Livestock genomics for low-input systems

Karen Marshall and Steve Kemp

Genomics for livestock feed

Genomics of common food-feed crops \rightarrow improved nutritive value of crop stover

Genomics for livestock health

Identification of gene networks conferring disease resistance & use of genome editing approaches \rightarrow creation of new disease resistant breed-types

Genomics for improved breeds

Genomic marker based assays for breed composition → in-situ breed comparison for identification of the most suitable breeds or cross-breeds

Genomics for food safety

Genomics to trace or authenticate livestock products → improved market access

Genomics for livestock health

Genomics to understand hostpathogen interactions and immune
mechanisms → new vaccines and
therapeutics

Genomics for improved breeds

Use of genomics in breed development → new cross-breeds or synthetic breeds with improved productivity and adaptedness

Genomics for food safety

Genomic marker based tests of animal source foods for pathogens → food quality assurance

Genomics for improved breeds

Genomics to understand adaptation to heat and other environmental stressors → breeds fit for a future changed environment

Genomics for livestock feed

Genomics of rumen microbes \)
improved rumen function for better
utilisation of low quality feeds

Karen Marshall

k.marshall@cgiar.org ● P.O. Box 30709-00100 Nairobi, Kenya ● Tel +254 20 422 3000 ● www.ilri.org

Acknowledgements: The CGIAR Research Program on Livestock and Fish, International Livestock Research Institute (ILRI) and LiveGene - ILRI's Global Livestock Genetics Program

