substantially raise the output of good quality fodder. For example, in the subhumid zone of southern Mali, where an average farmer claims he is able to cultivate between 7 and 10 ha/year, it may be possible, given yields similar to those obtained in Kaduna (Table 1), to raise the total protein output of fodder from 1785 - 2550 to 2905-4150 kg/7-10 ha unit/farmer, simply by undersowing sorghum with <u>S. guianensis</u> cv Cook 6 weeks after sowing the grain crop.

In the following year, self-seeded regrowth will have to be controlled for at least 3 to 6 weeks from the time of planting the sorghum, because of the latter's otherwise slow initial establishment. During early growth sorghum does not withstand competition from <u>Stylosanthes</u> and can easily be smothered (Table 1).

#### Simultaneous sowing

The results of another experiment, carried out in 1983, suggest that sorghum (variety 5912) can compete effectively with <u>Centrosema pascuorum</u>, <u>Alysicarpus vaginalis</u> and <u>Macroptilium</u> <u>lathyroides</u> without staggered planting dates. These legumes caused no significant differences between the yields of sorghum when undersown and when sown as a sole crop (Table 2). In this

case sowing the forage legumes on the same day with the grain crop has the advantage of eliminating the need for extra labour for undersowing later on.

| Time of sowing                       | Grain yield | Fodder yield                         |                            |                     |                             |                         |  |  |
|--------------------------------------|-------------|--------------------------------------|----------------------------|---------------------|-----------------------------|-------------------------|--|--|
| stylo (kg/ha) (kg/ha)                |             | deviation from C <sub>0</sub><br>(%) | Crop<br>residue<br>(kg/ha) | Stylo DM<br>(kg/ha) | % CP in total<br>fodder (%) | Available<br>CP (kg/ha) |  |  |
| 1980                                 |             |                                      |                            |                     |                             |                         |  |  |
| Sole crop (C <sub>0</sub> )          | 1226 a      |                                      | 7503 a (2.4)               |                     | -1.09                       | 180                     |  |  |
| With grain crop<br>(C <sub>1</sub> ) | 357 b       | -70                                  | 1303 c                     | 4010 a              | 5.02                        | 490                     |  |  |
| After 3 weeks<br>(C <sub>2</sub> )   | 1224 a      | + 0                                  | 3719 b                     | 1729 b              | 1.78                        | 281                     |  |  |
| After 6 weeks<br>(C <sub>3</sub> )   | 1287 a      | + 5                                  | 4260 b                     | 702 c               | -0.19                       | 178                     |  |  |
| After 9 weeks<br>(C <sub>4</sub> )   | 1240 a      | + 1                                  | 3919 b                     | 408 c               | -1.28                       | 142                     |  |  |
| 1981                                 |             |                                      |                            |                     |                             |                         |  |  |
| Sole crop (C <sub>0</sub> )          | 2192 a      |                                      | 8796 a                     |                     | -0.64                       | 255                     |  |  |
| With grain crop<br>(C <sub>1</sub> ) | 480 c       | -78                                  | 2367 c                     | 4334 a              | 4.66                        | 592                     |  |  |
| After 3 weeks<br>(C <sub>2</sub> )   | 1550 ab     | -29                                  | 3524 c                     | 3215 b              | 3.34                        | 493                     |  |  |
| After 6 weeks<br>(C <sub>3</sub> )   | 1918 ab     | -13                                  | 5385 b                     | 2464 b              | 1.42                        | 415                     |  |  |
| After 9 weeks<br>(C <sub>4</sub> )   | 1980 a      | -10                                  | 7463 a                     | 456 c               | 0.01                        | 283                     |  |  |

Table 1. Effect of undersowing stylo on grain yield of sorghum and total available fodder after harvest, Kurmin Biri, 1980-1981.<sup>a/</sup>

<sup>a/</sup> Values in a column in each year followed by common letters do not differ significantly at the 5% level.

| Table 2. Grain yield (kg/ha) of sorghum who |                    |        | s on land |
|---------------------------------------------|--------------------|--------|-----------|
| prepared by two different methods at Kachi  | a Grazing Reserve, | 1981.~ |           |

| Type of crop/ legume mixture                 | Grain yield<br>(kg/ha) |          | Difference in grain yields between ridged and flat<br>land (%) |
|----------------------------------------------|------------------------|----------|----------------------------------------------------------------|
|                                              | Land<br>prepara        | tion     |                                                                |
|                                              | Ridge                  | Flat     |                                                                |
| Sole sorghum                                 | 1296 a                 | 870 b    | -33                                                            |
| Sorghum plus <u>S. hamata</u> cv<br>Verano   | 313 def                | 141 f    | -55                                                            |
| Sorghum plus <u>S. guianensis</u> cv<br>Cook | 388 def                | 246 ef   | -37                                                            |
| Sorghum plus M. atropurpureum                | 356 def                | 444 cdef | +25                                                            |
| Sorghum plus <u>C. pascuorum</u>             | 1019<br>ab             | 595 cde  | -42                                                            |
| Sorghum plus <u>A. vaginalis</u>             | 1092<br>ab             | 722 bcd  | -34                                                            |
| Sorghum plus M. lathyroides                  | 1297 a                 | 833 bc   | -36                                                            |

<sup>a/</sup> Figures between and among the columns followed by one or more common letters do not differ at the 5% level of significance.

Although the total amount of fodder per unit area from each of the crop-legume mixtures did not vary significantly from that obtained from sorghum as a sole crop, the increase in legume content raised the quality of the fodder (Table 3).

| Type of crop-<br>legume mixture                   |                 | L            | Yield (k<br>and pre | (g/ha) <sup>b/</sup><br>paration |              |                 | Difference in fodder yields<br>between ridged and flat land (%) |
|---------------------------------------------------|-----------------|--------------|---------------------|----------------------------------|--------------|-----------------|-----------------------------------------------------------------|
|                                                   |                 | Ridge        |                     |                                  | Flat         |                 |                                                                 |
|                                                   | Crop<br>residue | Legume<br>DM | Total<br>fodder     | Crop<br>residue                  | Legume<br>DM | Total<br>fodder |                                                                 |
| Sole sorghum                                      | 4667 a          |              | 4667 a              | 2722 bc                          |              | 2722<br>bc      | -42                                                             |
| Sorghum plus <u>S.</u><br><u>hamata</u> cv Verano | 1685 c          | 2778 a       | 4463 a              | 1944 bc                          | 1796 bc      | 3740<br>ab      | -17                                                             |
| Sorghum plus <u>S.</u><br>guianensis cv Cook      | 1555 c          | 2063 b       | 3618<br>ab          | 2037 bc                          | 1167 de      | 3204<br>ab      | -11                                                             |
| Sorghum plus <u>M.</u><br>atropurpureum           | 2111 bc         | 1296 de      | 3407<br>ab          | 2430 bc                          | 1019 e       | 3449<br>ab      | +1                                                              |
| Sorghum plus <u>C.</u><br><u>pascuorum</u>        | 2981 b          | 1204 de      | 4185 a              | 2426 bc                          | 1315 de      | 3741<br>ab      | -11                                                             |
| Sorghum plus <u>A.</u><br><u>vaginalis</u>        | 2519 bc         | 926 e        | 3445<br>ab          | 2074 bc                          | 481 f        | 2555 b          | -26                                                             |
| Sorghum plus <u>M.</u><br>lathyroides             | 2741 bc         | 1481 cd      | 4222 a              | 2667 bc                          | 1000 e       | 3667<br>ab      | -13                                                             |

| Table 3. Fodder yield (kg/ha) of sorghum when planted together with forage legumes o  | n |
|---------------------------------------------------------------------------------------|---|
| land prepared by two different methods at Kachia Grazing Reserve, 1983. <sup>a/</sup> |   |

<sup>a/</sup> Figures between and among corresponding columns followed by one or more common letters do not differ at the 5% level of significance.

<sup>b/</sup> Due to the early start of the dry season the yields of grain and fodder were generally below expectation for the sorghum cultivar used.

The seeds of the six legume types were broadcast and slightly worked into the soil of all three replications. Sorghum was planted either on flat seedbeds or on ridges. Ridge making involved more work but resulted in higher grain yields (Table 2). Crop residue yields did not differ significantly between planting on the ridge and on the flat. When sorghum was planted alone on the flat the residue from it was 42% lower than when planted on ridges, but there was no significant difference in legume production between ridges and flatbeds (Table 3).

### Alternative crop geometry to accommodate forage legumes

The possibilities for incorporating forage legumes through simple adjustments in plant geometry and fertilizer application were also investigated with <u>S. guianensis</u> cv Cook. A mixture of sorghum and soybean, as traditionally planted on ridges according to local practice, was taken as a reference model (Figure 2, pattern 2) for comparison with different crop-forage combinations (Figure 2, patterns 3-7).

#### Figure 2. Crop-crop-forage planting patterns.



On one ridge, two sorghum stands were planted 0.3 m apart, with soybean in between, while <u>S.</u> <u>guianensis</u> cv Cook was planted alone on the other ridge (inter-row planting or alternate row planting - Figure 2, pattern 7). This variation offered a good compromise for growing a two-crop and one-forage mixture without having adverse effects on grain yields compared with sole cropping (Table 4). Undersowing sorghum with soybean did not cause as severe a grain reduction as undersowing with stylo.

| Table 4. Grain and fodder yield (kg/ha | ) when soybean a           | and stylo were | undersown | (US) or |
|----------------------------------------|----------------------------|----------------|-----------|---------|
| sown on alternate ridges (AR) with so  | rghum, 1982. <sup>a/</sup> |                |           |         |

| Sorghum<br>spacing (m) | Legume<br>sowing | e<br>method | Gra<br>(k | Grain yield <sup>b/</sup> Fod<br>(kg/ha) at: (k |      | Fodder yield <sup>b/</sup><br>(kg/ha) at: |         | Mean grain<br>yield (kg/ha) | Mean crop<br>residue yield<br>(kg/ba) |          |
|------------------------|------------------|-------------|-----------|-------------------------------------------------|------|-------------------------------------------|---------|-----------------------------|---------------------------------------|----------|
|                        | Soya             | Stylo       | 0         | 40                                              | 80   | 0                                         | 40      | 80                          |                                       | (Kg/IIa) |
|                        |                  |             | ()        | kg N/ha                                         | a)   | (                                         | kg N/ha | I)                          |                                       |          |
| 1 x 0.30               | -                | -           | 952       | 1481                                            | 2040 | 3921                                      | 7092    | 7571                        | 1491 ab                               | 6159 ab  |
| 1 x 0.30               | US               | -           | 740       | 1217                                            | 1645 | 2652                                      | 6238    | 6619                        | 1201 bc                               | 5170 c   |

|          |    |    | (47)*        | (90)          | (137)         |                |                |                | (91)             |                  |
|----------|----|----|--------------|---------------|---------------|----------------|----------------|----------------|------------------|------------------|
| 1 x 0.30 | -  | US | 617          | 1206          | 1365          | 1904<br>(1159) | 3381<br>(1460) | 4968<br>(1381) | 1063 c           | 3418 d<br>(1333) |
| 2 x 0.30 | -  | -  | 857          | 1730          | 2142          | 3603           | 7625           | 8095           | 1576 a           | 6441 a           |
| 2 x 0.30 | AR | -  | 834<br>(162) | 1666<br>(170) | 2174<br>(185) | 2998           | 6619           | 7031           | 1558 ab<br>(172) | 5549 be          |
| 2 x 0.30 | -  | AR | 778          | 1429          | 1963          | 3540<br>(1556) | 5238<br>(1857) | 7008<br>(2016) | 1390 abc         | 5262 c<br>(1803) |
| 2 x 0.30 | US | AR | 779<br>(29)  | 1335<br>(69)  | 1878<br>(108) | 2746<br>(1127) | 5032<br>(1286) | 6662<br>(1667) | 1331 abc (68)    | 4813 c<br>(1360) |

<sup>a/</sup> Mean grain and crop residue values followed by common letters do not differ significantly at the 5% level of significance.

<sup>b/</sup> Values in parenthesis correspond to grain yield of soybean and fodder yield of stylo respectively.

Both sorghum and soya grain yields responded to the application of nitrogen. With N application to the sorghum row, they produced comparable yields when planted either separately on different ridges or together on the same ridge and alternated with stylo rows. When fertilized with 80 kg of N/ha the inter-row sowing of stylo, with sorghum and soya on alternate ridges, produced 8.2 tonnes of fodder per ha. Out of this, 1.6 tonnes were made up of stylo (CP = 13.1%), increasing the CP yield over sole-crop sorghum from 216 kg to 391 kg/ha.

Undersowing and inter-row sowing were also tested in researcher-managed, farmer-implemented trials. Thirteen farmers who had previously planted sole-crop sorghum were recruited at Abet in 1981 and persuaded to undersow or inter-row sow their crop with <u>Stylosanthes</u>. When inter-row sown the total sorghum plant population was maintained by planting two stands per position instead of one. Inter-row sowing resulted in a reduction of about 10% in grain yields compared with the sole-crop control. Undersowing resulted in a grain in loss of about 30% (Figure 3).

The value of the grain loss from inter-raw sowing was less than that of the extra fodder gain, based on the comparative cost of obtaining the same amount of protein from cottonseed cake.

<u>Stylosanthes</u> was also more productive on ridges (Table 4) but farmers will not expend labour on ridge making and then plant only half their ridges with cereal unless they either own livestock or have access to a market for the fodder.

# Figure 3. Average grain and fodder yields of sorghum with under-or inter-row-sown stylo in researcher-managed farmer-executed trials, Abet, 1981.



### Contribution of forage legumes to food crop production

Land under <u>S. hamata</u> cv Verano and <u>S. guianensis</u> cv Cook for various lengths of time supported higher maize yields compared with those from uncropped or previously cropped areas. This became evident from trials using maize rows (four replications) to assess the effect of different

rates of N (0, 20, 40, 60, 80, 100, 133, 166, 199 kg/ha) on grain and fodder productivity of land that had had the following histories:

- 1. Uncropped for a number of years.
- 2. Cropped for 3 years.
- 3. Under <u>S. hamata</u> cv Verano for 2 years.
- 4. Under <u>S. hamata</u> cv Verano for 3 years.
- 5. Under <u>S. guianensis</u> cv Cook for 1 year.
- 6. Under <u>S. guianensis</u> cv Cook for 2 years.

The results of this experiment are summarized in Figure 4, from which the amounts of N required to be applied to a soil cropped for 3 years to achieve crop yields equivalent to the various legume fallow treatments can be derived. The amounts are given in Table 5.

# Table 5. Estimated level of N utilization (kg/ha) from soil with different histories at Kurmin Biri, 1983.

| Soil type                          | Grain yield at 0<br>kg/ha of N | Amount of applied N (kg/ha) required by cropped soil for equivalent yields of other soil types at zero N |
|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|
| Cropped for 3<br>years             | 461                            |                                                                                                          |
| Uncropped for<br>many years        | 1275                           | 30                                                                                                       |
| <u>S. hamata</u> for 2<br>years    | 1329                           | 32                                                                                                       |
| <u>S. hamata</u> for 3 years       | 2507                           | 90                                                                                                       |
| <u>S. guianensis</u> for<br>1 year | 1643                           | 44                                                                                                       |
| <u>S. guianensis</u> for 2 years   | 2696                           | 110                                                                                                      |

Figure 4. Effect of N application on grain yield of maize grown on land with different cropping histories, Kurmin Biri, 1983.



The main crop benefitted from N amounts equivalent to 90 and 110 kg/ha from soil that had been under <u>S. hamata</u> cv Verano and <u>S. guianensis</u> cv Cook for 3 and 2 years respectively. It produced much higher yields, approximately 1.2 to 2.2 tonnes/ha over and above those from previously

cropped or uncropped soils.

The more rapid improvement of soil under stylo than under natural fallow has favourable implications for forage cropping in the subhumid zone. However, for how long such an improved soil could support cereal production has not yet been determined. Studies in Kenya (Maher, 1951; Webster, 1954) showed that the beneficial effects of a grass pasture were lost after 1 or 2 years of grain cropping.

There may be other legumes resistant to anthracnose that could impart greater benefits to soil than <u>S. guianensis</u> cv Cook and <u>S. hamata</u> cv Verano in the subhumid zone. In a screenhouse study where maize was grown for 6 weeks in pots using soil collected from legume introduction plots after two growing seasons, several lines showed higher beneficial effects (Table 6). The different lines were acquired from CIAT (Columbia) and were not inoculated at the time of planting.

| Accession   | Species              | Yield <sup>a/</sup> (g/plot of 10 seedlings) |
|-------------|----------------------|----------------------------------------------|
| 350         | D. ovalifolium       | 7.16 a                                       |
| 1019        | S. capitata          | 6.97 ab                                      |
| 3001        | D. gyroides          | 6.80 abc                                     |
| 5233        | C. aurinarium        | 6.78 abcd                                    |
| 2039        | S. macrocephala      | 6.74 abcd                                    |
| 1582        | S. macrocephala      | 6.68 abcd                                    |
| 5062        | C. macrocarpum       | 6.66 abcd                                    |
| 728         | Z. latifolia         | 6.64 abcd                                    |
| 5234        | C. brazilianum       | 6.56 abed                                    |
| 7485        | Z. brazihanum        | 6.53 abcd                                    |
| 1342        | S. capitata          | 6.38 abcd                                    |
| 1523        | S. guianensis-tardio | 6.36 abcde                                   |
| 1045        | S. capitata          | 6.30 bcde                                    |
| 1693        | S. capitata          | 6.30 bcde                                    |
| 5274        | C. macrocarpum       | 6.24 bcde                                    |
| 2133        | S. macrocephala      | 6.14 bcdef                                   |
| 1318        | S. capitata          | 6.14 bcdef                                   |
| 2044        | S. capitata          | 6.12 bcdef                                   |
| 1280        | S. guianensis-tardio | 6.08 cdef                                    |
| 1097        | S. capitata          | 6.02 cdefg                                   |
| 1728        | S. capitata          | 5.94 cdefg                                   |
| 1315        | S. capitata          | 5.92 defg                                    |
| 1441        | S. capitata          | 5.50 efgh                                    |
| 5234 x 5224 | C. brazilianum       | 5.36 fgh                                     |
| 1643        | S. macrocephala      | 5.20 gh                                      |
| 1283        | S. guianensis-tardio | 4.66 hi                                      |
| Control     | No legume            | 3.50 i                                       |

| Table 6. Total dry matter (DM) yield of maize in pots using soil collected from plots of |
|------------------------------------------------------------------------------------------|
| respective legumes after two growing seasons, 1984.                                      |

<sup>a/</sup> Means of four replications. Values in the column followed by one or more common letters do not differ at the 5% level of significance.

## Legume-based cropping techniques

Rate of soil regeneration under a legume is a function of the legume's concentration and productivity. A concentrated legume stand cannot be maintained indefinitely. After 2 or 3 years fodder banks tend to be invaded by nitrophilous grasses in response to the build-up of N in the soil. A cereal crop can be planted to use the surplus nitrogen instead, thus benefitting not only itself but also the legume, the subsequent concentration of which will be improved.

Land preparation after-a natural fallow is geared towards producing a clean seedbed. Methods may include burning, stumping large trees and shrubs ridging, etc. But when clearing an area that has been under a legume, farmers should not aim at its total removal. The crop and legume phases should each be short because, as noted above, gains in soil fertility are not long lasting. Hence, there is a need to maintain adequate legume seed reserves for re-emergence.

Again, the presence of legumes amongst the grain crop residue is of value to livestock, but as noted above the regrowth of the legume must be controlled for the first 3 to 6 weeks in order to avoid competition after sowing of the grain crop at the start of the following growing season.

In the light of these considerations, research has been carried out on two techniques: superimposed cropping and intersod transplanting.

#### Superimposed cropping

Superimposed cropping means growing a cereal every year in areas also sown with forage legumes. The essential feature is that the cereal grows while the legume is kept under control by manual weeding or by herbicide application. Once the grain crop is fully established and able to withstand competition the legume is allowed to regenerate from seed and contribute to the total poet-harvest fodder. This system requires large legume seed reserves in the soil, and thus a good seed return after each growing season. The presence of adequate seeds with different sensitivities will ensure regeneration of the legume after land preparation and weed control have eliminated early legume flush.

In an experiment at Kurmin Biri where sorghum was planted in an area under <u>Stylosanthes</u> <u>hamata</u> cv Verano, application of a herbicide Round-up (glyphosphate) at 3 litres/ha before planting the grain crop - did not reduce early re-emergence of the legume, although the initial flush was totally killed. The growth rate of sorghum planted on the flat was low compared to that planted on ridges (Table 7). Sorghum planted on the flat was smothered completely by the legume in spite of herbicide application.

| Table 7. Growth of sorghum at 7 weeks when planted in an area under <u>S. hamata</u> af | ter |
|-----------------------------------------------------------------------------------------|-----|
| different land preparations, Kurmin Biri, 1983.                                         |     |

| La | nd preparation | Plant height (cm) | Root length (cm) | Number of leaves | Leaf area index |  |  |  |
|----|----------------|-------------------|------------------|------------------|-----------------|--|--|--|
| No | No-legume area |                   |                  |                  |                 |  |  |  |
|    | Ridge          | 124               | 42               | 9                | 0.32            |  |  |  |
|    | Flat           | 50                | 25               | 6                | 0.18            |  |  |  |
| S. | S. hamata area |                   |                  |                  |                 |  |  |  |
|    | Ridge          | 119               | 44               | 9                | 0.32            |  |  |  |
|    | Flat           | 43                | 23               | 5                | 0.09            |  |  |  |

When the soil was ridged and the grain crop sown early in the season, legume emergence was low and was confined to the valleys, while grain crop growth was faster (Table 8). This low emergence was probably due to burial of most of the legume seeds under the ridges. Application of herbicide after making the ridges but before planting the grain crop did improve grain yields from both legume and non-legume areas but, in the former, legume content of the final fodder was reduced as compared with that from unsprayed ridges. Although grain and fodder yields of sorghum were low (probably due to moisture stress imposed by the early start of the dry season in 1983), there appears to be a clear yield advantage from ridging, especially when grain crops are superimposed on a legume area (Table 8). This result suggests that a planted legume fallow or a

fodder bank should be cultivated using ridges in the traditional manner.

| Table 8. Effect of | of land preparation a | nd herbicide applicatio | n on the grain and | fodder yields |
|--------------------|-----------------------|-------------------------|--------------------|---------------|
| when sorghum       | was superimposed of   | on an area under S. har | nata, 1983.        |               |

|   |                | Herbicide        |                         |                  | No herbicide     |                         |               |  |
|---|----------------|------------------|-------------------------|------------------|------------------|-------------------------|---------------|--|
|   |                | Grain<br>(kg/ha) | Crop residue<br>(kg/ha) | Stylo<br>(kg/ha) | Grain<br>(kg/ha) | Crop residue<br>(kg/ha) | Stylo (kg/ha) |  |
|   | No-legume area |                  |                         |                  |                  |                         |               |  |
|   | Ridge          | 749              | 4124                    | -                | 542              | 2562                    | -             |  |
|   | Flat           | 457              | 1662                    | -                | 329              | 1500                    | -             |  |
| S | S. hamata area |                  |                         |                  |                  |                         |               |  |
|   | Ridge          | 1213             | 4687                    | 1088             | 750              | 3581                    | 1882          |  |
|   | Flat           | 340              | 1725                    | 3980             | 125              | 1440                    | 5850          |  |

The presence of a forage legume may provide better protection against soil erosion than a sole crop. However, an important consideration for a farmer is the relative labour requirements for ridging a soil that has been under a legume compared with that which has not. This still needs to be tested.

#### Intersod transplanting

Intersod transplanting means transplanting cereals into established legume swards. Ridge making is a labour-intensive operation. The extent of land that can be prepared for cropping largely depends on the labour availability at the appropriate time. Techniques that reduce labour requirements and/or spread labour demands into slack periods would thus benefit the farmer. Farmers in the ILCA study areas habitually transplant millet and, to a lesser extent, sorghum. Sorghum is transplanted when it has to be re-established during the growing season or when opening rains are late in the year. Seedlings raised in nurseries are easier to irrigate than when they are on larger plots.

Building on this traditional practice, preliminary attempts were made to transplant sorghum and millet into 1-year-old plots of <u>S. hamata</u> cv Verano. Nurseries of sorghum and millet were established in June and July, and seedlings were transplanted in July and August into separate plots of <u>S. hamata</u> at 30- and 25-cm spacings respectively along the rows. The rows, each 30 cm in width and 1 m apart, were cut or strip-hoed within an established plot of <u>S. hamata</u>. In some plots the herbage between the rows was also cut and removed from the plots at the time of transplanting.

Transplanting into stylo reduced grain yield of the two cereals by 20 to 38% compared with the yield anticipated on traditional ridges without stylo (Table 9). Removing stylo from between as well as within rows at the time of planting improved grain yields of transplanted millet.

| Table 9. Grain and fodde  | yields (kg/ha) of sorghum and millet under different land |
|---------------------------|-----------------------------------------------------------|
| preparations and planting | y methods, Kurmin Biri, 1981.                             |

| Land preparation/planting                             | Grain<br>vield | Deviation in grain in relation to L4 (%) | Crop       | Stylo  | Total<br>fodder CP |
|-------------------------------------------------------|----------------|------------------------------------------|------------|--------|--------------------|
|                                                       | ,              |                                          | residue    |        |                    |
| Sorghum Ridge - no stylo (L <sub>1</sub> )            | 1833           | -                                        | 4916 (24)  | -      | 118                |
| Intersod transplanting within stylo (L <sub>2</sub> ) | 1366           | -20                                      | 3800 (2.4) | 2432   | 409                |
|                                                       |                |                                          |            | (12.9) |                    |
| Millet Ridge - no stylo (L <sub>1</sub> )             | 860            |                                          | 1748       |        |                    |
|                                                       |                |                                          | (3.18)     |        |                    |
| Intersod transplanting (stylo between rows            | 530            | -38                                      | 648 (2.89) | 2820   | 366                |
| uncut at planting) (L <sub>2</sub> )                  |                |                                          |            | (12.3) |                    |
| Intersod transplanting (stylo between rows            | 670            | -22                                      | 894 (3.10) | 2238   | 298                |
| cut at planting) (L <sub>3</sub> )                    |                |                                          |            | (12.1) |                    |

<sup>a/</sup> Values in parenthesis indicate % CP.

In another experiment in 1983 intersod transplanting of sorghum was compared with transplanting onto ridges. The grain yield of sorghum transplanted onto ridges made within plots of <u>S</u>. guianensis cv Cook was twice as high as that from ridged areas without stylo (Table 10). Sorghum established in the stylo from seeds suffered greater loss of grain yields, especially when planted late to coincide with transplanting in a year with a short wet season. Application of weed killer reduced the productivity of stylo. The effects of stylo soil and ridging on crop yield were again very evident.

| Table 10. Effect of land preparation and method of crop establishment within stylo fie | lds on |
|----------------------------------------------------------------------------------------|--------|
| grain and fodder yields (kg/ha) of sorghum, Kurmin Biri, 1983.                         |        |

| F | and preparation method              | Planting method | l Yields <sup>a/</sup> |                      |                  |
|---|-------------------------------------|-----------------|------------------------|----------------------|------------------|
|   |                                     |                 | Grain (kg/ha)          | Crop residue (kg/ha) | DM stylo (kg/ha) |
| S | Sorghum without stylo <sup>b/</sup> |                 |                        |                      |                  |
|   | Ridge                               | Seed            | 292 d                  | 2750 de              |                  |
|   |                                     | Transplant      | 795 bc                 | 4833 ab              |                  |
|   | Strip-hoe                           | Seed            | 84 d                   | 1646 fg              |                  |
|   |                                     | Transplant      | 583 c                  | 3667 cd              |                  |
| 5 | Sorghum with <u>S. guianensis</u>   | cv Cook         |                        |                      |                  |
|   | Ridge and no herbicide              | Seed            | 342 d                  | 2617 def             | 1440             |
|   |                                     | Transplant      | 1093 b                 | 4315 bc              | 1512             |
|   | Strip-hoe and no herbicide          | Seed            | 94 d                   | 1313 g               | 2205             |
|   |                                     | Transplant      | 240 d                  | 2050 efg             | 2058             |
|   | Ridge and herbicide                 | Seed            | 531 c                  | 3375 d               | 748              |
|   |                                     | Transplant      | 1563 a                 | 5716 a               | 760              |
|   | Strip-hoe and herbicide             | Seed            | 250 d                  | 2207 ef              | 1030             |
|   |                                     | Transplant      | 563 c                  | 3750 c               | 942              |

<sup>a/</sup> Values of grain and crop residue followed by one or more common letters do not differ at the 5% level of significance.

<sup>b/</sup> Grain and crop residue yields of sorghum on stylo-free area did not differ significantly between herbicide and non-herbicide treatments.

Transplants compete with stylo better than do seedlings. Raising seedlings first in a nursery helps to select strong, healthy plants. Transplanting into stylo without having to make ridges offers another way of growing crops and forages together without increasing labour requirements The amount of labour spent on strip-hoeing is approximately one third of that required for ridge making. It would thus be possible to compensate for the loss of grain by cultivating larger areas with the available labour. This innovation could be very advantageous wherever labour rather than land is the limiting factor, as in many parts of Nigeria's subhumid zone.

### Conclusions

Superimposed cropping and incorporating forage legumes into crop mixtures appear to offer the most promising methods of improving fodder supplies and maintaining soil fertility without prejudicing grain crop yields, but more research with farmer participation needs to be done on all the various cropping techniques and combinations to evaluate their relevance in agropastoral production systems.

## References

Maher, C. 1951. Soil conservation in Kenya colony, 1: Factors affecting erosion, soil characteristics and methods of conservation. <u>Emp. J. Exp. Agric</u>. 18: 137.

Webster, C.C. 1954. The ley and soil fertility in Britain and Kenya. East Afr. Agric. For. J. 20: 71.