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Abstract

Climate change has been projected to significantly affect agricultural productivity and

hence food availability during the 21st century, with particularly negative effects across the

global tropics. However, the uncertainty associated with projecting climate change impacts

is a barrier to agricultural adaptation. The work reported in this thesis is a contribution

to the understanding of genotypic adaptation to near-term (i.e. 2030s) climate change

and many of the associated uncertainties, using model ensembles. This work focuses on

Indian groundnut and uses the General Large Area Model for annual crops (GLAM) and

the EcoCrop niche model to investigate the response of groundnut under future climate

scenarios, and to develop a genotypic adaptation strategy.

Under the future representative concentrations pathway (RCP) 4.5, robust positive climate

change impacts on crop productivity were found in 3 (western, northern and south-eastern)

out of 5 groundnut growing regions. From the remainder of regions, one presented robust

negative impacts and in the other uncertainties precluded a robust statement being made

about productivity changes. Yield gains were associated with seasonal precipitation in-

creases, a lower frequency of occurrence of terminal drought and its effect on cropping

season length. Yield loss in central India was associated with less radiation interception

and reductions in crop duration, whereas in the south there was large uncertainty due to

temperature biases in GCMs triggering (or not) heat stress during anthesis. The latter

result suggests that decisions of whether to correct or not GCM biases and the method of

correction may be at least as important as the choice of climate scenario, or the choice of

crop model parameters.

Adaptation simulations indicated that the most critical traits for groundnut adaptation

under future scenarios are increases in maximum photosynthetic rates, greater partitioning

to seeds and, where enough soil moisture is available, also increases in the maximum

transpiration rate. Changes to crop duration were beneficial if durations did not exceed

those of the baseline, and hence allowed for enough water uptake at the end of the cropping

season. Yield gains in adaptation scenarios were particularly large in eastern and northern

India, and more moderate across the rest of the country.
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Chapter 1

Introduction

“The student now guesses the state of

the case, but is impelled, as I have

before explained, by the human thirst for

self-torture, and in part by superstition”

E. A. Poe

1.1 Summary

This chapter brings up the work presented in this thesis into context by first stating the

motivation of the work. The global importance of agriculture (Sect. 1.3), the projected

changes in global and regional climates (Sect. 1.4), and their consequences for food systems

(Sect. 1.5) are then briefly reviewed. The chapter then presents the objectives (Sect. 1.6)

underlying the work presented. Section 1.7 finally describes the overall research strategy

and the structure of this thesis.

1.2 Motivation

There is no doubt that agriculture is one of the sectors that influences the most the

development of local, national and global economies whilst at the same time influencing

people’s livelihoods. Agriculture constitutes the sole means to feed a globally growing

1
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population of roughly 7 billion people, and contributes significantly the national Gross

Domestic Product (GDP) of all countries around the world. Numerous studies have shown

that climate change can be a significant threat to food availability and stability by reducing

crop productivity and/or increasing interannual variations in commodity prices (Easterling

et al., 2007; Lobell et al., 2008; Wheeler and von Braun, 2013). This all is expected to

exacerbate vulnerability in many already-poverty-prone areas across the global tropics.

Model-based projections of climate change impacts on crop productivity and/or suitability

are critical for understanding cropping system responses under climate change scenarios

so as to plan adaptation (Howden et al., 2007; Moser and Ekstrom, 2010). However, such

projections are subjected to numerous uncertainties which in cases can hinder adaptation

planning (Koehler et al., 2013; Vermeulen et al., 2013). Major knowledge gaps relating to

the understanding of the relevance of certain mechanisms and uncertainties associated to

crop responses in future scenarios remain (Challinor et al., 2013; Lobell et al., 2013). A

better understanding of impacts and their associated uncertainties will allow focusing on

reducing the important sources of uncertainty so as to develop more robust projections of

climate change impacts and hence enable adaptation.

This work aims at improving the existing methodological base for projecting climate change

impacts on crop productivity and quantifying their associated uncertainties in order to

develop genotypic-level adaptation options. The methodology is applied to groundnut in

India and used to comprehensively report and understand both uncertainties inherent to

crop-climate simulation as well as the processes behind a robust crop yield projection.

1.3 Global importance of agriculture for food security and

development

Agriculture contributes to between 20-46 % of the national Gross Domestic Product (GDP)

of all countries around the world (Figure 1.1(a)), and is the sole source of income of a con-

siderable proportion of national population (Figure 1.1(b)) (World-Bank, 2012). Agricul-

ture is also the main means to reduce poverty and the 850 million undernourished people

across the developing world (Wheeler and von Braun, 2013). Thus, there is no doubt that

agriculture is one of the sectors that exerts the greatest influence on people’s livelihoods
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(FAO, 2009; World-Bank, 2012) and the environment, ecosystems and ecosystem services

(Tilman et al., 2002).

Currently, however, agricultural production faces numerous challenges, including the need

of feeding a rising global population coupled with an steady degradation of the natural

resource base (Benayas et al., 2009; Licker et al., 2010), the limited space available for

sustainable crop and pasture land expansion (Ellis et al., 2010; Klink and Machado, 2005;

Ramankutty et al., 2008), the limited access to technologies for rural poor (Chapman,

2002; Reynolds et al., 2011), pests and diseases (Harper and Zilberman, 1989; Patil and

Fauquet, 2009; Stephens et al., 2009), and the difficulty in managing climate risks (Dixit

et al., 2011; Licker et al., 2010; Wilby et al., 2009).

If global agriculture is to produce enough food supplies to feed a projected population 50

% larger than now (IPCC, 2000; UN, 2010; World-Bank, 2012), two increasingly impor-

tant development goals need to be pursued: (1) the reduction of crop yield gaps (i.e. the

difference between potential yield at a given location and actual observed farmers’ yields

at the same location) through better management, technology targeting and input optimi-

sation (Foley et al., 2011; Tilman et al., 2002); and (2) the increase of potential crop yields

(defined as the yield obtained with all inputs being optimal –i.e. weather, nutrients, soil

fertility) through genetic improvement of existing crop varieties (Reynolds et al., 2011).

Yield gaps limit food supply, exacerbating poverty and hunger, and exist in most regions

throughout the developing world for virtually all crops (Gollin et al., 2007; Licker et al.,

2010; Lobell et al., 2009). Estimations of yield gaps for a number of crops have been

attempted (see Licker et al. 2010). Additionally, potential climate-adjusted as well as

farmers’ yields of the world’s major grains seem to have stagnated in the last 15-20 years

(Bakker et al., 2005; Mall and Aggarwal, 2002; Tilman et al., 2002). The causes of these

trends might include: price stagnation or decline, a trend for using more environmen-

tally friendly technologies without necessarily increasing yields, the reaching of genetic

potentials, and climate change (Subash and Ram Mohan, 2012).

Transformations are necessary in the agricultural sector and these may include: (1) stop-

ping agricultural expansion, (2) bringing technological improvements (including integrated

pest management, better crop rotations, and new varieties) to close yield gaps, (3) increas-

ing water- and nutrient-use efficiency, (4) increase food delivery by shifting diets (including
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(a) Percent contribution of agriculture to national GDP across the world

(b) Percent of total population considered as “rural”

Figure 1.1: Global agriculture importance indicators. Data and maps taken from the
World Development Indicators database (World-Bank, 2012). White areas indicate where

no data was available. Data correspond to the period 2007–2011.
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producing food in areas where livestock, biofuel and other non-food land uses exist), and

(5) improve sustainability of livestock production, including better management of con-

fined production or even the shift to pastoral systems (Foley et al., 2011; Tilman et al.,

2002). Another dimension that can be added is the sustainable use, exchange and con-

servation of plant genetic resources that are key to crop improvement (Burke et al., 2009;

Dusen et al., 2007; Guarino and Lobell, 2011).

Implementing solutions is not a trivial issue and might require large national and inter-

national investment in addition to research- and subsidy-paradigm changes (Foley et al.,

2011; Tilman et al., 2002). Important agreements at the global level have been reached

and these are expected to be strengthened in the coming decades (Carney and Shackley,

2009; Viglizzo et al., 2011; Webster et al., 2012), which might indicate better prospects

towards the future for agriculture (UNFCCC, 2012).

Future agricultural systems will also need to adapt in order to respond to changes in the

climate system (see Sect. 1.4 and 1.5 below) that are driven by increased GHG emissions

from anthropogenic activities (Howden et al., 2007). These changes will require responding

to key scientific questions (Park et al., 2012; Pretty et al., 2010) and help in shifting past

research and policy paradigms for the (a) incorporation of novel traits to existing crop

varieties (Hajjar and Hodgkin, 2007), (b) conservation, sharing and use of plant genetic

resources (Guarino and Lobell, 2011; Pandey et al., 2008), and (c) incorporation of farmers

needs and traditional knowledge into adaptation strategies (Kristjanson et al., 2012; Rufino

et al., 2012). Policy makers are now aware about the environmental risks of unsustainable

food and livestock production, but there is a need to ground research results in the field

and find ways to best adapt agricultural systems to an uncertain future (Muller, 2011;

Smith et al., 2011; White et al., 2011b).

1.4 Projected changes in climates

The last of the IPCC reports concluded that (1) the earth’s surface has been warming

during at least the last two centuries (Gleckler et al., 2012; IPCC, 2001; Meehl et al.,

2005; Rohde et al., 2013), (2) the most intense period of warming has occurred in the

period 1950-2010 (Gleckler et al., 2012; IPCC, 2007), and (3) the most sensible cause of
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such increases is the intensification the greenhouse effect due to the increase in greenhouse-

gas (GHG) concentrations in the atmosphere caused by anthropogenic activities (Gleckler

et al., 2012; Rohde et al., 2013).

The climate system responds to anthropogenic forcing, hence recent warming trends are

attributed to the increases in GHG concentrations in the atmosphere (Hansen et al., 1981,

1997). Large numbers of simulation experiments in conjunction with field, cloud, ice-core

and atmospheric measurements have been carried out (Skinner, 2012). Global and regional

increases in mean land surface temperature have been measured by a number of different

research groups (Foster and Rahmstorf, 2011; Hansen et al., 2007; Rohde et al., 2013;

Solomon et al., 2007), thus increasing the scientific confidence on the fact that climate

change is caused by anthropogenic activities (Figure 1.2). Climate change science is now

focused on enhancing the understanding of the climate system and human responses, the

attribution of recent warming to increases in concentrations of GHGs (Skinner, 2012), and

the development of future climate scenarios (Nakicenovic et al., 2000; Taylor et al., 2012)

that can be used by other researchers for assessing impacts and adaptation (Parry et al.,

2007).

Projections must be made about how the climate system responds to a given set of con-

straints (Moss et al., 2010; Nakicenovic et al., 2000). Global Climate Models (also referred

to as General Circulation Models or simply GCMs) constitute the most appropriate and

robust means to predict the climate system response under any future socio-economic sce-

nario (Moss et al., 2010; Nakicenovic et al., 2000). A GCM simulates mass, energy and

momentum fluxes that occur within the atmosphere, by applying Navier-Stokes fluid dy-

namics equations within three-dimensional analysis units (often referred to as a “cells”).

Solving these equations requires computer programs executed in high performance com-

puting units.

Average global warming (with respect to year 2000 temperature) under the SRES (RCP)

scenarios has been projected to be in the order 1-2.5 ◦C (0.5-2.5 ◦C) by 2050s and in the

order 1.5-4 ◦C (0.5-8.5 ◦C) by 2100 (Figure 1.2). A trend to higher degrees of warming is

expected near the north pole and the tropics, and a high likelihood for these areas to reach

a +2 ◦C warming earlier than other areas (e.g. Europe, Central Asia, and southern South

America) (Figure 1.3). Along the tropics, temperature is projected to rise at the highest

rates in Sub-Saharan Africa, particularly across the Sahel and in northern East Africa
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Figure 1.2: Comparison of land warming estimates (1-year running averages) of four
independent research groups using different datasets (NOAA: National Oceanic and At-
mospheric Administration; GISS: NASA’s Goddard Institute for Space Studies; HadCRU:
Hadley Centre and Climatic Research Unit UK; Berkeley: University of Berkeley). Shad-
ing indicates standard spread of the estimates of each dataset. Taken from Rohde et al.

(2013).

(Joshi et al., 2011). Under SRES-A1B, Asia is predicted to warm slightly less quickly, and

Latin America’s warming occurs at the lowest rates, with +2 ◦C warming being reached

exactly during 2050s for most tropical Latin America (except Mexico, where the +2 ◦C

warming is reached during 2060s).

Precipitation changes are regionally varied, but with a global average of 1-2 % increase

(depending on the emissions scenario used, Figure 1.4). Precipitation projections are gen-

erally much more uncertain than temperature ones (Joshi et al., 2011; Nakicenovic et al.,

2000). Figure 1.4 depicts the precipitation changes simulated by the CMIP3 ensemble as

average of all GCMs and the period 2080-2099 for the SRES-A1B emissions scenario. IPCC

estimates indicate that drier climates are expected along Central America, southern and

northern Africa, the Sahel (low certainty), and most of Brazil. By contrast, wetting trends

are projected along the Pacific coasts of South America, over the Andes (low certainty),

eastern Africa, and most of Asia. Nevertheless, as shown by the black dots of Figure 1.4,
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Figure 1.3: Projections of temperature increases using IPCC 4AR models (CMIP3) for
the IPCC SRES A1B emissions scenario. Median (across GCMs) year of crossing a 2
◦C threshold per gridcell (left); and predicted temperature change when global average

temperature reaches +2 ◦C. Taken from Joshi et al. (2011).

precipitation changes need to be treated more carefully than temperature changes due to

the inherent uncertainties and lack of skill in existing climate models (Gleckler et al., 2008;

Liu et al., 2012; Pierce et al., 2009). Uncertainties and errors in climate models are further

discussed in Chapter 4.

1.5 Climate change impacts on agriculture

Agriculture plays an important role in the context of climate change. On one hand, it is

a major cause of global warming and as such is part of the solution (i.e. potential to mit-

igate greenhouse gases emissions) (Hutchinson et al., 2007; Reay et al., 2012). Currently,

agriculture contributes to about 20 % of total CO2 emissions (Hutchinson et al., 2007), 50

% of methane and 70 % of nitrous oxide (Hutchinson et al., 2007; Reay et al., 2012; Thorn-

ton and Herrero, 2010) at the global level. In addition, land clearing due to agricultural

expansion contributes to 12 % of CO2 global emissions (Foley et al., 2011; Friedlingstein

et al., 2010; West et al., 2010). In order to fully exploit agriculture’s potential to miti-

gate climate change, better waste management, changes in consumer behaviour, policies

on land clearing, and improved management practices that allow carbon sequestration

will be required. For instance, the use of improved pastures in livestock systems could

reduce global agriculture emissions (methane and carbon dioxide) by 12 % (Thornton and

Herrero, 2010).
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Figure 1.4: Multi-model (CMIP3) mean changes in precipitation (mm day1) for the
period 2080-2099 relative to 1980-1999 for the emissions scenario SRES-A1B. Areas with
black dots indicate areas where 80 % or more of the models agree in the sign of change.

Taken from Meehl et al. (2007a).

On the other hand, agriculture is one of the most vulnerable sectors to changes in climates,

due to its reliance on adequate environmental conditions for achieving high productivity

(Huntingford et al., 2005; IPCC, 2007; Lobell et al., 2008). Crops are affected by shortages

of water or high temperatures during key periods of their growing cycle (Huntingford et al.,

2005; Rattalino Edreira et al., 2011; van der Velde et al., 2012). Effects from adverse

environmental conditions have been largely studied and reported by several authors, using

combinations of models and data (Allen et al., 2005; Boote et al., 2005; Fuhrer, 2003) and

are reviewed in Chapter 2. These can be used to provide initial insights on what could

happen under future climate scenarios (Jarvis et al., 2010, 2011a).

Although figures are varied, some of the projected trends in the expected changes are

consistent across studies in tropical and temperate regions (Figure 1.5). Most recent

literature indicates that negative impacts are expected to affect the basic food basket (i.e.

wheat, rice, maize and grain legumes), and the cash crops (i.e. sugarcane, coffee, cocoa)

(Krishna Kumar et al., 2004; Laderach et al., 2011; Lobell et al., 2008; Roudier et al., 2011).
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The impacts of climate change on agriculture are expected to be widespread across the

globe, but it is the developing world where the most severe impacts are likely to be observed

(Knox et al., 2012; Lobell et al., 2008; Schlenker and Lobell, 2010) (Figure 1.5), given the

larger rates of warming (Figure 1.3), and the lack of adaptive capacity (Park et al., 2012;

Tompkins et al., 2010). Decreases in cereal yields of up to 30 % have been projected across

Sub-Saharan African, Middle East and Central American countries under unmitigated

future scenarios (Lobell et al., 2008; Parry et al., 2004). Even by 2030s decreases of 3-5

% (in the most optimistic scenarios) are expected for legumes (i.e. soybean, dry bean,

cowpea), cereals (i.e. rice, maize, sorghum, wheat, barley, millet) in sub-Saharan Africa,

western, eastern and southern Asia, and Latin America (Lobell et al., 2008). By contrast,

relatively positive impacts have been reported for most root crops due to their hardiness

(Jarvis et al., 2012; Schlenker and Lobell, 2010).

Considerable work has been done regarding agriculture and food security under the con-

text of climate change (see e.g. Cooper et al. 2012; Howden et al. 2007; Jarvis et al.

2011a). Adaptation strategies have been suggested for food systems and these include va-

rietal and crop substitution, water and soil conservation practices, better timed fertiliser

and agro-chemicals applications, among others. However, a substantial research opportu-

nity arises from the jointure of the agricultural and climate modelling communities. Local

and detailed impact assessments and adaptation strategies are still lacking a more com-

prehensive treatment, analysis and communication of uncertainties, a better depiction of

underlying processes governing crop yield responses under future climate scenarios, and

a better matching of modelling results with local stakeholder capacities. These evalua-

tions should allow at the same time the identification of knowledge gaps, the identification

and testing of appropriate adaptation strategies, and the development of policies at the

national and international level (Ranger et al., 2010; Ziervogel and Ericksen, 2010).

1.6 Objectives of the study

This thesis aims at developing a framework for climate change impact and uncertainty

assessment for groundnut cultivation in India. Ensemble approaches are used for produc-

ing a robust assessment of climate change impacts on crop productivity and suitability

as well as to assess associated uncertainties. A process-based ensemble is then used to
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Figure 1.5: Sensitivity of cereal yield to climate change for maize, wheat and rice, as
derived from the results of 69 published studies at multiple simulation sites, against mean
local temperature change used as a proxy to indicate magnitude of climate change in
each study. Responses include cases without adaptation (red dots) and with adaptation
(dark green dots). Adaptations+ represented in these studies include changes in plant-
ing, changes in cultivar, and shifts from rain-fed to irrigated conditions. Lines are best-fit
polynomials and are used here as a way to summarise results across studies rather than
as a predictive tool. The studies span a range of precipitation changes and CO2 concen-
trations, and vary in how they represent future changes in climate variability. Taken from

Easterling et al. (2007).
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then derive genotypic-level adaptation strategies based upon established concepts of crop

ideotypes (i.e. varieties with “ideal” genetic characteristics), to report which processes are

most important and which types of varieties would be better adapted to future projected

conditions. The main thesis objectives are as follows:

O1 To assess the skill and robustness of observed and simulated available climate data

for their use in agricultural studies in Sub-Saharan Africa and South Asia

O1-A Understand the use of climate data in agricultural impact studies

O1-B Determine how useful and robust is existing climate information, as predicted

based on existing coverage of weather stations

O1-C Assess how well GCMs reproduce regional mean climates and interannual

climate variability

O2 Develop a GLAM perturbed parameter ensemble and quantify the sensitivity of

Indian historical (1966-1993) groundnut-simulated yield, harvest index, leaf area

index, and biomass to parameter perturbations.

O3 Assess the skill of CMIP5-based crop yield hincasts

O4 Assess the impacts of climate change on Indian groundnut cultivation using ensem-

bles based on GLAM and EcoCrop

O4-A Project the changes in yields and quantify the uncertainties that arise from

climate model structure and initial conditions, bias-correction methods, crop

model parameters, crop sowing date, and CO2 response.

O4-B Project changes in crop suitability using an EcoCrop-based model ensemble

and produce a joint assessment of crop suitability and crop productivity.

O5 Develop a genotypic adaptation strategy for Indian groundnut, using the GLAM

ensemble, to reduce negative and capitalise on positive impacts of climate change in

Indian groundnut cultivation.
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1.7 Research strategy

As stated above, the ultimate goal of this work is the development of adaptation strategies

for groundnut cultivation in India. The Indian groundnut cropping system has been se-

lected since (1) India is the second largest producer of groundnut worldwide, (2) groundnut

is within the ten most important crops of India in terms of area harvested, (3) production

of oil from groundnuts is a key contribution to agricultural GDP (Talawar, 2004), and

(4) currently the system is exposed to intense drought in major growing areas (Challinor

et al., 2003; Talawar, 2004). The framework of the work presented here is expected to

comprehensively account for uncertainties in climate and crop modelling and report on

the best-bet and most appropriate genotypic-level adaptation strategies.

The bulk of the work was carried out in five major phases as follows:

• The first phase (Chapter 2) provides, in the form of an extensive literature review, a

summary of earlier work (not already reported in this chapter), and summarises the

available crop modelling approaches and the ways they have been used for impact

assessment. This phase also describes all the data and models used to perform the

work presented (Chapter 3).

• The second phase (Chapter 4), based on two published journal articles Ramirez-

Villegas and Challinor (2012) and Ramirez-Villegas et al. (2013a) reviews exist-

ing and used observed and climate model data, provides an overview of the most-

frequently used climate datasets in impacts literature and provides an analysis of

errors and uncertainties in present-day interpolated and climate model data (CMIP3

and CMIP5 model ensembles). The chapter concludes by providing recommenda-

tions to the use of the CMIP model ensembles and depicting strategies for impact

assessment given known errors in input datasets and sensitivities in crop models.

The conclusions and recommendations of this chapter are further cited by subse-

quent chapters.

• The third phase (Chapter 5) parameterises and calibrates GLAM. An optimisation

procedure that accounts for the uncertainty in crop model parameters is developed

and used to develop a set of equally-plausible parameter sets that can be further
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used to assess impacts and adaptation options as well as to assess the robustness of

the simulated crop yields.

• Chapters 6 and 7 (fourth phase) perform the climate change impact assessment on

indian groundnut using CMIP5 runs for the period 2010-2039 (“2030s”) under the

RCP4.5 scenario. This phase starts by simulating groundnut yields under baseline

and future climates with GLAM (Chapter 6) and then parameterises EcoCrop for

assessing climate change impacts on crop suitability (Chapter 7). The two crop

models are also combined in Chapter 7. The chapters conclude by showing future

vulnerabilities of groundnut production systems in India, and showing the uncer-

tainties arising from the joint assessment of two different measures (suitability and

productivity).

• Finally, Chapter 8, based on the projections of Chapter 6 as well as on identified

genotypic ranges for crop improvement scenarios uses GLAM to inform about which

genotypic adaptation strategies are possible. Impacts of improved varieties are stud-

ied using GLAM. The chapter concludes by stating which traits are expected to

be the most effective in abating any negative or capitalising on positive impacts of

climate change.

As such, the work described here has not been reported in previous literature and is ex-

pected to provide a basis for the use of crop models in conjunction with global climate

models for the development of regional-level adaptation strategies. The framework devel-

oped in this work can be applied to other crops and regions, with the most likely region

(where data and/or calibrated GLAM versions exist) being West Africa (sorghum and

groundnuts), and the most likely crops (in India) being sorghum and rice.
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Literature review

“Dormir es distraerse del mundo”

J. L. Borges

2.1 Summary

Agriculture relies on appropriate environmental conditions to be successful. In the context

of global climate change, it is necessary to understand how plants are likely to respond

and what are the necessary adjustments that cropping systems need to make to be able

to withstand any stresses associated with or to capitalise upon those opportunities arising

from climate change. In this chapter, a literature review is presented that covers the main

aspects of climate change impacts and adaptation. The chapter starts by reviewing knowl-

edge on crop responses to elevated temperatures, drought, increased CO2 concentrations

and ozone, and their interactions at the plant level (Sect. 2.2). Plants respond to water,

CO2 and solar radiation because these are used directly in photosynthesis. However, there

are a variety of other environmental factors that affect crop growth, amongst which tem-

perature, air humidity and soil fertility are probably the most influential. Four types of

crop modelling approaches were reviewed given of the need to represent biophysical pro-

cesses of crop growth for impact assessment (Sect. 2.3.2). These approaches are varied in

input requirements, their outcomes and the scales at which they are normally used, with

field-scale process-based models being the most data intensive and complex, and all other

types of models having intermediate and somewhat flexible degrees of complexity. The

15
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chapter then describes how crop models are used in a typical projection-based (i.e. predict-

then-act) framework (Sect. 2.3). Choices in climate and crop models and in the ways the

outcomes of these models are treated in such a framework are expected to produce large

uncertainties. Hence, the use of crop-climate ensembles is suggested as a way to quantify

such uncertainties. Adaptation of agriculture to climate change is finally discussed, with

a particular focus on genotypic adaptation, which in the light of existing literature and to

the best of the author’s knowledge, can represent a great potential for anticipating and

adapting to the negative effects of climate change (Sect. 2.4).

2.2 Crop responses to environmental variations

Agriculture relies on appropriate environmental conditions to be successful. Many crop

plants are sensitive to even small variations of temperature, soil moisture, and cloud cover

(solar radiation). Production of carbohydrates through photosynthesis depends on appro-

priate availability of water across the soil profile, CO2, and light. While increased CO2

concentrations (such as those expected with climate change) can enhance crop produc-

tivity through the production of more biomass (all other factors kept constant) (Leakey

et al., 2009; Rosenthal et al., 2012), shortages of water, high temperatures, lack of nu-

trients and shading can considerably reduce or inhibit photosynthesis (Hew et al., 1969;

Rosati and Dejong, 2003). Too low or too high temperatures can decrease photosynthetic

rates (Hew et al., 1969; Thuzar et al., 2010), detrimentally accelerate maturation (Lobell

et al., 2012; Saman et al., 2010), or damage reproductive organs (Challinor et al., 2005b;

Vara Prasad et al., 2002). Likewise, decreases in air humidity (through increases in vapour

pressure deficit -VPD) decrease photosynthetic rates, transpiration and biomass produc-

tion (El-Sharkawy et al., 1985). These and additional stresses are discussed in more detail

in subsequent subsections.

2.2.1 Water availability

Either wetter or drier than normal conditions affect crop yields through effects on roots

and water uptake, including hypoxia, increased soil impedance, and lodging (Whitmore

and Whalley, 2009). Hastened maturity due to terminal drought can cause yield losses in
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the range 50-70 % in dry beans (Frahm et al., 2004), 15-80 % in groundnut (Boontang

et al., 2010; Rao et al., 1989), 30-40 % in wheat (Dalirie et al., 2010), 12-60 % in chickpea

(Saman et al., 2010), and 40-60 % in soybean (Dornbos et al., 1989). The combined effects

of intermittent and terminal drought can be catastrophic: 60-80 % reduction in maize

yields (Earl and Davis, 2003), 8-10 % per 100 mm rainfall decrease in bananas (van Asten

et al., 2011), and 40-100 % yield reduction in groundnut (Rao et al., 1989). Very few crops

are reported to respond well (i.e. little or no yield loss) to drought. One exception may

be cassava, which keeps the energetic reserves until the stress has been released. Even this

hardy crop will decline in productivity if water is not available for more than 2-3 months

(El-Sharkawy, 2012; El-Sharkawy and Cock, 1987).

Drought in the first layers of the soil profile can stimulate root deepening (Adiku et al.,

1996; Sponchiado et al., 1989) and reduce the amount of available carbohydrate for growth

of other plant organs (Chapman et al., 1993; Whitmore and Whalley, 2009). Prolonged

stress can cause crop failures if the number of available days with sufficient soil moisture

is not enough for a crop to mature appropriately (Jones and Thornton, 2009).

2.2.2 Temperature and light

Photosynthetic efficiency varies with temperature in all crop species because it affects

stomatal conductance, intercellular CO2 concentration, and the RuBisCO (Ribulose 1,5

biphosphate carboxylase oxygenase) activity (Bunce, 1992; El-Sharkawy, 2012; Hew et al.,

1969). Optimal temperatures for photosynthesis vary by species. Maximum photosyn-

thetic rates have been reported to occur at 30 ◦C for cassava (El-Sharkawy et al., 1984);

25 ◦C for arabica coffee (Kumar and Tieszen, 1980); 35 ◦C for sorghum (Vara Prasad et al.,

2006); 28 ◦C for sweet potato (Sage and Kubien, 2007); 32 ◦C in cotton (Crafts-Brandner

and Salvucci, 2000); and roughly 25 ◦C for the C3 crops wheat, tomato, and sugarbeet

(Kemanian et al., 2004) (Figure 2.1(a)). Above or below these values, net photosynthetic

rates can decrease, thus producing less assimilate and leading to reduced productivity.

Apart from decreases in photosynthetic rates, high temperatures can affect reproduction

and accelerate senescence. Lobell et al. (2012) report yield losses of ∼50 % for every 2 ◦C

increase in temperature over northern India (the largest producer of wheat globally) due

to increased senescence under high (>34 ◦C) temperatures. Similarly, Lobell et al. (2011a)
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(a) Temperature (b) Solar radiation

Figure 2.1: Temperature and radiation responses. a: Temperature dependence of photo-
synthesis for wheat, tomato, sugarbeet and Atriplex glabriuscula E. The fT factor (y-axis)
represents a temperature factor that describes the sensitivity of photosynthesis to tem-
perature. b: Cumulative biomass (g m−2) as a function of intercepted solar radiation (MJ
m−2) in two cultivars of barley. In both cases, details and graph references are provided

in Kemanian et al. (2004), from which these figures were taken.

report a reduction between 10-30 % in maize crop yields per +1 ◦C increase in growing

season temperature across most Sub-Saharan African maize growing areas. Effects on

other crops might differ in numbers but not in trend. Day temperatures of 36 ◦C (40

◦C) during the flowering stage reduce yield of sorghum by 20 % (100 %) (Vara Prasad

et al., 2006) (Figure 2.2(a)). Temperatures of 34 ◦C (40 ◦C) during the flowering stage of

dry beans can reduce yields by 30 % (100 %) (Vara Prasad et al., 2002) (Figure 2.2(b)).

Challinor et al. (2005c), based on data from Kakani (2001), Vara Prasad et al. (1999) and

Nigam et al. (1994), reported yield decreases in the range 40-100 % in moderately tolerant

genotypes due to prolonged exposure to high temperatures during flowering in groundnut

(Figure 2.2(c)). Yields of rice and soybean can be reduced by 54 % and 10 %, respectively,

due to high temperatures affecting pollen viability or flower fertility (Allen et al., 2005).

The amount of solar radiation available and intercepted by the crop canopy is also a critical

determinant of biomass and yield (Deckmyn and Impens, 1995; El-Sharkawy et al., 1992;

Kemanian et al., 2004). Intercepted radiation is generally directly related to biomass and

yield (Figure 2.1(b)). At any temperature, net photosynthesis reduces almost linearly

with decreases in light intensity and hence shading should be avoided (Long et al., 1983),

unless there is a trade-off with excessively high canopy temperatures –such as in coffee

(e.g. Schroth et al. 2009).
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(a) Sorghum (b) Dry bean (c) Groundnut

Figure 2.2: Effects of high temperature on seed-set for three globally important crops.
(a) Sorghum; (b) common beans; and (c) groundnut. The x-axis in (a) indicates the
day/night temperature treatments. In each case, the percent of viable seeds is shown
(seed-set percentage). Figures taken from Vara Prasad et al. (2006) for (a), from
Vara Prasad et al. (2002) for (b), and from Vara Prasad et al. (2000) for (c). Differ-
ent circle fillings in (a) and (b) indicate two different CO2 concentration treatments: 350

ppm (full circles) and 700 ppm (hollow circles).

2.2.3 CO2 concentrations

Increased CO2 concentrations are thought to increase dry matter and thus yield (Leakey

et al., 2009). CO2 stimulation experiments have only been carried out in a limited number

of places or for a limited number of crops. Comprehensive reviews exist that document the

effects of elevated CO2 on crop production (e.g. Fuhrer 2003, Kimball et al. 2002, Boote

et al. 2005, and Leakey et al. 2009). These and other studies point out to the following

figures: 12 % increase in biomass of C3 grasses, 10-15 % yield increase in rice and wheat

(Amthor, 2001; Kimball et al., 2002), 28 % increase in potato yield (Fuhrer, 2003; Kimball

et al., 2002), 20 % higher yields in sweet potatoes (Bhattacharya et al., 1985), 100 %

increase in cassava root yield (Rosenthal et al., 2012); 45 % yield increase in soybean

(Baker et al., 1989); 25 % yield increase in sorghum (Vara Prasad et al., 2006); and 16 %

increase in groundnut yields (Vara Prasad et al., 2003). Led by the consensus of previous

studies, Leakey et al. (2009) drew six important inferences about CO2 enrichment:

1. Carbon uptake is enhanced by elevated CO2 concentrations

2. Photosynthetic nitrogen use efficiency increases at elevated CO2 concentrations

3. Water use both at leaf and canopy scales declines at elevated CO2 concentrations

4. Dark respiration is significantly stimulated in soybean leaves grown under elevated

CO2 concentrations
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5. Stimulation of carbon uptake from elevated CO2 concentrations in C4 plants is in-

direct and occurs only in situations of drought

6. The CO2 ‘fertilisation’ effect in FACE (Free-Air CO2 Enrichment) studies on crop

plants is less than expected.

The effects of increased CO2 are beneficial for almost any food crop. However, knowl-

edge on crop responses to elevated CO2 concentrations is in need of further development,

and this has been a priority for research on crop-climate impacts for the last 15 years

(Ainsworth and Long, 2005; Leakey et al., 2009) and will likely remain to be critical for

future climate impacts research. Particular attention must be placed on understanding

the interactions between CO2 and other environmental controls (particularly drought and

high temperatures), as these remain only partially understood (White et al., 2011b), and

also because high CO2 concentrations could (in some cases) worsen the effects of other

stressors such as high temperatures or drought (Vara Prasad et al., 2006).

2.2.4 Other factors

A large number of other factors exert control on plant growth and, particularly, on pho-

tosynthesis, biomass accumulation and yield. Leaf nitrogen (N) content is strongly and

positively associated with carbon exchange rates (CER), radiation use efficiency (RUE)

and total plant biomass (Sinclair and Horie, 1989). Maize and rice are amongst the most

sensitive crop species to N deficiencies, whereas the grain legumes (i.e. soybean, dry bean,

peanut) have less sensitive responses. In maize, even relatively small (∼15 %) decreases

in leaf N content can severely decrease CER and RUE (> 50 % decreases) (Sinclair and

Horie, 1989). Similarly, low phosphorous (P) and potassium (K) contents can also lead to

limited CER and biomass production (Fredeen et al., 1990; Longstreth and Nobel, 1980).

Effects of other nutrients (e.g. calcium, magnesium, sulphur, zinc, and iron, among others)

are evident but research on their effects on plant processes is sparse. Limited availability

of one or more of these nutrients can limit plant growth and reduce the nutritional qual-

ity of the harvested product (Fredeen et al., 1990; Gaidashova et al., 2010). Responses

to ozone (O3) are expected to be detrimental, but limited research has been carried out

regarding its effects on most food crops (Ewert and Porter, 2000; Fuhrer, 2003; Hollaway

et al., 2011).
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2.2.5 Interactions between factors

Plant responses to environmental factors and their interactions are largely non-linear (As-

seng et al., 2004; Boote et al., 2013). Factors operate against plant growth and also against

each other in ways that are often difficult to understand. For an example: under optimal

temperatures and water availability, photosynthesis and transpiration from leaves occur at

normal rates; however, under high temperatures plants open their stomata to avoid heat

stress, which increases CO2 concentrations and thus biomass accumulation (exception be-

ing made under high VPD conditions –dry air, as in such a case stomata would remain

closed to avoid excessive transpiration). If the available soil water is limited, this induces

desiccation and stomata are then closed. Drought causes desiccation and stomatal closure,

but at the same time water is a direct input of photosynthesis and so the effects on carbon

fixation are more direct than those of temperature. In addition, stomatal closure causes

within-leaf CO2 concentrations to decrease, thus decreasing inputs to photosynthesis, in

some cases also increasing photorespiration (Kobza and Edwards, 1987). This causes lower

biomass production and limits growth (Hew et al., 1969; Huntingford et al., 2005). Low

light incidence (i.e. solar radiation) also reduces photosynthesis, whereas winds increase

transpiration. Salinity in soils increases osmotic pressure and reduces the available water

to the plant thus causing drought stress. Many limiting conditions can occur simulta-

neously in a given site, thus making any prediction a challenging task (Challinor et al.,

2009b).

Interactions between the abovementioned factors add further complexity to understanding

plant responses, while also impacting crop productivity. Mueller et al. (2012) report that

most of the yield gaps in the developing world are caused by a combination of lack of

nutrients and water. In recent analyses using multi-site trial data, Lobell et al. (2011b)

report that the sensitivity of maize genotypes to temperature increases more than twofold

under drought. Gourdji et al. (2013) have shown that low values of VPD (i.e. dry air

conditions) increase the sensitivity of wheat genotypes to higher temperatures by roughly

50 %, particularly during grain filling (Figure 2.3).

Under high temperatures CO2 effects might be offset or even detrimental. In sorghum and

dry bean, for instance, increased CO2 concentrations under high temperatures have been

found to enhance the negative effects of high temperatures (Vara Prasad et al., 2002, 2006)
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Figure 2.3: Inferred temperature response curves by growth stage for wheat. Taken
from Gourdji et al. (2013).

(Figure 2.2(a), 2.2(b)). Some of these responses, however, might vary spatially and tem-

porally due to changes in VPD, water availability and soil characteristics (Whitmore and

Whalley, 2009). Moreover, experiments that quantify the genotype-by-environment (GxE)

interaction of these responses are generally lacking, which results in increased uncertainty

in model predictions (Challinor and Wheeler, 2008b).

2.3 Assessing impacts and quantifying uncertainty

In order to adapt agriculture to future climates, policies regarding investments on adap-

tation need to be set (Howden et al., 2007). Policy makers and other researchers need

to have information on the characteristics of impacts (i.e. which systems, when, to what

extent, and where) and because anything that can be said regarding the future is merely a

projection, also on the uncertainties associated to such impacts. A variety of methods have

been developed that use information of different types and scales to develop projections of

how agricultural systems might look like in the future, and from these, propose adaptation
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options to respond to these changes. These methods are summarised in the sub-sections

below.

2.3.1 Approaches for climate change impact assessment

According to Challinor et al. (2013), methods to assess impacts can be classified in

projection-based approaches and utility-based approaches. Utility-based approaches (also

known as decision-based approaches) focus on making decisions that are robust against the

known uncertainties. This is usually done by exploring the outcomes of decisions under a

number of plausible scenarios and then choosing those decisions whose outcomes are not

affected by the underlying uncertainties (Dessai et al., 2009; Mearns, 2010). Projection-

based approaches (also known as predict-then-act approaches) are based on the use of

models and data to produce projections of a given system’s future state that can be used

by decision makers (Challinor et al., 2013). Projection-based approaches therefore focus

in reducing uncertainties in order to provide decision-makers with information that can

be directly used to make a decision (Challinor et al., 2013; Mearns, 2010). The work

presented in this thesis can be classified as a predict-then-act approach. Therefore, a sum-

mary of related methods is provided. For further discussion on decision-based approaches

the reader is referred to Dessai et al. (2009).

Figure 2.4 shows the process of agricultural impact assessment in a typical projection-

based framework. Global climate model projections are produced on the basis of a given

set of forcing scenarios (see e.g. Moss et al. 2010) and then scaled and/or bias-corrected

to produce climate scenarios with which crop models are forced to produce a range of

projections that are then used to conceptualise and develop adaptation strategies that

are then implemented at different scales (from global to the field). Within this process,

information can be produced at different scales and using different methods, to reach the

final goal of developing a robust adaptation measure.

Ramirez-Villegas and Challinor (2012) conducted a meta-analysis of circa 250 peer-reviewed

publications published between 1981 and 2011. Publications that use climate information

of any sort for any type of agricultural modelling were used to determine general trends in

the use of both models and data (see Chapter 4 and Ramirez-Villegas and Challinor 2012

for methodology, and Appendix A for list of publications). The analysis revealed that most
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Figure 2.4: Ways in which impact assessment has been done in projection-based frame-
works. Red arrows indicate flow of information. The black hollow arrow in the bottom
shows that as long as more information is derived from climate projections, uncertainties
are likely to increase, as a result of what is known as “cascade of uncertainties” (every

step in the process of impact assessment has its own associated uncertainties).

of the studies focused on a site-specific scale (Figure 2.5) and used process-based models

(Figure 2.6). From the studies using process-based models, field-scale models constituted

the vast majority. Hence field-scale crop models have played and will probably continue

playing a critical role for agricultural modelling, both for present-day and future simula-

tions of crop yield. The more frequent use of these models is because they often include

a wider range of complex processes related to photosynthesis and respiration (Challinor

et al., 2009b; El-Sharkawy, 2005; Whisler et al., 1986) and thus give a sense of precision.

As a trade-off, field-scale models are highly data intensive (Craufurd et al., 2013).

The choice of both crop models and climate model projection types for climate change

impact assessment varies across modelling studies (White et al., 2011b). Such choice is

contingent on the methods that can be used to match the scales between GCMs and the

crop models, and on the associated uncertainties (Challinor et al., 2009b). To some extent,

however, it is also a subjective choice made by the researcher. Agricultural, and more

specifically, crop models, require climate information as an input to develop predictions of

crop yields. For developing impacts projections, ideally, the outputs of a high resolution

GCM should be plugged directly into the field-scale crop models. However, due to the
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Figure 2.5: Scale at which agricultural modelling studies have focused.

Figure 2.6: Types of models typically used in agricultural modelling studies. CGM:
field-scale process-based model, S/E: Statistical and/or empirical, WR: water resources
and/or hydrology model, RSCM: regional-scale crop model, AEZ: Agro-Ecological Zoning,
IAM: Integrated assessment model, GCM: global climate model, PGS: pest and/or disease
simulation model, LSM: livestock simulation model, GGS: grassland simulation model.

inherent errors and uncertainties in climate models and to lack of computational capacity,

the issue of scale-matching is not a trivial one (Challinor et al., 2009b; Gleckler et al.,

2008; Weaver et al., 2013). Matching scales between crop and climate models requires

either upscaling the crop model output to the climate model grid (e.g. Jagtap and Jones

2002), downscaling the climate model output to the crop model scale (Giorgi et al., 2009;

Themessl et al., 2012), or upscaling the model parameters and/or processes to the climate

grid (Challinor et al., 2004; Iizumi et al., 2011).
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For producing impacts projections without downscaling, GCM information can be bias-

corrected in various ways so as to feed crop models or can also be used in its raw form.

Bias correction consists of calculating the GCM bias (or another type of error) using the

“true” values (i.e. observations) of a given climate field and then using it to correct the

GCM output. There are various types of bias correction methods, including a simple

‘nudging’ to the means, or a correction to the means and the variability (Hawkins et al.,

2013b), but also more complex methods based on mapping of probability distributions

(see Ehret et al. 2012). Coarse resolution GCM output can also be treated via weather

typing (Jones and Thornton, 2013). That is, matching current observed with future pre-

dicted monthly weather patterns and then associating daily weather to these characterised

monthly patterns. Bias corrected GCM simulations at coarse scales can be used as inputs

into statistical, niche-based models, and into regional-scale process-based models.

Downscaling can be exercised in various ways so as to produce high resolution impacts

projections. RCMs are the most climatologically robust means to downscale GCM infor-

mation (Giorgi, 1990; Wilby et al., 2009), but as RCMs are climate models themselves they

are subjected to similar uncertainties and errors as GCMs, and may require further bias

correction (Baigorria et al., 2008). Other methods include the use of weather generators

(Jones and Thornton, 2013), the use of statistical regressions (Zhang et al., 2012), quantile

mapping (Iizumi et al., 2012a), artificial neural networks, and the delta method (Tabor

and Williams, 2010). Each method has its own pros and cons. Wilby et al. (2009) pro-

vide a more comprehensive overview of existing downscaling methods than is attempted

in this thesis. The choice of downscaling or bias correction technique can add significant

uncertainty to an assessment (Hawkins et al., 2013b; Iizumi et al., 2012a; Khan et al.,

2006). To the best of the author’s knowledge, the skill of these methods and how well they

compare with statistical and large-area models is yet to be seen, as no study has focused

on comparing uncertainties due to this process with uncertainties in other processes in

impact assessment (e.g. parameter uncertainty, crop-model uncertainty, climate model

uncertainties, uncertainty in initial conditions).

The various ways in which GCM outputs can be post-processed, in combination with the

large number of crop models that exist (Sect. 2.3.2) have given rise to a rather large number

of paths for impact assessment (Figure 2.4). These include the use of models of different

natures together with or without downscaled data, and with or without bias corrected
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Figure 2.7: Uncertainties involved in climate change impact assessment. The more
processes involved, the larger the uncertainty, and the larger the likelihood of choosing
an inappropriate pathway for adaptation. Slopes and sizes of columns are not meant to

indicate real relationships between relative uncertainty contributions.

data. Steps in the projection-based framework shown in Figure 2.4 are thus varied and

can produce differing responses, thus causing uncertainty (Figure 2.7). It is expected for

almost all steps in the impact assessment process that uncertainty is increased, although it

can be reduced via model calibration and evaluation. The reviews of Knox et al. (2012) for

South Asia and Africa, of Roudier et al. (2011) for Africa and the IPCC Fourth Assessment

Report (Easterling et al., 2007) are particularly useful in identifying the large uncertainties

to which impact projections are subjected.

It is due to this uncertainty that choices of GCMs, emissions pathways, crop models and the

methods used for treating GCM outputs need to be done judiciously (Challinor et al., 2013,

2014). Cropping systems need to be simulated with an appropriate degree of complexity,

although assessing such a degree may require an stepwise add-and-remove modelling ap-

proach, which may imply longer lead times in the research process (Affholder et al., 2012).

Enough complexity needs to be put in models so as to capture well enough the spatio-

temporal variations in cropping systems responses. Likewise model over-parameterisation

needs to be avoided (Challinor et al., 2009b). This will reduce the risk of having mod-

els that are incapable of simulating the processes implied in a given response, or model

parameters that cannot be adequately constrained with the available observational data
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(Challinor et al., 2013). The use of multiple approaches to assess a single response (e.g.

Rosenzweig et al. 2013, Tubiello and Ewert 2002), or novel approaches that sample un-

certainties (Iizumi et al., 2011) to create multi-model ensembles is a way in which the

robustness of the results can be assessed (Challinor et al., 2013). This would also allow

the exploration of new ways to report impacts, processes underlying such impacts and

any associated uncertainties. The further study of the relative importance of the different

sources of uncertainty is also a topic of suggested future focus (Hawkins and Sutton, 2009).

2.3.2 Crop modelling

Based upon knowledge on plant responses, models that simulate one or more aspects of

crop production have been created. These are also referred to as crop simulation models

or simply crop models. Crop models have been created in an attempt to develop tools that

are helpful for research, farming and policy making (Boote et al., 1996; Challinor et al.,

2009c). Models are useful to make inferences of crop plant responses under novel condi-

tions, including those that can arise from climate change. This process has the advantage

of avoiding carrying out extensive agronomic trials (Craufurd et al., 2013; Reynolds et al.,

2011), but requires extensive knowledge and data to be incorporated into the crop model in

order to avoid mis-prediction (Challinor et al., 2009c). It also requires a careful assessment

of the modelling outputs.

Rivington and Koo (2011) report the existence of 122 crop models, from which roughly

a half are process-based. Three quarters of the 122 models operate at field. With the

increasing importance of climate change impacts and adaptation, the development of new

crop models and/or the improvement of existing ones have become critical tasks (Rosen-

zweig et al., 2013). In the below sub-sections, models of different nature are described,

including a discussion of their relative benefits and limitations. These are followed by a

review of crop model ensembles.

2.3.2.1 Statistical modelling

In statistical models, linear or non-linear regressions are fitted using weather variables

(i.e. precipitation, temperature) as predictors of an independent variable (e.g. yield, pro-

duction). Statistical models are being increasingly used for climate change studies, often
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at relatively large spatial scales and in areas where yield-climate relationships are strong

(e.g. Schlenker and Lobell 2010), such as in rainfed systems where seasonal precipitation

is the main driver of crop yields (Lobell et al., 2008). Under these conditions robust re-

gression fits can be achieved with measures of weather during the growing season (Lobell

and Burke, 2010).

Statistical models can be constructed using different types of spatio-temporal data. Time

series models are constructed for individual points or regions using a time series of both

yield and weather. Panel models develop regressions using both temporal and spatial data.

Cross-section methods are used only with spatial data (Lobell and Burke, 2010; Mueller

et al., 2012). Time series models are often preferred due to their better performance, and

because they are able to capture the site- or region-specific crop yield responses (Lobell

and Burke, 2010; Schlenker and Lobell, 2010). However, cross-section and panel methods

have been used to explore crop responses using multi-site agronomic trial data (Lobell

et al., 2011b).

There are many advantages in the use of statistical models to describe crop responses to

environmental factors. First, parameterising the models is a relatively simple process in

which observations of both agricultural yields and weather are used in a multiple linear

or non-linear regression. Second, parameter uncertainties can be quantified (e.g. by us-

ing cross-validation) and explicitly accounted for in any predictions and projections (see

e.g. Lobell et al. 2008; Schlenker and Roberts 2009). Third, even simple measures of

weather (e.g. mean growing season temperature, seasonal total precipitation) can be used

to produce robust regression fits, thus making the approach less data intensive in relation

to process-based models, which require daily data (Lobell and Burke, 2010). Fourth, the

nature of the model and of its constituting elements (i.e. regression terms) allows the

researcher to assess the importance and effect of the variables included in the model (e.g.

by comparing the parameter estimates in the regression). Fifth, it is easy to include non-

climatic factors that affect crop yields in the model (i.e. pests or diseases, management

practices) or more detailed measurements of weather, provided the data are available.

Finally, the models are easy to implement within a system (e.g. a seasonal forecasting

system) and are computationally inexpensive.

The use of the simple and convenient statistical models has, however, a number of caveats.

First, there is a higher likelihood of failing to capture the response of the crop. A crop
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model that fails to reproduce observations may indicate the lack of certain processes, in-

cluding pests and diseases, management, and competition with weeds. Secondly, transfer-

ability of the models may be limited and thus predictions in ranges under which the model

has not been developed must be exercised with caution. Third, variable co-linearity can

be detrimental and/or mis-leading (Lobell and Burke, 2010; White, 2009). Lastly, given

that the models are purely data-driven, it is difficult, if at all possible, to account for the

interactions between processes at the plant level (White, 2009). For instance, accounting

for the effects of increased CO2 on canopy temperature (Long et al., 2006), or account-

ing for the interactions between high temperatures, drought and high CO2 concentrations

(Challinor et al., 2009c).

2.3.2.2 Niche-based modelling

A general principle in niche-based modelling is that its outcome is (generally) not agricul-

tural yield. Predictions made by means of these techniques are subject to the development

of intermediate, yet useful measures of crop potential suitability (Lane and Jarvis, 2007;

Schroth et al., 2009). These measures can be used to plan agronomic trials, transfer tech-

nologies, expand existing croplands, and project the impact of climate change (Laderach

et al., 2011). Suitability is here referred to as the degree at which a crop species can

successfully grow at a given location or under a specific combination of biotic and abiotic

factors, and is commonly measured in a scale that ranges from 0 (not suited) to 1 (per-

fectly suited). Measures of crop suitability are also often expressed as percentages (Lane

and Jarvis, 2007).

Niche-based modelling can itself be divided into two main categories. The first and proba-

bly most widespread technique is ecological niche modelling (ENM). ENM is based on

the development of empirical relationships between a set of environmental predictors and

the probability of presence of a species (Jimenez-Valverde et al., 2008; Soberon and Naka-

mura, 2009). ENM techniques aim at identifying the potential niche of a species, which

is the potential “subset of environmental conditions in which a species can have positive

growth rates” (Jackson and Overpeck, 2000; Soberon and Nakamura, 2009). ENMs predict

relative occurrence rates, or, under certain assumptions also the probability of occurrence

(Merow et al., 2013). A number of ENM models (ENMs) of varied mathematical principles

exist to date. Amongst the most frequently used there are the maximum entropy algorithm
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(Phillips et al., 2006), boosted regression trees (Elith et al., 2008), simple climate-envelope

models (Busby, 1991), support vector machines (Drake et al., 2006), general linear models

(Austin, 2002), and generalised linear models (Guisan et al., 2002). These models have

been used to estimate potential crop production niches and to subsequently estimate the

impact of changing climate conditions on such niches (e.g. Schroth et al. 2009).

A second category of niche-based modelling techniques is that of agro-ecological zon-

ing (AEZ) (Fischer et al., 2002, 2005), also referred to as basic mechanistic models

(BMM) (Hijmans and Graham, 2006; Ramirez-Villegas et al., 2013b). In these models,

crop-specific limitations of prevailing climate, soil, and terrain resources are identified and

used to estimate crop suitability. In some cases, crop suitability is then scaled to determine

maximum potential and agronomically attainable crop yields for land units, under varied

crop management assumptions (Fischer et al., 2002, 2005). In other cases (e.g. EcoCrop,

Ramirez-Villegas et al. 2013b), crop suitability indices from AEZ/BMM models are used

as indicators of the probability of occurrence or success of plant populations -as in ENMs

(see above). AEZ/BMM approaches sit in between process-based models and the more

general niche-based models in the sense that they take into account some of the mech-

anistic detail in the crop-climate interactions, whilst at the same time generalising the

results to broad agro-ecological areas in which crop suitability and production potentials

are at maximum levels. AEZ/BMM methodologies have been used to predict the impact

of climate change on agriculture and trade at the global level (Teixeira et al., 2013). These

models are capable of reproducing, realistically, regional and global trends in crop produc-

tion and suitability (Fischer et al., 2005; Ramirez-Villegas et al., 2013b; Teixeira et al.,

2013).

A number of advantages exist when using niche-based models for predicting crop responses

and these can be generalised for the two aforementioned approaches. First, similar to

statistical regressions, niche-based models have the advantage of being relatively easy

to parameterise and implement in computational systems. Parameterisation in ENMs is

similar to developing regression fits (Elith et al., 2006), and in AEZ/BMM models is based

on defining a relatively low number of model parameters (Fischer et al., 2002; Ramirez-

Villegas et al., 2013b). A second advantage of niche modelling is that the models can

be generalised to spatial domains (e.g. country, continent, or the globe) (Merow et al.,

2013; Soberon and Nakamura, 2009). Third, AEZ/BMM also allow mapping some of the
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interactions between environmental factors in a relatively mechanistic fashion, which allows

a better analysis of climate-related constraints to agriculture (Jarvis et al., 2012; Schroth

et al., 2009). Fourth, as a result of the easiness in parameterising the models, a larger

number of crops can be analysed using niche-based models. For example, Lane and Jarvis

(2007) used EcoCrop to assess 43 food crop species under climate change. This provides

the opportunity of performing more comprehensive analyses of food security. Finally, the

models are generally flexible in terms of incorporating new drivers of production and often

do not require a high level of temporal detail in the input data (Jarvis et al., 2012; Soberon

and Nakamura, 2009).

Many of the limitations to niche-based models have been discussed elsewhere: Soberon

and Nakamura 2009 and Terribile et al. 2010 for ENMs, Ramirez-Villegas et al. (2013b)

and Chapter 7 for EcoCrop, and Fischer et al. (2005) for AEZ. Here, the limitations are

thus listed only in general terms. First of all, the models lack the necessary varietal detail

to develop more precise predictions at the farm level, or to develop adaptation strate-

gies. In principle, however, sufficient varietal-level data or characterisation should allow

making predictions of individual varieties. Secondly, ENMs are generally not transferable

into areas or conditions for which they were not developed. Sample bias and spatial au-

tocorrelation has a significant impact the accuracy of ENM predictions (Hijmans, 2012),

and can lead to predicting unrealistic niche shrinkage in future climate scenarios (Loiselle

et al., 2008; Peterson et al., 2007). Suitability or even yield potentials are also difficult to

relate to actual farmers yields and have limited applicability in managed systems where

fertilisation and/or irrigation are prevalent (see Chapter 7). Finally, testing varietal-level

adaptation strategies (i.e. breeding scenarios) is not possible. This may be attributed

to the simplicity of the approaches. None of these models can appropriately account for

responses to CO2 fertilisation.

2.3.2.3 Field-scale process-based modelling

Field-scale crop models are tools aimed to simulate growth processes in plants so that

technological changes and environmental effects at the farm level can be assessed (El-

Sharkawy, 2005; Hoogenboom et al., 1994). Initially, crop models were conceived with the

objective of being perfect and comprehensive, and able to reproduce all plant functions

(Affholder et al., 2012; Sinclair and Seligman, 1996). However, researchers rapidly realised
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that developing approaches that were theoretically coherent, yet different in their imple-

mentation and purpose was more efficient and probably more informative. Crop modelling

science has thus evolved, and this evolution has led to the development of a large number

of crop models (Rivington and Koo, 2011).

Field-scale models attempt to capture as many as possible key processes that occur in the

plant with the greatest level of detail possible. The choice of which processes to represent

in detail, and the level of detail achieved for a given process is mostly limited by the

understanding of crop physiology and by available data (Boote et al., 2001; Craufurd et al.,

2013). In some cases, this choice may be driven by the purpose of the model (Affholder

et al., 2012; Challinor et al., 2009c). For example, developing a crop model for hydrological

and soil-related applications would require the water balance component of the model to

be very well developed and calibrated (Williams et al., 1989). By contrast, developing

a model to predict phenology and frost damage does not even require a water balance

to be calculated (Eccel et al., 2009). Developing a model that can accurately predict

agricultural yields and harvest timings at the field scale would require both processes (and

many others) to be correctly parameterised (Boote et al., 1996).

Field-scale models all hold different assumptions and hence show varied predictive skill.

Jamieson et al. (1998) demonstrated that high predictive skill in yield prediction in various

crop models does not imply agreement in the underlying processes (e.g. LAI evolution,

biomass assimilation) both across the models and between each model and the observations

(Figure 2.8). Similarly, Bachelet and Gay (1993) found that impacts of high temperatures

on grain yield varied significantly (12-62 %) among four rice simulation models, but showed

that more detailed models were also the most skilled ones (CERES-Rice and MACROS).

The same study showed that these two crop models held significant differences in the ways

they simulated the interaction between high temperature and high CO2 concentrations

(Figure 2.9) (Bachelet and Gay, 1993). In principle, however, models can be parame-

terised to match observations or to match other models by varying the so-called “genetic

coefficients”, a concept that has been widely practiced by crop modellers (Baenziger et al.,

2004; Boote et al., 2003).

Probably the main advantage of a field-scale model is the fact that the models can be used

to make decisions that can have a direct effect on farmers. Many crop modelling studies

rely on the use of a field-scale model, primarily because the prediction of the model (if
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Figure 2.8: Comparison of model predictions of the time course of LAI with observations
for a number of models. Hollow dots are observations. AFRCWHEAT2 ( ), CERES-
Wheat (.........), Sirius ( ), SUCROS2 (. . . . . .) and SWHEAT (−−−−−−). The
horizontal lines represent a radiation interceptance of 90 %. ( ) for AFRCWHEAT2
and Sirius, (.........) CERES-Wheat, SWHEAT and SUCROS2. Taken from Jamieson

et al. (1998).

the model is well parameterised and if all associated data –soils, initial conditions and

weather– correctly reflect the field’s conditions) would closely reflect the response of the

plants in the field (Boote et al., 1996; Easterling et al., 2003; Meinke et al., 1997). This

allows the researcher making decisions at the scale that is relevant for the farmer, and

allows impacting agricultural production more directly (Jones et al., 2003). Second, by

modelling more processes and in more detail, the models can be used to identify a wider

variety of processes that are influential to crop yields under future scenarios. Third, by

being modular, most of these crop models allow some flexibility in how certain processes

are modelled. For instance, some of the Decision Support System for Agrotechnology

Transfer (DSSAT) models allow the use of three biomass accumulation equations (including

Farquhar’s photosynthesis, Alagarswamy et al. 2006) and two evapotranspiration equations

(Jones et al., 2003). Fourth, carbon balances in the plant are often modelled, thus allowing

a more profound analysis of source-sinks in the plant. Fifth, the detailed incorporation

of “genetic coefficients” allows the further link with actual genetic data into crop model
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Figure 2.9: Differences in the parameterised response of two rice crop models to changes
in temperature and CO2. (A) CERES-Rice, and (B) MACROS. Taken from Bachelet and

Gay (1993).

predictions (Hoogenboom and White, 2003). Although predictive skill may not improve,

it bridges the gap between crop breeders, physiologists and modellers (Boote et al., 2003;

Hoogenboom andWhite, 2003; White et al., 1996). Finally, as more data becomes available

from targeted agronomic trials (Craufurd et al., 2013), it is more logical to pursue the inter-

comparison and improvement of field-scale models as tools that are already well advanced

for predicting plant responses to varying environment and management conditions at scales

in which decisions can be made regarding changes in cropping systems.

One of the most critical caveats of field-scale models is the difficulty of using them at larger
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spatial scales, a topic of high interest in the context of climate change. Despite various

successful attempts to using these models at larger scales (Baron et al., 2005; Challinor

and Wheeler, 2008b; Jagtap and Jones, 2002), it remains unclear as to what extent, for

example, using a field-scale model at a larger scale is comparable or better than using

a large-area model directly (see Sect. 2.3.2.4). Field-scale models also have a very large

number of model parameters, which increases the likelihood of over-parameterisation. For

example, many of the crop models in DSSAT have around 150 or more coefficients to which

a given simulation is sensitive. With such large number of parameters there is an increas-

ing likelihood of predicting accurate yield responses for the wrong reasons (Jamieson et al.,

1998). Another potential caveat in field-scale models is related to the concept of “genetic

coefficient”, which has prevented crop modellers from quantifying parametric uncertainty,

a subject widely recognised and investigated by other crop modellers (Challinor et al.,

2005d; Lobell and Burke, 2010; Tao et al., 2009), and also in climate science (Murphy

et al., 2007; Stainforth et al., 2005). The belief that genetic coefficients are unique com-

binations of parameters that represent a given cultivar has prevented crop modellers from

quantifying parameter uncertainty in field-scale crop models. This is particularly relevant

given that not all model parameters are sufficiently constrained by observed data (Beven,

2006; Challinor et al., 2009b).

For a basic operational mode, field-scale crop models require daily data for maximum,

minimum temperatures, precipitation and solar radiation. However, if more complex wa-

ter balance and photosynthesis equations are used, more detailed meteorological data are

required (e.g. relative humidity, dew point temperature). Thus, field-scale models tend to

be much more data-intensive than empirical models. Similarly, parameterising or evaluat-

ing the outputs of a field-scale model requires a significant amount of field measurements,

including leaf area index, biomass, crop transpiration, stomatal conductance, amongst

others (Boote et al., 2013; Craufurd et al., 2013). When available measurements are lim-

ited to yields and phenology, uncertainties in parameterising the models can be rather

large (Adam et al., 2011; Challinor and Wheeler, 2008b; Ruane et al., 2013). Field-scale

models are also sensitive to a wider range of inputs to which other models are normally not

sensitive (Challinor et al., 2009b; Lobell and Burke, 2010). These include initial soil nutri-

ent (nitrogen, phosphorous, potassium), residue and organic carbon contents, soil fertility

and salinity, fertiliser input, type of crop rotations, tillage, residue incorporation during

the growing season, and sowing density. In many cases, due to lack of data, researchers
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must make assumptions of management and initial conditions, thus constraining the skill

of the model’s predictions (Pathak et al., 2003; Ruane et al., 2013), and potentially being

a source of uncertainty in impacts projections. Sampling of these uncertainties is possi-

ble and should be a topic for future research in crop modelling, particularly under future

scenarios, when initial conditions cannot be ascertained.

2.3.2.4 Regional-scale process-based modelling

The difference in spatial scales at which climate and field-scale process-based crop models

operate has led to the development of the so-called large-area models (hereafter also re-

ferred to as regional-scale crop models) (Challinor et al., 2004; Tao et al., 2009). Regional-

scale models can include enough mechanistic detail in plant growth processes as to be

used with reasonable confidence under future climate scenarios, including increased CO2

concentrations, and higher rates of extreme temperature and drought events (Challinor

et al., 2003, 2007; Tao et al., 2009). At the same time, large-area crop models are less

complex than field-scale models and can thus be optimised using a more limited set of in-

put data, and at scales typical of global or regional climate models (Challinor et al., 2004,

2009c). The final goal of a regional-scale crop model is to capitalise on the large-scale re-

lationships between seasonal and sub-seasonal weather and agricultural productivity, thus

being able to predict agricultural yields, yet being capable of interpreting climate model

outputs directly (i.e. without any subsequent downscaling). Other approaches to regional-

scale modelling include the use of correction factors into field-scale models to account for

non-modelled processes at the large scale (Jagtap and Jones, 2002) and the direct use of

field-scale models at large scales (Baron et al., 2005; Xiong et al., 2008), both of which

remain to be compared with regional-scale models.

As such, regional-scale models have various advantages. Firstly, regional-scale models are

capable of accounting for effects of sub-seasonal stresses such as terminal drought (Challi-

nor et al., 2009a), drought and high temperature during flowering (Challinor et al., 2005b,

2009a), increased CO2 (Challinor and Wheeler, 2008a) and its effects on stomatal conduc-

tance (Tao et al., 2009), and decreased photosynthetic activity under high temperatures

(Challinor et al., 2009a). Thereby, the models can be reliably used to analyse the effects of

changing climate conditions. In addition, due to the simple parameterisation of a number
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of processes, it is relatively easy to account for uncertainty in model parameters. Paramet-

ric uncertainty has been quantified in these models using simple parameter perturbation

(Challinor et al., 2005d) and Monte Carlo simulations (Tao et al., 2009). Regional-scale

models also present the advantage of allowing coarse-resolution climate model outputs to

be used directly into the crop model, thus avoiding any issues related with downscaling

(Hawkins et al., 2013b; Wilby et al., 2009) and weather generation (Jones and Thornton,

2013). The simplicity of these models also allows them to be coupled directly with climate

models (Osborne et al., 2007). Finally, the models are easier to understand, parameterise

and modify, thus reducing the likelihood of the model becoming a “black box”, the like-

lihood of over-parameterisation, and the likelihood of accurately reproducing crop yields

for wrong reasons (see e.g. Figure 2.8). This fosters a more appropriate use amongst their

users.

Caveats arise when attempting to model at large areas. These are due to the lack of

detail in certain processes, or the disconnection between processes in the crop model.

First, inconsistencies can arise when processes are modelled independently. For example,

Challinor and Wheeler (2008a) report that under certain conditions, GLAM simulates

an unrealistic SLA response, thus requiring an empirical adjustment to be made in the

first few days of the simulation in order for the model to be able to simulate a realistic

crop. Second, the models fail to simulate critical aspects of assimilate distribution in

the plant (given their primary focus is on yield) and thus fail at incorporating processes

such as assimilate re-distribution (i.e. once a given organ has senesced) that may be

critical under drought stress conditions, or for crops with large storage capacity such as

cassava or potato (Matthews and Hunt, 1994; Wolf and Van Oijen, 2003). Third, leaf area

dynamics in these models can lead to over-estimating canopy extent and accumulated

biomass. Fourth, the use of model correction factors (such as the yield gap parameter -

CY G) can lead to underestimating internal errors in the crop model, and thus over-stating

the predictive skill of the model (Tao et al., 2009). This may, however, be solved by

constraining the model using the outputs of other models or using a more complete set

of observations. Fifth, individual organs are not simulated in these models, thus the

possibility of incorporating processes such as nutrient balance is rather limited. Doing

this would require a substantial modification not only in the structure but also in the

rationale of the model. Thus, certain management strategies such as changes in fertiliser

input, tillage, and soil conservation cannot be tested with these models. Finally, the models
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work best when there is a significant climate signal on the yield response, particularly from

rainfall and are thus unlikely to work when the yield response is governed by management

or biotic factors (Challinor et al., 2003).

2.3.2.5 Differences between models

Crop models can be classified by scale into field-scale and regional-scale (Challinor et al.,

2013) and by nature into process-based and empirical (Challinor et al., 2009c). Empirical

models can be further classified into statistical models and niche-based models (Challinor

et al., 2009c). Models can be also classified by the nature of their outcome into probabilistic

and deterministic. In comparing the work of Lobell et al. (2008) with the work of Parry

et al. (1999), of Lane and Jarvis (2007), and of Tao et al. (2009) and Challinor et al. (2004)

differences become evident and can be summarised as follows:

1. The scale at which the models are used is different. Statistical models and niche-

based models are used at continental or sub-continental scales. Process-based models

are used at higher spatial scales, with the highest scale being for field-scale models.

2. The amount of information that can be extracted is different. Yield predictions can

be extracted from any models except those niche-based. Information on sub-seasonal

stresses can only be extracted from process-based models, and sometimes also from

statistical models (e.g. Lobell et al. 2012).

3. The number of parameterised processes is significantly higher in process-based mod-

els as compared to all other models, thus requiring larger amounts of input data to

constrain the model during the calibration process and increasing the risk of mod-

elling the target quantity using unrealistic parameters or parameter values.

4. The sensitivity of models to errors within input data and with regard to initial

conditions is varied, with statistical and niche-based models being generally less

sensitive (e.g. Vermeulen et al. 2013).
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2.3.3 The use of ensembles in crop modelling

The concept of model ensemble has been largely used in climate science and is becoming

increasingly used in crop modelling science. The term model ensemble, as used here,

refers to a set of representations of a system that are considered all at once, with all such

representations being equally plausible and in accordance with the macroscopic behaviour

of the system being represented (Stainforth et al., 2005). Ensembles in crop modelling can

be created by using various crop models, by using various climate models with a single

crop model, by using various crop model parameter sets, or by a combination of all the

above. In some situations (particularly those related to future climate scenarios) crop

model ensembles can also be created from sampling initial field conditions. Among these,

the most common is the use of several climate models with a single crop model, followed

by the use of various crop models (under present-day conditions) and then by the sampling

of model parameters (also see Chapter 4). To the knowledge of the author, ensembles of

initial conditions havent been practiced in crop modelling.

2.3.3.1 Ensembles of models

Various examples exist of the use of multi-crop model simulations, although little has been

done towards the conceptualisation and/or application of a more complete model ensemble

approach (but see Challinor et al. 2013 and Rosenzweig et al. 2013). Bachelet and Gay

(1993) used four rice models and found agreement in direction of yield changes to increasing

temperatures, but substantial disagreement in the way the models treated the effects of

increased CO2 concentrations and its interactions with temperature (Figure 2.9), and large

variability in the predicted yield responses. Jamieson et al. (1998) compared five wheat

models and found agreement between simulated yields but substantial variation in leaf

area evolution, biomass, transpiration and soil water extraction patterns. Errors within

each model are likely to cancel out as an effect of local calibration procedures. Tubiello

and Ewert (2002) reported substantial differences between the calibrated absolute CO2

responses in both water stressed and well-watered conditions for five wheat crop models,

but agreement in the direction of the response both within models and between models

and observations (i.e. there was a larger relative benefit from CO2 in water-stressed than

in well-watered environments).
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Challinor and Wheeler (2008a) found more than 50 % variation in modelled yields in

response to CO2 fertilisation for three groundnut crop models. Challinor et al. (2009a)

reported significant differences between three groundnut models in the direction and extent

of changes in simulated yield due to combinations of high temperatures and higher CO2

concentrations. Adam et al. (2011) reported that the multi-model mean of simulated

yields when using different methods to model leaf area dynamics significantly agreed with

observations. However the variance in simulated yields across the different methods can

be larger than that caused by environmental differences across Europe. Vermeulen et al.

(2013) used three groundnut crop models in the state of Gujarat in India, representing crop

yields accurately (Figure 2.10), primarily due to the strong signal of seasonal precipitation

on crop yields (Challinor et al., 2003). These simulations show differences in the skill of

crop models to simulate certain aspects of the interannual variability in crop yields, with

statistical models being less capable of simulating failed seasons. More recent studies,

including those of Asseng et al. (2013), Rötter et al. (2012), and Palosuo et al. (2011) have

shown that crop model uncertainty can be rather large, particularly if the models are not

sufficiently ‘tuned’ to specific cultivars and sites.

2.3.3.2 Parameter ensembles

As opposed to those using multi-crop models, studies that investigate parametric uncer-

tainty have focused on the implications for climate change impact projections (Challinor

et al., 2005d; Iizumi et al., 2011; Tao et al., 2009). This particular topic is discussed in

detail in Chapter 5. The creation of model parameter ensembles (also referred to as per-

turbed parameter ensembles) consists of taking advantage of the trade-offs in the model

parameterisation process to develop a number of parameter sets that can realistically sim-

ulate observed yields. Simulations of crop yields with each parameter set have varied skill,

but represent the challenge of parameterising processes for which there are not enough

observations. Iizumi et al. (2011) modelled rice using a Bayesian approach to sample

parameter values in order to represent the fine-scale spatial variability in varieties and

management. Tao et al. (2009) used a similar approach to quantify the uncertainties in

parameter estimates of a rice crop model optimised using yield observations. In both cases,

the predicted responses by each of the ensemble members provided a realistic representa-

tion of the historical crop yields, while allowing the assessment of parametric uncertainty
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Figure 2.10: Comparison between observations and simulations of groundnut yields
using three crop models for the state of Gujarat (India) between the years 1966-1989.
Observations have been detrended to 1966 levels (see Challinor et al. 2004). Note the
differences between the crop models and the skill of each model to reproduce certain
aspects of the yield time series (e.g. process-based models more capable of reproducing

extremes). Figure taken from Vermeulen et al. (2013).

and its variation in time (Figure 2.11(a) and 2.11(b)). Challinor et al. (2005d) compared

the differences in simulated groundnut yield as impacted by parametric uncertainty in a

climate model and in the crop model. Their results imply that: (1) uncertain climate

and crop parameters can impact yields in different directions, (2) impacts of uncertain

parameters in simulated crop yield are location-specific, and (3) climate model parameter

uncertainty is generally the dominant source of uncertainty (see Figure 2.12).

2.3.3.3 A way forward

The differing responses of crop models when environmental conditions are changed, and

particularly those under which the models have not been extensively tested (such as when

CO2 concentrations are increased), and the fact that little is known about the feedbacks

and conditions that can arise under future climate scenarios suggests that there is a sub-

stantial opportunity to increase confidence in future crop yield projections by a more
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(a) rice (Japan) (b) maize (China)

Figure 2.11: Two parameter ensembles from previous studies: (a) Time series of the
observed yield and 50 ensemble members of the simulated yield for the Hokkaido district
in Japan. The black line and dots are observations, the thick red line is the ensemble
mean, and the narrow pink lines are each of the 50 ensemble members. Taken from Iizumi
et al. (2011); (b) Time series in the modelled and observed yield at the crop model grid
scale for spring maize at Harbin, China. YdEn is the crop model perturbed parameter
ensemble, YdOp is a deterministic prediction using the same model. Taken from Tao

et al. (2009).

Figure 2.12: Percentage difference in mean groundnut yield between the control sim-
ulation and two perturbed simulations; λ2 is a parameter in the driving GCM (ice fall
speed) and extinction coefficient (k) is part of the parameters used in the light interception

equations in GLAM. Taken from Challinor et al. (2005d).

appropriate sampling of uncertainties. Achieving a multi crop model ensemble is not triv-

ial, partly because of the limited knowledge in crop modelling regarding uncertainties. In

addition, with knowledge and methodologies developed in climate change science, a whole

new range of possibilities and limitations arise. Crop modelling science needs to adjust in

order to provide policy makers and other stakeholders with the necessary information for

adaptation.
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Provided the uncertainties in climate modelling, crop modelling science itself has to adapt

and to some extent transform some of its governing principles to better respond to the

scientific challenges arising from climate change impact assessment. Climate science prin-

ciples regarding uncertainties can, to some extent, be used to improve crop modelling

science. Nevertheless, this may require a paradigm shift, due to the way in which crop

models have been designed. The advent of global programs on crop-climate modelling

(Jarvis et al., 2011a; Rosenzweig et al., 2013) is leading to improved impacts prediction

and to the use of multiple crop models to make predictions and may facilitate this pro-

cess (e.g. Asseng et al. 2013). Work will, however, have to be extended towards the use

of parameter and initial conditions ensembles to at least inform the research community

on the extent to which these uncertainties are comparable to those arising from multiple

climate or crop models.

2.4 Adaptation of agricultural systems to climate change

2.4.1 General concepts in climate change adaptation

Adaptation to climate change is the final target of any impact projection (Challinor et al.,

2013; Moser and Ekstrom, 2010). Adaptation can be seen as an iterative process that starts

from the development of knowledge about a system and its problems (i.e. quantifying

impacts). This knowledge is then used to develop and select options, which are finally

implemented and evaluated (Figure 2.13). Such an iterative process can happen at a

variety of scales, ranging from seasonal to multi-decadal (Howden et al., 2007; Moser and

Ekstrom, 2010; Park et al., 2012).

Figure 2.14 illustrates the different types of adaptive responses in agriculture as the degree

of climate change increases. In agricultural systems, farmers constantly change their man-

agement practices in response to climate and climate-related stresses (e.g. pests and dis-

eases). These adjustments can be considered as short-term coping strategies, are typically

incremental and happen in a non-planned (disorganised) manner (Moser and Ekstrom,

2010). Such adjustments may include changes in the amount and timing of fertiliser,

irrigation and fungicide applications, changes in sowing dates, and changes in varieties.

For example, most farmers in the wheat growing areas of the Indo-Gangetic Plains would
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Figure 2.13: Steps in the adaptation process. Taken from Moser and Ekstrom (2010).

rapidly adopt newly released cultivars (Aggarwal, 2008; Aggarwal et al., 2004). Sowing

dates in rainfed systems change on yearly basis according to the onset of seasonal rains

(Sacks et al., 2010; Velde et al., 2012).

Under longer time periods, the degree of climate change is expected to be higher (Joshi

et al., 2011). Adaptation planning at these time scales needs to consider further and more

substantial changes to the system (Moser and Ekstrom, 2010; Park et al., 2012). The

approach of relying solely on incremental short-term adjustments may not be successful

with more intense or extended climate change pressures. This is because there is a degree

of change in climate beyond which the available short-term options for a farmer may

not work or because the negative impacts of climate change may arise at rates and in

a multi-dimensional fashion that would make it difficult for farmers to respond. For

example, genetic variation within a given crop’s genepool as well as the speed at which

climate-adaptation beneficial genes can be incorporated in existing varieties both have

limits (Reynolds et al., 2011).

Systems adaptation (Figure 2.14) involves changes in the whole cropping system such as

changing the crops in the rotation, diversifying the system to include a wider range of

species with diverse uses (e.g. agro-forestry), or optimising production at the maximum

extent possible through precision agriculture where such an apoproach approach is not

used (Rickards and Howden, 2012).
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Figure 2.14: Levels of adaptation in relation to benefits from adaptation actions and
degree of climate change, with illustrative examples. Taken from Howden et al. (2010).

The last type of adaptation would be needed when a given farming system becomes com-

pletely economically or environmentally unsustainable. Transformational adaptation plan-

ning is required when the degree of climate change is expected to cause an irreversible loss

to the system object of analysis (Moser and Ekstrom, 2010; Rickards and Howden, 2012).

In that sense, it is designed to avoid severe impacts of climate change and/or capitalise on

increasingly positive effects that can arise from a system shift (Park et al., 2012). Trans-

formational changes in a cropping system can occur in different dimensions and often

overlap with system-level adjustments (Figure 2.14). Transformational adaptation may

include livelihood changes such as changes from cropping to livestock systems (Jones and

Thornton, 2009), community migration, or a complete change in the focus of the system

(e.g. from an agricultural system to a national park) (Rickards and Howden, 2012).

The time at which each type of change is required in a given farming system largely depends

upon the type of system. Perennial systems are expected to substantially benefit from

longer-term transformational planning, given the high costs associated with establishing

these cropping systems. Annual rotations are somewhat more flexible, because crops can

be changed in a yearly basis. Socio-economic and market-related barriers would however

be expected in both cases (Moser and Ekstrom, 2010). For more comprehensive reviews on

adaptation the reader is referred to Howden et al. (2007), Moser and Ekstrom (2010), and

Park et al. (2012). Of particular relevance to transformational adaptation is the review of

Rickards and Howden (2012).
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2.4.2 Genotypic adaptation

Genetic variation within the genepool of a crop can to a large extent allow the adaptation

of agricultural systems. On one hand, promising but already existing varieties can be

used to replace currently growing ones. On the other hand, specific traits and/or genes

can be incorporated into existing varieties by means of conventional breeding or genetic

engineering (Hajjar and Hodgkin, 2007). Genes to tolerate drought, excessive heat, and

to resist pests and diseases can be found both in existing landraces (Beaver et al., 2003;

Reynolds et al., 2011), and in wild relatives of crops (Guarino and Lobell, 2011; Hajjar

and Hodgkin, 2007; Jansky et al., 2009). Crop improvement networks have historically

focused on incorporating stress-tolerance and/or disease-resistance genes into high-yielding

cultivars (Reynolds et al., 2011; Stamp and Visser, 2012) as a way to decrease production

costs and close yield gaps (Reynolds et al., 2011).

There is increased evidence that climate change stresses can, to a large extent, be man-

aged or completely offset through the incorporation of beneficial traits into existing crop

varieties (Ortiz et al., 2008). Thus, genotypic adaptation is relevant in the context of

both short-term adjustments and systems adaptation (Jarvis et al., 2011b). Genotypic

adaptation involves both the replacement of currently used cultivars (i.e. varietal shifts)

and also the development of new cultivars through the incorporation of traits that may

become beneficial under certain degrees of climate change (i.e. developing climate-ready

crops). Breeding programmes are currently challenged with having to set priorities based

on climate change impacts projections. Decisions of which traits to breed and by when

would varieties need to hold such traits are expected to be largely influenced by the type

(e.g. increase in mean, increase in extreme events), direction (e.g. drier and warmer, wet-

ter and warmer), and extent (how warmer, how drier) of the predicted climatic changes in

a given area (Stamp and Visser, 2012).

Modelling studies have attempted to quantify the benefits of genotypic adaptation. Challi-

nor et al. (2007) show substantially reduced impacts from climate change if adaptation to

mean temperatures is increased in Indian groundnut varieties. Similarly, Challinor et al.

(2009a) showed that increased accumulated thermal time in Indian groundnut can com-

pletely offset the negative effects of climate change. Challinor et al. (2010) found that

adapting Chinese wheat varieties to high temperature stress thresholds during anthesis,
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and to water stress can reduce the percent of failed seasons under future scenarios by 30

% and 50 %, respectively. Water-stress adaptation alone, in particular, can account for

all negative effects of climate change. Jarvis et al. (2012) report that in addition to cas-

sava’s tolerance to climate change stresses, capitalising benefits from further improving its

drought and cold tolerance may bring substantial benefits under future climate scenarios.

2.4.3 Crop ideotypes

Breeding climate-ready crops would allow farmers to adapt to climate change at a rela-

tively low cost (Habash et al., 2009; Jarvis et al., 2011a). However, this would require a

substantial scientific and coordinating effort in the determination of those traits that are

both needed and feasibly incorporable into existing crop varieties, as well as breeding them

in time and distributing them (Habash et al., 2009; White, 1998). To this aim, the design of

future crop varieties arises as a need in the context of climate change. Such need is further

catalysed by the possibility of speeding the breeding process through through molecular

tools such as genomic selection, or in addition through genetic engineering (Habash et al.,

2009). With time, cis- or transgenic transformations of food or cash crops are expected to

become more frequent (Habash et al., 2009; Ortiz et al., 2008).

The concept of crop ideotypes thus reflects the need and possibility of designing crop va-

rieties that are apt for certain environmental conditions. Although the concept is not new

(Donald, 1968), crop ideotypes are idealised plants (i.e. plant models) that have the great-

est effectiveness in producing dry matter and yield under given environmental conditions.

Breeding programs typically pursue crop ideotypes. The erect, dwarf and photoperiod

insensitive wheat cultivars are clear examples of ideotype designs (White, 1998). Defining

a crop ideotype thus involves a definition of the physical (e.g. height, maximum leaf size,

leaf thickness) and physiological (e.g. stomatal conductance, photosynthetic efficiency)

characteristics of a given crop plant, that would allow such a plant to respond well under

certain conditions (e.g. in a drought-prone environment).

In the context of climate change, the final aim of a crop ideotype is to produce a climate-

smart variety (Habash et al., 2009; Jarvis et al., 2011a). Ideotypes can be designed using

crop models, given an appropriate degree of complexity in the model and an appropriate

link between the crop model parameters and the real traits in cultivars (White, 1998). Of
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particular concern would therefore be the extent to which barriers in breeding (i.e. the

ability of existing techniques to incorporate certain genes), limits in the available genetic

diversity of crops (i.e. the range of traits available) and required breeding time constrain

the unlimited set of virtual possibilities.

Examples in the literature exist that illustrate the potential of crop models to design crop

ideotypes (see the review of White 1998), but few modelling studies have attempted to do

so using future climate scenarios (Challinor et al., 2007; Jarvis et al., 2012). The responses

of virtual crops can be tested using crop models in conjunction with climate models in order

to assess the robustness of choosing a particular mode of action in breeding (e.g. breeding

for heat tolerance or breeding for drought tolerance). There is, however, a limitation to

the extent to which genetic improvement strategies can be tested with models, as this is

largely constrained by the complexity of the model and the uncertainties associated with

its use.





Chapter 3

Data and models

“Y la juego, o la cambio por el más infantil espejismo,

la dono en usufructo, o la regalo...”

L. de Greiff

3.1 Introduction

Models have become an increasingly important tool for assessing the impacts of and adap-

tation to climate change (Challinor et al., 2013; Vermeulen et al., 2013). In the work

presented in this thesis, two crop models were used: EcoCrop and GLAM. EcoCrop is a

niche-based model that simulates suitability of a crop to the environment using monthly

temperatures and total seasonal precipitation. The suitability index predicted by EcoCrop

is a measure of how similar an environment is to the set of optimal conditions in which

the crop can successfully thrive, or, in other words, an indication of whether an species

is suited to the climate conditions of a given site –as measured by seasonal and monthly

means (Hijmans et al., 2001; Ramirez-Villegas et al., 2013b). GLAM, by contrast, is a

regional-scale process-based model. As other process-based models, but with less com-

plexity, GLAM simulates crop growth and development on a daily basis (Challinor et al.,

2004, 2009c). In this thesis, the two models are used in conjunction with observed and

climate model simulations of the CMIP3 (Meehl et al., 2007a) and CMIP5 (Taylor et al.,

2012) ensembles to project climate change impacts and, in the case of GLAM, also to

51
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inform adaptation. The reader will thus find the constant use of various datasets, models

and concepts throughout this work.

In this chapter, a description of the key concepts, modelling tools, and input data is done.

The chapter starts by describing concepts that are key for understanding the work pre-

sented (Sect. 3.2), then describes the study areas (Sect. 3.3) and the different datasets used

for the variety of analyses presented in subsequent chapters (Sect. 3.4). The data section

is divided into climate data (Sect. 3.4.1), crop data (Sect. 3.4.2) and soil data (Sect. 3.4.3).

Section 3.5 provides a detailed description of GLAM (Sect. 3.5.1) and EcoCrop (Sect. 3.5.2)

including their constituting equations and structure. The chapter concludes by presenting

in full the methods used to assess the skill of crop and/or climate simulations (Sect. 3.6)

and to understand the uncertainties in crop yield and suitability projections (Sect. 3.7).

3.2 Concepts and definitions

During the writing up of this thesis, one of the most daunting challenges was the repeated

use of certain terms that, when used under different contexts, may have different interpre-

tations or different definitions. Based on existing literature and on the author’s knowledge,

an attempt to define these terms has been done. This may improve the readability of the

work while reducing (at least to some extent) the uncertainties involved with conceptu-

alising the problem of research. Substantial effort has been put in trying to make these

definitions consistent both throughout the document and between the document and the

existing literature.

3.2.1 Abundance and crop yield

Abundance is a measure of the amount (of individuals, biomass, or produce) normalised per

unit area. Abundance can be seen as a measure of frequency of a species or a characteristic

of the species in a given site, or also a measure of habitat utilisation (Pearce and Ferrier,

2001; VanDerWal et al., 2009a). In agriculture, crop yield is the preferred measure of

abundance (Estes et al., 2013a).

Yield is a measure of agricultural productivity. Yield is expressed as the amount of har-

vest product by weight (in kilograms, tonnes, or any weight unit) by unit area (typically
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hectares). In this work, yield and productivity are used interchangeably. In all reported

figures, yield was measured in kg ha−1.

3.2.2 Suitability

Suitability of a species is referred to as the degree to which the physiological and ecological

requirements of a species are met at a site. In other words, suitability is a measure of

whether a species can thrive at a given site. Suitability can also be interpreted as the

probability of occurrence (Soberon and Nakamura, 2009; Wiens et al., 2009). Climatic

suitability is thus used to refer to the solely climate component of suitability –since there

may be soil and ecosystem components to it.

3.2.3 Adaptation

Two definitions of adaptation were adopted. Both of them are described and fully discussed

in Chapter 2 (Sect. 2.4). The first one is the IPCC definition, which reads:

“Adjustment in natural or human systems in response to actual or expected cli-

matic stimuli or their effects, which moderates harm or exploits beneficial op-

portunities. Various types of adaptation can be distinguished, including antici-

patory and reactive adaptation, private and public adaptation, and autonomous

and planned adaptation” (IPCC, 2001)

A second, more general definition of adaptation was also adopted. This was done in

order to keep consistency with state-of-the art social and biophysical sciences. The second

definition reads:

“Adaptation involves changes in social-ecological systems in response to actual

and expected impacts of climate change in the context of interacting noncli-

matic changes. Adaptation strategies and actions can range from short-term

coping to longer-term, deeper transformations, aims to meet more than cli-

mate change goals alone, and may or may not succeed in moderating harm or

exploiting beneficial opportunities” (Moser and Ekstrom, 2010)
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3.2.4 Predictability

Is the degree to which a prediction of the state of a system can be made. As it is impossible

to achieve perfect determinism when modelling a systems state (Walker et al., 2003), a

system can never be fully predictable. Predictability is a function of the complexity of a

system, the knowledge or information available on the system, and the available compu-

tational power. Although predictability is difficult to measure, it is related to prediction

error and model skill (below). High model skill (low error) is an indicator of a high degree

of predictability. However, low model skill may not indicate a low degree of predictability,

as low model skill can also be the product of an incorrect model formulation, errors in

input data, initial conditions, or be a product of all three in combination.

3.2.5 Prediction error

Another way of referring to prediction error is by referring to accuracy, because the ex-

istence of prediction error means there is a lack of accuracy in a simulated quantity. In

short, accuracy is the degree of veracity in a simulation. Such degree is measured as the

difference between a simulation and the accepted truth (i.e. reality, or in this case the

existing observations). This difference is what is termed here prediction error. Because

models are all imperfect approximations to the real world, there will always be prediction

error and thus a certain lack of accuracy inherent to the model’s structure, its implemen-

tation, or the inputs used to drive it. Accuracy and prediction error are tightly related to

model skill.

3.2.6 Model skill

Model skill, either of a climate or a crop model, refers to the ability of the model to

reproduce certain aspect of reality. Model skill is measured by determining how well a

model reproduces observations of a given variable at a given location or set of locations.

Lack of skill in a model produces what is here termed prediction error (see above). Climate

model skill is explored in detail in Chapter 4 and is assessed for two characteristics: mean

climate and interannual variability. For each of these cases, metrics to compare model

results with observations are used. Mean climate is typically assessed using the model bias
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(see below), the root mean squared error (RMSE), the RMSE normalised by the observed

mean (RMSEM ) or standard deviation (RMSESD), and the correlation coefficient (R),

whereas interannual variability is assessed using an interannual variability index (VI). Crop

model skill is in this work treated in Chapter 5, 6, and 7. GLAM (Chapter 5) is typically

assessed using the RMSE, R, or the perfect-correlation MSE. EcoCrop (Chapter 7)

is assessed using presence-absence related measures such as rates of false negatives, true

positives, and the area under the receiving operating characteristic (ROC) curve (AUC).

3.2.7 Model bias

The term bias throughout this thesis is used under the strict international definition as-

cribed by the World Meteorological Organization (WMO), which states that bias ”is the

correspondence between a mean forecast and mean observation averaged over a certain do-

main and time” (WWRP, 2009). Bias is therefore used to refer to the differences between

observations and predictions for a mean state of a system. Ehret et al. (2012) present a

more loose definition of bias by stating that it refers to “any deviation of interest (e.g.

with respect to the mean, variance, covariance, length of dry spells, etc.) of the model from

the corresponding true value”. However, the international definition of bias has been kept

in order to avoid confusion and keep consistency with any previous work (Gleckler et al.,

2008; Pierce et al., 2009; Taylor, 2001). In the context of the present thesis, therefore, bias

is measured for climate models for a given field (i.e. variable, x) as the difference between

the climate model (M) output and the observations (O) (Eq. 3.1).

bias = xM − xO (3.1)

Model bias can be calculated on a gridcell basis for the mean climate of a year or of a

season. Bias is expressed in the scale of the variable being assessed.

3.2.8 Uncertainty

Uncertainty is probably amongst the most frequently used terms in this thesis. The

concept of uncertainty deserves particular attention. Uncertainty may have even deserved

an individual single chapter in this thesis. The author restrained from doing this for
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two reasons. First, definitions of the term have been attempted extensively in existing

literature (see e.g. Challinor et al. 2013, 2009c; Kennedy and O’Hagan 2001; Walker et al.

2003). Secondly, a full treatment or quantification of uncertainty is impossible, so it may

be more reasonable to account for uncertainty whenever a prediction or a projection is

done. Thereby, a definition is attempted, and uncertainty is treated as a cross-cutting

topic across this whole research piece.

In short, uncertainty is referred to as the spread of any set of predictions. It is also referred

to as precision. Put simple, uncertainty is typically reflected as range bars in a given plot,

except where bars are used to indicate spatial or temporal spread. In that sense, uncer-

tainty can be measured using statistical dispersion measures such as the range, variance,

standard deviation and the coefficient of variation. However, additional measures of un-

certainty are possible. For instance, the IPCC reports the agreement in direction of model

predictions as a measure of future precipitation uncertainty (IPCC, 2007). Substantial

agreement can be found in the direction of precipitation changes in a number of areas,

although the variation in actual precipitation estimates across the models can be very high

(see Figure 1.4, IPCC 2007).

Uncertainties result from the impossibility of modelling either the climate or cropping

system with complete determinism (Walker et al., 2003). These uncertainties arise from

model structure, model parameters, algorithms and computational systems, interpolation,

and experimental data (Kennedy and O’Hagan, 2001; Walker et al., 2003). In climate mod-

elling, uncertainties arise from the uncertain pathways of greenhouse gas (GHG) emissions

and concentrations (Moss et al., 2010), the response of the system to a given radiative

forcing (caused in turn by GHG concentrations), the initial conditions and parameterised

physical processes (Challinor et al., 2009c; Ehret et al., 2012; Stainforth et al., 2005).

Most of the work in crop modelling has focused in assessing model structure (Palosuo

et al., 2011; Rötter et al., 2012) and parameter uncertainty (Challinor et al., 2005d; Iizumi

et al., 2009b), albeit typically in an independent manner.

Limits to ensemble size exist given the limitations in computational capacity (Challinor

et al., 2009c; Stainforth et al., 2005) and therefore uncertainties can be only partly quan-

tified. Uncertainties through the writing of this work have been explored for both the

climate system and the groundnut cropping system. The measures of uncertainty em-

ployed here are defined below (Sect. 3.7) and, where not, in each individual chapter and
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attempt to provide an overview as well as a comparison of the importance of different

sources of uncertainty for the cropping system being modelled.

3.2.9 Calibration and optimisation

In Chapter 5, the words calibration and optimisation are both used for the first time. In

some contexts these two words can be used interchangeably (e.g. Hoogenboom et al. 1992;

Ruane et al. 2013), but in this thesis, and in general in GLAM studies, a difference is

made. Such difference arises from the way optimal values for the model parameters are

determined and how parameters are allowed to vary across space. In GLAM, all model

parameters other than the CY G are constant in space, but the CY G is allowed to vary on a

location basis. The term optimisation refers to finding a value that is reduces the model

error for any model parameter, except the CY G. The term calibration refers to finding a

value for the CY G that reduces the model error. Optimisation is therefore often done for

a group of grid cells (“globally”) whereas calibration is always done for a single grid cell

(“locally”). In both cases simulated and observed yield time series are used to calculate

the model error.

3.3 Study areas

Two different areas were studied in this work. The first area included Africa and South

Asia, where several studies have identified that significant vulnerabilities exist (see Chap-

ter 1, and Chapter 2) (Knox et al., 2012; Lobell et al., 2008; Thornton et al., 2011). This

area was studied in Chapter 4, which comprehensively assesses the quality of climate data

for climate change impact studies. In particular, the analyses of Chapter 4 focus on: West

Africa (Senegal, Mali, Burkina Faso, Ghana and Niger), East Africa (Ethiopia, Tanzania,

Uganda and Kenya), Southern Africa (South Africa, Namibia, Botswana, Zimbabwe and

Mozambique) and South Asia countries (India, Nepal, and Bangladesh), hereafter referred

to as WAF, EAF, SAF and SAS, respectively (Figure 3.1).

The second study area was India, in which the analyses of Chapter 5 to 8 focused. Following

Talawar (2004) and Mehrotra (2011), the study region was divided in five groundnut

growing zones (Figure 3.2), which reflect the variation in the germplasm grown in India.
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Figure 3.1: First study area, analysed in Chapter 4. For visualization purposes, country
names were reduced to their 3-letter standardised unique identifier (ISO), and are noted
as follows: East Africa: ETH (Ethiopia), UGA (Uganda), KEN (Kenya), TZA (Tanza-
nia); West Africa: SEN (Senegal), MLI (Mali), NER (Niger), BFA (Burkina Faso), GHA
(Ghana); Southern Africa: MOZ (Mozambique), ZWE (Zimbabwe), BWA (Botswana),
NAM (Namibia), ZAF (South Africa); South Asia: IND (India), NPL (Nepal), BGD

(Bangladesh).

These regions receive different amounts of rainfall during the monsoon season (June to

September, Figure 3.3) and have different soil profiles.

3.4 Data

Many different types and sources of data were used in the development of this thesis.

These were grouped by type in climate data (Sect. 3.4.1) and crop data (Sect. 3.4.2).

Climate data includes observed, reanalysis and GCM data –including different forms of

bias correction. Crop data include crop yields, crop locations, irrigation rates, planting

dates, and soils.

3.4.1 Climate data

Four sources of climate data were used: long-term interpolated time series (Sect. 3.4.1.1),

mean climate data (Sect. 3.4.1.2), reanalysis data (Sect. 3.4.1.3), and CMIP climate model
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(a) high (b) low (1x1 degree)

Figure 3.2: Groundnut growing regions of India, as per the study of Talawar (2004) at
the original district-level divisions resolution (high), and at the IMD grid resolution (1x1

degree, low, see Figure 3.3).

Table 3.1: Summary of all climate datasets used throughout this work.

Dataset Source / Description Described in Used in

TS WS-QA Monthly time series from weather stations (1960–2000) Sect. 3.4.1.1 Chapter 4
TS CRU-QA Monthly time series from interpolation (1960–2000) Sect. 3.4.1.1 Chapter 4
TS CRU-GM Daily linearly interpolated temperature data (1966–2000) Sect. 3.4.1.1 Chapter 5, 6
TS IMD-GM Daily precipitation from IITM (1966–1993) Sect. 3.4.1.1 Chapter 5, 6
TS E40-QA Monthly time series from ERA-40 (1960–2000) Sect. 3.4.1.3 Chapter 4
TS E40-GM Daily solar radiation from ERA-40 (1966–1993) Sect. 3.4.1.3 Chapter 5, 6
TS C3-QA Monthly time series from CMIP3 (1960–2000) Sect. 3.4.1.4 Chapter 4
TS C5-QA Monthly time series from CMIP5 (1960–2000) Sect. 3.4.1.5 Chapter 4
TS C5-GM Uncorrected daily meteorology from CMIP5 (1966–1993) Sect. 3.4.1.5 Chapter 5, 6, 8
CL WS-QA Mean monthly climatology from weather stations (1960–

2000)
Sect. 3.4.1.2 Chapter 4

CL WC-QA Mean monthly climatology from interpolation (1960–2000) Sect. 3.4.1.2 Chapter 4, 7
CL CRU-QA Mean monthly climatology from interpolation (1960–2000) Sect. 3.4.1.2 Chapter 4
CL CRU-EC Mean monthly climatological temperatures from CRU

(1966–1993)
Sect. 3.4.1.2 Chapter 7

CL E40-QA Mean monthly climatology from ERA-40 (1960–2000) Sect. 3.4.1.3 Chapter 4
CL C3-QA Mean monthly climatology from CMIP3 (1960–2000) Sect. 3.4.1.4 Chapter 4
CL C5-QA Mean monthly climatology from CMIP5 (1960–2000) Sect. 3.4.1.5 Chapter 4
CL C5-EC Uncorrected mean climatology from CMIP5 (1966–1993) Sect. 3.4.1.5 Chapter 7
CL IMD-EC Mean monthly climatological precipitation from IITM

(1966–1993)
Sect. 3.4.1.2 Chapter 7

C5-SH Bias corrected (‘nudged’) GCM output (1966–1993) Sect. 3.4.1.6 Chapter 6–8
C5-DEL Delta method bias corrected GCM output (1966–1993) Sect. 3.4.1.6 Chapter 6–8
C5-LOCI Local intensity scaling corrected GCM output (1966–1993) Sect. 3.4.1.6 Chapter 6–8

data (Sect. 3.4.1.4 and 3.4.1.5). A summary of which chapters use the different datasets is

provided in Table 3.1. Datasets are given a suffix so as to easily identify the main purpose

of each dataset. ‘GM’ for those used only for GLAM (Chapters 5, 6 and 8), ‘QA’ for

those only used for quality assessment (Chapter 4) –except QA-WCL that was also used

to calibrate EcoCrop, and ‘EC’ for those only used for EcoCrop modelling (Chapter 7).
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3.4.1.1 Long-term observed climate time series

As opposed to climatological means (Sect. 3.4.1.2) that describe the state of a climate

field as the time-average over a period of time (in this study the 40 years between 1961

and 2000), the climate time series used here are historical observations for each month

and year in the period 1961–2000. These data were used to assess the simulated climate

variability from the GCMs (Randall et al., 2007) and to perform GLAM simulations. The

following observed climate time series datasets were gathered:

1. The CRU time series (CRU-TS3.0 at http://www.cru.uea.ac.uk/cru/data/hrg)

of monthly precipitation, mean temperature, diurnal temperature range and the

number of rain days for the period 1961-2000 were downloaded at the resolution of

0.5 degree. These data were used at two different temporal scales:

(a) At daily scale for GLAM, by linearly interpolating monthly data in the period

1966-1993. Only maximum and minimum temperature data were subjected to

this process (TS CRU-GM). These data were used for GLAM simulations in

Chapters 5, and 6; and

(b) at monthly scale for all climate data quality analyses presented in Chapter 4

(TS CRU-QA).

2. Monthly time series of precipitation, mean, maximum and minimum temperature

were downloaded from the GHCN version 2 (Peterson and Vose, 1997) dataset and

were then combined with daily precipitation series (accordingly aggregated to the

monthly level) that were previously assembled by researchers at CIAT, also used

in the study of Jones and Thornton (1999). The CIAT weather station database

contained data only for precipitation, and so this was the only variable for which the

two sources (i.e. GHCN and CIAT) accounted data (i.e. temperature data consisted

only of GHCN stations). Monthly total rainfall was calculated for each month,

year and weather station in the CIAT database only if all days in the month were

reported with data. The number of wet days was not computed because the data were

spatially too sparse (also see New et al. 2000). Precipitation data were subsequently

merged with the GHCN precipitation dataset. Finally, duplicates were carefully

removed, diurnal temperature range was calculated from maximum and minimum

http://www.cru.uea.ac.uk/cru/data/hrg
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temperature data, and data for years 1961–2000 were selected for all further analyses.

The final dataset (hereafter termed TS WS-QA), at the global level, comprised

29,736 rainfall locations (CIAT and GHCN), 7,198 mean temperature locations (only

GHCN), and 4,959 diurnal temperature locations (only GHCN); although not all

locations had data for all months and years and many had data for less than 10

years.

3. Observed daily precipitation data were gathered from the Centre for Climate Change

Research (CCCR) of the Indian Institute for Tropical Meteorology (IITM) for the

purposes of modelling with GLAM (Chapters 5, 6 and 8). Data were downloaded

from the CCCR portal (http://cccr.tropmet.res.in/cccr/home/index.jsp) in

NetCDF format at the native 1x1 degree resolution and for the period 1961 –2008.

Data were available only for India. This dataset (referred to as TS IMD-GM), was

developed by the Indian Meteorological Department (IMD) of the National Climate

Centre (NCC). These data are an update of the daily 1x1 degree resolution daily

rainfall dataset of Rajeevan et al. (2006) that originally covered the period 1951–

2003. The dataset is based on the interpolation of daily rainfall data from 1,803 rain

gauges across India, most of which are concentrated towards the west and northwest

of the country. Weather stations used to develop this dataset all have a minimum of

90 % data availability during the interpolated period (1951–2008). In developing the

dataset, Rajeevan et al. (2006) used the interpolation method proposed by Shepard

(1968), where each interpolated value is the result of the distance-weighted average

of an n number of neighbouring points. Shepard’s method has also been used in

other climatological datasets (e.g. Huffman et al. 2009; Willmott et al. 1985).

Figure 3.3 shows the monthly climatology derived from the TS IMD-GM dataset.

The dataset successfully reproduces the spatial and temporal consistency of rain-

fall (Rajeevan et al., 2006). For more details on the potential uses and caveats of

the TS IMD-GM dataset, the reader is referred to Rajeevan et al. (2005, 2006),

and more recently to Rajeevan and Bhate (2008). The TS IMD-GM dataset was

hereby used because (1) it includes a large number of rainfall stations for the GLAM

baseline simulation period (1966 – 1993, see Chapters 5 and 6) and the analysis

domain (India, Figure 3.2); (2) it is the only gridded dataset that covers the entire

analysis period at a daily time step needed for GLAM; (3) as reported by Rajeevan

http://cccr.tropmet.res.in/cccr/home/index.jsp
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Figure 3.3: Average monthly climatology in the IMD dataset.

et al. (2005, 2006), there is substantial agreement between the TS IMD-GM dataset

and the Global Precipitation Climatology Project (GPCC) (Huffman et al., 2009),

and the Variability Analysis of Surface Climate Observations (VASClimo, ftp://

ftp-anon.dwd.de/pub/data/gpcc/html/vasclimo_download.htm); and (4) it has

a spatial resolution at which GLAM can be operated (Challinor et al., 2004, 2005a).

3.4.1.2 Long-term observed mean climatology from interpolated surfaces

Four different datasets representing long-term mean climatology were gathered as follows:

ftp://ftp-anon.dwd.de/pub/data/gpcc/html/vasclimo_download.htm
ftp://ftp-anon.dwd.de/pub/data/gpcc/html/vasclimo_download.htm
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Table 3.2: Number of locations per data source in CL WS-QA (global).

Source Precipitation
stations

Mean tem-
perature
stations

Min., Max.
temperature
stations

Period

GHCN v2 20,590 7,280 4,966 1950-2000
WMO CLINO 4,261 3,084 2,504 1961-1990
FAOCLIM 2.0 27,372 20,825 11,543 1960-1990
CIAT 18,895 13,842 5,321 1950-2000

Notes: Sources are as follows: GHCN v2: Global Historical Climatology Network version
2 (Peterson and Vose, 1997); WMO CLINO: World Meteorological Organization Climatol-
ogy Normals; FAOCLIM 2.0: Food and Agriculture Organization of the United Nations
Agro-Climatic database (FAO, 2001); CIAT: Database assembled by Peter J. Jones at the
International Center for Tropical Agriculture (CIAT).

1. Long term climatological means of monthly precipitation and mean, maximum and

minimum temperatures from weather stations were assembled following Hijmans

et al. (2005). Data were gathered from the Global Historical Climatology Net-

work (Peterson and Vose, 1997) (GHCN, available at http://www.ncdc.noaa.gov/

pub/data/ghcn/v2), the World Meteorological Organization Climatology Normals

(WMO CLINO), FAOCLIM 2.0 (Food and Agriculture Organization of the United

Nations Agro-Climatic database) (FAO, 2001), and a number of other minor (i.e.

country-specific) sources previously compiled by researchers at the International Cen-

ter for Tropical Agriculture (CIAT, also see Jones and Thornton 1999) (Table 3.2).

Additional sources such as R-Hydronet (available at http://www.r-hydronet.sr.

unh.edu/english/) and the Oldeman (1988) database for Madagascar were also in-

cluded. Any weather station with less than 10 years of data was discarded. Data were

carefully checked for errors in locations and in data, and duplicates were removed or

merged (Hijmans et al., 2005).

The final dataset (after quality control and duplicates removal, see Hijmans et al.

2005 for more details) comprised 13,141 (35,608) locations with monthly precipitation

data, 3,744 (16,875) locations with monthly mean temperature, and 2,684 (12,458)

locations with diurnal temperature range for the study region (the globe). Data for

the number of wet days was not available and thus could not be included in this

dataset. This dataset is hereafter referred to as CL WS-QA.

2. The high resolution climate surfaces in WorldClim (Hijmans et al., 2005), avail-

able at http://www.worldclim.org. WorldClim is a 30 arc-seconds (∼1 km at the

http://www.ncdc.noaa.gov/pub/data/ghcn/v2
http://www.ncdc.noaa.gov/pub/data/ghcn/v2
http://www.r-hydronet.sr.unh.edu/english/
http://www.r-hydronet.sr.unh.edu/english/
http://www.worldclim.org
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equator) global dataset produced from the interpolation of long-term climatology as

measured in weather stations (for precipitation, and mean, minimum and maximum

temperatures). As opposed to CL CRU-QA (see below), WorldClim does not con-

tain data for the number of wet days. Global gridded data were downloaded at the

30 arc-second resolution, then masked to the analysis domain, and aggregated to 10

arc-minute using bilinear interpolation in order to reduce computational and storage

needs. Monthly maximum and minimum temperatures were used to compute diurnal

temperature range. The final dataset (referred to as CL WC-QA hereafter) com-

prised monthly climatological means of precipitation, mean temperature and diurnal

temperature range for the 12 months of the year).

3. The University of East Anglia Climatic Research Unit (CRU) dataset (New et al.,

2002), available through http://www.cru.uea.ac.uk/cru/data/hrg/ (CRU-CL-

2.0). This dataset holds significant similarities to WorldClim in terms of input data,

methods and resulting predictions (Hijmans et al., 2005), but is acknowledged to be

more robust by climatologists, as input data quality checking is reported to be much

more rigorous (Mitchell and Jones, 2005; New et al., 2002). Global data for monthly

total precipitation, and monthly mean temperature, diurnal temperature range, and

the number of wet days (i.e. days with precipitation greater than 0.1 mm, New et al.

1999) were downloaded at the only available resolution (10 arc-min). These data are

herein termed CL CRU-QA. These data, along with CL WC-QA were used only

for the climate data quality assessment presented in Chapter 4.

4. A dataset of climatological monthly means for the period 1966–1993, namedCL CRU-

EC, was calculated using the TS CRU-QA data. These were used in the EcoCrop

simulations of Chapter 7.

5. The TS IMD-GM dataset was also aggregated to the monthly climatological scale

by first calculating monthly precipitation totals and then averaging each month for

the period 1966–1993 (CL IMD-EC hereafter). These aggregated data were used

to run EcoCrop (Chapter 7).

http://www.cru.uea.ac.uk/cru/data/hrg/
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3.4.1.3 Reanalysis data

The open-access version (i.e. 2.5 x 2.5 degree) of the European Centre for Medium-Range

Weather Forecasts (ECMWF) 40+ Reanalysis (ERA-40) (Uppala et al., 2005) was used as

it is a fair intermediate between observations and coupled climate model outputs (Challi-

nor et al., 2005c; Ma et al., 2009). In the ERA-40 reanalysis, temperature observations

are assimilated directly into the reanalysis system, which makes temperature predictions

consistent and reliable, and hence useful for assessing the skill of climate models (Ma et al.,

2009; Weedon et al., 2011); however, there is no analysis of precipitation in ERA-40, mean-

ing that the model output is directly generated in the numerical weather prediction model

(i.e. via parameterized microphysical processes in clouds) (Ma et al., 2009; Uppala et al.,

2005). This leads to similar precipitation biases as those found in climate models. Despite

that, ERA-40 precipitation data was also used in order to provide a comparison with the

CMIP climate models.

Six-hourly temperatures, total precipitation and total downwards shortwave solar radiation

were retrieved from the ECMWF archive (at http://data-portal.ecmwf.int/data/d/

era40_daily/) for the period 1961-2000. Three processes were then performed:

1. ERA-40 solar radiation data were scaled onto the TS IMD-GM dataset grid (1x1

degree) using nearest-neighbour interpolation (TS E40-GM). These daily data were

used for GLAM’s baseline simulations (Chapters 5 and 6). ERA-40 was preferred

instead of the interpolated total solar radiation from CRU used by previous GLAM

studies (Challinor et al., 2004) as it provided a realistic representation of daily solar

radiation (Ma et al., 2009; Uppala et al., 2005; Weedon et al., 2011).

2. Diurnal temperature range was calculated from maximum and minimum daily tem-

peratures and the number of wet days (i.e. those where precipitation > 0.1 mm

day−1) was computed from total daily precipitation. The daily mean temperature,

diurnal temperature range, total precipitation and wet-day frequency were finally

aggregated to the monthly scale. This produced monthly gridded (2.5 x 2.5 degree)

datasets of total precipitation, mean temperature, diurnal temperature range and the

number of wet days for every year between 1961 and 2000 (TS E40-QA, hereafter).

http://data-portal.ecmwf.int/data/d/era40_daily/
http://data-portal.ecmwf.int/data/d/era40_daily/
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3. TS E40-QA were used to compute 1961–2000 monthly climatological means of the

mean temperature, diurnal temperature range, total precipitation and wet-day fre-

quency. These data are termed TS E40-QA.

3.4.1.4 CMIP3 climate model data

CMIP3 GCM simulations comprised the sole state-of-the-art public and official source

of climate data for use in impact studies after the public release of the IPCC Fourth

Assessment Report (AR4) in 2007 (IPCC, 2007), and before projections of the IPCC Fifth

Assessment Report (AR5) were publicly available (Taylor et al., 2012).

Present day (1961–2000) simulations of global climate at original GCM resolution (∼100

km) were downloaded from the CMIP3 (Coupled Model Intercomparison Project phase 3)

web data portal at https://esg.llnl.gov:8443/index.jsp (PCMDI, 2007). Monthly

time series of mean, maximum, minimum temperature and precipitation flux in NetCDF

format were downloaded for 24 coupled GCMs (Table 3.3). Separately for each GCM,

diurnal temperature range was calculated for each month and year as the difference be-

tween maximum and minimum temperatures. Similarly, total monthly precipitation was

calculated as the product between the precipitation rate, the water density at sea level

pressure and the number of seconds in the month. The number of wet days was not anal-

ysed for CMIP3 since daily data were not available for the whole period of analysis in the

CMIP3 data portal. The multi-model-mean (MMM) was calculated for all variables for

every month and year using all GCMs. Each climate model monthly time series was used

in further analyses (TS C3-QA hereafter).

In addition, the mean 1961–2000 climatology was calculated by averaging, for each vari-

able (mean temperature, diurnal temperature range and total precipitation) and every

month, the values of the whole 1961–2000 period (CL C3-QA hereafter). Thus, the final

datasets (i.e. TS C3-QA and CL C3-QA, respectively) consisted of three variables (mean

temperature, diurnal temperature range and total monthly precipitation) for 24 different

GCMs and the MMM.

https://esg.llnl.gov:8443/index.jsp
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Table 3.3: Available CMIP3 GCMs, resolutions, and main references.

Model Country Atmosphere Ocean Reference

BCCR-BCM2.0 Norway T63, L31 1.5x0.5, L35 Furevik et al. (2003)
CCCMA-CGCM3.1-T47 Canada T47, L31 1.85x1.85, L29 Scinocca et al. (2008)
CCCMA-CGCM3.1-T63 Canada T63, L31 1.4x0.94, L29 Scinocca et al. (2008)
CNRM-CM3 France T63, L45 1.875x(0.5-2), L31 Salas-Mlia et al. (2005)
CSIRO-Mk3.0 Australia T63, L18 1.875x0.84, L31 Gordon et al. (2002)
CSIRO-Mk3.5 Australia T63, L18 1.875x0.84, L31 Gordon et al. (2002)
GFDL-CM2.0 USA 2.5x2.0, L24 1.0x(1/3-1), L50 Delworth et al. (2006)
GFDL-CM2.1 USA 2.5x2.0, L24 1.0x(1/3-1), L50 Delworth et al. (2006)
GISS-AOM USA 4x3, L12 4x3, L16 Russell et al. (1995)
GISS-MODEL-EH USA 5x4, L20 5x4, L13 Schmidt et al. (2006)
GISS-MODEL-ER USA 5x4, L20 5x4, L13 Schmidt et al. (2006)
IAP-FGOALS1.0-G China 2.8x2.8, L26 1x1, L16 Yongqiang et al. (2004)
INGV-ECHAM4 Italy T42, L19 2x(0.5-2), L31 Gualdi et al. (2008)
INM-CM3.0 Russia 5x4, L21 2.5x2, L33 Diansky and Zalensky (2002)
IPSL-CM4 France 2.5x3.75, L19 2x(1-2), L30 Marti et al. (2005)
MIROC3.2-HIRES Japan T106, L56 0.28x0.19, L47 Hasumi and Emori (2004)
MIROC3.2-MEDRES Japan T42, L20 1.4x(0.5-1.4), L43 Hasumi and Emori (2004)
MIUB-ECHO-G Germany T30, L19 T42, L20 Groetzner et al. (1996)
MPI-ECHAM5 Germany T63, L32 1x1, L41 Jungclaus et al. (2006)
MRI-CGCM2.3.2A Japan T42, L30 2.5x(0.5-2.0) Yukimoto et al. (2001)
NCAR-CCSM3.0 USA T85L26, 1.4x1.4 1x(0.27-1), L40 Collins et al. (2006)
NCAR-PCM1 USA T42, L18 1x(0.27-1), L40 Washington et al. (2000)
UKMO-HADCM3 UK 3.75x2.5, L19 1.25x1.25, L20 Gordon et al. (2000)
UKMO-HADGEM1 UK 1.875x1.25, L38 1.25x1.25, L20 Johns et al. (2006)

3.4.1.5 CMIP5 climate model data

Daily CMIP5 outputs of the historical and RCP4.5 transient simulations were downloaded

from the CMIP5 archive, freely available at http://pcmdi9.llnl.gov/esgf-web-fe/

(Taylor et al., 2012). A total of 26 GCMs presented data for the historical simulation

at the time queried (February 2012, Table 3.4). Available simulations (a total of 70, Ta-

ble 3.4) at the daily scale for five variables were downloaded: mean, maximum, minimum

temperature, precipitation flux, and shortwave downwards radiative flux. Data for the

years 1961–2000 (historical) and 2020-2049 (RCP4.5) were downloaded to produce the

following four sets of data:

1. Historical data of maximum and minimum temperatures were used to compute diur-

nal temperature range, whereas daily precipitation was used to calculate the wet-day

frequency. All daily historical data were aggregated to monthly. This produced time

series of total monthly precipitation, number of wet days, and means for mean tem-

perature and diurnal temperature range for the period 1961–2000, which was termed

TS C5-QA. The MMM was calculated using all available climate models.

http://pcmdi9.llnl.gov/esgf-web-fe/
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2. Using TS C5-QA, climatological means of monthly precipitation, number of wet

days, and means for mean temperature and diurnal temperature range were produced

(CL C5-QA hereafter). As with TS C5-QA, the MMM was calculated for the four

variables.

3. Daily-scale data for India were extracted for the periods 1966-1993 (baseline) and

2020-2049 (RCP4.5). These were termed TS C5-GM and were used for GLAM

simulations. Owing to lack of consistency in the availability of the needed variables

(i.e. precipitation flux, minimum and maximum surface temperatures and down-

wards radiative flux) across GCMs and periods, only outputs from 15 out of the 26

GCMs were used in the analyses (marked with § in Table 3.4). Initial conditions

ensemble members for some GCMs were available, and thus the total of GCM simu-

lations used as inputs for GLAM was 32. These daily data were used for the GLAM

simulations of Chapter 6 and 8. Data were available in most cases for the years

1950-2005; however, since these data were used for baseline GLAM simulations, the

period was limited to that of the yield time series (1966-1993, Sect. 3.4.2.1). To keep

consistency with the length of the baseline (28 years), the future period was chosen

to be 2022-2049.

4. Using TS C5-GCM, the monthly means and totals were first calculated for mean,

minimum and maximum temperatures and for daily precipitation. These data,

namedCL C5-EC, were then averaged over the whole 1966-1993 (2020-2049) period

so as to be used as baseline (future) data for EcoCrop (see Chapter 7).

3.4.1.6 Bias corrected CMIP5 output

Previous studies where GLAM was used have employed raw climate model output directly

into the crop model, with only a limited account for climate model bias through the

calibration of CY G (Challinor et al., 2007, 2009a, 2010), or have reported little benefit

from bias correction (Challinor et al., 2005a). Nevertheless, climate model bias has been

acknowledged as a critical barrier for crop model simulation (Berg et al. 2010; Iizumi

et al. 2009a; Ines et al. 2011, also see Chapter 4 of this thesis and Ramirez-Villegas et al.

2013a). Particularly for threshold-dependent model processes, there is a risk that climate

model bias could trigger or prevent threshold exceedance, and in turn significantly under-
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Table 3.4: CMIP5 GCMs used in the study and their main characteristics.

Model name Ensemble members NC HRx NR1 HRy Calendar

BCC-CSM1.1 § r1i1p1 128 2.8125 64 2.8125 365
BNU-ESM § r1i1p1 128 2.8125 44 4.0909 365
CCCMA-CanCM4 r[1-10]i1p1 128 2.8125 64 2.8125 365
CCCMA-CanESM2 § r[1-5]i1p1 128 2.8125 64 2.8125 365
CNRM-CM5 § r1i1p1 256 1.4063 128 1.4063 366
CSIRO-ACCESS1.0 § r1i1p1 192 1.875 145 1.2414 366
CSIRO-Mk3.6.0 § r[1-10]i1p1 192 1.875 96 1.875 365
ICHEC-EC-EARTH r[6,8]i1p1 320 1.125 160 1.125 366
INM-CM4 § r1i1p1 180 2.0 120 1.5 365
IPSL-CM5a-LR § r[1-4]i1p1 96 3.75 96 1.875 365
IPSL-CM5a-MR r1i1p1 144 2.5 143 1.2587 365
IPSL-CM5b-LR § r1i1p1 96 3.75 96 1.875 365
MIROC-ESM r1i1p1 128 2.8125 64 2.8125 366
MIROC-ESM-CHEM r1i1p1 128 2.8125 64 2.8125 366
MIROC-MIROC4h r[1-3]i1p1 640 0.5625 320 0.5625 366
MIROC-MIROC5 r1i1p1 256 1.4063 128 1.4063 365
MOHC-HadCM3 r[1-10]i1p1 96 3.75 73 2.4658 360
MOHC-HadGEM2-CC § r1i1p1 192 1.875 145 1.2414 360
MOHC-HadGEM2-ES § r1i1p1 192 1.875 145 1.2414 360
MPI-ESM-LR § r[1-3]i1p1 192 1.875 96 1.875 366
MPI-ESM-MR § r1i1p1 192 1.875 96 1.875 366
MRI-CGCM3 § r[1,5]i1p[1,2] 320 1.125 160 1.125 366
NCAR-CCSM4 § r[1,2]i1p1 288 1.25 192 0.9375 365
NCC-NORESM1-M r1i1p1 144 2.5 96 1.875 365
GFDL-ESM2G r1i1p1 144 2.5 90 2.0 365
GFDL-ESM2M r1i1p1 144 2.5 90 2.0 365

Notes: Ensemble member names as specified in Taylor et al. (2012), with r referring to
the realization (i.e. equally realistic runs but initialized with different initial conditions), i
referring to the initialization method (not relevant for historical runs), and p referring to any
perturbed physics ensemble. NC and NR Number of columns (NC) and rows (NR) in the
climate grid. HRx and HRy refer to horizontal resolution in the x-axis (longitude, HRx) and
the y-axis (latitude, HRy), in decimal degree. Calendar type refers to that used in the climate
model run: 365 is a calendar without leap years, 366 is the standard Gregorian calendar (with
leap year), and 360 refers to the calendar in which all months have 30 days only used by the
UK MetOffice climate models. The symbol § indicates that the GCM output was also used
for GLAM and EcoCrop simulations

.

or over-estimate the effects of future projected climate change (Hawkins et al., 2013a,b;

Ramirez-Villegas et al., 2013a). In addition, climate model bias could have a significant

impact on threshold-dependent processes of GLAM or on suitability responses to climate

in EcoCrop.

For these reasons, both raw and bias corrected simulated GCM outputs were used as

inputs into GLAM and EcoCrop in this work. Bias corrected GCM output is here defined

as any treatment of the raw GCM output in an attempt to make it more realistic (Hawkins

et al., 2013b; Ines and Hansen, 2006). Here, the definition of bias correction includes the

delta method (DEL, see below and Ver Hoef 2012). Three different methods were used.

The first two are based on the methodology of Hawkins et al. (2013b), who described two

climate model output bias correction methods: simple bias correction (or nudging, SH)

and change factor (or delta method, DEL), both of which can be applied onto means or
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onto both means and variability. Here, the two methods were used only to correct for

bias in the mean, without accounting for variability. This was done because the observed

temperature data used here were scaled from monthly means, and thus no account of

variability could be done.

The SH method used the difference between the observed and simulated climatological

means in the baseline to correct the mean of the raw daily data of the GCM. The SH

method, thus, produces a time series where the daily variability is that simulated by

the GCM. For temperature, the arithmetic difference was used (Eq. 3.2), whereas for

precipitation and solar radiation the relative differences were used (Eq. 3.3).

MSH(t) = MRAW (t) +
(

OB −MB

)

(3.2)

MSH(t) = MRAW (t) ∗

(

1 +
OB −MB

MB

)

(3.3)

where M refers to the model data and O to the observations. Time averages (i.e. clima-

tological means of the period 1966-1993) are indicated by a bar above the symbol. The

corrected values (subscript SH) for each day t were calculated by adding the mean bias of

the model with respect to the observations in the baseline period (subscript B) to the raw

climate model output (subscript RAW ), where raw is either the historical or future GCM

output. Daily SH method outputs are hereafter referred to as C5-SH and were produced

both for the baseline (1966-1993) and the future climate scenario (2022-2049, RCP4.5).

The DEL method is most commonly referred to in the impacts and statistics literature

as the ‘delta approach’ or ‘delta method’ (Ruane et al., 2013; Ver Hoef, 2012). It has been

widely used to downscale climate change model simulations for input into impact studies

(Ruane et al., 2013; Singh et al., 2012; Tabor and Williams, 2010). As implemented

here, the method consisted of adding the GCM projected change in each variable to the

observations. As for SH, DEL temperatures were calculated using the arithmetic difference

(Eq. 3.4), but for precipitation and solar radiation the relative difference was used instead

(Eq. 3.5).



Chapter 3. Data and models 71

MDEL(t) = OB(t) +
(

MP −MB

)

(3.4)

MDEL(t) = OB(t) ∗

(

1 +
MP −MB

MB

)

(3.5)

where the subscript P refers to the future projection (2022-2049 in this study) and the

climatological means are indicated with a bar above respective letters. DEL corrected

data are hereafter referred to as C5-DEL.

Both SH and DEL methods were independently applied for each grid cell and GCM sim-

ulation (i.e. correction factors varied spatially). Correction factors were in both cases

derived for each month and then applied to daily values. For a more complete description

and analysis of these two methods and a review of other methods the reader is referred to

Hawkins et al. 2013a,b.

The last method used here is called local-intensity scaling (LOCI) and is classified

as an ‘empirical-statistical downscaling and error correction method’ (Schmidli et al., 2006;

Themessl et al., 2011). The technique consists in correcting both wet-day intensity and

frequency. In other words, it corrects biases in the number of rainy days and in the total

precipitation falling in such days. The underlying assumption in LOCI is that climate

model precipitation integrates all relevant predictors. Therefore, to apply LOCI to a

given model simulation, other climate fields are irrelevant (Themessl et al., 2011). This

means that solar radiation and temperatures are not corrected. Although this assumption

may not hold valid under a number of conditions (Ehret et al., 2012; Piani and Haerter,

2012; Themessl et al., 2012), LOCI has been found to be amongst the best performing bias

correction techniques (Ehret et al., 2012; Themessl et al., 2011). Since LOCI corrects using

parameters that are valid over a sufficiently long period of time (e.g. 30-year climatology),

it is capable of correcting both numerical weather predictions and transient climate change

simulations (Schmidli et al., 2006; Themessl et al., 2011).

On a monthly basis, two parameters were estimated: the model wet-day threshold (WTmod)

and the scaling factor (S). First, WTmod was estimated as the threshold above which the

number of wet days predicted by the model equalled the number of wet days in the obser-

vations. The number of wet days in the observations is hereby defined following Schmidli
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et al. (2006) as the number of days above a threshold WT obs of 1 mm day−1 (also see New

et al. 2000). Next, S was estimated using Eq. 3.6.

St,i =
PWDobs

t,i −WT obs
t,i

PWDmod
t,i −WTmod

t,i

(3.6)

where PWD is the climatological mean of wet days for observations (obs) and GCM

(mod). PWD is calculated for days above the respective WT threshold. The scaling

factor is calculated for each location (i) and for each month in the year (t), and is a

single value representing the whole baseline period. The monthly correction factor and

the WTmod threshold are then used to correct the intensity and frequency of each month

in both the baseline and the future GCM simulations. As with the SH method, there is an

assumption that the model bias stays constant or has negligible variation through time.

Given that the analyses presented here focus on the 2030s, this assumption is unlikely to

bias the results presented (see e.g. Hawkins et al. 2013a). LOCI-corrected data are termed

C5-LOCI.

All methods were applied at the resolution of the TS IMD-GM dataset (1x1 degree) and

thus there was some degree of downscaling involved in the application of the three tech-

niques (Hawkins et al., 2013b). The resulting datasets were all at daily scale for the periods

1966-1993 and 2022-2049.

Bias corrected data were also used for EcoCrop suitability simulations. Since EcoCrop

uses monthly climatological means, daily precipitation and mean, maximum and minimum

surface temperature were totalised or averaged over each month and then averaged over the

entire baseline (1966–1993) and future scenario (2022–2049) periods in order to obtain bias-

corrected GCM climatological means for C5-SH, -DEL and -LOCI (see Table 3.1). Because

the climatological means of the DEL and BC methods are mathematically equivalent (see

Hawkins et al. 2013b), this reduced EcoCrop bias corrected inputs to 2 (DEL and LOCI)

as opposed to the 3 used for GLAM (SH, DEL, LOCI). Since EcoCrop did not make use

of solar radiation data, no further processing was done for that variable.
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3.4.2 Crop data

3.4.2.1 Crop yield and irrigated areas

Time series of groundnut crop yields and irrigated area for the period 1966–1993 were

obtained from a previous GLAM study (Challinor et al., 2004). Using the district-level

harvested area and total production, yearly crop yields were calculated. These crop yields

were first linearly de-trended to remove any monotonic trend (due to improvement of

technologies, higher fertilizer use, and new varieties) to the technology levels of 1966, and

then scaled onto the IMD grid by assuming that the crop is evenly distributed within

each district. Irrigated area data at the district level were also scaled onto the IMD grid.

Whenever a grid cell was composed by fractions of various districts, the detrended yield

or irrigated fraction of the grid cell was calculated as the weighted-area average of all

districts. Districts and years with missing data were not used in calculating grid cell

values for those specific years, but they were used for those years for which data were

available. The resulting spatially observed gridded yield data are shown in Figure 3.4.

(a) Ȳ (b) σY

Figure 3.4: Observed mean (Ȳ ) and standard deviation (σY ) of groundnut yields. Grid
cells marked with an “X” indicate locations where area harvested is less than 0.2 % of

the total grid cell area.

The highest mean yield areas are located in northern Gujarat, and along the east coast of

India (states of Andhra Pradesh, Tamil Nadu and Orissa). The largest yield variability

was found in northern Gujarat as well as in central India. Marginal yields (i.e. green areas

of Figure 3.4) were generally observed in areas where irrigation rates were also very low
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(Figure 3.5) (e.g. Rajasthan, Uttar Pradesh, and southern Gujarat). In these areas, there

is generally a low use of inputs, thus leading to large yield gaps (Bhatia et al., 2009). A

more complete description of these data has been done by Challinor et al. (2003, 2004).

Figure 3.5: Observed mean irrigated fraction scaled to the IMD grid. Grid cells with
a black “X” indicate places where mean irrigated fraction equals zero, white “X” are in
places where irrigated area is between 0 and 1 %, and white dots indicate places where

irrigated area is between 1 and 3 %.

3.4.2.2 Crop presence and absence data

Two different presence-absence datasets were used. The first one was used for calibrating

EcoCrop, while the second was used for evaluating the model.

For the first dataset, occurrences (i.e. presence observations) of groundnut were gathered

from the Global Biodiversity Information Facility (GBIF, http://data.gbif.org), and

the study of (Bhatia et al., 2006). The data consisted of geographic coordinates of 1,716

locations of groundnut (Arachis hypogaea L.) representing areas where the crop is grown

within India. The data were carefully verified for the consistency of its geographic coor-

dinates (latitude, longitude) and corrected or removed as needed. Only unique locations

in a 30 arc-second spatial resolution grid were used for all further steps (1,464 locations,

“EcoCrop calibration dataset” hereafter, Figure 3.6). Crop locations were used since the

alternative approach of using crop distribution gridded data (Monfreda et al., 2008; You

http://data.gbif.org
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Figure 3.6: Crop locations used for EcoCrop’s calibration overlaid with total annual
rainfall. Total annual rainfall as in the CL WCL-QA dataset.

et al., 2009) can lead to inaccuracies due to the known spatial scale differences in those

datasets (Licker et al., 2010). The crop presence points dataset was used to calibrate

EcoCrop.

For the second dataset, the district-level harvested area described above (Sect. 3.4.2.1)

were used to produce a presence-absence evaluation dataset, whereby any districts where

there was no harvested area reported between 1966–1992 were considered absences. This

dataset was gridded at two resolutions: 2.5 arc-minutes (roughly 5 km), and 1x1 degree

(roughly 100x100 km) (Figure 3.7) in order to evaluate the baseline suitability predictions

at those two resolutions (see EcoCrop’s evaluation procedure in Sect. 7.3.2).

3.4.2.3 Crop calendar data

Two crop calendar datasets were used. The first dataset was used in GLAM simulations.

This source consisted in the planting windows from the global study of Sacks et al. (2010).

Sacks et al. (2010) assembled a global dataset of planting and harvest dates for 19 major

crops using six different sources: FAOs Global Information and Early Warning System

(GIEWS) (FAO, 2007), USDA (2006), USDA-FAS (2008), USDA-NASS (1997), USDA-

FAS (2003), and IMD-AGRIMET (2008). The dataset of Sacks et al. (2010) is the first
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(a) 2.5 arc-minute (b) 1x1 degree

Figure 3.7: Gridded district-level crop presence evaluation data at 2.5 arc-minute and
1x1 degree spatial resolutions. Absence areas are those where no harvested area was

reported between 1966 and 1993.

global dataset with georeferenced crop planting and harvesting information. The filled

dataset for groundnut was used because (1) it is trustable for India, and (2) it provides

spatially continuous values of planting windows for the region of analysis. The data were

aggregated onto the TS IDM-GM precipitation grid using area-weighted averages and

carefully checked for inconsistencies. Sacks et al. (2010) crop calendar data are hereafter

referred to as GLAM-SPD dataset

The second source was the growing season data of Ericksen et al. (2011), who determined

the start and length of the growing season across the global tropics and sub-tropics using

a simple water balance module (fully described by Jones 1987) and spatially-explicit time

series of weather generated using the MarkSim weather generator (see Jones and Thorn-

ton 2000) at a resolution of 5 arc-minutes. In this dataset (further referred to as E-LGP

dataset), the growing season starts after 5 consecutive growing days and ends after 12

consecutive non-growing days, with a growing day defined as that with ratio of actual to

potential evapotranspiration (Ea/Ep) greater than 0.35 and minimum daily temperature

greater than 6 ◦C (Ericksen et al., 2011; Jones et al., 2009). These estimations of grow-

ing season duration were used instead of the growing season data of Sacks et al. (2010)

(described above) since these were available at a sufficiently high resolution for EcoCrop
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calibration and captured the spatial variation in the rainfall-driven growing season start

and duration (Mehrotra, 2011). The E-LGP dataset was used directly to drive the EcoCrop

model (see Chapter 7). In turn, these estimates were not used for GLAM simulations since

it was preferred that GLAM planted the crop according to its own water balance model

using an automatic planting routine (see Chapter 5, Sect. 5.3.2).

3.4.3 Soil data

GLAM requires soil hydrological parameters to be defined. In previous GLAM studies,

a number of soil classes were defined, with each class having a prescribed value for the

three soil moisture limits, namely, the volumetric moisture contents at permanent wilting

point (θll), field capacity (θdul) and saturation (θsat). In the present study, spatially vari-

able soil hydrological parameters were derived from the Harmonized World Soil Database

(HWSD) (Batjes, 2009). The HWSD contains over 16,000 different soil mapping units.

This database combines regional and national soil studies with the information contained

within the 1:5,000,000 scale FAO-UNESCO Soil Map of the World (FAO/UNESCO, 1974).

The spatially explicit properties in the soil classes occurring within the analysis domain

were calculated as the area-weighted-average of each soil profile in each 1x1 grid cell of the

IMD grid. This resulted in three (one for each soil moisture limit) spatially explicit con-

tinuous 1x1 degree datasets that covered the analysis domain. In each grid cell, a GLAM

simulation was always associated with its three respective soil moisture content values.

3.5 Models

3.5.1 The GLAM crop model

The crop model used in this study falls in the category of regional-scale process-based

crop models (see Chapter 2, Sect. 2.3.2). The General Large Area Model for annual crops

(GLAM) is a model designed to capitalise on the large-scale relationships between climate

and crop yields (Challinor et al., 2004). Here, release version 2 of the groundnut GLAM

model was used (GLAM-R2). For simplicity, the name GLAM is used to refer to the latest

release of GLAM hereinafter. GLAM is a process based model in which some varietal-level

detail is skipped but enough detail is retained to ensure that the weather-yield relationships
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are captured. GLAM explicitly models the controls of soil water availability, temperature

and solar radiation on crop growth, but accounts for nutrition, management practices,

pests and diseases through a yield gap parameter (CY G). To some extent, GLAM’s CY G

can also account for biases in input data (Challinor et al., 2005c; Watson and Challinor,

2013).

GLAM integrates the benefits of process-based approaches (i.e. transferability across space

and time) and the benefits from empirical approaches (i.e. low data intensity, validity over

large areas), thus constituting an approach for assessing the impacts of climate variability

and change (Challinor et al., 2004). The model is mathematically one-dimensional and

simulations can thus be performed at any resolution, provided that crop-climate relation-

ships exist. GLAM has been used at scales between tens to hundreds of kilometres, which

is consistent to that of regional and global climate models. GLAM can be used with

pre-processed or raw climate model output at a variety of spatial scales (Challinor and

Wheeler, 2008b).

GLAM is less complex than field-scale models, but more complex than statistical and

niche based models. GLAM, therefore, allows to reduce the risk of over-parameterisation,

while at the same time providing a model that can be used under a variety of spatio-

temporal domains without involving the risk of extrapolation (Challinor and Wheeler,

2008b; Challinor et al., 2009b). However, these advantages may present a number of

drawbacks, including the difficulty in modelling non-climatic processes that influence crop

yields (Challinor and Wheeler, 2008b), or the risk of aggregation error (Hansen and Jones,

2000).

GLAM has been used extensively to simulate groundnut crop yields in India. Challinor

et al. (2004) optimised the model over 2.5-by-2.5 grid cells and found the model to be in

broad agreement with reported crop yield and other observations. Challinor et al. (2005b)

further developed the model and tested its predictive skill under high temperature stress

conditions. Challinor et al. (2005c) used raw and bias-corrected reanalysis data as input

into GLAM, while Osborne et al. (2007) incorporated it within the land surface component

of a GCM, thus permitting fully coupled crop-climate simulation. More recently, Challi-

nor et al. (2010) used GLAM to estimate the future risk of wheat crop failures, develop

genotypic adaptation options and associate the model output with socio-economic data.
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3.5.1.1 Model structure

Figure 3.8 shows GLAM-R2 structure as a whole. In GLAM, total crop biomass is esti-

mated on a daily basis using the product of the total plant transpiration and the tran-

spiration efficiency (TE), whereas grain yield is estimated using the total biomass and the

time-integrated rate of change in the harvest index (∂HI/∂t). To estimate transpiration, a

daily water balance is computed based on the Priestley-Taylor evapotranspiration equation

(Priestley and Taylor, 1972) and the potential water uptake (Passioura, 1983). Leaf area

growth, which in GLAM is simulated using a prescribed constant leaf area index growth

rate (∂L/∂t) is a key input to water balance as it defines the total potential energy-limited

transpiration. Total evapotranspiration is thus affected by leaf size, soil structure, and soil

water availability.

Figure 3.8: Structure of the model GLAM. SLA is specific leaf area, HI is harvest index,
∂HI/∂t is the rate of change in the harvest index, and Y GP is the yield gap parameter
(CY G). Blue boxes indicate model constants, grey boxes are model prognostic variables
(except yield, which is shown in green), and light orange box indicates intermediate
variables. Weather inputs are in hollow rectangles outside the model box. Arrows show

flow of information. Adapted from Challinor and Wheeler (2008a).

Crop development phases in GLAM are calculated using a thermal time accumulation

equation with three cardinal temperatures. As mentioned above, the yield gap parameter

CY G is a model constant introduced to account for non-modelled processes that reduce

crop yields (such as sub-optimal management and pests and diseases). Model internal

consistency is kept using a prescribed value of SLA (specific leaf area, Challinor and
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Wheeler 2008a). Additional processes are parameterised in GLAM, such as the effect

of high temperatures during flowering (Challinor et al., 2005b) and on photosynthesis

(Challinor et al., 2009b), the effect of water stress on flowering (Challinor et al., 2006),

and the effect of elevated CO2 concentrations (Challinor and Wheeler, 2008a). Further

details on GLAM are provided in subsequent sections.

3.5.1.2 Crop development

Sowing occurs either on a given day (specified in as model input) or on the first day that

soil moisture exceeds Csow (a fraction of maximum available soil water). If Csow is not

reached after 30 days, the crop is planted regardless of soil moisture. Crop growth and

development then starts after a number of days have passed (emergence time, tem, in

days), when the leaf area index (LAI) becomes non-zero, and thermal time (tTT ) starts to

be calculated (Eq. 3.7).

tTT =

∫ T

ti

(Teff − Tb) dt (3.7)

where,

t is the time (in days)

Tb is the base temperature below which development ceases

i is the development phase, and

Teff is the effective temperature, defined by Eq. 3.8

and

Teff =



















T̄ Tb ≤ T̄ ≤ To

To − (To − Tb)
(

T̄−To

Tm−To

)

To ≤ T̄ ≤ Tm

Tb T̄ < Tb or T̄ > Tm

(3.8)

where,

To is the optimal temperature for crop development,

Tm is the maximum temperature for crop development, and
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T̄ is the observed mean air temperature of the day, calculated as the average of maximum

(Tmax) and minimum (Tmin) daily observed temperatures.

Groundnut is modelled using four development phases. These are in agreement with those

proposed by Hammer et al. (1995), whilst being a simplification of the 13 stages considered

by the field-scale peanut model PNUTGRO (Hoogenboom et al., 1992). The value of i

varies from 0 to 3, with 0 when the crop is between sowing and flowering, 1 when the

crop is between flowering and start of pod-filling, 2 when the crop is between start of pod-

filling and maximum leaf area (maximum LAI) and 3 when the crop is between maximum

LAI and harvest maturity. Each stage starts at a given time (ti) and is completed when

a stage-specific thermal requirement is met. Harvest occurs at maturity, unless there is

terminal drought stress (see Sect. 3.5.1.11) or a harvest date is specified.

3.5.1.3 Leaf area dynamics

Leaf area growth is determined via Eq. 3.9, as follows:

∂L

∂t
=







(

∂L
∂t

)

max
∗ CY G ∗min

(

S
Scr

, 1
)

i < 3

0 i = 3
(3.9)

where,

L is the effective LAI,
(

∂L
∂t

)

max
is the parameterised maximum rate of growth of the leaf area index,

CY G is the yield gap parameter,

Scr is a critical value of S below which leaf area growth is affected by water stress, and

S is the soil water stress factor (Eq. 3.10)

S =
TT

TTpot
(3.10)

where,

TT is the rate of transpiration, and
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TTpot is the rate of potential transpiration

3.5.1.4 Root growth

Root growth is parameterised using the following equations:

∂lv(z = 0)

∂L
= prescribed constant (3.11)

VEF = prescribed constant (3.12)

lv(z = zef ) = prescribed constant (3.13)

where,

lv is the root length density by volume,

z is the depth across the soil profile,

zef is the depth of the root extraction front, and

VEF is the extraction front velocity

3.5.1.5 Biomass and yield

Biomass is determined using the transpiration efficiency (ET ), the maximum normalised

transpiration efficiency (ETN,max), the vapour pressure deficit (V ), and the actual crop

transpiration (TT ) (Eq. 3.14)

∂W

∂t
= TT ∗min

(

ET

V
,ETN,max

)

(3.14)

The vapour pressure deficit (V ) is estimated using the maximum and minimum saturated

vapour pressure (esat) (Eq. 3.15)
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V = CV [esat (Tmax)− esat (Tmin)] (3.15)

where,

CV is a constant (Tanner and Sinclair, 1983), and

esat is parameterised as a function of temperature (T ) after Bolton (1980) (Eq. 3.16)

esat(T ) = 6.112 ∗ e
17.67∗T
T+243.5 (3.16)

Yield is determined using the total crop biomass (W ) and the harvest index (HI) in any

day after the start of pod-filling (i ≥ 2) (Eq. 3.17).

Y = HI ∗W (3.17)

where the rate of change in the harvest index (∂HI/∂t) is parameterised as a constant.

3.5.1.6 Soil water balance

The soil is assumed to be divided in NSL layers, all with the same values of field capac-

ity (θdul), wilting point (θll), and saturation (θsat). The depth of the profile is zmax and

each soil layer has a depth z, and an associated value of lv(z), which is in turn deter-

mined by Eq. 3.13. A value of volumetric water content (θ) is calculated for each day by

first calculating runoff using the US Soil Conservation Service method (USDA-SCS, 1964)

(Eq. 3.18)

R =
P 2

P + S
(3.18)

where R is the runoff, P is the precipitation and S is the amount of water that can soak

into the soil. The value of S is assumed to be equal to the saturated hydraulic conductivity

of the soil ksat. Drainage is then calculated according to (Suleiman, 1999) (Eq. 3.19 – 3.22).
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∂θ

∂t
= −FD (θs − θdul) (3.19)

D = Cd1θ
2
dul + Cd2θdul + Cd3 (3.20)

F = 1−
ln(Qi + 1)

ln(ksat + 1)
(3.21)

ksat = Kks

(

θsat − θdul
θdul

)2

(3.22)

where,

D is the drainage rate,

F is a fraction of the drainage rate that accounts for simultaneous inflow from the layer

above,

θs is the initial value of θ,

Qi is the incoming water flux from the layer above (P − R in the case of the uppermost

layer),

Cd1, Cd2, Cd3 and Kks are all empirical constants derived from statistical fits to observed

data by Suleiman (1999); Suleiman and Ritchie (2003) and Ritchie et al. (2009). Values

adopted were Cd1 = 2.96, Cd2 = −2.62, Cd3 = 0.85, and Kks = 37 cm day−1

Water is finally extracted from a parameterised depth (zed) by evaporation and from the

root zone by roots, in agreement with transpiration. A value of NSL of 25 has been adopted

in all studies using GLAM (Challinor et al., 2004).

3.5.1.7 Evaporation and transpiration

Transpiration (TT ) and evaporation (E) rates are in GLAM limited by plant-soil structure,

energy and water availability. Physiologically-limited transpiration is computed following

Azam-Ali (1984) (Eq. 3.23)
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T p
Tpot =







TTmax

(

1− Lcr−L
Lcr

)

L < Lcr

TTmax L ≥ Lcr

(3.23)

where,

Lcr is the critical value of LAI below which transpiration is affected by leaf size, and

TTmax is the maximum potential transpiration rate

The Priestley-Taylor equation (Priestley and Taylor, 1972) is then used to calculate the

energy-limited evaporation (Ee) and transpiration (T e
T ) rates (Eq. 3.24).

ET
pot = Ee + T e

T =
α

δ

∆(RN −G)

∆ + γ
(3.24)

where,

RN is the net all-wave radiation,

G is the soil heat flux,

δ is the latent heat of vaporisation of water,

γ is the ratio of the specific heat of air at constant pressure to the latent heat of vapori-

sation of water

α is defined following Jury and Tanner (1975) (Eq. 3.25)

α = 1 + (α0 − 1)
V

Vref

(3.25)

where,

α0 = 1.26 is a pre-correction value (Priestley and Taylor, 1972), and

Vref is a reference value for VPD (vapour pressure deficit) (Steiner et al., 1991)

Net radiation is parameterised using the crop albedo (A) and the incoming short-wave

solar radiation (from observations), under the assumption that net-long wave radiation is

zero (Eq. 3.26)
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RN = (1−A)Srad (3.26)

Light interception by the canopy is modelled following Challinor et al. (2009a) (Eq. 3.27

and 3.28)

Ee = Ee
pote

−kL (3.27)

T e
T = Ee

pot(1− e−kL) (3.28)

where k is the light extinction coefficient. Potential energy and soil-structure limited

evaporation is modelled following Cooper et al. (1983) (Eq. 3.29)

Es
pot =

Ee

tR
(3.29)

where tR is the number of days since the daily total rainfall was greater than Pcr = 1

mm. The potential energy and physiology limited transpiration is then calculated as the

minimum value between the potential energy- and the potential physiologically-limited

transpiration rates (Eq. 3.30)

TTpot = min(T p
Tpot, T

e
T ) (3.30)

Finally, water availability constraints to transpiration are accounted for by partitioning

the available water according to demand (Eq. 3.31).

TT = TTpot and E = Epot for θpe ≥ ET
pot

TT = θpe
T e
T

T e
T
+Ee and E = θpe

Ee

T e
T
+Ee for θpe < ET

pot

(3.31)

where the potentially extractable soil water (θpe) is calculated following Passioura (1983)

(Eq. 3.32),
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θpe =

∫ zmax

0
(θ(z)− θrll)(1− e−kDIF lv(z))dz (3.32)

where kDIF is the uptake diffusion coefficient.

3.5.1.8 Heat stress during flowering

High temperatures during the flowering stage have been reported to cause crop failures

(Vara Prasad et al., 2000, 1999). Challinor et al. (2005b) simulated the effect of high tem-

perature on the flowering distribution, pod-set, in the harvest index, and yields. Their pa-

rameterisation consists of 5 different equations. The first two equations (Eq. 3.33 and 3.34)

are used to determine the critical and limit temperature (Tcr and Tlim) before anthesis

(from t = 6 to t = 0, relative to anthesis) and after anthesis (from t = 1 to t = 12, relative

to anthesis) of flowers that open on each day of the flowering stage. Before anthesis, the

temperatures vary as a function of:

Tcr(t) = min
[

Tmin
cr , 36 + Sc(t− 6)

]

Tlim(t) = 60 + Sl(t− 6)







,−6 ≤ t ≤ 0 (3.33)

where

Tcr is the temperature above which pod-set starts to be decreased,

Tlim is the temperature at which pod-set is zero,

Tmin
cr is the minimum possible value of Tcr, and

Sc and Sl are regression slopes developed from empirical data for three different types of

cultivars (Table 3.5).

Moderately tolerant cultivars do not exhibit variation in Tcr with time, whereas tolerant

and sensitive cultivars increase the value linearly from 36 to 34 ◦C within the flowering

period. Table 3.5 shows the heat stress parameters from the study of Challinor et al.

(2005b). After anthesis, the critical and limit temperatures are parameterised as follows

(Eq. 3.34):

Tcr(t) = min
[

Tmin
cr , 37.8 + 1.8t− 3d

]

Tlim(t) = Tia + 0.75t − 1.5d







, 0 < t ≤ 12 (3.34)
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Table 3.5: Parameter values for heat-tolerant, moderately-sensitive and sensitive
groundnut cultivars, as reported by Challinor et al. (2005b).

Parameter TOL MOD SEN

Tmin
cr 37.0 34.0 36.0

Sc 0.3 0.0 0.3
Sl 2.0 2.5 3.0
Tia 53.0 51.0 48.8
Pcr 0.60 0.60 0.95
Tmin
lim 40.0 40.0 40.0

Notes: Tmin
lim was introduced by Challinor

et al. (2007).

In Eq. 3.34 the temperature sensitivity values also depend on duration (d). In these

equations, the values of Tcr and Tlim will increase with time (i.e. the further from anthesis

the less sensitive the plant is) and will decrease with duration (i.e. the longer the duration

the lower temperature is required to have an effect). A maximum duration of 6 days

is defined for groundnut so that events of day i − 6 can affect flowers opening on day i

(Challinor et al., 2005b). A new parameter (Tmin
lim ) was introduced in the original heat

stress formulation by Challinor et al. (2007) as unrealistically low values of Tlim can be

found in some simulations.

After the determination of the two temperature thresholds, the percentage of pods setting

is determined using a simple linear reduction (Eq. 3.35):

P (i) = 1−
TAM (t)− Tcr

Tlim − Tcr

, TAM > Tcr (3.35)

where i is the time in days relative to the start of the pod-filling period, and TAM is the

temperature between 8:00 and 14:00 during the day. According to this, flowers opening

on day i = 1 set pods on the first day of pod-filling, and so on. The total reduction in

pod-set of each high temperature stress (HTS) episode is then computed (Eq. 3.36):

Ptot =

i=Nf
∑

i=1

P (i)Ff (i) (3.36)

where Ff (i) is the fraction of flowers opening on day i, derived from the flowering distri-

bution (standard cumulative normal distribution). The values of width and offset of the
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distribution (parameters) can be used to produce plausible time series, with width = 6 and

offset = 0.3 being typical values for groundnut (Challinor et al., 2005b). The minimum

percentage of pods on each day between the pre- and post-anthesis values is taken for

each day. After the total pod-set is calculated, the impact on the harvest index (∂HI/∂t) is

calculated (Eq. 3.37):

∂HI

∂t
=

(

∂HI

∂t

)

0

(

1−
Pcr − Ptot

Pcr

)

, Ptot < Pcr (3.37)

The rate of change in the harvest index is linearly reduced from its optimal value (subscript

0) when the total cumulated percentage of pods goes below a critical value Pcr. In tolerant

genotypes the value of Pcr would be low because these genotypes could cope with a low

number of pods by increasing seed number per pod, for example.

3.5.1.9 Drought stress during flowering

Drought can severely constrain the formation of flower buds (Rao and Nigam, 2003).

Challinor et al. (2006) parameterised the effect of low water availability during the repro-

ductive phase of the groundnut crop, by modifying Eq. 3.38 so that:

Ptot =

i=Nf
∑

i=1

P (i)Ff (i)

(

Si

Scr

, 1

)

(3.38)

where Si is the water stress factor (ratio of available water to transpirative demand) and

Scr is a threshold value below which pod-set is affected by water stress. Challinor et al.

(2006) used Scr = 0.2.

3.5.1.10 Decreased photosynthetic rates under high temperatures

In order to reflect the effect of reduced photosynthetic rates under high temperatures

(Nigam et al., 1994), Challinor et al. (2009a) introduced a parameterisation to reduce

transpiration efficiency under high temperatures. Under high temperatures, transpiration

efficiency is linearly reduced from its non-stressed value (ET0) (Eq. 3.39)
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ET = ET0

(

1−
T − Tter1

Tter2 − Tter1

)

(3.39)

where T is the daily mean temperature, Tter1 is the temperature at which transpiration

efficiency starts to be affected, and Tter2 is the temperature at which transpiration efficiency

is zero. Challinor et al. (2009b), based on data from Ferreyra et al. (2000) and Vara Prasad

et al. (2003), used Tter1 = 35 ◦C and Tter2 = 47 ◦C.

3.5.1.11 Terminal drought stress

Challinor et al. (2009b) introduced a parameterisation to simulate terminal drought stress

using a minimum value of the harvest index (Hmin
I ) that needs to be reached to allow

harvest due to terminal drought and a critical value of soil extractable water (θcrit) below

which terminal drought is triggered. The latter is calculated (Eq. 3.40) using the poten-

tially extractable soil water (the difference between field capacity and wilting point), and

a parameter that controls the sensitivity of the crop to terminal drought (Fsw, varying

from 0 [insensitive] to 1 [highly sensitive]).

θcrit = θll + (θdul − θll)Fsw (3.40)

In the study of Challinor et al. (2009b) two different configurations of
[

Hmin
I , Fsw

]

were

tested: (a) [0.1, 0.1], and (b) [0.25, 0.01]. Both of these were considered equally realistic,

with the former reflecting a more sensitive crop.

3.5.1.12 Further clarifications, bug-fixes and changes to GLAM-R2

During the development of this work, a conceptual difference between GLAM and other

crop models and between GLAM and existing literature arose. This difference lies in the

treatment of SLA. SLA is used in GLAM to ensure the simulation is internally consistent.

SLA acts as a control over biomass during the first ND days of simulation and over the leaf

area growth during the remainder of days (Challinor and Wheeler, 2008a). This control

was introduced because unrealistically high values of the relationship between biomass and

LAI occurred in the first days of most simulations, particularly when there was drought
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stress (Challinor and Wheeler, 2008a). In GLAM, SLA is calculated as the ratio of LAI and

the aboveground biomass. Physiologically, SLA is defined as the ratio of leaf area to leaf

dry weight (Banterng et al., 2003; Rao and Wright, 1994). This trait can take maximum

growing season values between 280 and 300 cm2 g−1 (Banterng et al., 2003). The ratio

of leaf area to aboveground biomass (what in GLAM is termed SLA) is more commonly

termed LAR (leaf area ratio) (Anyia and Herzog, 2004; Medek et al., 2007). LAR and SLA

share the same units (area by mass), with values of LAR being generally lower than those

of SLA. Nevertheless, a maximum value of 300 cm2 g−1 remains a realistic assumption

for GLAM (Quilambo, 2000; Venkatarao, 2005). For convenience and consistency with all

previous studies using GLAM, the acronym SLA and the maximum value of 300 cm2 g−1

were both kept.

In addition to the above conceptual difference a bug in GLAM’s FORTRAN code was found

(hereafter referred to as LAI-BMASS-order-bug). Biomass and water balance outputs of

day i were being calculated using the LAI of day i-1. The bug was corrected, which

resulted in a more internally consistent simulation: the values of SLA were generally

lower although the SLA control was still deemed necessary in the model. Using GLAM’s

benchmark configuration (i.e. that of the Gujarat grid cell, fully described by Challinor

et al. 2004), a slight decrease in the correlation coefficient (from 0.75 to 0.70) and an

increase in the RMSE (from 303.3 to 321.3 kg ha−1) if the SLA control is turned off were

found.

The last change introduced was the correction of the observed range of the uptake diffusion

coefficient (kDIF , used in Eq. 3.32). The range 0.2 – 0.3 cm2 day−1 was considered to be

more realistic according to Dardanelli et al. (1997).

3.5.1.13 Response to increased CO2 concentrations

Groundnut is a grain legume featuring a C3 photosynthesis pathway (Seeni and Gnanam,

1982). Physiologically, therefore, the effects of increase in atmospheric CO2 concentrations

have a direct impact on the production of assimilate (Chen and Sung, 1990; Leakey et al.,

2009). Under climate change scenarios of increased CO2 concentrations (Moss et al.,

2010), C3 crops are expected to increase their rate of photosynthesis (Chen and Sung,

1990; Leakey et al., 2009; Long et al., 2006). The additional production of assimilate



Chapter 3. Data and models 92

is expected to increase water use efficiency, leaf area index, biomass, specific leaf area,

radiation use efficiency (RUE) and the harvest index (Tubiello and Ewert, 2002). As a

result, crop yields in C3 crops are expected to increase with increased CO2 concentrations

(Challinor and Wheeler, 2008a; Vara Prasad et al., 2003). The parameterisation of CO2

response in GLAM is thus important for assessing crop growth CO2 stimulation (Tubiello

and Ewert, 2002) as well as the combined effects of CO2 stimulation and high temperature

(e.g. Vara Prasad et al. 2003) or drought (e.g. Clifford et al. 2000) stress on reproductive

plant processes (i.e. flowering and grain filling).

The CO2 response of the crop was parameterised following Challinor and Wheeler (2008a).

The methodology developed by Challinor and Wheeler (2008a) consisted of two major

steps: (1) establishing a relationship between the optimal value of the maximum nor-

malised transpiration efficiency (ETN,max) and its doubled-CO2 value (Eq. 3.41), and (2)

perturbing certain crop model parameters to enhance biomass production, except ETN,max,

which is calculated following Eq. 3.41.

ETN,max = (1− Tfac)E
opt
TN,max + TfacET

Eopt
TN,max

Eopt
T

(3.41)

where the use of superscript opt refers to the optimal values (i.e. baseline values), Tfac is a

scaling factor that controls the response of the normalised transpiration efficiency (ETN )

to varying humidity levels (also see Challinor and Wheeler 2008a). The mechanism for this

to occur in GLAM is achieved through Eq. 3.14. For Tfac = 0, ETN,max under increased

CO2 equals the baseline value. This means that at low VPD (V ) conditions the value of

ETN = ETN,max (see Eq. 3.42, below), thus reflecting no stimulation at low VPD. For Tfac

=1, ETN,max increases in the same proportion as ET . This means that at low V conditions

the value of ETN = ET/V , reflecting stimulation at low VPD. In both cases, ETN increases

at high humidity levels (see Fig. 1 in Challinor and Wheeler 2008a). The simulated value

of ETN is then used in GLAM to compute biomass (see Eq. 3.14), which is in turn used

to compute yield via the harvest index (see Eq. 3.17).

ETN = min

(

ET

V
,ETN,max

)

(3.42)
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Once the relationship that allows for a consistent simulation across historical and enhanced

CO2 concentration scenarios was established, Challinor and Wheeler (2008a) used an 18-

member ensemble to quantify the uncertainty in the response of groundnut to doubled

CO2. Specifically, they introduced changes to the baseline values of the maximum rate

of transpiration (TTmax), transpiration efficiency (ET ) and specific leaf area (SLAmax)

in order to account for the increased production of assimilate at higher-than-normal CO2

concentrations (Chen and Sung, 1990; Stanciel et al., 2000; Vara Prasad et al., 2003).

In the study of Challinor and Wheeler (2008a), first, the baseline value of TTmax was

reduced by 17 % owing to the expected reduction in transpiration (Stanciel et al., 2000).

To reflect increased biomass production they increased the value of ET (increases of either

24 % or 40 % were used). They also used two values of Tfac (0 and 0.4) to quantify

uncertainty in the differential response to high and low VPD conditions. Finally, they

reduced the baseline value of SLAmax by 10 %. Similar approaches to CO2 stimulation

are used in other crop models, where either the radiation use efficiency (Jones et al., 2003)

or the transpiration efficiency (Keating et al., 2003) are increased to reflect increases in

net photosynthesis.

In this study, the same four GLAM parameters were changed, but the factors differed.

This was because the factors employed by Challinor and Wheeler (2008a) were defined for

doubled CO2 conditions. Scaling was thus needed for 2030s climate as used here. Future

projected CO2 concentrations under the Representative Concentrations Pathways (RCP)

scenario RCP4.5 were derived from Meinshausen et al. (2011). A value of 450 ppm was

adopted for the period of study (RCP4.5 by 2030s). All crop model parameters were

linearly scaled using the baseline (at 330 ppm) and doubled CO2 values (also see Challinor

et al. 2010). A summary of the CO2 parameterisations is shown in Table 3.6.

In all cases, the value of ETN,max was calculated following Eq. 3.41.

3.5.2 The EcoCrop model

The EcoCrop model implemented here uses environmental ranges as inputs to determine

the main niche of a crop and then produces a suitability index as output. The model was

originally developed by Hijmans et al. (2001) and named EcoCrop since it was based on

the FAO-EcoCrop database (FAO, 2000).
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Table 3.6: Parameterisations of CO2 response used and changes to relevant GLAM
model parameters.

ID Description Tfac TE TTmax SLAmax

C1 No stimulation at low VPD
Moderate increase in TE

0.0 +8.8 % -6.23 % -3.67 %

C2 No stimulation at low VPD
Large increase in TE

0.0 +14.7 % -6.23 % -3.67 %

C3 Moderate stimulation at low VPD
Moderate increase in TE

0.4 +8.8 % -6.23 % -3.67 %

C4 Moderate stimulation at low VPD
Large increase in TE

0.4 +14.7 % -6.23 % -3.67 %

Notes: In all cases a reduction in maximum transpiration (i.e. higher water use) and a
reduction in maximum SLA were considered.

In the model, there are two ecological ranges for a given crop, each one defined by a pair

of parameters for each variable (i.e. temperature and precipitation). First, the absolute

range, defined by TMIN−C and TMAX−C (minimum and maximum absolute temperatures

at which the crop can grow, respectively), and by RMIN−C and RMAX−C (minimum and

maximum absolute rainfall at which the crop grows, respectively). Second, the optimum

range, defined by TOPMIN−C and TOPMAX−C (minimum optimum and maximum opti-

mum temperatures, respectively), and ROPMIN−C and ROPMAX−C (minimum optimum

and maximum optimum rainfall, respectively). An additional temperature parameter is

used (TKILL−C) to illustrate the effect of the minimum temperature in a month (explained

below).

When the conditions over the growing season (i.e. temperature, rainfall) at a particular

place are beyond the absolute thresholds there are no suitable conditions for the crop

(white area, Figure 3.9); when they are between absolute and optimum thresholds (dark

grey area, Figure 3.9) there are a range of suitability conditions (from 1 to 99), and

whenever they are within the optimum conditions (light grey area, Figure 3.9) there are

highly suitable conditions and the suitability score is 100 %. The model performs two

different calculations separately, one for precipitation and the other for temperatures and

then calculates the interaction by multiplying them (Figure 3.9).

The first parameters that need to be defined are the start and end of the growing season

(GS and GE , respectively), which in this version of the model are prescribed by the E-LGP

dataset. For a given site (P ), for each month (i) of the growing season, the temperature
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Figure 3.9: Two- (A) and three-dimensional (B) diagrams of EcoCrop.

suitability (TSUIT ) is calculated by comparing crop parameters with the climate data at

that site (Eqn. 3.43).
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0 TMIN−Pi < TKILL−C

0 TMEAN−Pi < TMIN−C

aT1 +mT1 ∗ TMEAN−Pi TMIN−C ≤ TMEAN−Pi < TOPMIN−C

100 TOPMIN−C ≤ TMEAN−Pi < TOPMAX−C

aT2 +mT2 ∗ TMEAN−Pi TOPMAX−C ≤ TMEAN−Pi < TMAX−C

0 TMEAN−Pi > TMAX−C

(3.43)

Where TSUIT i is the temperature suitability index for the month i, TMIN−C , TOPMIN−C ,

TOPMAX−C and TMAX−C are defined on a crop basis (Sect. 7.3.1), aT1 and mT1 are

the intercept and slope (respectively) of the regression curve between [TMIN−C , 0] and

[TOPMIN−C , 100], aT2 and mT2 are the intercept and slope (respectively) of the regression

curve between [TOPMAX−C , 100] and [TMAX−C , 0]. TMIN−Pi is the minimum temperature

of the month i at the site P , TMEAN−Pi is the mean temperature of the month i at site

P , TKILL−C is the crops killing temperature plus 4 ◦C (Hijmans et al., 2001). The model

assumes that if the minimum temperature of the month in a particular place is below

[TKILL + 4 ◦C], then the minimum absolute killing temperature will be reached in at least

one day of the month, and the crop will freeze and fail. This assumption is a compromise

between the temporal scale of the input data for EcoCrop (i.e. monthly), and the need

to include sub-monthly temperature variability (Hijmans et al., 2001; Ramirez-Villegas



Chapter 3. Data and models 96

et al., 2013b). The final temperature suitability (TSUIT ) is the minimum value of all

months within the growing season.

For precipitation, the calculation is done only once, using the crop’s growing season total

precipitation (sum of precipitation in all the growing season’s months), and using both the

minimum, and maximum absolute and optimum crop growing parameters (Eqn. 3.44).

RSUIT i =
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0 RTOTAL−P < RMIN−C

aR1 +mR1 ∗RTOTAL−P RMIN−C ≤ RTOTAL−P < ROPMIN−C

100 ROPMIN−C ≤ RTOTAL−P < ROPMAX−C

aR2 +mR2 ∗RTOTAL−P ROPMAX−C ≤ RTOTAL−P < RMAX−C

0 TMEAN−Pi > TMAX−C

(3.44)

Where RTOTAL−P is the total precipitation of the crop’s growing season at site P , RSUIT

is the rainfall suitability score, the crop parameters (RMIN−C , ROPMIN−C , ROPMAX−C

and RMAX−C) are defined on a crop basis. The parameters aR1 and mR1 are the intercept

and the slope of the regression curve between [RMIN−C , 0] and [ROPMIN−C , 100], and aR2.

mR2 are the intercept and the slope of the regression curve between [ROPMAX−C , 100] and

[RMAX−C , 0]. Finally, RSUIT and TSUIT are each divided by 100 and the total suitability

score is the product (multiplication) of the temperature and precipitation suitability scores

calculated separately times 100 (Eqn. 3.45).

SUIT = TSUIT ∗RSUIT ∗ 100 (3.45)

All the model parameters (i.e. TKILL−C , TMIN−C , TOPMIN−C, TOPMAX−C , TMAX−C ,

RMIN−C , ROPMIN−C , ROPMAX−C , and RMAX−C) are referred to as “EcoCrop parame-

ters” hereafter.

3.6 Methods for assessment of skill

In this thesis, the skill of various types of models was assessed. Foremost, the very next

chapter (Chapter 4) presents an assessment of climate data, including GCM outputs. The
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skill of GLAM to reproduce mean and interannual variability of crop yields and the skill of

EcoCrop to predict the presence of groundnut were both also assessed. Such assessments

required the repeated use of skill metrics. This section summarises all of them.

3.6.1 Pearson product-moment correlation cefficient (r)

The correlation coefficient was used as a measure of the strength of the direction of the

linear relationship between observed and predicted quantities. r is calculated as the co-

variance of the two measures divided by the product of their standard deviations.

3.6.2 Root mean square error (RMSE)

Probably the most important and robust metric for assessing model skill, and hence the

most frequently one used here is the root mean square error (RMSE, Eq. 3.46).

RMSE =

√

∑n
i=1 (Oi − Pi)

2

n
(3.46)

where O and P refer to observed and predicted quantities of a series of n elements. The

RMSE is a measure of how close a prediction is to its corresponding observed value.

Hence, it provides a complete measure of the model errors (Taylor, 2001).

3.6.3 RMSE normalised by mean or standard deviation

In some cases, it was convenient to express the RMSE as a fraction (or per cent) of the

mean or the standard deviation of the corresponding observations. This often provides an

idea of how significant is the model error with respect to the quantities being measured.

The RMSE normalised by the observed mean (RMSEM ) is shown in Eq. 3.47.

RMSEM =
RMSE

Ō
=

RMSE
∑n

i=1
Oi

n

(3.47)

The RMSE normalised by the observed standard deviation (RMSESD) is shown in

Eq. 3.48.
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RMSESD =
RMSE

σO
=

RMSE
√∑n

i=1
(Oi−Ō)2

n

(3.48)

3.6.4 Perfect correlation mean square error (PMSE)

In this work, GLAM simulations were performed both with observed meteorology and with

simulated outputs of transient GCM simulations. In the case of observations, individual

year GLAM predictions can be directly compared with observed ones. The same cannot be

done when GLAM simulations are conducted using transient GCM output because these

are initialised arbitrarily on the basis of a pseudo-equilibrium control run (Challinor et al.,

2007; Gleckler et al., 2008; Scherrer, 2011). It is, however, expected that the statistical

characteristics (i.e. mean and σ) of the observed and simulated time series match each

other.

Thus, in order to measure the skill of GLAM simulations driven by transient GCM output,

the ‘perfect-correlation mean square error (PMSE)’ was used (Challinor et al., 2007). The

PMSE is defined as follows:

Taylor’s (Taylor, 2001) definition of Root Mean Square (RMS) difference (E) is based on

a decomposition of the total RMS difference into two components: mean bias (Ē) and

centred RMS error (E′) (Eq. 3.49).

E = Ē2 + E′2 (3.49)

The centred RMS error (E′) is related to the correlation coefficient through the law of

cosines (Eq. 3.50, also see Taylor 2001).

E = (f̄ − r̄)2 + (σ2
f + σ2

r − 2σfσrr) (3.50)

where f and r are the model and observations, respectively. Means are indicated with a

bar above the letter, and the symbol σ represents the standard deviations (with subscripts

f and r to indicate model and observations, respectively). r is the correlation coefficient.

Through simple manipulation of Eq. 3.50, E can be expressed as the square difference of
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the means, the standard deviations, and the double product of the standard deviations

times the additive inverse of the correlation coefficient (Eq. 3.51– 3.53, also see Challinor

et al. 2007).

E = (f̄ − r̄)2 + σ2
f + σ2

r − 2σfσrr + 2σfσr − 2σfσr (3.51)

E = (f̄ − r̄)2 + (σ2
f − 2σfσr + σ2

r ) + (2σfσr − 2σfσrr) (3.52)

E = (f̄ − r̄)2 + (σf − σr)
2 + 2σfσr(1− r) (3.53)

This transformation (Eq. 3.53) allows the RMSE to be expressed as the total sum of the

difference between the means (first term), the difference in standard deviations (second

term), and a third term involving the correlation coefficient. However, since as stated

earlier transient simulations do not permit individual simulated years to be compared

with observed ones, the correlation was assumed to be ‘perfect’ (i.e. r = 1). This allowed

the calculation of the RMS difference on the basis of the squared difference of the simulated

and observed means and standard deviations (Eq. 3.54).

E = (f̄ − r̄)2 + (σf − σr)
2 (3.54)

The PMSE was used as a measure of error for finding optimal grid cell-specific values of

the CY G. Although this could lead to underestimating the actual RMSE (Challinor et al.,

2007), this method was preferred instead of the alternative method of comparing ordered

time series (see e.g. Iizumi et al. 2009a) that could have led to inappropriate sorting under

circumstances where errors in GCM simulations affect threshold-dependent processes such

as high temperature stress and terminal drought. Despite inherent limitations owing to

the r = 1 assumption, thus, the PMSE is unlikely to result in bias in the resulting values

of CY G (Challinor et al., 2007), and has yielded realistic modelling results when used to

calibrate CY G in previous studies (Challinor and Wheeler, 2008b; Challinor et al., 2005b,

2010).
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3.6.5 The Taylor diagram

A Taylor diagram summarises how well a model simulation matches observations in terms

of correlation, RMSE and ratio of variances. In the Taylor diagram, a single point in a

two-dimensional plot is used to indicate these three measures, which are related through

the law of cosines (Eq. 3.50).

Figure 3.10 shows an example Taylor diagram. The point referred to as ‘reference’ indicates

the position of the observations, whereas the ‘test’ indicates the position of the prediction

to be assessed. The plot is constituted by three axes. The x-axis is proportional to the

standard deviation. The arcs concentric to the reference measure the centred RMSE (in

the same units as the standard deviation). The azimuthal position of the ‘test’ indicates

the correlation.

Figure 3.10: Example of a Taylor diagram for visualising model skill statistics. The
points ‘reference’ and ‘test’ indicate the observed and predicted values, respectively. Taken

from Taylor (2001).

The diagram can also be presented by normalising the standard deviations and the centred

RMSE by the observed standard deviation. In such case, the position of the ‘reference’

point along the x-axis is 1.
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3.6.6 Interannual variability index (VI)

Interannual variability in climate models was assessed following Gleckler et al. (2008) and

Scherrer (2011), in which an interannual variability index (VI) is calculated for each climate

model run as the differences between the ratios of model (M) and observed (O) standard

deviations (Eq. 3.55).

VI =

(

σi
Mv

σi
Ov

−
σi
Ov

σi
Mv

)2

(3.55)

where σ is the standard deviation of the time series (1961-2000) of a variable (v) for a

given grid point (i). The index is always positive and has no upper limit. Previous work

with the CMIP3 model ensemble has suggested that values of VI < 0.5 are indicative of

high model skill (Scherrer, 2011) (Table 3.7). Thus, values of VI below 0.5 at a given grid

cell for a given model run were considered as accurate predictions in the present study

because these will ensure errors are never beyond 25 % (Table 3.7; also see Scherrer 2011).

Table 3.7: Values of (VI , Eq. 3.55) and the corresponding ratio of variances (s/sref),
expressed in both fraction and percentage. Taken from Scherrer (2011).

VI

s/sref
Fraction range Percentage range

0 1 0
< 0.2 [0.801; 1.25] [-19.9; +24.8]
< 0.5 [0.707; 1.41] [-24.3; +41.4]
< 1.0 [0.618; 1.62] [-38.2; +61.8]
< 2.0 [0.518; 1.93] [-48.2; +93.2]
< 5.0 [0.382; 2.62] [-61.8; +162]
< 10.0 [0.290; 3.45] [-71.0; +245]

Scherrer (2011) note: ”Depending on the acceptance range

of s/sref , VI values larger than the corresponding value can

be defined as a limit for ’bad’ representation of variability.

For example, if VI = 0.5 is the chosen limit, the 0.707 <
s/sref < 1.414, or in other words s is between 29.3 % below

to 41.4 % above sref .

3.7 Uncertainty decomposition methods

In modelling the impact of climate change on crop productivity, limitations in the models

and/or data employed can lead to uncertainties and lack of predictability (Koehler et al.,
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2013). Identifying the sources these uncertainties is key in order to improve modelling

frameworks and make more informed decisions (Vermeulen et al., 2013). Here, the to-

tal uncertainty in mean yield was decomposed into its different sources. The method of

Hawkins and Sutton (2009), whereby each source of uncertainty is assumed to be indepen-

dent of all other sources was followed (also see Koehler et al. 2013). In this methodology,

the total uncertainty (TV ) is first calculated as the sum of the uncertainties (V , measured

using the standard deviation) of each source (i), from a total of n sources (Eq. 3.56).

TV =

n
∑

i=1

Vi (3.56)

In this thesis, n varies depending upon how many differnet uncertainty sources are in-

vestigated, which varies according to the configuration of the simulations and the period

analysed (baseline vs. future climate).

For each source, the fractional uncertainty (FU ) can be calculated as the ratio of un-

certainty of a given source to the total uncertainty. For instance, measuring fractional

uncertainty of the CO2 response parameterisations requires averaging all simulations for

each parameterisation and then calculating the fractional uncertainty of CO2 response

(Eq. 3.57).

FU−CO2
=

VCO2
∑n

i=1 Vi
(3.57)

Uncertainty decomposition was done for the baseline and future crop yield and suitability

simulations of Chapters 6 and 7, respectively. This method allows, in a simple way,

to compare the importance crop and climate uncertainties for crop yield and suitability

simulations. As such, this information allows drawing strategies on which uncertainties

should be reduced through more research.



Chapter 4

Assessing the quality of climate

data

“...y hay d́ıas en que somos tan sórdidos, tan sórdidos,

como la entraña oscura de oscuro pedernal”

Porfirio Barba Jacob

4.1 Summary

The skill and robustness of observed and simulated available climate data for their use

in agricultural studies in Sub-Saharan Africa and South Asia was analysed (Objective 1,

Sect. 1.6). First, using meta-data from the scientific literature trends in the use of cli-

mate and weather data in agricultural research were examined. The findings indicate that

despite agricultural researchers’ preference for field-scale weather data (50.4 % of cases

in the assembled literature), large-scale datasets coupled with weather generators are fre-

quently used as a surrogate of observations. Using well-known interpolation techniques,

the sensitivities of the weather station network to the lack of data were then assessed. High

sensitivities to data loss were found mainly over mountainous areas in Nepal and Ethiopia

(random removal of data impacted precipitation estimates by ± 1,300 mm year−1 and

temperature estimates by ± 3 ◦C). Finally, a numerical analysis was performed that as-

sessed 24 Coupled Model Intercomparison Project phase 3 (CMIP3) and 70 CMIP5 climate

103
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model simulations with regards of mean climates and interannual variability. Errors in pre-

cipitation climatological means were large (root mean square error normalized to mean,

RMSEM above 40 %) in 70 - 100 % of areas and seasons for both ensembles. Errors in

wet-day frequency were assessed only for CMIP5 but were even larger than those of precip-

itation, and frequently reached half of a year (roughly 150 days). Errors in climatological

mean temperatures and daily temperature extremes were lower, with generally less than

30 % of areas and seasons showing large errors (RMSEM > 40 %). Interannual variability

in GCMs warrants particular attention given that no single model matched observations in

more than 30 % of the areas for monthly precipitation, 70 % for mean temperatures, and

90 % for diurnal range and wet-day frequency. Improvements were observed from CMIP3

to CMIP5 in the simulated climatological means of temperatures and, importantly, also of

total precipitation. Improvements in physical plausibility and resolution are a significant

step forward in CMIP5 with respect to its predecessor; however, climate model errors re-

main large with respect to the known sensitivities of crop models to biased weather inputs.

A number of recommendations for the use of CMIP5 (and other model ensembles data)

in agricultural impacts studies are given. These include the quantification of climate and

crop model uncertainty, the use of bias correction techniques, and the matching of scales

between climate and crop models.

4.2 Introduction

Agricultural and climate data are crucial for assessing both agricultural sensitivity to

climate and future climate change impacts, and hence are crucial for adaptation. Nev-

ertheless, these data are scarce in their basic forms (data from agricultural research and

weather stations, respectively) or not very well managed or maintained in certain parts of

the world (Figure 4.1), although with some notable exceptions (e.g. Keatinge et al. 2012).

Most importantly, climate databases and their derived products are sometimes inaccurate,

or else lack the documentation necessary to facilitate their use within the agricultural re-

search community. In some instances, this may be indicative of the gap between the

agricultural and climate research communities (Pielke et al., 2007; Thornton et al., 2011).

Even when the two do collaborate, agricultural researchers face critical constraints when

accessing basic sources of meteorological data (i.e. weather stations) due to a number
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Figure 4.1: Cascade of constraints to climate data, as normally observed in agricultural
research. Originally published in Ramirez-Villegas et al. (2013b)

of factors, from access to data, to weather maintenance and data quality checks, to the

weather itself (DeGaetano, 2006).

In the last 10 years, various datasets have been developed by different institutions, usu-

ally based on either a combination of weather station data, satellite data, and numerical

weather prediction models in addition to interpolation methods, or on the sole application

of climate models with some degree of bias correction (Sheffield et al., 2006; Weedon et al.,

2011). Assessments of these data (particularly climate models) have been done with a fo-

cus on processes or variables that are not directly relevant to agriculture (Gleckler et al.,

2008; Pierce et al., 2009), for a limited number of variables (Jun et al., 2008; Reifen and

Toumi, 2009), or for a reduced realm (Jourdain et al., 2013; Walsh et al., 2008). Climate

model simulations, in particular, play a critical role with regards to climate change im-

pacts. The Coupled Model Intercomparison Project phase 3 (CMIP3) has been the base

of a large number of agricultural impact studies (White et al., 2011a), and it is likely that

the new CMIP5 model ensemble will form the basis of many future impact prediction

studies (Taylor et al., 2012). If impact studies that use CMIP5 are to be designed and

interpreted judiciously, agricultural researchers need to develop appropriate understand-

ing on the main features of CMIP5’s experimental design, its predictive skill regarding
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impacts-relevant variables and the associated uncertainties at different scales. Agricul-

tural researchers thus have to engage fully in the climate-model discussion to understand

the implications of this new climate model ensemble for impact assessment and where

necessary, make adjustments to previously issued claims and estimates of climate change

impacts (Knutti and Sedlacek, 2012).

This chapter addresses Objective 1 (see Sect. 1.6). Towards that aim, a three-step thor-

ough analysis on fundamental aspects related to agricultural modelling was performed.

The aim of the analyses was to enhance the understanding on the available climate data

for agricultural research. Based on the review of Chapter 2 the following analyses were

performed:

1. A meta-analysis on the usage of climate and weather data for agricultural modelling

purposes, summarising the desirable characteristics sought when modelling crop pro-

ductivity.

2. An analysis of the robustness of the existing weather station network was performed

by assessing both the ability of these data to correctly fill information gaps via

interpolation methods, and the networks sensitivities to information loss.

3. An analysis of skill of impacts-relevant climate model outputs from the CMIP3

(Meehl et al., 2007b) and CMIP5 (Taylor et al., 2012) GCM ensembles. Outputs of

total precipitation, mean temperature, diurnal temperature range and where possi-

ble, the number of wet days from GCM simulations were assessed against different

observational datasets. Metrics and methods used were similar to those used in the

climate-science literature (Gleckler et al., 2008; Pierce et al., 2009; Scherrer, 2011),

yet the metrics used were kept relatively simple, as the analyses are focused on

agricultural impacts research.

The main implications of the findings on agricultural impact assessment were analysed

and discussed.
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4.3 Methodology

4.3.1 Analysis of trends in the usage of climate data in agricultural

studies

4.3.1.1 Meta-data from agricultural studies

Data from a number of publications on any topic that made use of climate data for any

sort of agricultural modelling were gathered. Searches using various search engines were

conducted between December 2010 and June 2011, resulting in the identification and

download of peer-reviewed publications related to agricultural modelling. All publications

that in any way used climate data for agricultural modelling purposes were analysed. As

the selection of the impact assessment model(s) is the first decision that any researcher

needs to make before embarking in a modelling study, the focus here was on the driving

factors of this decision. Different variables from the studies were recorded as follows:

1. Problem and/or topic in question: classified in categories such as impact assessment,

seasonal yield forecasting, sole crop modelling, climate attribution, crop adaptation,

pests and diseases. Each study was classified into only one category by taking into

account only the main issue addressed by the paper;

2. Spatial scale of the assessment: includes site, sub-national, country, regional (i.e.

group of countries), and global;

3. Use of weather generators: whether the study did or did not use a weather generator

was recorded for both present and future;

4. Climate dataset (current): GCM and/or RCM used, weather station, satellite, and

observational datasets (e.g. CRU, WorldClim, GPCP);

5. Climate dataset (future): the nature of used future projections was recorded here

including the downscaling method, if applicable. Classifications were: GCM “as is”

when studies used raw GCM outputs as inputs, pattern scaled GCMs (Mitchell et al.,

2004), RCMs, systematic changes to current climate data (sometimes also referred

to as sensitivity analysis), statistical downscaling (Wilby et al., 2009), and weather

generator downscaled GCM (Jones et al., 2009).
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For further details on the above categories the reader is referred Table 4.1. A total of 205

peer-reviewed publications were reviewed, all published between the years 1983 and 2011

(see Appendix A for a complete list). Most of the studies were published immediately

before or after the IPCC AR4 was released in 2007 (IPCC, 2007). When a certain study

made use of two different sources of present-day climate data, it was considered twice

(totalling 247 cases).

4.3.1.2 Analysing the usage of climate data in agricultural studies

Relevant trends in modellers’ preferences were assessed using the meta-data of Sect. 4.3.1.1.

The analysis involved determining the most studied topics (i.e. nature of the problem

being assessed) and the scale at which being studied. The most frequently used weather

input types (both for current and future climate analyses) and the processes involved

in preparing weather inputs (e.g. use of weather generators, downscaling, bias-correction)

were also determined. Finally, these choices were related to the most frequently used model

types (e.g. field-scale process-based, regional-scale process-based models, statistical). By

doing this, it was ensured that all the main factors related to an agricultural researchers

decision to select a particular approach for a given problem were covered.

4.3.2 Analysis of robustness and utility of the weather station network

Many methods exist that allow the researcher or user to determine the value of a parameter

(e.g., monthly rainfall) in a given condition (i.e. in a given site, at a given time, or both),

where it has never been measured before. Some of these methods are already popular with

researchers using climate data (Hijmans et al., 2005; Hutchinson, 1995; Jones and Thorn-

ton, 1999; New et al., 2002) either on a regional or on a global basis. For climate-variable

interpolations, the utility (i.e. ability of existing records to yield accurate interpolation

results) and robustness (i.e. sensitivity to information loss) of the observational record is

critical for an accurate result.

The weather station network (CL WS-QA, see Sect. 3.4.1.2) was analysed by testing both

its utility as well as its robustness. Monthly precipitation and temperature data were used

to fit a thin plate spline interpolation algorithm (Hutchinson, 1995) for Sub-Saharan Africa

and South Asia (Figure 3.1). The effect of weather station availability was investigated by
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using 100 cross validated folds for four variables (monthly maximum, minimum and mean

temperatures and total precipitation). Similar methods as in Hijmans et al. (2005) and

New et al. (2002) were used for each fold. Longitude, latitude and elevation were used as

independent variables. In each fold, 85 % data points were randomly selected for fitting

the splines, whilst the remaining 15 % were used for evaluating the result for each variable

and month. For the evaluation, the determination coefficient (r2) and the Root Mean

Square Error (RMSE, Eq. 3.46) were computed and used to produce boxplots of the 100-

fold-by-12-month interpolations for each of the four variables. As the number of stations

considerably exceeded the amount of available memory for processing, the whole region

of study was divided in 5 tiles, each with an equivalent number of locations. The fitted

splines were then projected onto 30-arc-second gridded datasets of latitude, longitude and

altitude (Jarvis et al., 2008), thus producing a total of 4,800 interpolated surfaces (12

months times 4 variables times 100 folds). Finally, the spatial variability of standard

deviations and the performance of the interpolation technique were analysed as proxies for

sufficient distribution and geographic density of weather stations.

4.3.3 Are climate models useful tools for climate change impact assess-

ment?: An analysis of the CMIP3 and CMIP5 Global Climate

Model ensembles

4.3.3.1 Ability to represent mean climates

Climate models outputs and the MMM of the CL C3-QA and CL C5-QA datasets (see

Table 3.1 were assessed for their ability to represent mean climates for each of the variables.

Performance was assessed for the regions of Figure 3.1. Comparisons were performed on a

country basis in order to produce country-specific results. Analyses were done for annual

totals and also for totals of four seasons: December-January-February (DJF), March-April-

May (MAM), June-July-August (JJA) and September-October-November (SON). For each

region and season the climate model predictions and the observed (or reanalysis) were

compared data using all pixels in that particular geographic domain. That is, comparisons

were done spatially using all pixels within a country. Four metrics were used:

1. The Pearson product-moment correlation coefficient (r, Sect. 3.6.1);
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2. the root mean squared error (RMSE, Eq. 3.46, Sect. 3.6.2);

3. the RMSE normalised by the mean (RMSEM , Eq. 3.47, Sect. 3.6.3); and

4. the RMSE normalised by the standard deviation (RMSESD, Eq. 3.48, Sect. 3.6.3).

RMSEM and RMSESD were used since it is useful to compare model errors with the

actual variability or the mean climate of the areas being analysed. For interpretation of

results, mostly the RMSEM and RMSESD are used to indicate whether skill is high

or low in the climate models. This was because normalised skill metrics allowed better

comparisons across climate models, regions and seasons than the absolute RMSE alone

(Taylor, 2001; Willmott, 1982). Temporal means and standard deviations were not used

for normalisation as these were unavailable in the data sources used here.

Finally, in order to summarise the large amount of information produced in the analyses

performed, skill measures for individual GCMs, seasons and countries were divided into

classes. Thresholds for r, RMSEM , and RMSESD were defined and results were classified

in two categories for each skill metric. For r, the threshold chosen was 0.5, as this is in

the middle of its positive range. For RMSEM and RMSESD two values were chosen: 40

% and 90 %. Although somewhat arbitrary, these thresholds were chosen because they

facilitate the interpretation of the numerical results. In addition, the 40 % threshold is

consistent with the threshold chosen for the VI (described below, see Table 3.7), and is

representative of boundaries beyond which impact models, and particularly GLAM, would

be severely constrained (Watson and Challinor, 2013). The 90 % threshold was chosen

as an extreme. Cases where a model simulated output showed values of R below 0.5

were classified as poorly skilled, and similarly for cases where RMSEM and RMSESD

were above 40 %. Cases where RMSEM and RMSESD were above 90 % are likely to

be extremely poorly skilled simulations. These cases were counted and the corresponding

percentage of total was then computed (total being 17 countries times 4 seasons = 68).

4.3.3.2 Ability to represent climate variability

Interannual variability in climate models was assessed via the VI (Sect. 3.6.6). The models

(term M in Eq. 3.55) were TS C3-QA and TS C5-QA, and the observations (term O in

Eq. 3.55) were TS WS-QA, TS CRU-QA and TS E40-QA (see Table 3.1). As opposed
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to all mean climate calculations, VI calculations were performed individually for each

grid cell using all years in the period 1961-2000. Results of these analyses were then

mapped. Similar to the mean climate assessment (Sect. 4.3.3.1), proportions of locations

with VI > 0.5 were counted for summarizing the skill of the two GCM ensembles.

4.3.4 Comparison between CMIP3 and CMIP5

Results from the two model ensembles were compared in a visual manner in order to test

whether or not the models in CMIP5 had increased their skill in relation to CMIP3. This

comparison was performed in three ways:

1. A Taylor diagram (Sect. 3.6.5). Due to the large number of regions and GCMs

analysed, this was done only for India’s mean climate. Skill of simulated seasonal

outputs of the 24 (26) CMIP3 (CMIP5) GCMs and their multi model mean were

then summarised in the diagram. Discrimination was done for individual seasons, the

four variables (precipitation, wet days, mean temperature, and diurnal temperature

range) and the two ensembles.

2. Probability density functions (PDF) of each GCM were drawn for each variable and

skill metric (r, RMSEM , RMSESD, and the VI) were drawn using al countries and

observed datasets only for the annual totals (of precipitation and wet-day frequency)

and means (of temperature and diurnal temperature range).

3. Using the summaries of skill metrics, the total percentage of country-season combi-

nations classified as poorly skilled for the correlation coefficient (i.e. r < 0.5), the

RMSEM (RMSEM < 40 %), and the VI (VI > 0.5) were plotted in scattergrams

for each variable.
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Figure 4.2: Topics treated in the analysed agricultural studies.

4.4 Results

4.4.1 Usage of climate data in agricultural studies

4.4.1.1 Topics of study

The most addressed topic (41.4 % of the studies) in the literature review was climate

change impact assessment (Figure 4.2), followed by crop growth simulation (18.5 %). Wa-

ter resources-impact studies was the third top topic studied (8.1 %), followed by climate

attribution (6.9 %), crop yield forecasting (6.1 %), and model assessment (5.7 %). Im-

portantly, formal studies addressing adaptation were rather scarce (3.6 %). Pests and

diseases, soils, abiotic stresses and climate risks appeared to be a lot less addressed than

impact assessment and crop growth simulation studies, which together accounted for more

than 50 % of the total publications. Despite that, the absolute numbers of studies whose

focus is on pest and disease (Garrett et al., 2013; Gouache et al., 2013; Kroschel et al.,

2013) or adaptation (Boateng, 2012; Jarvis et al., 2012; Rickards and Howden, 2012) have

been steadily increasing in recent years.
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Table 4.1: Full list of categories found in reviewed studies per variable analysed across
the 247 considered cases.

Variable Category Percent of
studies (%)

Problem and/or topic

Assessing impacts 34.4
Crop growth simulation 15.4
Water resources 8.1
Climate attribution 6.9
Crop yield forecasting 6.1
Assessing models 5.7
Assessing crop characteristics 4.5
Climate risk 3.6
Crop adaptation 3.6
Pests and diseases 2.8
Assessing current production 2.0
Abiotic stress 1.6
Assessing uncertainty 1.2
Food security 1.2
Livestock production forecasting 0.8
Weather generators and crop models 0.8
Crop suitability 0.4
Livestock mitigation 0.4
Yield gap 0.4

Current climate data

Weather station 50.4
Climatic Research Unit time series 10.9
Global Climate Model 10.5
Other 7.7
Regional Climate Model 4.0
Satellite 3.6
WorldClim 2.8
Climatic Research Unit climatology 2.8
MARS European project 1.6
Global Summary of the Day (GSOD) 1.2
ARTES (Africa rainfall and temperature evaluation system) 1.2
VEMAP (United States comprehensive dataset) 0.8
ATEAM (Advanced Terrestrial Ecosystem Analysis and
Modelling)

0.8

PRISM (United States dataset) 0.4
Global Precipitation Climatology Project (GPCP) 0.4
Global Precipitation Climatology Centre (GPCC) 0.4
Global Historical Climatology Network (GHCN) 0.4

Future climate data

Global Climate Model as is (GCM-AI) 42.9
Regional Climate Model (RCM) 19.0
Statistically Downscaled GCM (SD GCM) 17.5
Pattern Scaled GCM (PS GCM) 8.7
Weather Generator with GCM (WG GCM) 5.6
Systematic Changes to variables (SC Variables) 4.8
Unclear 0.8
The ARPEGE Atmospheric GCM 0.8

Scale

Site 35.2
Sub-national 23.9
Country 17.0
Regional (group of countries) 15.0
Global 8.9

Use of weather gen.
Used 5.6
Not used 94.4
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4.4.1.2 Scale of studies and types of models

Most of the studies performed their models at a scale less than the size of a country:

site-specific or sub-national level together comprised 55 % of the studies. Very few (7

%) of the studies were performed at the global level. This can be attributed to the fact

that field-scale mechanistic crop growth models were the most utilised overall (51.9 %);

followed by statistical and/or empirical approaches (17.7 %), hydrological models (8.1 %),

and finally by regional-scale process-based models (5.7 %). The frequent use of field-based

crop growth models suggests that the time step requirement for input data is rather high

(El-Sharkawy, 2005), also confirmed by the usage of weather generators (8.5 and 11.2 %

for present and future climates, respectively).

4.4.1.3 Climate data sources

The sources of present climate data varied substantially, with a total of 32 different sources

being used for present climate data (Figure 4.3(a)). On average, a different present-day-

climate dataset was used for every 7 agricultural studies. The most commonly used data

source was local (non-public) weather stations (50.4 % of the cases), followed by University

of East Anglia Climatic Research Unit (CRU) gridded datasets with 13.7 % (10.9 % for

CRU-TS [monthly time series], and 2.8 % for CRU-CL [monthly climatology]). Climate

model outputs were used in 14.5 % of the cases: within this group, 10.5 % used GCM

data and 4 % RCM (Regional Climate Model) data. Some 9.4 % of studies did not

make use of any observational data, thus basing their estimates on historical GCM or

RCM simulations. Satellite imagery was used in 3.6 % cases, followed by the 2.8 % of

WorldClim. A number of other less frequent sources accounted for the remaining 7.2 %.

The Global Precipitation Climatology Project (GPCP) (Adler et al., 2003; Huffman et al.,

2009), the Global Precipitation Climatology Centre (GPCC) (Schneider et al., 2010) and

the Global Historical Climatology Network (GHCN) (Peterson and Vose, 1997) were rarely

reported overall (0.4 % each).

The future climate data used was found to be less variable overall, with only 7 different

types of data employed in the 125 cases stating to have used future climate data (Fig-

ure 4.3(b)). Importantly, out of these 125, only one study did not clearly state which type

of climate data was used. The vast majority of cases (42. 9 %) used GCM data “as is” (AI
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(a) Present (b) Future

Figure 4.3: Frequency of use of the different data sources in agricultural studies. 4.3(a)
Present-day climates. 4.3(b) Future climates. Datasets acronyms are as follows: CRU-TS:
Climatic Research Unit monthly time series product at 0.5 degree, GCM: global climate
model output, RCM: regional climate model, CRU-CL: CRUmonthly climatology product
at 10 arc-minute, MARS: Data from the MARS European project, GSOD: Global sum-
mary of the day, ARTES: Africa rainfall and temperature evaluation system, VEMAP:
United States comprehensive dataset, ATEAM: Advanced Terrestrial Ecosystem Analysis
and Modelling, PRISM: United States dataset, GPCP: Global Precipitation Climatology
Project, GPCC: Global Precipitation Climatology Centre, GHCN: Global Historical Cli-
matology Network, AI GCM: GCM data as is, SD GCM: statistically downscaled GCM,
PS GCM: pattern scaled GCM, WG GCM: GCM data through a weather generator, SC
Variables: systematic changes in target key variables, Unclear: not specified clearly in

study, ARPEGE: the ARPEGE Atmospheric GCM (Deque et al., 1994).

GCM), meaning that predictions on agricultural yields were based on predicted changes

at coarse resolution (∼100 km). All other studies involved some type of downscaling,

except those that employed the systematic changes approach (SC variables), which can

be assumed to be sensitivity analyses rather than impact studies. RCMs were the most

common way of downscaling GCMs, cited in 19 % of the studies, followed by statistical

downscaling with 17.5 % (SD GCM) (Tabor and Williams, 2010), and pattern scaling with

8.7 % (PS GCM) (Mitchell et al., 2004) (Figure 4.3(b)).

Uncertainty was quantified in only 36.5 % of the studies (i.e. those studies where more

than one single future scenario was used). Additionally, the average number of scenarios

per study (rounded to the closest integer) was 3, indicating that climate uncertainties
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are studied in agricultural science only to a limited extent. Few (< 5) studies used more

than one crop model and no studies used a combination both parameter and crop model

ensembles. This highlights a knowledge gap in agricultural research, an issue previously

raised and discussed by other authors (Challinor and Wheeler, 2008b; Challinor et al.,

2009c), although some studies addressing this aspect are underway (Rosenzweig et al.,

2013).

4.4.2 Utility and robustness of existing weather station networks

The sensitivities of the weather station network to information loss were found overall low.

Nevertheless, certain areas, variables and months were found highly sensitive. Agricultural

lands (Ramankutty et al., 2008), as visually inspected, are in general less sensitive to

data loss than non-agricultural lands, partly owing to a better weather monitoring by

agro-climatological stations (Keatinge et al., 2012). Interpolations performance varied

depending upon the variable, month and parameter used to evaluate them (i.e. r2 and

RMSE), but were consistent, statistically significant (p < 0.0001) and with variability

(of r2 and RMSE) between 10 - 15 % in the worst cases, this highlighting the utility of

the network (see Sect. 4.3.2). Precipitation presented the lowest r2 values (Figure4.4),

particularly in the months of April to August, during which there was a higher variability

in the r2 value and the values reached the absolute minima (0.8). Although it is possible

that a high number of weather stations per unit area can improve accuracy, it does not

seem to happen in all variables, areas and/or months.

Maximum RMSE for temperatures was 1.7 ◦C, whilst for precipitation it was 100 mm

year−1, as seen in the evaluation data. The effect of geography and the difficulty of fitting

unique and complex landscape features cause errors, leading to high standard deviations

in some areas (Figure 4.5). In the highlands of Eastern Africa, particularly in the states

of Benshangul-Gumaz, Addis Ababa and Southern Nations in Ethiopia, the central areas

of the Eastern and Coast States in Kenya, and the very centre of Tanzania (i.e. regions

of Morogoro, Dodoma and Manyara) between-fold variability was found to be high (above

150 mm year−1). Generally, the lowest variance was found across Southern Africa.

Over South Asia, the largest variability was found in the coastal areas of Maharashtra,

Karnataka and Kerala in India, where precipitation deviation was up to 600 mm year−1,
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(a) Precipitation (b) Mean temperature

(c) Max. temperature (d) Min. temperature

Figure 4.4: Performance of the interpolations over South Asia and Africa for all variables
and months as measured by the r2 value. Values of r2 were calculated using interpolated
and observed values at randomly removed testing data points for 100 cross-validated folds.

and in Nepal (districts of Gorka, Dhawalagiri, and Lumbini), where precipitation variabil-

ity can go up to 1,000 mm year−1, and temperature uncertainties up to 3 ◦C, probably

due to the combined effect of a more complex climate in the Himalayas and low weather

station density.
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(a) Precipitation

(b) Mean temperature

Figure 4.5: Uncertainties in WorldClim expressed as standard deviations from the mean
of the 100 cross-validated folds total annual rainfall (in mm year−1), annual mean tem-

perature (in ◦C).
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4.4.3 Ability of GCMs to represent mean climates

4.4.3.1 CMIP3 model ensemble

As expected, the climate models’ skill varied on a variable, country and region basis

(Figure 4.6 – 4.7). The ability of CMIP3 GCMs to represent mean climate patterns over

a year was neither uniform nor consistent (Figures 4.6 – 4.7), with the lowest performance

being observed for precipitation in the DJF period. Conversely, seasonal mean temperature

showed the highest correlations and overall lowest RMSEM and RMSESD values. These

results agree with those of other studies (Gleckler et al., 2008; Masson and Knutti, 2011;

Pincus et al., 2008). For mean temperatures, only 11.25 % of the GCM-region-season

combinations showed r < 0.5, while only 6.5 % combinations showed RMSEM > 40 %

(Figure 4.6). These model errors, however, were generally larger than regional observed

spatial variability, a result that was consistent across ensembles, variables, countries and

seasons.

Absolute RMSE values were in the range 1 - 5 ◦C for EAF, 0.5 - 10 ◦C for WAF, 1.5

- 7.5 ◦C for SAF, and 1 - 16 ◦C for SAS (specifically Nepal). RMSEM (RSMESD)

values were between 12 - 281 % (39 - 252 %), because there were large relative errors

in the DJF season, particularly for the models CSIRO-Mk3.0, the GISS- models, IAP-

FGOALS1.0-G, and INM-CM3.0. In WAF, the monsoon period showed relatively strong

and strong correlations (r between 0.36 and 0.92) in combination with low (3.2 - 18 %)

values of RMSEM . Conversely, the dry period showed lower correlations (r between 0.2

and 0.8) and higher RMSEM (3.5 - 37 %). In EAF and SAF, correlations were generally

lower and RMSEM values were higher, but there was significant variation across models

(Figure 4.6).

Skill of simulated seasonal diurnal temperature range was more limited than that of mean

temperatures, with roughly 50 % of the model-season combinations showing r < 0.5. This

indicated that the representation of extreme daily temperatures is more limited in the

climate models. In EAF, diurnal temperature range was found to be very poorly fitted,

whereas the monsoon period in WAF was generally well simulated by the models (RMSEM

of 20 - 30 % in most cases). By contrast, the skill to reproduce regional climates in EAF

and SAS was much more limited (minimum RMSEM was roughly 40 %).
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Figure 4.6: Variation in the RMSEM for 24 CMIP3 GCMs (and the multi-model-mean)
and observed (left) and reanalysis (right) data for climatological mean temperatures (top
heat map) and diurnal temperature range (bottom heat map). Values of correlation
are shown across the analysis regions and seasons as averages of all countries and three
observed datasets (CL WS-QA, CL WC-QA, and CL CRU-QA). Grey areas indicate un-

availability of input GCM data. See Figure 3.1 for region definitions.
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Figure 4.7: Variation in the RMSEM between 24 CMIP3 GCMs (and the multi-model-
mean) and observed (left) and reanalysis (right) data for climatological total precipitation.

Additional details as in Figure 4.6.

For annual precipitation, about 95 % of GCM-season-region combinations showed RMSEM

> 40 %. In Mali, Niger, India and Bangladesh, model skill in representing precipitation,

was consistently low, an issue also reported in other studies (Douglass et al., 2008; Gleckler

et al., 2008; Reichler and Kim, 2008). The Bergen Climate Model (BCCR-BCM2.0) and

the INM-CM3.0 model showed very poor performance (r < 0.5, RMSEM > 40 %) in more

than 25 % of the countries, while the climate model GISS-ModelE (Hansen et al., 2007)

presented the poorest performance in all countries and seasons, except in the monsoon

period of WAF (Figure 4.7).

4.4.3.2 CMIP5 model ensemble

Similar to CMIP3, CMIP5 model skill for climatological means varied significantly on a

model basis (Figure 4.8 - 4.9). The UK MetOffice (UKMO) models tended to consistently

perform better than all others. Absolute skill in climatological mean temperature and
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diurnal temperature range was generally higher than for other variables (RMSEM < 40

% in the majority of cases; Figure 4.8).

The largest errors (RMSEM > 40 %) in the four climate fields were found in South Asia,

which is consistent with previous studies and is related to the difficulties in represent-

ing mountain climates at low resolution (Gleckler et al., 2008). Values of correlation were

negative in 0 %, 0.23 %, 0.5 %, and 2.25 % of region-season combinations for mean temper-

ature, diurnal temperature range, precipitation, and the number of wet days, respectively.

Generally, the monsoon season (in WAF and SAS) showed less skill than the dry season,

and this was consistent with the poor skill of the models in predicting the number of wet

days (Figure 4.9).

Absolute RMSE for mean temperatures and diurnal temperature range was in the range

1 - 8 ◦C in all regions except in SAS (particularly in Nepal), where it was found to be as

high as 17 ◦C. The RMSEM indicated mean temperatures were much more predictable.

Individual GCMs showed RMSEM values above 40 % in only 1.1 - 6.8 % combinations

for temperature. Cases with RMSEM > 40 % were in the range 1.1 - 40 % for diurnal

temperature range.

Seasonal precipitation RMSE was observed to be as high as 2,000 mm season−1 (for the

monsoon season in South Asia), while yearly RMSE values were in the order of 200-3,000

mm year−1. The average RMSE was 190 mm season−1, with 65 % of the country-

season combinations having RMSE below this value. Values of RMSEM for seasonal

precipitation were higher, and ranged between 24.7-522 %. EAF showed significantly

better model skill than all other regions (Figure 4.9).

The number of rain days was vastly different between the model and the observations, with

RMSE values often above 150 days year−1 (about half of the year). For precipitation,

81-100 % cases showed RMSEM > 40 %. The number of wet days was observed to be

less predictable, with cases with RMSEM > 40 % in the order 95 - 100 %. The number

of wet days was in all cases the least predictable variable, with RMSEM values of 50 -

3,500 % (Figure 4.9).



Chapter 4. Climate data assessment 123

Figure 4.8: Variation in the RMSEM for 26 CMIP5 GCMs (and the multi-model-mean)
and observed (left) and reanalysis (right) data for climatological mean temperatures and

diurnal temperature range. Additional details as in Figure 4.6.
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Figure 4.9: Variation in the RMSEM for 26 CMIP5 GCMs (and the multi-model-
mean) and observed (left) and reanalysis (right) data for climatological total precipitation.

Additional details as in Figure 4.6.
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4.4.4 Ability to represent interannual variability

4.4.4.1 CMIP3 ensemble

Figure 4.10 shows the average of the VI across all GCMs for annual total precipitation,

mean temperature and diurnal temperature range. Excluded from this average is the

MMM (multi-model mean), which presented very poor performance. In general, interan-

nual variability was poorly captured by the models, although individual models showed

strengths in some of the regions. At all grid cells, there was always at least one GCM

with VI < 0.5, but in all cases the maximum values were above this threshold. This in-

dicated that errors in models’ representations of interannual variability are generally not

geographically consistent.

Interannual variability of mean temperatures in CMIP3 was better represented across

WAF and SAF, where values of VI were in the order 0 - 0.5, with only few grid cells (< 15

%) exceeding this range. High skill (VI < 0.5) was observed in 30 - 60 % country-season

combinations. There was also significant spatial variation in the VI , with central EAF

(Kenya and Uganda) and northern SAS (particularly towards Nepal) showing the largest

values.

Diurnal temperature range and total precipitation showed very few locations (i.e. less than

10 %) where VI was below 0.5 (Figure 4.10). There was also little geographic consistency

in skill between these two variables. This was evidenced since the areas where VI values

were very high for one variable, were lower for the other and vice versa. High values of

VI (VI > 0.5) were found in 50.5 % (MIROC3.2-HIRES) to 100 % (NCAR-PCM1) of the

areas. Such high values (indicating poor skill) for diurnal temperature range were found

across SAF and SAS, while the lowest values were found in WAF and EAF (particularly

in Ethiopia and Tanzania). For precipitation, VI showed values above 0.5 in at least 72 %

of the areas for all models. The poorest skill was found across the Sahel and in northern

SAS, (Figure 4.10).

4.4.4.2 CMIP5 ensemble

CMIP5 interannual variability was also significantly misrepresented, particularly in areas

with complex landscape features such as the Himalayas (Figure 4.11). No single climate
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Figure 4.10: Average CMIP3 climate model skill in reproducing interannual variability
as measured by the variability index (VI , Eq. 3.55) for (a) annual total precipitation
(mm/year), (b) annual mean temperature (◦C), and (c) diurnal temperature range (◦C).
Blue areas (where VI < 0.5) indicate high model skill. Values shown are means of all 23

climate model simulations (see Table 3.3) per grid cell.
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Figure 4.11: Average CMIP5 climate model skill in reproducing interannual variability
as measured by the variability index (VI , Eq. 3.55) for (a) annual total precipitation, (b)
number of wet days, (c) annual mean temperature, and (d) diurnal temperature range.
Blue areas (where VI < 0.5) indicate high model skill. Values shown are means of all 26

climate model simulations (see Table 3.4) per grid cell.

model showed good agreement (VI < 0.5) in more than 30 % of the areas for precipitation

and 15 % for the wet-day frequency. However, the corresponding fractional area is 50 % for

temperature range and to 70 % for mean temperatures. Although interannual variability

was not adequately captured by most climate models in most areas for precipitation (with

most models showing 70 - 80 % areas with low skill, VI > 0.5), areas with high interannual

variability skill (i.e. VI < 0.5) ranged between 27.5 % (MIROC-4h) to 68 % (GFDL-ESM2-

M) for mean temperature, and between 49.8 % (MIROC-4h) to 90.1 % (INM-CM4) for

diurnal temperature range.

4.4.5 Comparison between CMIP3 and CMIP5

Here, the actual improvements in climate model skill were assessed using Taylor diagrams

(Figure 4.12), and the probability density functions of both ensembles (Figure 4.13 - 4.14).

Set CMIP3 as a reference, climate models in the CMIP5 ensemble (with no clear difference
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Figure 4.12: Taylor diagrams for 23 CMIP3 (black lower case letters) and 26 CMIP5 (red
upper case letters). Multi model means are indicated by crossed circles in the respective
colour. Only climatological means of simulated annual totals (precipitation and wet-day
frequency) and means (mean temperature and diurnal temperature range) for India are
shown. In all cases only comparisons with CL-CRU are shown. Due to the overlap
between different ensemble members in the CMIP5 ensemble only one ensemble member
is shown to improve clarity in the diagram. Note that in the wet day frequency, only

CMIP5 output is shown owing to data availability in the CMIP3 archive.

in skill between Earth System Models ESMs, and Coupled Global Climate Models GCMs)

have improved primarily in terms of mean climatology, particularly for mean temperature.

The Taylor diagram for annual totals and means over India (Figure 4.12) shows less spread

in CMIP5 models, and a more accurate representation of standard deviations (i.e. models

are closer to the 1:1 arc). This is particularly true for total precipitation and mean tem-

perature. Similar trends were observed for all other countries analysed. Despite a general

improvement in model skill, however, errors remain large for some variables, particularly

for daily temperatures extremes and the wet-day frequency.
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(a) Mean temperature (b) Temperature range

(c) Total precipitation (d) Wet-day frequency

Figure 4.13: Probability density functions of the RMSEM for the CMIP3 (blue) and
CMIP5 (red) model ensembles and annual totals or means of precipitation, number of
wet days, mean temperature, and diurnal temperature range. Shading indicates ± one
standard deviation across the mean PDF (continuous lines). Dashed lines show the multi-

model-mean. Note the differences in the x-axis scale across variables.

In agreement with the above, a more general analysis of the PDFs of the four skill metrics

used here (three for mean climates and one for interannual variability) shows a displace-

ment of the PDFs of the CMIP5 ensemble (Figure 4.13- 4.14). Such displacement is most

evident for simulated climatological mean temperatures and total precipitation. Diur-

nal temperature range showed no clear trend, and the wet-day frequency could not be

analysed. Skill in representing interannual variability showed no improvement at all. The

PDFs of skill metrics also indicated that model spread (in the skill metrics) was the largest

for diurnal range and wet-day frequency, and the smallest for mean temperatures. Impor-

tantly, in all the three variables that could be compared (precipitation, temperature and

diurnal temperature range), CMIP5s MMM showed better skill than that of CMIP3.
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Figure 4.14: Probability density functions of the interannual variability index (VI) for
the CMIP3 (blue) and CMIP5 (red) model ensembles for annual totals or means of (a)
precipitation, (b) number of wet days, (c) mean temperature, and (d) diurnal temperature
range. Shading indicates one standard deviation around the mean PDF (continuous lines).

Dashed lines show the multi-model-mean.

4.5 Discussion

4.5.1 Climate data and agricultural research

Although climate model data (“as is”) are often preferred for impact studies (see Fig-

ure 4.3(b), Sect. 4.4.1.3), crop modellers and agricultural scientists should be cautious

when developing future adaptation strategies based on crop models applied using future

predictions of different (and sometimes unknown) nature (Jarvis et al., 2011a)), given the

large uncertainties regarding the agricultural system and plant responses, the underlying

uncertainty related to parameterised processes, and the differences in scales, all of which

are reported in the impact-assessment literature (e.g. Challinor and Wheeler 2008b). This,

however, does not necessarily imply that climate model data cannot or should not be used,

but rather means that an adequate treatment of biases needs to be done before climate
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and crop models can be properly used together (Challinor et al., 2010; Ehret et al., 2012;

Osborne et al., 2007).

As showed in Sect. 4.4.1, products such as WorldClim (Jones and Thornton, 2003; Thorn-

ton et al., 2009) and CRU (Challinor et al., 2004) coupled with weather generation routines

appear to be recurrently used in regional assessments (Hewitson and Crane, 2006; Jones

and Thornton, 2003). Climate model data can also be used with appropriate bias treat-

ment (Hawkins et al., 2013a; Iizumi et al., 2012a; Themessl et al., 2012). However, if

studies are to be carried out on a site-specific scale (Parry et al., 2005), weather station

data is the best means by which to calibrate the modelling approaches (see Figure 4.3(a)).

While partnerships are constantly being built and this allows researchers to share data,

currently global weather station data such as GSOD and GHCN seem to be good options

in cases when no other data is available. The coupling of these sources with satellite

data or other (country specific) historical weather records also appears as an appropriate

strategy (Alvarez-Villa et al., 2010).

A further issue of importance, however, is related to how to use local-scale information

together with global climate projections of uncertain and coarse-resolution nature. Agri-

cultural research requires high quality and high resolution climatological data to yield

accurate results (White et al., 2011b). To date, however, this has been impossible to

achieve at detailed scales and with sufficient coverage. This is in part due to the difficulty

in compiling and revising field data and partly due to the limited climatology knowledge

of agricultural researchers (with some exceptions). Large-scale datasets can be matched to

certain crop models, mostly when these models can be applied at large scales (e.g. Challi-

nor et al. 2010) or do not rely on a detailed calibration of varietal-level crop parameters

(e.g. Lobell et al. 2008, 2011a). However, matching different modelling scales is not a

trivial matter (Baron et al., 2005; Challinor et al., 2009b).

Climate data can be aggregated up to any scale to match any intended use (Masson

and Knutti, 2011), but agricultural impacts need to be informed at an scale such that

information can be used for decision making and adaptation (Smith and Stern, 2011; Wilby

et al., 2009). Hence, governments and international agencies should support common

platforms through which data can be shared without restrictions between members of the

research community. Best-bet methods can then be applied over such data to produce
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useable datasets that can be further shared, used and assessed in multidisciplinary and

transdisciplinary approaches (see e.g. Iizumi et al. 2012b; Semenov et al. 2010).

4.5.2 Robustness of the existing weather station network

It is acknowledged that the use of interpolated surfaces can lead to errors and biases when

these data are used for impact assessment (Hijmans et al., 2005; Mitchell and Jones, 2005).

However, it was demonstrated here that uncertainty (and its effect) is actually rather low

in most of the cases, with very few exceptions (highlands of Ethiopia, the Himalayas, and

some parts of the Sahara and Southern Africa, see Figure 4.5 and Sect. 4.4.2).

The results of Sect. 4.4.2 suggest that, despite weather station density being important, it

may not be the only determining factor for a good ability to fill information gaps (Hijmans

et al., 2005). In increasing the robustness and utility of the weather station network

(i.e. increasing the weather station density), both the complexity of the landscape and

the predictability of the variable being measured should be considered. This is because

robustness and utility are largely dependent on landscape topographic complexity and

predictability (see Figures 4.4 - 4.5). Improving weather station distribution and status,

as well as improving the cross-checking, correction and evaluation of data collected at

the different sites and access to such data, is fundamental for improving climate data for

agricultural impact assessment.

4.5.3 Global climate model skill

4.5.3.1 CMIP3 model skill

GCM performance is highly reliant on the type of comparisons performed, on the GCM

formulation and on the nature of climate conditions in the analysed areas (Gleckler et al.,

2008; Masson and Knutti, 2011). Underlying factors driving GCM performance are indeed

difficult to track, given the complexity of the models. CMIP3 models showed varied perfor-

mance, and tended to show rather limited skill in simulating climatological precipitation,

wet-day frequency and, to a lesser extent, daily temperature extremes both in terms of

mean climate and interannual variability. These responses reportedly have their origin in

different factors:
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• First, some CMIP3 GCMs have weak forcing on sea surface temperatures (SSTs),

whereas climate in Africa and Asia is strongly coupled with the Atlantic and Indian

Ocean and with inland water bodies (Gallee et al., 2004; Lebel et al., 2000);

• second, models do not properly account for the relation between inter-annual vari-

ability, ENSO and the monsoonal winds (Gallee et al., 2004; Hulme et al., 2001);

• third, the resolution of the models prevents acknowledgement of local-scale land use,

orographic patterns and small water bodies (Hudson and Jones, 2002);

• fourth, cloud thickness and latent heat and moisture flux between clouds is not

properly resolved in the models (Gallee et al., 2004);

• fifth, moist convection parameterisations produce an early onset of the seasonal rains

and over-prediction of wet days and high-rainfall events (Gallee et al., 2004; Gleckler

et al., 2008); and

• finally, none of the CMIP3 models incorporated aerosol effects (Booth et al., 2012).

Similar results are reported by other authors that have assessed this or similar model

ensembles (Jun et al., 2008; Pierce et al., 2009). Lack of detail in land use and land

use changes (Eltahir and Gong, 1996), monsoon winds (Eltahir and Gong, 1996; Gallee

et al., 2004), and sea surface temperature anomalies (SSTs) of the Atlantic and the Indian

Oceans (Lebel et al., 2000; Sun et al., 1999) also cause the scales at which climate model

information is robust to be varied (Masson and Knutti, 2011), and prevents regional-scale

seasonal weather patterns from being modelled consistently (Douglass et al., 2008; Hansen

et al., 2007).

4.5.3.2 CMIP5: how much improvement?

In relation to CMIP3, its immediate predecessor, CMIP5 has a wider range of numerical

experiments (Taylor et al., 2012), and data for a larger number of models and model en-

sembles. CMIP3 historical (’20C3M’) simulations included 24 CGCMs, whereas CMIP5’s

included more than 35 CGCMs (of which 26 were assessed here) (Taylor et al., 2012). In

addition, CMIP5’s experimental design includes individual perturbed physics and initial

conditions ensemble members for a number of models, thus permitting the comparison
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Figure 4.15: Overview of the CMIP5 climate model ensemble horizontal resolution in
relation with CMIP3. Values correspond to sizes (latitude, longitude) of grid cells in
decimal degrees (DD). Horizontal lines show means of all models for each CMIP ensemble
(CMIP3 is the average of 24 GCMs of Table 3.3, and CMIP5 is the average of 26 GCMs

of Table 3.4).

of climate uncertainties (see e.g. Knutti and Sedlacek 2012). Model resolution has also

increased (Figure 4.15), and models have increased their complexity by including atmo-

spheric chemistry, aerosols (Booth et al., 2012), the carbon cycle (Taylor et al., 2012), and

decadal predictions (Meehl et al., 2009). Improvements in CMIP5 are in large part tied

with increases in computational capacity: about one-third of the increase in computing

power is estimated to be used solely in increasing model complexity (Knutti and Sedlacek,

2012).

Owing to its improved experimental design and the increased physical plausibility of its

models, the CMIP5 climate model ensemble constitutes a considerable step forward in

climate prediction (Taylor et al., 2012). CMIP5 has the conceptual advantage of having

been carefully designed to match the needs of various communities (i.e. climate, impacts,

policy). Furthermore, a recently published analysis of robustness and uncertainties fur-

ther indicates that both ensembles are consistent in their predictions, highlighting the

importance of CMIP5 in increasing confidence in global warming projections (Knutti and

Sedlacek, 2012).
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The analyses of skill presented here indicated that improvements occurred particularly

in terms of representing regional climatological mean temperature (Sect. 4.3.4). Skill in

representing daily temperature extremes has not increased noticeably, but it remains higher

than that of precipitation yet worse than that of mean temperatures. A comparison of wet-

day frequency was not possible, but given that model skill in precipitation has increased, it

is likely that errors have also decreased for this quantity. The number of wet days was by

far the least predictable quantity, yet one of the most critical ones for impact assessment

(Baigorria et al., 2010; Berg et al., 2010). Similarly, simulated interannual variability

showed some improvement for mean temperatures (Figure 4.14) (also see Scherrer 2011),

but CMIP5 predictions of precipitation interannual variability do not show a significantly

better picture to that of CMIP3. Various other researchers have previously analysed the

CMIP3 model ensemble (e.g. Gleckler et al. 2008; Pierce et al. 2009; Scherrer 2011), and

their results strengthen the validity of the conclusions presented here.

In spite of improvements, climate model outputs are probably not yet of enough quality for

them to be used reliably in crop modelling (Hansen et al., 2009; Ines et al., 2011). Although

a more definite conclusion regarding this statement is reached in a subsequent chapter (see

Chapter 5), the fact that CMIP5 showed the same or more skill with more GCMs suggests

that skill in the new generation of models has overall increased. Considering that model

complexity has also increased, this means that while new components in the models have

increased the physical plausibility of the models, skill has either maintained or increased.

This is likely to be an important step forward, but still only one of many needed for impact

assessment. This all shows the enhancements that can arise from research investments in

last decades of climate research (Knutti and Sedlacek, 2012; Meehl et al., 2009; Taylor

et al., 2012).

4.5.3.3 Plugging climate model data into agricultural research

GCMs do not provide realistic representations of climate conditions in a particular site, but

rather provide estimated conditions for a large area. Results presented here, in agreement

with those from the agricultural community (Baron et al., 2005; Challinor et al., 2003) and

the climate community (Jun et al., 2008; Masson and Knutti, 2011), indicate that climate

model outputs cannot be input directly into plot-scale (agricultural) models, but support

the idea that higher resolution and added model complexity (e.g. aerosols, the carbon
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cycle) contribute towards reducing model error. Either the CMIP3 or the CMIP5 climate

model ensembles can be adequately used in agricultural modelling if: (1) the scales between

the models are matched (see Sect. 4.4.1), (2) skill of models is assessed and ways to create

robust model ensembles are defined (Tebaldi and Lobell, 2008), (3) uncertainty and model

spread are quantified (Knutti and Sedlacek, 2012), and (4) decision making in the context

of uncertainty viewed as a concerted process between model-based impacts estimates and

farmer- or sector-based perceived sensitivities (Vermeulen et al., 2013). These four points

are all treated in subsequent chapters of this thesis.

Limitations to skill in predicting impacts may limit the planning of adaptation strategies

(Challinor et al., 2009b). Uncertainty in climate response and internal variability is known

to be critical when planning short- and mid-term adaptation options (Hawkins and Sut-

ton, 2009; Howden et al., 2007); it may well exceed scenario uncertainty over the next 2-4

decades (Hawkins and Sutton, 2009). Planning at these time scales has been identified

elsewhere as being critical for some of the regions analysed here (e.g. South Asia, West

and East Africa Howden et al. 2007; Lobell et al. 2008; Roudier et al. 2011). Therefore,

improvement in GCMs, particularly in precipitation predictions and interannual variabil-

ity, and more informed use of climate model predictions, is important for agricultural

adaptation. Improved climate simulation would likely improve estimates of future crop

failures, impacts of ENSO and other large-scale phenomena and underpin efforts to avoid

inappropriate adaptation (Howden et al., 2007; Lobell et al., 2008; Roudier et al., 2011).

In a similar way CMIP3 has been of paramount importance in the last 5 years for impacts

research, CMIP5 is likely to play a central role in climate impacts assessments over the

coming years. As a way to guide the future use of these climate simulations, the following

recommendations are provided:

• Quantify agricultural model uncertainty by using a wider assortment of crop models.

Currently, research is being undertaken to address the need of both quantifying

agricultural model uncertainty and improve model parameterizations (Asseng et al.,

2013; Rosenzweig et al., 2013). These programs should allow developing robust

probabilistic projections of climate change impacts, by taking appropriate account

of climate and crop model uncertainties both at the structural and parameter level.
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• Assess the sensitivities of agricultural models to errors in input weather datasets at

different time scales for the region of analysis. Understanding the modes of climate

variability that are important for skilful prediction, in combination with an assess-

ment of GCM skill, enables more robust inference based on model results (Watson

and Challinor, 2013).

• The present analyses demonstrate that, whilst CMIP5 is an improvement on CMIP3,

significant biases remain. These biases have implications for impacts assessments.

Bias correction techniques will therefore remain central to future impacts assess-

ments. There are a number of techniques available and the choice of technique is

known to be a significant source of uncertainty (Hawkins et al., 2013b; Iizumi et al.,

2012a). Impact modellers make choices for their studies mostly on the basis of their

previous experience and previous published studies (White et al., 2011b), but the

robustness of one or other choice is rarely assessed (see e.g. Hawkins et al. 2013b;

Iizumi et al. 2012a for notable exceptions). In future assessments, as done in this

thesis (see Chapter 6- 8), multiple techniques should be used.

• Even though it is clear that climate and agricultural model scales need to be matched,

it is not clear whether this has to be done through downscaling of GCM outputs

(Ehret et al., 2012; Themessl et al., 2012), or through upscaling crop model pro-

cesses and/or parameters (Challinor et al., 2004; Iizumi et al., 2009b; Tao et al.,

2009). Research is being undertaken in the search of synergy between these two

methodologies for some regions of the globe (van Bussel et al., 2011; van Wart et al.,

2013). A more generalised exploration of synergies between upscaling model pro-

cesses and downscaling GCM output is warranted towards the future.

• Increase the robustness of impact studies also using other climate modelling frame-

works. These may include those that study model uncertainty (climateprediction.net

Stainforth et al. 2005), parameter uncertainty (QUMP Murphy et al. 2007), and

downscaling (CORDEX, Giorgi et al. 2009; Nikulin et al. 2012). This would allow

better treatment of uncertainty (Roudier et al., 2011), the study of probabilistic pro-

jections, the assessment of the benefits of dynamical downscaling, and the tackling

of additional research questions, such as those involving plausible geoengineering

scenarios (Pongratz et al., 2012; Stainforth et al., 2005).
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• Lastly, inform both the climate and agricultural research communities about those

decisions that can lead to reducing uncertainties for prioritizing future model im-

provements.

As such, CMIP3 and CMIP5 GCMs can be used with a certain degree of confidence to

represent large-area climate conditions for some areas and periods. Changes in CMIP5

with respect to CMIP3 are substantial in terms of experimental design and modelling

capabilities (i.e. model complexity), but significant biases remain. It is critical to under-

stand the implications of all this to agriculture. Crops are sensitive to shortages in water

and heat stresses during key periods during their development (i.e. flowering, fruit filling).

Therefore, lack of skill in representing seasonal and inter-annual variability is expected to

produce a significant obstacle to agricultural impact assessment of climate change. Sev-

eral examples in the literature exist that illustrate this (Baigorria et al., 2007, 2008). The

importance of this factor depends on the strength of the climate signal on yields and the

variables that drive this signal (Challinor et al., 2009c). In areas where predictions lack

enough skill for agricultural modelling, models can be bias-corrected using different meth-

ods (see Challinor et al. 2009b; Hawkins et al. 2013b; Reifen and Toumi 2009). Whilst

model skill is expected to improve with time (while more research on developing climate

models is done and better processing power is achieved), climate model ensembles as well

as different methods for calibrating (i.e. pre-processing for input into crop models) climate

model data both need to be used, as uncertainties go beyond those derived from emissions

scenarios (Hawkins et al., 2013b).



Chapter 5

Parametric uncertainty in GLAM

“De esos laberintos circulares lo salva

una curiosa comprobación, una comprobación

que luego lo abisma en otros laberintos más

inextricables y heterogéneos”

J. L. Borges

5.1 Summary

The General Large-Area Model for annual crops (GLAM) was used to develop a perturbed

parameter ensemble and quantify the sensitivity in Indian historical (1966-1993) groundnut

simulated yield, harvest index, leaf area index, and biomass to parameter perturbations

(Objective 2, Sect. 1.6). GLAM reproduced observed historical crop yields, with location-

specific Root Mean Square Error (RMSE) values below 30 % of mean yields and 50 %

of standard deviations across the majority of India. The spatial correlation coefficient

of mean yields was above 0.8 in all simulations (maximum r =0.98, p <0.001). Stan-

dard deviation was much less accurately simulated, with all ensemble members showing

a spatial correlation coefficient below 0.5 (maximum r =0.45, p <0.001). An analysis

of uncertainties in processes, simulated quantities and parameters showed that: (1) the

uncertainties in simulated yields (i.e. variation in simulated yields across parameter sets)

varied spatio-temporally, (2) water stress dominated across the region, (3) biomass accu-

mulation and biomass-partitioning parameters were the most important parameters for

139
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yield uncertainty, and (4) by contrast, soil parameters were the least influential on crop

yields, yet are important for uncertainties in soil water dynamics. Measured by the coeffi-

cient of variation (CV ), overall, mean simulated yields (CV < 15 %) and mean total crop

biomass (CV between 15 – 30 %) were well constrained (i.e. low uncertainty). Their inter-

annual variability, however, depicted a more uncertain outcome (CV between 5 and 30 %

for yields and between 25 and 50 % for biomass). Significantly larger variation was found

across simulations for other model prognostic variables such as leaf area index, radiation

use efficiency and the harvest index. Two main aspects ought to be improved in order

to reduce uncertainties in GLAM yield simulations: (1) more detailed local information

on key model parameters (i.e. transpiration efficiency, harvest index and leaf area growth

rate) so as to better constrain regional-scale model parameters; and (2) the improvement

of key crop model parameterisations such as leaf area dynamics (currently very basic in

GLAM). These two aspects could significantly reduce aggregation error and uncertainties

by allowing the constraining of inputs and/or outputs, hence providing means by which

parameter, inputs, and accounted processes can be appropriately tied with the scale of

analysis.

5.2 Introduction

Model structure and model parameters arise as two of the main sources of uncertainty in

crop simulation (Asseng et al., 2013; Challinor and Wheeler, 2008b). Parametric uncer-

tainty arises from the unavailability of information so to assess the needed model outputs

that allow the constraining of model parameters. Ideally, exhaustive and multi-location

field measurements are required for a thorough calibration of crop model parameters.

However, such measurements are often not available to crop modellers, thus resulting in

crop model parameterisations that are incomplete and whose errors are uncertain (Angulo

et al., 2013a; Challinor et al., 2009b). For example, soil moisture, root dynamics, photo-

synthesis and respiration are not always measured in crop experiments. Specifically for

regional-scale models (the focus of this work), observations on other variables than crop

yields are rarely (if at all) reported. This means that the crop model has to be calibrated

using a single prognostic variable, which can lead to multiple sets of parameters that pro-

duce equally-realistic simulations. Parametric uncertainty has been mostly investigated
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using regional-scale models, whose parameters are not treated as true and unique genetic

coefficients, but are acknowledged to be a representation of the varieties grown over a large

area with their associated uncertainty (Iizumi et al., 2009b). Work on parametric uncer-

tainty has shown that such uncertainty could be larger than climate model uncertainty

under some situations (Challinor et al., 2005d). Nevertheless, systematic exploration of

parametric uncertainty has been studied only for few crop model parameters (Challinor

et al., 2005d; Challinor, 2008), or under the assumption that parameter values follow a

certain probability distribution (Iizumi et al., 2009b; Tao et al., 2009).

This chapter addresses Objective 2 (see Sect. 1.6) by quantifying crop model parameter un-

certainty, as a result of using incomplete observations to constrain the model output. Using

GLAM (Sect. 3.5.1) driven by observed data (TS IMD-GM, TS CRU-GM and TS E40-

GM, Table 3.1), a number of potential parameter sets were developed (Sect. 5.3.2) and then

a subset chosen on the basis of their ability to reproduce observed crop yields (Sect. 5.3.3).

Finally, the resulting parameter sets were used to assess the uncertainties in crop model

predictions (Sect. 5.4.4). The information provided here contributes to improving crop

model uncertainty quantification and allows a further comparison of this uncertainty with

that arising from climate models and their outputs (Chapter 4, and Chapter 6), and from

the uncertainty in parameterising CO2 fertilisation effects (Chapter 6).

5.3 Methodology

5.3.1 Assessment of yield-climate relationships

Since in GLAM all non-climatic processes are accounted for using CY G, a very first step

before using the model is analysing the weather-yield relationships at the scale at which

the model is intended to be used (Challinor et al., 2003; Li et al., 2010). In this study,

all model runs were done at 1x1 degree resolution (TS IMD-GM dataset, Table 3.1). At

this resolution, an analysis of crop-climate relationships was performed in order to test

the feasibility of using GLAM to capture the short- and long-term response of crop yields

to climate.

Using a combination of empirical calculations, agro-climatic indices, weather data and the

gridded detrended yield data, the crop-climate relationships were explored for the analysis
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Table 5.1: Agro-climate indices used to assess the crop-climate relationship.

Parameter Name Units

DTB Number of days where T > 10◦C during the growing season day
DTO Number of days where T > 28◦C day
DTX Number of days where T > 50◦C day
DTCRIT Number of days where Tmax > 34◦C day
DTLIM Number of days where Tmax > 40◦C day
CDDmax Maximum number of consecutive dry days during the growing

season
day

GDD Total growing season degree days as calculated using Eq. 3.7 and
3.8, with Tb = 10◦C, To = 28◦C and Tm = 50◦C

◦C day

SRADGS Total sum of solar radiation during the growing season W m−2

TMENGS Mean growing season temperature ◦ C
RAINGS Total rainfall during the growing season mm
RDGS Total number of days with rain during the growing season day
SRADS2 Total sum of solar radiation during S2 [second semester of the

year (Jul-Dec)]
W m−2

TMENS2 Mean temperature during S2 ◦C
RAINS2 Total rainfall during S2 mm
RDS2 Total number of days with rain during S2 day
SRADQ3 Total sum of solar radiation during Q3 [third quarter of the year

(Jul-Sep)]
W m−2

TMENQ3 Mean temperature during Q3 ◦C
RAINQ3 Total rainfall during Q3 mm
RDQ3 Total number of days with rain during Q3 day
SRADQ4 Total sum of solar radiation during Q4 [fourth quarter of the

year (Oct-Dec)]
W m−2

TMENQ4 Mean temperature during Q4 ◦C
RAINQ4 Total rainfall during Q4 mm
RDQ4 Total number of days with rain during Q4 day

region in all grid cells where both weather and yield data were available. A total of 23

agro-climatic indices were used (Table 5.1) (see e.g. Challinor et al. 2003; Trnka et al.

2011). For each 1x1 grid cell, these indices were calculated for each year when yield data

were available (1966–1993). Finally, for each grid cell, the time series of detrended yield

was correlated with the time series of each of the indices to produce spatially explicit

correlation maps.

5.3.2 Crop model optimisation

In GLAM, crop model parameters are commonly derived by optimising the output of the

model (Challinor et al., 2004). Various parameter sets were developed to quantify the

uncertainties arising from uncertain parameter values.

Optimisation was carried out separately for each of the groundnut growing zones of Fig-

ure 3.2. Grid cells with missing data or with average 1966-1993 area harvested below
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0.2 % were discarded, as this ensured that interannual variability in crop yields was less

prone to errors in data collection, conversion and transcription. It is worth noting here

that the terms optimisation and calibration are used in a different way (see Sect. 3.2.9 for

definitions). Both procedures were here done by minimising the RMSE (Eq. 3.46).

Various optimisation set-ups were tested as described in detail in Appendix B. These led

to the conclusion that using a single grid cell per growing zone for optimisation was the

most suitable option for the present study, and that a constant CY G value of 1 had to

be kept during the optimisation process. Based on the simulations of Appendix B, 19

model parameters out of the 23 tested in Appendix B were chosen to be optimised (see

Table B.2). For the remainder of parameters, the values reported by previous GLAM

studies were adopted, except for the uptake diffusion coefficient (kDIF ), for which the

optimal value across all zones was adopted (see Appendix B, Table B.2). A total of 50

independent parameter sets were then developed by randomising the order in which the

parameters (Table 5.2) were optimised.

As in the simulations of Appendix B, daily meteorological inputs were TS CRU-GM for

maximum and minimum temperatures, TS E40-GM for solar radiation, and TS IMD-GM

for daily precipitation. Observed crop yields and irrigated areas were as described in

Sect. 3.4.2.1, and soil data were as in Sect. 3.4.3. The Rabi (irrigated winter) season

was simulated separately for each gridcell where irrigated area was reported by planting

the crop between the 15th of November and 15th of January, defined per growing zone

according to Talawar (2004). The optimisation procedure was then carried out as follows:

1. The 19 target model parameters (excluding CY G, Table 5.2) were optimised sequen-

tially following a pre-defined order. Optimisation was done by iteratively testing

different values of each parameter within the ranges of values reported in Table 5.2.

2. The procedure in (1) above was repeated 15 times. This ensured that the optimum

values of the parameters were stable; that is, the local minimum RMSE was reached.

3. Once the 19 model parameters were optimised, the planting date was determined for

each grid cell. For each grid cell, the start of a planting window was varied across

reported ranges in the Sacks et al. (2010) dataset (Chapter 3, Sect. 3.4.2.3) so that

the RMSE (Eq. 3.46) was minimised for that grid cell. This procedure ensured that
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the choice of the planting date did not affect model skill, while ensuring the planting

windows were in agreement with observations.

4. CY G values were determined for each grid cell by iteratively running the model with

CY G set between 0.01 and 1.0 (in steps of 0.01). The value that minimised the

RMSE was chosen as the optimal value.

Steps 1 to 4 were repeated 50 times with different prescribed order of parameters to

optimise. This optimisation procedure was expected to give rise to parameter sets that

internally compensate values of certain parameters, but that are equally realistic. These

parameter sets were further analysed for skill and sub-selected for all final analyses.

5.3.3 Selection of parameter sets and model evaluation

The aim of selecting parameter sets was to both assess the skill of the 50 potential pa-

rameter sets (Sect. 5.3.2) and thus be able to select those parameter sets that most ably

reproduced observed crop yields across time and space.

A combination of model skill measures was used to select the best parameter sets. For

each zone and parameter set, the following 10 skill metrics were calculated:

• The number of negative correlations

• The mean, median and mode of

– Pearson product-moment correlation coefficient (r, Sect. 3.6.1)

– RMSE

– RMSE normalised by mean yield (RMSEM )

Despite some degree of redundancy among these 10 skill metrics, their use ensured the

most complete coverage of model errors (also see Sect. 3.6.5). The following selection steps

were then followed:

1. Parameter sets were ranked (from 1 to 50) according to each of these metrics and the

totals for each potential parameter set were calculated. This total rank value had a
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minimum possible value of 10 when a parameter set was the best for all metrics, and

a maximum value of 500 (50 parameter sets * 10 metrics) when a parameter set was

the worst for all metrics. The single best parameter set (i.e. that having the lowest

total) was then selected as a reference. Although the use of a single parameter set

may increase the risk of over-tuning the model, this was considered to have little

or no effect, given that the objective of this procedure is to identify parameter with

varied, yet sufficiently high skill.

2. Using the reference parameter set, a Kolmogorov-Smirnov non-parametric test was

performed in order to test whether the distributions of the 10 skill metrics of all

parameter sets and the reference one were part of the same distribution. Any pa-

rameter set that was not part of the same distribution as the reference one at a level

of significance of p ≤ 0.05 in at least 50 % of the metrics was first discarded.

3. For each zone, then, any parameter set for which the grid cell-wise correlation coef-

ficients of mean or standard deviations of yields were negative was discarded.

4. As a final step, all optimisation runs whose parameter sets were selected in at least 4

out of the 5 groundnut growing zones (80 %) were considered and used for all further

analysis.

Using the final selection of parameter sets, probability density functions (PDFs) were

calculated for each of the 19 optimised parameters to illustrate the uncertainty in each

parameter. The following calculations were performed in order to show the skill of the

selected parameter sets:

1. A Taylor diagram (Sect. 3.6.5). The skill of the 50 parameter sets can be summarised

in different ways, and potentially, Taylor diagrams could be produced for each grid

cell, meaning a total of 195 individual figures would be produced, or a single figure

with a very large cloud of points (195 grid cells * 50 parameter sets = 9,750). Be-

cause this could complicate interpretation of results, diagrams were produced for two

spatial characteristics of crop yields: mean and standard deviation. To do that, the

mean and standard deviations of simulated and observed crop yields were calculated

on a grid cell basis. Taylor diagram parameters were calculated using these.
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2. The correlation coefficient (r) and the RMSE were calculated for each grid cell

and parameter set to produce maps of these two metrics across the geographic and

parameter space.

Finally, for each model parameter and zone, the variation in the RMSE (RMSEV ) was

then calculated to measure the effect of the parameter on the model output (Eq. 5.1)

RMSEV =
RMSEmax −RMSEmin

RMSEmin
∗ 100 (5.1)

5.3.4 Stability of the yield gap parameter (CY G)

Testing the temporal stability of CY G is important since such stability supports the use of

a temporally-constant CY G in future climate simulations (Chapter 6 and Chapter 8). For

each grid cell, the time series of crop yield was split in two halves (1966-1979 and 1980-

1993). The CY G was calibrated using one series and then tested in the other. Variations

in the CY G values for each grid cell were assessed as a measure of temporal consistency.

5.3.5 Biophysical constraints to crop yields

Using the selected ensemble members, the sensitivity of the crop model simulation to

various processes was tested in order to identify those processes more likely to constrain

the crop yields. A total of 9 processes were tested: 4 related to drought, 4 related to

temperature and the total radiation intercepted. The sensitivity of the crop to seasonal

rainfall was tested by performing a fully irrigated run. The sensitivity of the crop to

terminal drought stress was tested by switching off the parameterisation described in

Sect. 3.5.1.11. The sensitivity to drought stress during flowering was assessed by switching

off the parameterisation of Sect. 3.5.1.9. Sensitivity to mean temperature was tested in

two ways: first, by allowing Teff in Eq. 3.7 to have a maximum value for each day (Eq. 5.2,

a modification temporarily introduced to GLAM’s code), and secondly, by modifying the

values of Tmax and Tmin in the input weather file so that T̄ = To every day of the simulation

(Eq. 5.3). Two tests were performed for mean temperature sensitivity since their effects

may differ in cases. Specifically, modifying Teff has a direct impact on thermal time

accummulation, whereas changing T̄ also has en effect on VPD (see Eq. 3.15).
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Teff = To − Tb (5.2)

Tmax = To + 0.5

Tmin = To − 0.5

T̄ = Tmax+Tmin

2

(5.3)

Sensitivity of photosynthesis to high temperatures was tested by switching off the param-

eterisation of Sect. 3.5.1.10. Sensitivity to high temperature stress during flowering was

tested by switching off the parameterisation of Sect. 3.5.1.8. Finally, the sensitivity of the

crop to net absorbed radiation was tested by allowing the crop to intercept 100 % of the

downwards net shortwave solar radiation (A = 0 in Eq. 3.26).

Some of these changes, however, may not imply an increase in simulated crop yields.

For example, more radiation in a drought-prone environment implies more water demand

for evapotranspiration and more water stress. Similarly, a shorter growing cycle would

result from the modifications introduced by Eq. 5.2 and 5.3, and this would reduce crop

yields. In addition, other seasonal stresses could further lower crop yields if certain phases

(particularly flowering and pod-filling) change their timing. The importance of all these

processes in simulated crop yield and the differences in the importance of the processes

across parameter sets is examined using these model runs.

5.4 Results

5.4.1 Observed relationship between climate and crop yield

The relationship between crop yields and prevailing climate conditions is shown in Fig-

ure 5.1 for those indices specific to the growing season indicated by the crop calendar of

Sect. 3.4.2.3 and in Figure 5.2 for those indices that are based on fixed periods (i.e. quar-

ters or semesters of the year). The strength, significance, location and direction of the

correlations between crop yields and climate were all largely dependent on the variable and

the region. In general, the strongest signals were found in the western zone (Z2), central
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zone (Z3) and the western part of the peninsular zone (Z5). Correlations were generally

positive and strong for precipitation (maximum r = 0.69, p ≤ 0.001).

A negative relationship between crop yields and most temperature-related indicators was

observed in most parts where the rainfall signal was positive and strong. Particularly

strong and negative was also the relationship between crop yield and total growing season

solar radiation (r = −0.65, p ≤ 0.001). Extreme temperatures and crop thermal duration

were also negatively correlated with crop yields. The majority of areas where most of

the groundnut crop is grown seemed to be largely limited by rainfall. A strong signal in

solar radiation and temperature was observed across the same areas, indicating that high

solar radiation could increase water stress. In other areas, where irrigation was prevalent

and the signal of total rainfall on crop yields was weak or absent, the signal of seasonal

(June-December) and growing season temperature as well as of the number of days above

the critical temperature threshold (Tcrit) was strong.

5.4.2 Crop model skill

5.4.2.1 Internal model consistency

GLAMs internal consistency has been examined previously (Challinor et al., 2004); how-

ever, it was herein revisited given that a number of model parameters (Table 5.2) are

different, a bug-fix was done (Sect. 3.5.1.12), and that the SLA-control did not exist until

more recently (Challinor and Wheeler, 2008a). End-of-season values for critical model

prognostic variables were all within realistic ranges (Figure 5.3). The harvest index (HI)

varied between 0.15 and 0.8 in the rainfed simulations, and between 0.4 and 0.85 in the ir-

rigated simulations (i.e. Rabi season). The most frequent values were between 0.35-0.5 for

the rainfed simulations, mostly in agreement with observed values (Rao and Nigam, 2003).

In water-stressed simulations, the harvest index was 30-50 % lower than in well-watered

ones, which is in agreement with reported values (Ratnakumar et al., 2009; Songsri et al.,

2009). Values of HI were the largest in the southern and central zones, and the lowest

in the west and north of India. The harvest index was particularly low in the north of

Gujarat, where LAI was low. This agrees with previous studies (Rao and Nigam, 2003).
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Figure 5.1: Correlations between groundnut crop yields and growing season indices of
Table 5.1. Black dots indicate statistically significant correlations at p ≤ 0.1.
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Figure 5.2: Correlations between groundnut crop yields and the static season indices of
Table 5.1. Black dots indicate statistically significant correlations at p ≤ 0.1.
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Values of LAI were also within realistic ranges (0.1-0.55 for rainfed runs and 0.1-2.5 for

irrigated runs), although unrealistically high values (i.e. LAI>10, Hammer et al. 1995)

occurred in some simulations (i.e. irrigated simulations with CY G = 1) of parameter sets

with optimal values of near to the upper bound of the range (see Table 5.2). SLA values

in non- CY G limited simulations were between 25 and 75 g cm−2 for most simulations, and

were considered realistic values in relation to observations (Quilambo, 2000; Venkatarao,

2005). Radiation use efficiency (RUE) showed a maximum value of RUE=2.5 g MJ−1

in some of the ensemble members, and the majority of values between 0.5 and 1.5 g

MJ−1. All values were in agreement with field measurement for peanut across a number

of environments (Kiniry et al., 2005) as well as with reported values for other C3 grain

legumes (Tesfaye et al., 2006). Irrigated simulations had lower RUE values given the lower

radiation available during the Rabi season, and the limitation to LAI growth imposed by

the use of SLAmax (Challinor and Wheeler, 2008a). The absence of water stress led to

higher values of RUE in all model runs (Figure 5.3).

5.4.2.2 Model skill across parameter sets

The performance of the 50 parameter sets is shown in the form of two Taylor diagrams

(Figure 5.4) for both the spatial consistency of the mean yields and of the interannual yield

variability (i.e. standard deviation). Each dot in Figure 5.4 represents a single parameter

set where all the three metrics have been calculated pair-wise using the time-mean (top

diagram in Figure 5.4) and the time-standard deviation (bottom diagram in Figure 5.4)

of all grid cells. Blue coloured dots show the 19 parameter sets that were considered

to represent crop yields reliably (see Sect. 5.3.3). GLAM represented mean yields with

a higher degree of accuracy as compared to interannual variations (Figure 5.4). The

spatial correlation coefficient of mean yields was in all parameter sets above 0.8 (maximum

r = 0.98, p ≤ 0.001). The representation of standard deviations was much more limited

in the model, with all parameter sets showing an spatial correlation coefficient below 0.5

(maximum r = 0.45, p ≤ 0.001). The statistical characteristics of the crop yields were,

however, well captured by the crop model, particularly in the selected parameter sets (blue

dots that are close to the black continuous standard deviation arc in Figure 5.4).

Figure 5.5 shows some model skill metrics for a high and low performance parameter set

(indicated with large filled dots in Figure 5.4). The low performance parameter set showed
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(a) Harvest index (b) Leaf area index

(c) Specific leaf area (d) Radiation-use efficiency

Figure 5.3: Spatial variation of model prognostic variables. (a) Harvest index, (b) leaf
area index, (c) specific leaf area (SLA, as in GLAM), and (d) radiation use efficiency
(calculated as the slope of the regression line between biomass and total absorbed radia-
tion). Thick horizontal lines show the median, boxes extend the inter-quartile range and
whiskers extend 5 % and 95 % of the distributions. Simulated data correspond to the

experiment shown in Figure 5.4 (large blue dot).
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(a) Ȳ

(b) σY

Figure 5.4: Taylor diagram (Taylor, 2001) showing the performance of the 50 parameter
sets in relation to the spatial variation in mean (a) and standard deviation (b) of yields.
Spatial standard deviations are normalised to observed (hence the “perfect” standard
deviation is the continuous black arc at 1.0 concentric to the origin). Gray arcs concentric
to 1.0 in the x-axis represent the RMSE normalised by the standard deviation of the
observations. Blue and red colours indicate selected and not-selected parameter sets
(Sect. 5.3.3), respectively. Large filled dots indicate parameter sets shown in detail in

Figure 5.5.
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one of the lowest correlations (r = 0.25 and r = 0.83 for standard deviation and mean

yields, respectively), a significantly higher spatial standard deviation of the yield variabil-

ity (about 1.3 times higher), and the largest centred RMSE for both yield mean and

variability (1.5 and 0.5, respectively). By contrast, the high performance parameter set

showed a near-perfect representation of the standard deviations, a near-perfect correlation

for mean yields (r = 0.97, p ≤ 0.0001) and a relatively strong correlation for yield variabil-

ity (r = 0.38, p ≤ 0.0001). As expected, most of the statistically significant correlations

were found across western, northern and central-north India, where the strongest climate

signals on crop yields were observed (see Sect. 5.4.1). In particular, the best skill in the

crop model was found in the western area of India, as measured by all indicators, in both

the high and low-skill parameter sets.

Model skill in the low-skill parameter set was consistently low across southern and east-

ern India, with RMSE values between 600 and 1000 kg ha−1 (between 150-200 % of the

mean predicted yield and up to 400 % of the yield standard deviation), low or negative

correlations and a trend to overestimate both the yield mean and variability. By contrast,

in the high-skill parameter set the RMSE values across the same areas were in the range

200-400 kg ha−1 (10-40 % of the mean, up to 100 % of the standard deviation -middle

row maps of Figure 5.5), with only very few weak or negative correlations, a near-perfect

representation of mean yields and a less strong trend to overestimate the yield variability.

The representation of interannual variability was mostly in agreement with observations

across western and central India (predicted σ is between 0.8-1.2 with respect to observa-

tions), but interannual variation was over-estimated in the southern zone and the east, and

under-estimated in the northern India (predicted σ up to 1.5-2 times larger than observed).

Crop model errors were largely consistent across parameter sets (Figures 5.6- 5.7). Most

of the parameter sets showed mean yield prediction between +20 and -20 % of observed

yields in nearly 80 % of the analysed areas, regardless of the parameter set used. In the

remainder of areas, a trend to under-estimate mean crop yields beyond -20 % (nearly up

to -50 %) was observed (Figure 5.6).
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Figure 5.6: Percent of parameter sets for which the normalised-by-observed predicted
mean yields falls in each of three categories: underestimating (YP/YO < 0.8), normal (YP/YO

between 0.8 and 1.2), and overestimating (YP/YO > 1.2). Parameter sets are classified
in three categories: all 50 parameter sets, selected 19 parameter sets and 31 discarded

parameter sets (these can be seen in Figure 5.4).

5.4.2.3 Temporal stability of the yield gap parameter

The values of the yield gap parameter varied only slightly from one period to the other,

particularly for the most skilful parameter sets. The areas where the most significant

changes in CY G occurred are located towards the very north of India. In these areas, CY G

increased by 30-40 % between the two periods.

A PDF of the spearman rank correlation (ρ) between the two time periods showed that

the relationship is strong and statistically significant (Figure 5.8). In particular, for the
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Figure 5.7: Percent of parameter sets for which the normalised-by-observed predicted
yield standard deviations (σ) falls in each of three categories: underestimating (σP/σO <
0.8), normal (σP/σO between 0.8 and 1.2), and overestimating (σP/σO > 1.2). Parameter
sets are classified in three categories: all 50 parameter sets, selected 19 parameter sets

and 31 discarded parameter sets (these can be seen in Figure 5.4).

selected parameter sets (blue line in Figure 5.8), the values of ρ were high (0.75-0.9).

Differences in the values of the CY G through time can be attributed to changes in the

main drivers of crop production through time (i.e. from water- to radiation-limited), noise

in the yield time series, the assumption that the technology trend is linear (whereas it

could in some cases be non-linear, see e.g. Baigorria et al. 2010), the fact that this area is

largely irrigated (Figure 3.5), or to structural errors in the crop model.
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Figure 5.8: Probability density function of the Spearman rank correlation between the
two CY G values (CY G1: 1966-1979 and CY G2: 1980-1993) for all parameter sets (n = 50,
black line), selected parameter sets (n = 19, blue line) and discarded parameter sets
(n = 31, red line). Each PDF curve is calculated using the n parameter sets of each
category. For each parameter set a single value of the Spearman correlation (rho, ρ) was
computed using 195 pairs of [CY G1, CY G2] values, each corresponding to a grid cell of the
analysis domain. Dashed vertical lines show the low (red) and high (blue) parameter sets

indicated as large dots in Figure 5.4).

5.4.3 Variation in crop model parameters

Selected parameter sets (i.e. specific combinations of optimal parameters) were in most

cases different across regions for a given optimisation run. Similarities existed across the

different regions for some parameters, whereas notable differences were found for others.

The optimal cardinal temperature (To) was constant across the geographic space (28 ◦C).

This parameter adopted the same value (To = 28◦C) in more than 95 % of the parame-

ter sets and zones (Figure 5.9). The base temperature (Tb) had greater variability across

regions, with the most frequent optimal value in all zones being 12 ◦C. The most fre-

quent value for maximum cardinal temperature (Tm) was 40 ◦C. Similarly to cardinal

temperatures, thermal time requirements were relatively stable across space. Thermal

time requirements were found to be the lowest in the south-eastern zone (Z4) and the



Chapter 5. Parametric uncertainty 162

largest in the northern (Z1) and the peninsular (Z5) zones, which agrees with reports of

germplasm used across India (Table 5.3).

Model parameters where the largest variations occurred across growing zones were the ex-

traction front velocity (VEF ), the root length density per unit leaf area (∂lv/∂L), the tran-

spiration efficiency (ET ), and the maximum normalised transpiration efficiency (ETN,max)

(Figure 5.10). ET and ETN,max adopt values that span the whole range of possible values,

with each zone showing different values. The VEF showed a variety of different values,

with the range 1-1.2 cm day−1 being the most frequent (occurring 45 %). The CV (i.e.

constant used to calculate VPD in Eq. 3.15) had a large number of different values, with

low values (0.4-0.5) being preferred (i.e. in >40 % of the parameter sets) in all growing

zones except in central India (Z3), in which the most frequent values were between 0.7

and 0.8.

The thermal time between flowering and pod-filling showed values in the mid- and upper-

part of the range (320-330 ◦C day−1) and the thermal time between planting and flowering

showed values in the upper part of the range (385-400 ◦C day−1). The crop albedo depicted

values usually above 0.2, but were low (A = 0.1) in nearly 20 % of the cases; and the Vref

adopted either high (0.6 kPa) or low (1.4 kPa) values at similar rates. The rate of change

in the harvest index adopted in nearly 80 % of the cases values that were either 0.0042 or

0.0098 (with 0.0042 occurring three times more often). The rate of change in LAI showed

a very similar behaviour, with adopted values being either 0.01 or 0.1 in more than 90 %

of parameter sets and zones, but this time the upper bound being more frequent than the

lower bound.

5.4.4 Key processes and uncertainties

5.4.4.1 Uncertainty in model optimal parameter values

Uncertainty in the outcomes of certain processes is undoubtedly rooted in the uncertainty

in crop model parameters. Uncertain parameters are those that cannot be sufficiently

constrained by the data or the model structure, and hence adopt many different values

depending upon the optimisation strategy, the model configuration, and/or the data used.

This section focuses on analysing these variations and elucidating their causes. Parameters
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Table 5.3: Groundnut varieties recommended and grown in India. Taken from Talawar
(2004).

Zone Varieties Yield (kg ha−1) Main features

I

ICGS-1 2,300 Spanish bunch type suitable for both monsoon
and spring seasons

CSMG 84-1 2,704 Virginia runner, tolerant to thrips, leafminers,
pod borer and foliar diseases

DRG 17 2,095 High yielding Virginia bunch type suitable for
rainfed monsoon season

ICGS 5 2,704 Virginia bunch type, tolerant to drought
MA 10 1,500 High yielding Virginia runner with variegated ker-

nel
G 201, Kaushal 1,700 High yielding Spanish bunch type, early maturing

II
Somnath 1,926 Virginia runner, early maturing (120 days)
GG 20 2,167 Virginia bunch, suited for rainfed monsoon

III
TAG 24 2,000 Short statured Spanish bunch with high harvest

index and tolerant to BND
J(E) 3 1,900 Early variety for rainfed monsoon season

IV
BAU 13 2,556 Bold seeded for export purpose
BG 3 2,500 Virginia bunch variety with early maturity
GG 2 3,100 High yielding Spanish bunch type suitable for

acid upland soils

V

ICGS 76 1,300 A Virginia bunch variety with tolerance to foliar
diseases

ICGV 86325 3,000 High yielding Virginia bunch type, tolerant to
BND, suitable for rainfed conditions

K 134 1,919 Suitable for rainfed monsoon cultivation with
wider adaptability

VRI 2 1,500 High yielding, early maturing Spanish bunch type
VRI 3 1,688 Early Spanish bunch type suitable for rainfed
ICGV 86590 1,785 Multiple disease and pest resistant coupled with

high yield
Tirupathi -2 2,100 Spanish bunch, high peg strength and tolerant to

Kalahasti malady (nematode)

were here classified into crop growth (Figure 5.10) and crop development (Figure 5.9).

There was a clear trend in both soil and crop development parameters to be far less

influential in the simulated yield as compared to the rest of the optimised parameters

(Table 5.2), as well as a trend in highly-influential parameters to have fewer possible

values (Figure 5.10- 5.9). In general, root dynamics and development parameters tended

to have 4 to 5 different values, whereas leaf dynamics, biomass, yield and transpiration

parameters have 2-3 different possible values. The only development parameter that had a

relatively large effect in all optimisation zones was the optimum development temperature

(To).

There were substantial similarities between the results across regions (Figure 5.10- 5.9),
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Figure 5.9: Probability density functions (PDF) of crop development parameters for
zone 2 (western India). Names of parameters as in Table 5.2.

thus the results presented focus mainly on the western zone (Z2) as it is the zone where

the model shows the best performance (Figure 5.5). A number of parameters showed

significant variations across parameter sets (i.e. those of Table 5.2). These parameters

were generally related to root dynamics (VEF , ∂lv/∂L, CG) and crop development (Tm, tTT0,

tTT1), although similar variation was observed in the reference VPD (Vref ) and the crop

albedo (A). Such variation in soil-related parameters may be caused by the very limited

effect that these parameters had on simulated yield (RMSEV < 10 %, Figure 5.11). Data

on soil water dynamics could allow the constraining of these model parameters.

The duration of initial stages (i.e. tTT0, tTT1) is in GLAM important to define the ini-

tial total LAI development that is in turn used to calculate LAI-limited transpiration,
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Figure 5.10: Probability density functions (PDF) of crop growth parameters for zone 2
(western India). Names of parameters as in Table 5.2.
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Figure 5.11: Variation in the root mean square error due to each of the calibrated
parameters. Only zone 2 (western) is shown owing to similarity with others. The spread
RMSEV (Eq. 5.1) values shown represents the values of all 19 selected parameter sets
(blue dots in Figure 5.4). Thick horizontal lines show the median, boxes extend the
inter-quartile range and whiskers extend 5 % and 95 % of the distributions. Names of

parameters as in Table 5.2.

biomass and yield (see Sect. 3.5.1.7). These values were much less constrained in the sim-

ulation. However, both parameters seemed to have a rather limited effect on simulated

yield (RMSEV < 15 %). Thus, uncertainty in the values of these parameters did not

greatly increase uncertainties in yield simulation (Figure 5.11).

Across the 19 selected parameter sets, often 2-3 different values of ∂HI/∂t, maximum LAI

growth rate (∂L/∂t), and extinction coefficient (k) were found. By contrast, ET and

ETN,max tended to show large variations in their optimal values (Figure 5.10). In all

simulations, these five parameters produced significant changes in the RMSEV (median

RMSEV between 50-60 % Figure 5.11), indicating that uncertainties in their optimal val-

ues can significantly increase yield simulation uncertainties. These parameters were prob-

ably to be the most significant sources of parametric uncertainty in GLAM (Sect. 5.5.2.1).
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5.4.4.2 Uncertainty in crop model outputs

Uncertainty in crop model predicted quantities was measured through the standard de-

viation normalised by the mean predicted value (i.e. the coefficient of variation, in per

cent, CV ). Variation in predicted mean yields across parameter sets was in most cases

below 10 % (Figure 5.12), except in the Western Ghats, where mean yield variation was

between 10 and 20 %. The uncertainty in yield variability was higher, but rarely exceeded

30 % (top-right of Figure 5.12), with the largest variations occurring in the high-variability

landscapes of south-western India (CV between 40-50 %), and near the Himalayas (CV

between 40-60 %). In contrast, the model’s time-mean biomass calculation had a CV >40

% in 90 % of the areas, whereas the time-variance CV values were around 50 % in 60 % of

the areas (second row of Figure 5.12). The southern and central zones showed the largest

variations, with values of CV sometimes exceeding 80 %.

Model outputs such as RUE, LAI and HI were highly uncertain as compared to biomass

and yield across the parameter sets in most areas (Figure 5.12), with the southern and

eastern region presenting the smallest variations (CV between 30-50 %), and the central

and northern zone zones showing the largest variations (CV >90 %). Of these three

predicted variables, the harvest index was the most uncertain, as it showed a larger number

of grid cells with CV values near 100 %. Uncertainty in LAI was also high (third row of

Figure 5.12, only Khariff runs are shown), with CV values between 90-100 % in almost

the whole central and northern India. Values of RUE were more constrained, but large

variations (CV >90 %) were found in north-eastern India in the Khariff runs, and a

similar variation was found in the southern peninsula for the Rabi runs (bottom row of

Figure 5.12). Variations in RUE, although large, were generally lower than those of LAI.

5.4.4.3 Key drivers of simulated crop yields

Figure 5.13 shows the probability distribution of simulated crop yields for constrained

(i.e. “control” simulation, in red) and unconstrained (i.e. modified model simulation,

in blue) model simulations (Sect. 5.3.5). Individual year simulations (28 years) of each

ensemble member for each grid cell (195 grid cells) were used together (5,460 yield values)

to construct individual PDFs. These PDFs were then used to compute a mean PDF

(continuous line) and its corresponding standard deviation (shading). The responses were
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(a) Yield (kg ha−1) (b) Biomass (kg ha−1) (c) Harvest index

(d) LAI (e) RUE (g MJ−1)

Figure 5.12: Coefficient of variation (i.e. uncertainty) across parameter sets for four
key model prognostic variables (yield, biomass, harvest index and LAI) and the radiation-
use-efficiency (RUE, in g MJ−1). Shown in the figure are the values corresponding to the

CV associated with the 28-year means of each quantity.

generally consistent across ensemble members, except for those related to crop duration

(Eq. 5.2 and 5.3). The most important sensitivity was water-stress the growing season,

which removal increased crop yields by roughly 60 % in most grid cells (depicted by the

shift in the PDF in the top-left panel of Figure 5.13). In a relatively large (about 20

%) number of years and grid cells, drought was a major constraint to crop yields. In

particular, terminal drought was major limiting factor: the removal of terminal drought

increased yields in almost all years and grid cells being constrained by this factor. The

uncertainty in this response is rather low (i.e. a narrow shading), depicting uniformity in

the response of the crop to terminal drought across ensemble members. Daily radiation

absorbed increases non-water limited crop yields and as expected has no significant impact

on water-limited years and locations (transpiration was water-limited rather than energy-

limited).

Extreme temperatures and mid-season drought were found to have little effect on simu-

lated crop yields. The lack of effect of extreme temperatures can be attributed to the
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likely underestimation of extreme temperatures caused by the use of linearly-interpolated

monthly values, and also to the relatively high values that need to be reached in order

to produce significant reductions in crop yields. Effects of drought during flowering were

negligible because flowering occurs in the middle of the Khariff season, when soil water

availability is optimal (Figure 3.3) (Chapman et al., 1993; Kakani, 2001).

Responses to thermal time accumulation and mean temperature limitations were negative

for some ensemble members and positive for others. Changes in thermal time accumula-

tion and optimum temperatures had a direct impact on the crop duration, but changes in

crop duration also affected the timing of certain cropping season events in some simula-

tions. This caused the difference in the responses across parameter sets. Shorter durations

improved drought escape, thus increasing yields, but significantly decreased crop yields in

non-water limited environments, due to a reduction in the absolute time for grain filling.

5.5 Discussion

5.5.1 Predictability of Indian groundnut yields

GLAM has been designed with the purpose of simulating the effects of climate alone on

crop yields (Challinor et al., 2004), in part because of the difficulty in modelling non-

climatic processes at regional scales (Challinor and Wheeler, 2008b; Hansen and Jones,

2000). This means that the degree of predictability of crop yields depends on whether

GLAM can ably reproduce crop yields using a weather time series as input, provided

that observed relationships between crop yield and climate exist. In such case, therefore,

limits to predictability can occur due to problems in the input data, lack of information

regarding initial conditions, and lack of skill in the model due to structural problems (i.e.

missing processes). Crop-climate relationships and model skill as fundamental aspects of

predictability are discussed in detail below.

5.5.1.1 Crop-climate relationships

The strong and positive correlations of crop yields with total seasonal rainfall as well

as with the number of rainy days indicated that successful cropping seasons across the
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Figure 5.13: Changes in the PDF of predicted crop yields as a product of changes to
certain constraints in GLAM. Curves are formed for each individual ensemble member
using all years and grid cells (195*28 = 5,460 data points) and then used to compute
the mean PDF (continuous line) and its corresponding standard deviation (shading). A
purple-shaded curve is the product of an overlap of the two distributions, caused because

that particular process was not constraining crop yields.
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largest producing areas of western and central India largely depend upon both the amount

and the distribution of rainfall throughout the growing season. This is also confirmed by

the strong and negative correlations between crop yields and the maximum number of

consecutive dry days, and by the fact that 83 % of the harvested groundnut in India is

grown under rainfed conditions (Singh et al., 2012). Previous studies of groundnut yield

and its variability have shown that rainfall amount is critical for groundnut production

both at the site-specific (Bhatia et al., 2006, 2009; Singh et al., 2012) and the national and

sub-national scale (Challinor et al., 2003, 2004).

Temperature and radiation were found important throughout the whole region, but the

strongest relationships between these two variables and crop yields were found in drought-

prone environments with little or no irrigation (Figure 3.5). Higher temperatures and

higher solar radiation increase transpirative demand and thus water stress, and this, in

turn, lowers crop yields. By contrast, in the states of Andhra Pradesh and Orissa, where

irrigation is used (Figure 3.5), the relationship between crop yields and solar radiation

tends to be positive and stronger than that of rainfall; this suggests that these environ-

ments can be potentially more limited by radiation availability (as opposed to water) and

that if irrigation is available, increases in solar radiation are beneficial (through increased

photosynthetic rates).

Two temperature-related processes were also observed relevant: heat stress and thermal

time availability. High temperature stress (i.e. Tcrit > 34 ◦C), as previously studied in

experimental conditions, can cause damage to reproductive organs (Craufurd et al., 2000;

Kakani, 2001; Vara Prasad et al., 2003) or affect partitioning to grain (Craufurd et al.,

2002; Singh et al., 2012), was also here found to have a negative effect on crop yields,

though it was limited to the north-west of India (Figure 5.1- 5.2). Increases in thermal

time availability decreased crop yields since temperatures close to the optimal (i.e. more

total GDD available per day) lower the crop yields through shorter duration. Longer

duration crops, however, tend to be more sensitive to reduced amounts rainfall during the

growing season (Figure 3.3), and to the occurrence of terminal drought (Boontang et al.,

2010; Challinor et al., 2009a). All these findings support the argument that GLAM can

provide reliable results at the IMD grid resolution (1x1 degree), for the cropping system

and region under analysis.
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5.5.1.2 Ability of GLAM to simulate crop yields

GLAM is a particularly strong model when attempting to represent mean crop yields

(Challinor and Wheeler, 2008b). The optimisation method implemented here produced

values of parameters and prognostic variables that were in agreement with previous studies

on genotypic variation, crop modelling and with national reports on cultivated germplasm

(Singh et al., 2008). Among a set of experiments revised in the literature, in a combina-

tion of well-watered and water-limited environments and trials, it was observed that the

normalised transpiration efficiency varied from 0.6 to about 6.14 g kg−1, with the most

frequent values being around 1.5-4 g kg−1 (Jyostna Devi et al., 2009, 2010; Krishnamurthy

et al., 2007; Puangbut et al., 2009; Sheshshayee et al., 2006; Songsri et al., 2009) (Fig-

ure 5.10). In particular, the northern (Z1) and peninsular (Z5) zones show lower values

of the transpiration efficiency in a larger number of parameter sets than the other zones,

whereas most of the growing zones show values of harvest index in the lower bound of

the range (i.e. near 0.0042). This all agrees well with reported genotypic information

(Ratnakumar and Vadez, 2011; Singh et al., 2008).

GLAM’s simulation of groundnut yields was generally accurate. Not only it reproduced

mean yields and (to a lesser extent) interannual yield variability, but it also allowed the

identification of total annual rainfall as the main driver of variability (Figure 5.13). As

stated above (Sect. 5.4.1), this relationship was also remarkably strong for observed crop

yields. Water has also been reported as a critical driver in studies of yield gaps in groundnut

across India (Bhatia et al., 2009). Furthermore, the model allowed crop duration (through

thermal time) to be identified as an important (yet uncertain) driver of variability (Singh

et al., 2012). In a number of cases, as in the observations (Figure 5.2), absorbed radiation

was found an important driver either through enhanced water stress in drought-prone

environments or through increase in radiation-limited transpiration, biomass and yield in

well-watered areas.

Model skill was, however, limited by various factors. GLAM has been previously reported

to have some limitations in representing interannual variability in some areas (Challinor

et al., 2004, 2005d). Model error in the standard deviation was high (Figure 5.7, also see

Sect. 5.4.2.2) and the CY G varied in time for areas across the north of India. In addition,

unrealistically high values (>10) of end-of-season LAI were observed in some simulations,
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even though the SLA-control was always used (see Sect. 3.5.1.12). This suggests that in

these areas the model may not represent fully the processes that in reality cause interannual

variability. More specifically, missing processes related to soil nutrient availability (Bhatia

et al., 2009; Quilambo, 2000) and the rather simplistic way in which leaf area dynamics and

light interception are modelled in GLAM (Sect. 3.5.1.7) could have led to simulation errors

in the radiation-limited environments of southern and south-eastern India. In addition,

inherent errors in input data (Watson and Challinor, 2013) –particularly in ERA-40 solar

radiation, and the underlying assumptions when scaling crop yield data to the model

grid (Hansen and Jones, 2000) may have further reduced the simulation skill (Challinor

et al., 2005d). These factors have also been shown in previous studies potentially large

sources of uncertainty in crop modelling (Adam et al., 2011; Baron et al., 2005; Watson

and Challinor, 2013).

Even though it must be noted that no model is capable of producing perfect simulations

and that models are tools to produce and extract information (Challinor et al., 2013),

improvement of simulation skill is possible within GLAM. For example, Affholder et al.

(2003) significantly enhanced the simulation skill of the model STICS (Brisson et al., 2003)

by adding two non-climatic processes: Aluminium toxicity and weed competition. Field-

scale information on pests can also be used to improve crop yield simulation (Willocquet

et al., 2008). Including these and other non-climatic processes in regional-scale simulations

remains a topic meriting more research. In this regard, however, data has posed major

constraints.

An important parameter for the high skill of GLAM to simulate historical mean yields is

the yield gap parameter (CY G). While CY G is intended to be a parameter that accounts

for non simulated processes (see Sect. 3.2.9 and 5.3.1), it can to some extent also correct

for errors in input data (see e.g. Challinor et al. 2004, 2007), and probably also in model

formulation, e.g. as in the inconsistency between LAI growth and biomass accumulation

reported by Challinor and Wheeler (2008a). Importantly, because CY G improves model

skill, there is a risk that genotypically (i.e. physically) implausible parameter sets can

produce skilful simulations of crop yield. In other words, that CY G allows for unrealistic

values of a parameter that cannot be linked to the genotypic characteristic of the crop.

While the strategy employed in this work to develop a parameter ensemble attempted

at minimising the effect of CY G on the optimal values of all other optimised parameters
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(see Appendix B for details), a potential caveat of the current study, and perhaps of

other studies using GLAM, is the realism of CY G. To this respect, evaluating and, where

necessary, improving the physical plausibility of CY G values could be the focus of crop

model improvement efforts. To that aim, previous estimations of yield gap (e.g. Bhatia

et al. 2009; Licker et al. 2010) could be used to constrain the range of CY G for each grid

cell, or as independent sources of data for evaluating calibrated CY G values. Additionally,

secondary field data on the prevalence of pests and diseases and the nutritional condition

of the crops could also be used to compare their spatial structure with that of CY G, or be

integrated into GLAM to develop simple, yet robust, parameterisations on aspects that

are currently not considered in the model. More broadly, data on non modelled-processes

can be of use for other models where similar quantities are used to scale down potential

yields to farmers yields, e.g. the Jones et al. (2003) model uses a parameter called the Soil

Fertility Factor (SLPF).

Additional improvements could be sought in GLAM. Possible avenues for such improve-

ments could involve a more appropriate parameterisation of SLA (i.e. response of SLA

to temperature, drought), in addition to a better parameterisation of biomass partition-

ing (e.g. accounting for partitioning to leaves, stems, roots and grains), and the use

of end-of-day adjustments to LAI growth in order to reduce over-estimation of LAI and

accumulated biomass (Banterng et al., 2003; Hunt and Pararajasingham, 1995; Steduto

et al., 2009). These possible improvements will likely lead to improved predictability at

the regional scale using GLAM, in a similar way as have done previous improvements to

climatic-related processes (Challinor and Wheeler, 2008b; Challinor et al., 2005b, 2006,

2009a).

5.5.2 Uncertainties in regional-scale simulations

5.5.2.1 Optimal parameter values

The different combinations of optimal parameters that produced the final set of 19 se-

lected parameter sets were all considered equally-plausible. The values of the parameters

depended partly on the optimisation procedure, the values of other model parameters,

and GLAM structure (Sect. 3.5.1.1). Parameters influenced the GLAM’s simulated yield
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in a way that was largely dependent upon the use of the parameter in the model simula-

tion. For instance, soil sub-model and development parameters tended to have little effect

on yield, and the contrary happened with partitioning, biomass and leaf-area parameters

(Figure 5.11).

GLAM’s yield simulation was found highly sensitive to the choices of: maximum (ETN,max)

and normalised transpiration efficiency (ET ), the harvest index (∂HI/∂t), the rate of growth

of leaf area (∂L/∂t), and the light extinction coefficient (k). These are the parameters whose

variations can substantially increase the yield uncertainties (Challinor et al., 2005d). How-

ever, some of these parameters were constrained by the model structure. There were cer-

tain combinations between parameters that were not observed in any region or parameter

set. The physiological links between these traits thus appeared naturally as the model was

optimised to reproduce observations, as a product of the model structure.

The clearest of these was the link between leaf production, water use and partitioning:

a high rate of leaf area production was linked with either low ET or ∂HI/∂t, but never

both at the same time. Transpiration efficiency is negatively correlated with the specific

leaf area (SLA, ratio of leaf weight to leaf area, in g cm−2); hence, if the rate of leaf

growth is high, in order to maintain a given SLA, the biomass accumulation (either via

water-use-efficiency or the harvest index) has to remain low (Basu and Nautiyal, 2004; Lal

et al., 2006; Rao and Nigam, 2003). By contrast, with low values of leaf area formation,

high values of ∂HI/∂t or ET occurred simultaneously in some parameter sets. From the

data of Rao and Wright (1994), further presented by Rao and Nigam (2003) it seems that

there is no strong evidence to think that the ET and ∂HI/∂t are physiologically linked or

mutually exclusive. Combinations of extremes of both traits are less likely to exist among

genotypes, with the most frequent combination of traits being a low ET and high ∂HI/∂t,

or a high ET with low ∂HI/∂t (Basu and Nautiyal, 2004; Boote, 2004; Krishnamurthy et al.,

2007; Lal et al., 2006; Nigam et al., 2001).

In spite of GLAM being capable of reproducing all key physiological mechanisms of the

crop, the probability distributions presented in Figures 5.10 and 5.9 did not show a phys-

ically plausible behaviour. Previous studies where parametric uncertainty has been inves-

tigated have demonstrated that crop model parameters can be constrained by clear, single

peaked posterior distributions (e.g. Gouache et al. 2013; Iizumi et al. 2009b). The PDFs

of this work were, however, not well constrained. Such behaviour could be attributed to
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three major factors. Firstly, structural errors in the crop model can lead to physically

implausible simulations. While complete physical plausibility in a crop model can only be

achieved if both energy and carbon balances are fully considered and closed, such level of

detail is difficult, if at all possible, to achieve given inherent limitations to understanding

of plant processes and available data (Challinor et al., 2004; Lizaso et al., 2011). There is

no evidence, to the knowledge of the author, that GLAM crop simulations are internally

inconsistent or unrealistic (see e.g. Challinor et al. 2004; Li 2008; Nicklin 2013). Another

potential factor that could have lead to the unexpected parameter behaviour is poorly

defined parameter ranges. In this study, the majority of GLAM parameters have been de-

fined on the basis of experimental studies and/or data, exception being made for the rate

of leaf area growth (∂L/∂tmax) and to some extent also the harvest index (∂HI/∂t). Poorly

defined ranges could have led to failure in capturing the true highest likelihood regions

for these parameters. Finally, perhaps the main factor contributing to the behaviour in

the PDFs is the correlation between parameters. Previous studies have suggested that

reducing the parameter space to the maximum extent possible is necessary if the aim is to

determine the probability distributions of the model parameters (Beven and Binley, 1992;

Freer et al., 1996; Iizumi et al., 2009b). Because of the undesirable effects observed herein,

in future studies, it is suggested that the parameter space be reduced by first analysing

the correlations between pairs of parameters. Similarly, parameters with broad ranges for

which literature is scarce such as the harvest index and the leaf area growth rate could

be further constrained during optimisation using simple rules such as the use of observed

parameter ranges (Challinor et al., 2004). These ranges could be based on available field

sampling for varietal characteristics to determine the most frequent traits in farmers’ fields.

5.5.2.2 Simulated outputs

Uncertainty in simulated yield is the direct product of uncertain parameter values (Fig-

ure 5.12 and Figure 5.14). The range of optimal values for the model parameters of interest

(Table 5.2) produced crop yield simulations that were realistic, yet involved a degree of

uncertainty (Figure 5.12). Such uncertainty also reflected on the varied responses of the

simulated crop to different biophysical constraints (Sect. 5.4.4.3).
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In general, crop yield was the least uncertain quantity of all model outputs (Figure 5.12).

The method and results presented in the present study have shown that achieving a pa-

rameter ensemble is possible in regional-scale simulations. The perturbed parameter sim-

ulations of Challinor et al. (2005d), and the probabilistic hindcasts of Iizumi et al. (2009b)

and Tao et al. (2009) further support these findings, and illustrate common ranges of uncer-

tainty as caused by uncertain parameters. Although these studies do not show other model

outputs than yield, it is highly likely that, as shown in this study, end-of-season values of

biomass, LAI, RUE, among others, have larger uncertainties than the crop yield. This is

often the case in present-day simulations because simulated yields are constrained so that

they reproduce observed quantities. Interannual variability and individual individual-year

predictions depicted a more uncertain outcome than time-mean yields (Figure 5.12). The

strongest responses of the simulated crop yields were those related to water availability

during the growth cycle (particularly during grain filling) and mean temperatures. There-

fore, it is expected that transpiration, LAI and grain filling duration parameters would

play the most important role in the extent to which simulated yields vary due to uncertain

parameter values.

As uncertainties in yield are primarily rooted in biomass production and partitioning

parameters, uncertainties in other model outputs may be primarily affected by other pa-

rameters. Uncertainties in predicted LAI andHI can be attributed to the different possible

values that the ∂HI/∂t and the (∂L/∂t)max can adopt (Sect. 5.4.4.1), as well as directly to the

value of SLAmax. End-of-season values of LAI are also influenced by two model parame-

ters: the (∂L/∂t)max and the CY G. However, LAI growth is also affected by water stress (see

Eq. 3.9), meaning that transpiration-related parameters and soil hydrologic properties also

play a role in accurate LAI prediction. This particular result regarding LAI is in agree-

ment with Jamieson et al. (1998) who found that different calibrated crop models could

produce realistic crop yield simulations with significantly different behaviours in leaf area

dynamics. This was also related to the fact that the region is predominantly water-limited

(Sect. 5.4.4.3) and so the SLA-control played an important role in defining the optimal

values of LAI growth rate, transpiration efficiencies and the harvest index; thus increasing

the uncertainty in the simulated crops response. RUE was less uncertain (Figure 5.12),

partly due to the more limited variations in radiation absorbed caused by the crop being

more limited by water than by available radiation, and to the lower uncertainty in crop

albedo as compared to other growth parameters.
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5.5.2.3 The importance of parametric uncertainty

Parameter uncertainty in regional-scale crop simulations, similar to regional and/or global

climate model simulations, was found an important aspect of crop yield prediction, and

is a relevant topic for climate change impact assessment (also see Challinor et al. 2009b).

While climate simulations remain only available at coarse resolution (Taylor et al., 2012),

parameter uncertainty and scaling issues will remain a topic of central debate for impact

assessment. In this study, the construction of a parameter ensemble allowed to better

capture variability, mainly through the ensemble mean and its variance (Figure 5.14).

Moreover, the parameter sets developed here (Figure 5.14) produced comparable results

to those of Iizumi et al. (2009b, 2011), and of Tao et al. (2009) (see Sect. 2.3.3), who

also explored parameter uncertainties. These uncertainties led to a better quantification

of uncertainty in the simulated outputs of the crop model and in the responses to climate

variations, which constituted an advance over previous work (see e.g. Challinor et al.

2005d).

The parameter values and probability distributions found in this study (Figure 5.10- 5.9)

showed that probability distributions of optimal values are not necessarily normal (Angulo

et al., 2013a) and that sampling of parametric uncertainties for regional-scale models may

require more than simple parameter perturbations (Challinor et al., 2005d). In varying

parameter values in an attempt to quantify uncertainties, it is important to produce pa-

rameter perturbations that are consistent both with the model structure and the genotypic

characteristics of the species (e.g. Challinor et al. 2009a and Ruane et al. 2013). This en-

sures that the perturbed values used are part of the real probability distribution of the

parameter being perturbed, and can be as realistic as those originally used in the model.

Uncertainty in parameter values was also a reflection of the available information used

to define the ranges over which the parameters were varied (Table 5.2). More restricted

(broader) parameter ranges may have resulted in lower (larger) crop yield uncertainties.

Parameter uncertainty arises as a topic to be considered for crop simulation studies and

particularly for those involving future climate scenarios (i.e. under which processes dom-

inating crop responses may change). More field information on the geographic variation

of transpiration efficiency, leaf area growth rate and the harvest index as well as a better

crop model parameterisation of leaf area dynamics (Challinor and Wheeler, 2008b) could
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Figure 5.14: Historical 1966-1993 ensemble model predictions for selected grid cells
across the analysis domain. The thick black line is the observed time series, thick red line
is the ensemble mean and light red lines are individual ensemble members. Shown in the

middle map are the mean 1966-1993 crop yields.

improve the model optimisation. This would allow uncertain parameters to be better con-

strained, hence resulting in a reduction of the uncertainties reported in this study and of

the total uncertainty of future projections. As discussed previously in this study and by

other authors (Ruane et al., 2013; White et al., 2011b), this information is critical for a

better understanding of climate impacts on food crops, as is the comparison of different

sources of uncertainty. Subsequent chapters will compare parametric uncertainty with

that of climate model simulations and from parameterising CO2 response (Chapter 6).





Chapter 6

Using GLAM to project crop

yields

“Il matto lo riconosci subito.

E’ uno stupido che non conosce trucchi

Tutto per lui dimostra tutto.

Umberto Eco

6.1 Summary

A large ensemble of GLAM model simulations was used to (1) assess the skill of CMIP5-

based crop yield hincasts (Objective 3, Sect. 1.6), and to (2) project the changes in yields

and quantify the associated uncertainties (Objective 4-A). Under the future climate sce-

narios explored here, robust positive climate change impacts were found in 3 out of 5

groundnut growing regions. From the remainder of regions, one presented robust negative

impacts and in the other uncertainties precluded a robust statement being made about cli-

mate change impacts. Robust positive effects in two regions (west and north-west, states

of Rajasthan, Punjab and Gujarat) were observed due to a substantial increase in sea-

sonal rainfall, a lower frequency of occurrence of terminal drought and its indirect effect

on cropping season length. Despite greater uncertainties, yield gains were also robust

in the south-eastern region (states of Orissa and north of Andhra Pradesh) where water

stress was also observed to decrease. In central India (Madhya Pradesh and Maharashtra)

181
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robust yield loss projections (up to 70 % likely) primarily driven by decreased crop du-

ration and reductions in solar radiation were found. Finally, high uncertainty arose from

weather input types that produced increased heat stress in the south (Andhra Pradesh

and Tamil Nadu). GCM structure and choice of GCM bias correction method were the

most significant sources of uncertainty in the simulations presented, whereas CO2 response

and sowing date the least significant uncertainty sources. The analyses presented imply

that drought tolerance will remain a significant abiotic constraint for Indian groundnut.

Evidence from previous studies, however, suggests that it is likely that heat stress will play

a more important role toward the end of the 21st century, and hence heat tolerance could

be a key trait to target in a second or latter breeding cycle (Challinor et al., 2007; Singh

et al., 2012). A more thorough assessment of potential adaptation gains from the use of

improved germplasm, however, is needed in order to disentangle the need for genotypic

adaptation and the physiological traits whose improvement is more effective in abating

negative or capitalising positive effects of climate change.

6.2 Introduction

Groundnut is a tropical grain legume widely grown across India, generally by smallholders

under marginal conditions. Groundnut is produced mainly as a cash crop, with roughly 82

% of groundnut production used for edible oil, 12 % as seed, and 6 % as feed (Mehrotra,

2011). India is the second largest producer (∼6.4 billion tonnes in 2010) after China,

and has the largest harvested area (∼6 billion hectares in 2010) (FAO, 2012). Despite

that, Indian groundnut crop yields remain low (17 % below average in 2010) (FAO, 2012;

Mehrotra, 2011). Low yields are the consequence of a cropping system that is heavily re-

liant on monsoon precipitation and hence highly sensitive to interannual climate variability

(Challinor et al., 2003; Singh et al., 2012). Under climate change scenarios of increased

temperatures and changing patterns of precipitation (Joshi et al., 2011; Sillmann et al.,

2013), Singh et al. (2012) projected decreases in groundnut crop yields from 6 to 44 %

across different regions of India by 2050, and Challinor et al. (2007) projected yield de-

creases of up to 70 % for rainfed groundnut areas by 2100. In spite of existing impacts

estimates and the reported sensitivity of groundnut to climatic variations, a systematic
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exploration of the impacts of climate change on groundnut productivity and associated

uncertainties has not been carried out to date.

This chapter addresses Objective 3 and 4-A (see Sect. 1.6) by performing the following

analyses:

1. An assessment of the effect of using biased and bias-corrected input weather data as

inputs to GLAM. Both the skill of the model to simulate baseline crop yields and

the uncertainty in projections of climate change impacts were analysed (Sect. 6.4.1).

2. The impacts of projected near-term climate change (i.e. 2030s, RCP4.5) and the

driving processes at sub-national- and national-level groundnut productivity were

assessed using a large ensemble of crop-climate model simulations (Sect. 6.4.2).

3. The large ensemble of simulations was used to quantify the relative importance of

crop and climate uncertainties (Sect. 6.4.4)

Crop simulations were explicitly designed to quantify uncertainties arising from (1) crop

model parameters, (2) the parameterised crop’s response to increased CO2 concentrations,

(3) uncertainty in climate simulations (both structural and from initial conditions), (4)

variability in GLAM-selected planting dates, and (5) the use of different GCM output bias

correction (BC) methods. The analyses performed herein contribute to improve under-

standing of the processes driving crop responses under future scenarios, to quantify the

relative importance of crop and climate model uncertainties in regional impacts estimates,

and to assess the need for adaptation.

6.3 Methodology

6.3.1 Crop model simulations

The crop model simulations carried out were specifically designed to investigate two dif-

ferent aspects:

1. the skill of the model in the baseline period when driven with raw and bias-corrected

GCM output, and
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2. the future changes in yields and associated uncertainties.

As in Chapter 5, India was divided into five groundnut growing regions, with parameter

sets being independent across regions. In all simulations, the full 19-member parameter

ensemble developed in Chapter 5 was used. The simulations of Chapter 5 are hereafter

referred to as ‘control’ simulations. All crop model inputs except the meteorology (see

below) were kept the same as in Chapter 5. That is, soil data as in Sect. 3.4.3, planting

dates as in the SPD dataset of Sect. 3.4.2.3.

6.3.1.1 Baseline simulations

Baseline yield simulations were done to reproduce historical yields using both raw CMIP5

climate simulations (TS C5-GM, Sect. 3.4.1.5) and their 3 bias corrected versions (C5-SH,

C5-DEL, C5-LOCI, Sect. 3.4.1.6). These simulations were conducted with two objectives:

(1) to determine the extent to which the CMIP5 GCM simulations (marked with § in

Table 3.4) could be directly used into GLAM as a critical step to improve understanding

on the suitability of CMIP5 climate simulations for impacts research (also see Ramirez-

Villegas et al. 2013a); and (2) to provide a set of baseline simulations with which future

simulations could be compared. A first set of baseline simulations was carried out using

the full raw GCM output; the second set used the LOCI-corrected GCM output; and

the third set used the full SH-corrected GCM output. Given that the DEL method uses

projected changes in monthly climatological means, the baseline runs for DEL-corrected

simulations were the control simulations (i.e. driven by observed weather, presented in

detail in Chapter 5). Each set of simulations consisted of 195 grid cells, 19 parameter

ensemble members and 32 GCMs for the full 28-year baseline period 1966-1993.

For each grid cell, GCM simulation, bias correction method, and parameter set, CY G

was calibrated against observed crop yields (Sect. 3.4.2.1) using the perfect correlation

MSE (PMSE, fully described in Sect. 3.6.4) through the simulation of both Khariff and

Rabi seasons. Results of both seasons were combined using a constant irrigation rate

that corresponded to the temporal mean of reported irrigation rates (see Sect. 3.4.2.1,

Chapter 3). The skill of baseline simulations was assessed using the methods of Sect. 6.3.2.1

and compared with the control simulations of Chapter 5. Table 6.1 shows a summary of

the simulations carried out.
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Table 6.1: Model simulations carried out in this chapter.

ID Type Description

B-RAW Baseline Un-calibrated GCM output
B-LOCI Baseline GCM output with Local Intensity Scaling on precipi-

tation
B-SH Baseline GCM output with bias correction to the means
B-DEL Baseline Observed weather (also referred to as CONTROL)
P-RAW Projection Uncorrected RCP4.5 GCM output
P-LOCI Projection GCM output with Local Intensity Scaling on precipi-

tation
P-SH Projection GCM output with bias correction to the means
P-DEL Projection GCM output with delta method applied to the means

Notes: Projection simulations are those of RCP4.5 for the period 2022-2049. All projection
simulations were carried out independently for each of the four CO2 response parameteri-
sations (shown in Table 3.6), and were simulated for 15 equally-plausible planting dates.

6.3.1.2 Future scenario simulations

Four sets of future yield simulations were carried out in this study, each consisting of

32 GCMs, 19 parameter ensemble members, the 4 CO2 parameterisations (Table 3.6,

Sect. 3.5.1.13), a span of 15 potential planting dates, and 195 grid cells (i.e. a total of

36,480 simulations per grid cell). Future scenario simulations used RCP4.5 (2022-2049)

GCM output in both raw and bias corrected form. Simulations were conducted using

raw GCM, LOCI-corrected, SH-corrected, and DEL-corrected GCM output (Table 6.1).

CY G values for each grid cell were taken from the respective baseline simulation and in

the case of DEL-calibrated crop simulations from the control simulations. The monsoon

and the winter season were simulated independently in the future scenario runs. In each

of the 15 potential planting dates for the monsoon season, automatic planting was used,

with the start of window defined by the chosen planting date and a window size of 30

days (see Sect. 3.4.2.3). Planting in the Rabi season (fully irrigated) simulations occurred

on prescribed dates. Future scenario crop simulations were used to assess the impact of

future climates on groundnut yields as well as the uncertainties arising from CO2 response,

unconstrained crop model parameters, uncertain planting dates, GCM bias correction

(both decision and method), and climate model structure and initial conditions.
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6.3.2 Data analysis

6.3.2.1 Evaluation of crop model skill

Evaluation of GLAM simulations focused on the evaluation of simulated against observed

crop yields in the baseline simulations so as to determine the extent to which different

input types than observations, including raw GCM output, can introduce errors in crop

yield simulations. Two analyses were conducted:

1. A Taylor diagram see Sect. 3.6.5 to compare simulated standard deviations and

mean yields over the analysis domain. The method used follows that described in

Sect. 5.3.3.

2. Empirical probability density functions (PDF) of GLAM simulations were drawn

using all years and grid cells. These were compared with the control simulations,

and with the observations.

6.3.2.2 Quantifying future climate change impacts

The analyses herein presented focused on the impact of future climate on the means and

variability of two key crop characteristics: crop yield and duration. In both cases, changes

were computed using the relative differences between the future and the baseline (Eq. 6.1)

∆X =
XB −XF

XB

∗ 100 (6.1)

where X represents either the mean or the standard deviation of the crop yield or duration

time series (i.e. over multiple simulated years), and the symbol ∆ is used to indicate a

change. The change is expressed as a percentage of the difference between the future (XF )

and the baseline (XB), with respect to XB . These calculations were done per grid cell,

for each of the GCMs, GCM bias correction methods, parameter ensemble member, CO2

response parameterisation, and potential sowing date.

In addition, probabilistic changes in crop yields and duration were calculated. In Sect. 6.3.1.2,

a total of 145,920 future scenario simulations were performed for each grid cell; these arise
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from the combination of 19 parameter sets (Chapter 5), 32 GCM simulations (Table 3.4),

4 CO2 response parameterisations (Table 3.6), 4 different weather inputs (i.e. DEL, SH,

LOCI calibrated and raw GCM output), and 15 potential planting dates. In the baseline,

the total number of simulations per grid cell was 2,432 because planting dates and CO2

response were constrained. Baseline and future scenario simulations were used to calcu-

late the probabilities that crop yields and durations (and their temporal variability) were

above and below the respective baseline values by 5 %, 10 % and 20 %. For each grid cell,

the probability was calculated as the number of simulations above or below each threshold

divided by the total number of simulations.

6.3.2.3 Identification of key processes under future scenarios

Identifying the relevant processes driving crop yield responses under future scenarios is

critical for designing appropriate adaptation options (Challinor et al., 2010; Lobell et al.,

2013). Thus, processes driving the response of the crop under future scenarios were iden-

tified by comparing changes in crop yield and specific model prognostic variables. To

achieve this, three-dimensional scatter plots were drawn to illustrate the main drivers of

crop yield response. Plots of mean yield change and mean seasonal temperature and to-

tal seasonal precipitation change were first drawn, and then colours were used to show

a third variable. The third variable was one of the following GLAM’s prognostic vari-

ables: crop duration (DUR), total absorbed radiation (TRADABS), potential water up-

take (PUPTK), frequency of occurrence of terminal drought stress (TDS), extent of heat

stress during flowering (HIT), and extent of water stress during flowering (WAT). These

plots allowed identifying those variables whose changes were most related with changes in

crop yields, and thus helped to disentangle the combined effects of climatic changes on

crop productivity.

6.3.2.4 Uncertainty quantification

In modelling the impact of climate change on crop productivity, limitations in the models

and/or data employed can lead to uncertainties and lack of predictability (Koehler et al.,

2013). Identifying the sources these uncertainties is key in order to improve modelling

frameworks and make more informed decisions (Vermeulen et al., 2013). Here, the total
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uncertainty in mean yield was decomposed into its different sources using the methods

described in Sect. 3.7. In this particular case, the number of sources (n) was n = 3:

parameter sets, GCMs, and bias correction method, for the baseline; and n = 5: the same

three as for the baseline, plus CO2 response and sowing dates, for the future scenarios.

6.4 Results

The crop model simulations of this chapter assessed the effect of future projected climate

change on groundnut production over India. Crop model runs were performed for both

the Khariff and the Rabi seasons, although 83 % of production is done in the Khariff

season (Mehrotra, 2011; Singh et al., 2012). For this reason, in this and the following sub-

sections of the chapter, the major focus is on the Khariff season (owing to the large amount

of numerical results produced), unless otherwise stated. Results for the Rabi season are

also described, although with less detail.

6.4.1 Effects of biased and bias-corrected weather on crop simulations

6.4.1.1 Effect on crop model skill

Taylor diagrams for the spatial consistency of simulated mean and standard deviations for

two of the 32 GCM simulations are shown in Figure 6.1 and 6.2, respectively. The skill

of the model with biased baseline input weather varied primarily depending on the GCM,

bias correction method and, to a lesser extent, also on the parameter set used. Spatial

correlation coefficients for mean yields were around 0.95-0.99 for the control, but decreased

to 0.8-0.9 when RAW input was used. Standard deviation tended to be overestimated

with some of the RAW GCM input. The spatial consistency of yield standard deviation

(Figure 6.2) was significantly more affected by GCM bias than that of mean yields, but

this largely depended on how accurate was the GCM simulation of historical climate (also

see Chapter 4, Figure 4.12). Bias correction methods improved baseline simulation skill.

Correlations for LOCI and SH input types were consistently high, with values between

0.9-0.97 in most cases. As most of the interannual yield variability in India is driven by

moisture availability, the rainfall error correction implemented by LOCI also represented

a significant improvement over the B-RAW simulation skill for all GCMs.
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Figure 6.1: Taylor diagram showing the performance of the 19 parameter sets in relation
to the spatial variation in mean yields for two different GCMs. Blue and red colours indi-
cate control and raw or bias-corrected GCM output simulations (Table 6.1), respectively.
Each dot represents a GLAM parameter ensemble member. Spatial standard deviations

are normalised to observed, as is the RMSE.

The use of biased weather increased the differences in the skill across parameter sets dis-

tances among groups of coloured points in Figure 6.1 and 6.2. In particular, there was a

group of parameter sets whose skill decreased significantly when used with biased weather.

These four parameter sets depicted a very low LAI rate of development [(∂L/∂t)max = 0.01

day−1], which in conjunction with CY G and biased weather led to insufficient light absorp-

tion, biomass and yield accumulation (and hence unrealistically frequent low yields, see

bottom row of Figure 6.3). In addition, the general lack of rainfall in the GCM simulations

led to more frequent terminal drought stress, thus further shortening the cropping cycle

and increasing crop failures (i.e. yields close to zero). For these parameter sets, not only

the RMSE is high and the correlation coefficients were low, but the ratio of standard de-

viations was high, indicating that interannual yield variability was largely overestimated.

These four parameter sets were a clear indication of the risks of biasing crop model simu-

lations and increasing uncertainties if insufficiently accurate crop model inputs are used.
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Figure 6.2: Taylor diagram showing the performance of the 19 parameter sets in relation
to the spatial variation in mean yields for two different GCMs. Blue and red colours indi-
cate control and raw or bias-corrected GCM output simulations (Table 6.1), respectively.
Each dot represents a GLAM parameter ensemble member. Spatial standard deviations

are normalised to observed, as is the RMSE.

Uncertainties in the crop yield response, as represented in the shading of the PDFs of

Figure 6.3, increased in the majority of GCM-driven simulations as a result of the inter-

action between biased weather and the crop model structure and parameters. In some

cases, the lack of rainfall triggered crop failure (see HadGEM2-CC simulations in Fig-

ure 6.3) and hence the probability of very low (or zero) yields increased significantly. In

other cases, biases in temperature interacted with thermal time requirements (which are

sometimes different across parameter sets) and increased the uncertainty in the response.

Notably, models with high skill at reproducing climate fields in the historical period (see

Figures 4.10-4.11, Chapter 4) were also observed to reproduce crop yields with consid-

erable fidelity, particularly when precipitation was better simulated by the GCMs, crop

simulation skill improved significantly. This occurred because water stress is the dominant

driver of Indian groundnut crop yields (see Figure 5.1, Chapter 5). In this regard, some

of the GCMs, namely, BNU-ESM, NCAR-CCSM4, CCCMA-CanESM2, INM-CM4, and

MPI-ESM-LR (-MR), produced simulations that were in considerable agreement with the
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Figure 6.3: Probability density functions of baseline simulated and observed crop yields.
Red continuous line represents the mean PDF of simulations driven raw or bias-corrected
GCM output, blue line the those of the control simulation, and dashed black line is the
PDF of yield observations. Shading correspond to 1 standard deviation around the mean

PDF, computed using all ensemble members for each GCM simulation.

control and the observations, indicating that in some cases the GCM biases do not nec-

essarily preclude a consistent crop simulation. GCM output bias correction, particularly

the SH method, reduced uncertainty in the crop yield response and reduced the likelihood

of failed seasons and/or very low simulated yields, thus increasing the overall skill of the

crop simulation. However, no bias correction methodology was perfect, even for the ‘best’

GCMs (Figure 6.3, also see Chapter 4 and Ehret et al. 2012).

6.4.1.2 Effect on baseline simulations

Lack of model skill caused significant differences between simulations across different input

types for all quantities of interest. Figure 6.4 shows the variation in simulated baseline

mean yield and yield variability across the different input types. For mean yield the main

differences arise when using uncorrected GCM output (B-RAW). However, the fact that

most of these errors were significantly reduced in the B-LOCI simulations implies that

most of the errors were related to biased rainfall (also see Sect. 6.4.1.1) and that CY G

cannot fully correct such biases (also see Watson and Challinor 2013). Yield variability

seemed to be much more sensitive to errors in input weather, as it was overestimated by
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Figure 6.4: Mean and variability of crop yield in the baseline simulations for three
different GCM-based inputs and the control simulations (driven by observed weather).
All maps correspond to the Khariff (rainfed) season. Values shown are averages of all
GCMs (if any) and all parameter ensemble members. See Table 6.1 for typology of the

simulations.

all input types across central and some parts of western India. As with mean yield, the

B-RAW simulations were the least similar to the control simulations. The importance of

correcting precipitation bias is noted since the B-LOCI variability significantly improved

the simulation, although it was still not perfect. Further, correcting temperatures (B-SH)

produced yield variability estimates that were much more similar to the control simulation.

Figure 6.5 shows simulated mean duration and its associated temporal variability. The

differences across the different input types were most notable between those where no

correction to temperature was applied (B-RAW and B-LOCI) and those with correction

of temperature bias (B-SH). Mean duration was overestimated in eastern India in the

B-RAW and B-LOCI simulations, underestimated in the south-western coast. The fact

that different duration in the B-LOCI simulations led to relatively consistent mean yield

simulation highlighted the action of CY G as a bias-correction factor. Duration variability
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Figure 6.5: Mean and variability of crop duration in the baseline simulations for three
different GCM-based inputs and the control simulations (driven by observed weather).

Additional details as in Figure 6.4.

was less affected than crop yield variability, with high similarity across all input types

except B-RAW, in which duration variability was underestimated in the south.

For the Rabi season, warm biases in temperatures increased crop duration and tended to

cause overestimation of crop yields; however, as indicated earlier, the yield response varied

on a GCM basis, owing to the varying quality in the GCM output (see Chapter 4 for an

analysis of GCM skill).

6.4.1.3 Effect on projections of climate change impacts

As for baseline predictions, differences across projections of climate change impacts arose

from the use of different weather input types. Figure 6.6 shows the projected change in

mean crop yield (top row) and yield variability (coefficient of variation, bottom row). In

general, for mean yields, P-RAW simulations showed larger relative changes across the

most of India. In western India, for instance, average changes were between 30 and 60
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Figure 6.6: Projected changes in mean and variability of crop yield by 2030s for all
weather input types. All maps correspond to the Khariff (rainfed) season. Values shown
are ensemble averages for a given weather input. See Table 6.1 for typology of the simu-

lations.

% for P-RAW, whereas those projected using all bias correction methods were below 40

%. Despite differences in rates of change, the direction of the change remained unchanged

across most of India. This suggested that the choice of whether to bias correct the GCM

simulated output is a significant source of uncertainty, but that it does not strongly affect

the direction of the change (also see Sect. 6.4.4). For instance, yield variability increased

by 20-80 % in Gujarat (mean) for the P-RAW simulations and by 10-15 % for the P-DEL

simulations.

Differences were greater if the extremes of each set of simulations were considered, with

P-RAW showing the largest relative changes. Crop yield changes were very high in the

upper end of the simulations for the RAW output, which was associated with very low crop

yields that were inconsistent with the control simulations in the baseline (Sect. 6.4.1.1).

Inherently biased GCM input, hence, did not affect the direction of change but did so for

the extent of the change.
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As with mean yields, very high percentage changes in variability were associated with very

low variability, which was generally a result of very low baseline crop yields (Figure 6.4), in

turn caused by the very low “drizzle-type” rainfall typical of a poorly simulated monsoon

season (Jourdain et al., 2013; Sperber et al., 2012). In addition, projections of changes in

yield variability showed less consistent patterns. Relative changes in yield variability in

northern India were similar between P-RAW and P-LOCI, but these differed from P-SH

and P-DEL. Projections were similar between P-SH and P-DEL, particularly in western

and southern India. In addition, the significant disagreement across northern and central

India between projections in which temperature was corrected (P-SH, P-DEL) and those

where not (P-RAW and P-LOCI) suggested that temperature bias played an important

role in the changes in interannual yield variability in these regions. The impacts of biased

weather on mean and variability of crop duration were less significant than those of mean

yields, with inconsistent directions of change in the centre of the country, where durations

were projected, on average, to decrease by P-DEL, but changes in a different direction

were projected by the rest of the input types.

6.4.2 Climate change impacts on groundnut

6.4.2.1 Impacts on crop duration

Figures 6.7 shows the projected changes in mean crop duration for the Khariff season. A

robust response was observed in the north-west (Gujarat and Rajasthan) across GCMs,

ensemble members, and the different GCM bias correction methods. In these areas, du-

rations are projected to increase between 5 and 20 %, on average. In the central-south

zone (states of Maharashtra, Andhra Pradesh and Karnataka) the majority of simulations

depict decreases in mean crop duration in at least 60 % of the areas. In this latter case,

there is, however, some uncertainty in the response owing to the different GCMs and other

model inputs (i.e.CO2 response, parameter sets and planting dates), with the upper 25 %

of the probability distribution indicating increases in mean duration between 0 and 5 %.

In the Rabi season, significant agreement was observed across simulations, with central

and northern India projected to experience duration reductions between 5 and 20 %, and

southern and western India projected to experience increases between 5 and 10 %.
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Figure 6.7: Impacts of projected 2030s climate on mean crop duration. Shown are the
baseline averages, the projected changes in duration (departure from the baseline), the
probability of increases of more than 10 %, and probabilities of decreases of more than

10 %. Values shown correspond to the P-DEL ensemble.

Despite uncertainties in the actual values of changes, probabilities derived from the large

ensemble used here indicate that robust estimates of impacts can be drawn. Probabilities

of changes beyond +10 % and -10 % are shown in Figure 6.7. Probabilities of significant

reductions in cropping season length are very high (60-80 %) towards the south-west of

India (west of Karnataka and Maharashtra). A high probability (80-90 %) of significant

(>10 %) increases in cropping season length was projected in the north and west of India

(Gujarat, Rajasthan, Haryana and parts of Uttar Pradesh). To a lesser extent (probabil-

ities between 60-80 %) the east of the country (east of Andhra Pradesh, Tamil Nadu and

Orissa) also depicted increases in cropping season length. In general, probabilities of larger
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relative changes (i.e. beyond 20 %) for either increases or decreases in cropping season

length were very low, probably as an effect of the moderate changes in climate projected

to 2030s.

6.4.2.2 Impacts on crop yields

Changes in yield mean for the Khariff crop are shown in Figure 6.8. There were significant

yield increases projected across the major growing areas in the west of India (Gujarat).

By contrast, in eastern India, negative changes in mean crop yield were found. Crop yield

decreases beyond 10 % across the south-western coast of India were found highly likely

(probability above 70 %). Yield losses below 20 % were found highly unlikely (maximum

20 %). Yield gains above 5 % were found highly likely (probability > 90 %) across most

of western and northern India. There was significant uncertainty as per the direction

of the change in central India, although the probability of a negative impact (between

55-60 %) was generally larger than that of a positive impact. Conversely, in eastern

India, probabilities of yield gains were slightly higher than those of negative impacts but

again there was high uncertainty in the direction of the change. These results broadly

agree with those of Challinor et al. (2009a) and Challinor and Wheeler (2008b), who

projected yield losses in Central India, and yield gains in north-west and western India.

Mean Rabi crop yield was projected to be impacted to a lesser extent in the majority

of India, although increases between 15-30 % in southern India (Andhra Pradesh) (also

with significant increases in variability) and losses of up to 25 % (with 20-30 % increase

in variability) in some simulations (central India) were projected.

At the sub-national and national level (as opposed to the grid cell level analysed above),

both impacts and uncertainties varied both with scale and with the areas analysed. Fig-

ure 6.9 and Figure 6.10 show probability density functions of projected changes in mean

yield and yield variability (respectively) constructed with all members of the large ensem-

ble used here for the five growing zones and the whole of India. The figures show a PDF

for each weather input type, including P-RAW for comparison. The extent and direction

of impacts varied between the zones and was also different to the whole-India impact dis-

tribution. The north-west and west of India show a higher likelihood of yield gains (with

decreases in variability). In particular, there was a peak at around 10-20 % and 20-30 %

yield gain for the north-western region and western region, respectively.
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Figure 6.8: Impacts of projected 2030s climate on mean crop yield. Shown are the
baseline averages, the projected changes in duration (departure from the baseline), the
probability of increases of more than 10 %, and probabilities of decreases of more than 10
%. Values shown correspond to the P-DEL ensemble. See Figure 6.6 for mean changes of

other weather input types.

High likelihood of positive impacts were also observed (although to a lesser extent) in the

south-eastern zone. Negative effects were observed mostly in central India, with the most

likely scenario presenting yield losses of 10-20 %. In southern India, the uncertainty arising

from the use of different weather input types precludes identifying a clear signal. India as

a whole does show an overall trend of increasing crop yields and mixed impacts in terms of

variability though with higher likelihood of variability decreasing. The P-DEL projections

show the most optimistic scenarios, with the least decreases and/or the most significant

yield gains owing to neglecting changes in climate variability. On the whole, however,

productivity of groundnut grain is not severely impacted across the largest producing
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Figure 6.9: Probability density functions of changes in mean regional and national yield
mean. Subnational-level changes in yield follow the groundnut growing zones defined in

Figure 3.2. Lines indicate different input types (see Table 6.1).

areas of India, exception being made for central and (parts of) southern India. The Rabi

crop depicted rather minor impacts, with high probability of yield gains in south-eastern

and western India, and yield losses over central, eastern, and south-western India.



Chapter 6. Climate change impacts 200

Figure 6.10: Probability density functions of changes in mean regional and national
yield variability. Additional details as in Figure 6.9.
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6.4.3 Key processes under climate change

Determining the processes behind a given projected impact is perhaps as important as

determining the direction and/or the extent of the change. Consistency in processes across

crop model simulations can be an indicator of robustness (Challinor et al., 2013) and can

help in the design of adaptation strategies (Lobell et al., 2013). Investigating processes

can also help identifying key uncertainties (Challinor and Wheeler, 2008b). The purpose

of this section is to describe the main processes related to the projected changes in crop

yields that were described in Sect. 6.4.2.2 so as to be able to identify the main physiological

aspects of the crop that require attention from an adaptation perspective.

In spite of uncertainty in the extent of yield changes and in some cases also in the direction

of the yield responses, significant similarity arose in terms of the driving processes of

yield increases across weather input types and regions. For yield gains, in general, the

main process that seemed to cause most yield gains was the reduced terminal drought

due to an overall increase in seasonal rainfall. Indirectly, the lesser effect of terminal

drought increased cropping season length, hence countering some of the negative effects

of increased temperature on crop development. Such increases in crop duration allowed

greater radiation absorption, total water uptake and hence more biomass accumulation.

This finding was consistent across all growing zones, highlighting the importance of water

availability for the groundnut cropping systems analysed, as well as the need for water-

use-efficient genotypes that allow coping with drought stress and/or capitalise on potential

increases in available water. In most of the simulations with yield gains, however, a

decrease in the mean total percentage of pods due to heat stress (HIT) was also observed

(i.e. more heat stress). These changes were small and were compensated by increases in

seasonal rainfall and crop duration, but suggested that with higher degrees of warming

high temperature stress may become an important constraint to crop yields (Challinor

et al., 2007), particularly because these increases in heat stress occurred at various degrees

of warming (Figure 6.11).

Processes driving yield losses varied across the different zones. In the north-western,

western and south-eastern growing areas, projections of yield loss were, at least to some

extent, related to decreases in crop duration (50 and 30 % of simulations with yield loss

showed decreases in duration). In these cases, changes projected precipitation increases
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Figure 6.11: Variation in crop yield response with respect to precipitation (top row) and
temperature changes and a third variable (varying depending upon the panel). Results

shown are for ‘P-DEL’ rainfed simulations in the western zone (Z2).

by the GCMs were not sufficiently large so as to counter the hastened crop development

that arose from higher temperatures. However, some of these losses were enhanced by

heat stress (average 70 % simulations across GCMs) and an increased effect of terminal

drought (65 %). As reductions in cropping cycle duration also impacted total potential

water uptake and total absorbed radiation, it was difficult to separate their individual

effects without carrying out separate fixed-duration simulations (see e.g. Challinor and

Wheeler 2008b and Figures 6.11 and 6.12). In general, however, a greater proportion of

simulations showed decreases in absorbed radiation (75 %) as compared to those showing

decreases in crop duration (< 50 %) and this suggests that decreases in solar radiation

during the rainy season would have independently enhanced yield losses. Decreased solar

radiation may be a result of increased cloudiness in the climate model owing to increased

precipitation during the monsoon season (Haywood et al., 2011; Menon et al., 2002).
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In the central region (Z3) and the southern region, decreases in cropping cycle duration

were more severe (occurring in some 70 % of simulations), even though there was a general

trend for an increase in seasonal rainfall (in ∼65 % of simulations) and little effect from heat

stress (<5 % of simulations). Crop duration decreases arose because mean temperature was

in the future scenarios closer to the optimal development temperature (also see (Challinor

et al., 2009a)), but these were enhanced and to some extent (∼50 % simulations) also

by terminal drought (Figure 6.12). The yield responses in the Rabi crop were primarily

constrained by crop duration, although reduced solar radiation played an important role,

particularly in central and south-western India.

Remarkably, in spite of the lack of agreement observed in yield changes for certain growing

regions, agreement in terms of the importance of certain processes across the different

types of simulations was found in most cases. It was also observed that similarity in

driving processes (e.g. between Z1, Z2, Z4 and between Z3, Z5, see Figures 6.11 and 6.12

for added detail on Z2 and Z3 as representative examples) was related to the direction of

the changes (Z1, Z2, and Z4 generally showing yield gains, and Z3 and Z5 with yield loss

being predominant, see Figure 6.11).

6.4.4 Sources of uncertainty

As stated earlier (see Sect. 6.3.2.4). The objective of the analysis was to determine the

relative importance of the different sources of uncertainty so as to be able to identify

the specific points in the ‘uncertainty cascade’ that are the most relevant to the study

of groundnut yields under future scenarios. Since uncertainty was decomposed separately

for simulations that used raw GCM output and those that were bias corrected, and sepa-

rately for the baseline (Figure 6.13) and the 2030s (Figure 6.14), this allowed the robust

determination of the main sources of uncertainty and their spatio-temporal variation. The

sources investigated here were: parametric uncertainty (from the GLAM parameter en-

semble), GCM structure (from the ensemble of GCMs), CO2 response (from the CO2

response parameterisations of Table 3.6), and sowing dates (arising from the variation in

start of planting window).

Very similar results were found for the Khariff and Rabi crops and thus only the Khariff

crop is described. Climate was the largest source of uncertainty, either via the large (>70
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Figure 6.12: Variation in crop yield response with respect to precipitation (top row) and
temperature changes and a third variable (varying depending upon the panel). Results

shown are for ‘P-DEL’ rainfed simulations in the central zone (Z3).

%) relative contribution of GCM structure to total uncertainty in the P-RAW simula-

tions, or via the combination of bias correction methods and the GCM structure. Climate

uncertainty was followed in importance by parametric uncertainty (20-30 % relative con-

tribution), and then by CO2 response (< 10 %) and sowing dates (< 5 %). In the case of

CO2 response, in particular, the sampling of the uncertainty space was limited to only 4

combinations of parameters (Table 3.6) so as to reduce computational needs, but previous

studies have considered a more complete sampling of this source of uncertainty (Challinor

and Wheeler, 2008b).

In addition to the above, four main points arose from decomposing uncertainty:

• Firstly, total yield uncertainty was higher when raw GCM output was entered into

the crop model. The main reason for this is the obvious biases in monsoon rainfall

in many GCMs that triggered the occurrence of terminal drought in many years,
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particularly in the dry areas of north-western India. The wide array of GCM sim-

ulations used in the present study differed significantly in their biases with respect

to observed climate, particularly for rainfall (see Chapter 4). By bias correcting

the GCM output, biases were reduced, but GCMs were brought closer to a single

common point (i.e. the observations), which reduced the GCM structural uncer-

tainty and thus the resulting total yield uncertainty. The use of a limited number

of bias correction methods as opposed to the wide array of GCMs, thus, produced a

reduction on the total uncertainty.

• Secondly, the P-RAW simulations consistently showed a very high contribution of

GCM structure. The relative contributions from the different sources were different

in the P-RAW simulations as compared to the bias-corrected simulations. In par-

ticular, the relative contribution of GCM structure in the P-RAW simulations (top

row in Figure 6.13 and 6.14) was roughly 25 % larger in the P-RAW as compared

to the bias corrected simulations. Uncertainty arising from the structure of GCMs

was above 70 % in most of the study area (baseline), but it did not exceed 50 %

in the bias corrected baseline simulations. This difference was very similar for the

future simulations, though the contribution of GCM structure to total uncertainty

was lower, owing to the introduction of two additional uncertainty sources: CO2

response and sowing dates. The geographic patterns were, however, very similar

between the P-RAW and the bias corrected simulations. Despite the differences in

the relative contribution of GCM structure, the relative importance of the rest of

the uncertainty sources was similar.

• Thirdly, the spread across members of the ensemble was lower in the P-RAW as

compared to the bias-corrected simulations. Much more agreement (and less signif-

icant percentage changes) were observed in the DEL simulations (one of the most

frequently used methods in the impacts literature, see White et al. 2011b). However,

DEL does not account for changes in intra-seasonal and interannual variability, and

could thus likely underestimate the impacts of extreme events, which are projected to

increase towards the future (Orlowsky and Seneviratne, 2012; Sillmann et al., 2013).

By contrast, the use of raw GCM output allows including all relevant climate system

features and their evolution toward the future; however, inherent biases in GCMs
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Figure 6.13: Fractional uncertainty in mean yield from different sources in the baseline.
Uncertainty was decomposed separately for simulations where GCM bias correction was

not performed (top) or was performed (bottom).

(particularly the too-much-drizzle-type problem that is frequently mentioned the lit-

erature) leads to above-normal crop failures and unrealistic crop responses in both

the baseline and the projection periods (also see Sect. 6.5.2, and Ramirez-Villegas

et al. 2013a). This was also evidenced in the fact that the Rabi crops GCM-related

uncertainty was generally lower.

• Finally, the contribution of the uncertainty in the decision of whether to bias-correct

the climate simulations, which is shown in Figure 5.19, was large, and importantly,

in some cases larger than the total of uncertainty from all other sources. This was

observed particularly in western India for the calibrated GCM output, where the

uncertainty in the decision was generally 20-25 % greater than the total uncertainty

from all other sources. Because the total uncertainty arising from the GCMs in the

P-RAW simulations was very large, the uncertainty in the decision was compara-

tively lower (25-30 % lower) in the same area. Uncertainty in the decision, however,
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Figure 6.15: Uncertainty in the decision of whether to bias-correct the GCM simula-
tions, shown as a fraction of the total uncertainty in each set of simulations. Values above
1 indicate areas where uncertainty in the decision is greater than that arising from all

other sources together.

increased in importance in time in the P-RAW simulations and decreased in im-

portance in the bias-corrected GCM simulations (Figure 5.19) but there was spatial

variation in this response.

6.5 Discussion

6.5.1 National and sub-national level implications of crop yield changes

In relation with other crops (e.g. rice, wheat, maize) (Fraser et al., 2013; Knox et al.,

2012; Parry et al., 2005), the impacts of climate change on groundnut crop yields have

been far less investigated. Currently, most of the Indian groundnut production happens

in low-input systems under rainfed conditions, and this makes the system highly sensitive
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to climate variations (Mehrotra, 2011). However, this also indicates that significant yield

gains could occur at present if input use is increased and optimised to close yield gaps

(Bhatia et al., 2009). The impacts of climate change on groundnut productivity have been

projected to vary according to the geographic location within India (Sect. 6.4.2), which at

first highlights the need for spatially-disaggregated information and conclusions. Previous

estimates of future groundnut productivity (at the national level) by the same period

studied here have highlighted uncertain impacts closely centred around “0 %” (Lobell

et al., 2008), which may reflect the large spatial variation of crop yield response reported

here.

Under the future climate scenarios explored here, the effects of climate change are moder-

ately negative or in many cases even positive. This was particularly the case for the largest

producing state –Gujarat. In Gujarat, and also in the north-west of India, increased water

availability enhanced biomass accumulation, but also increased crop duration as it reduced

terminal drought. Temperature had a minor role given the relatively low levels of warm-

ing observed by 2030s (Knutti and Sedlacek, 2012). In these areas, crop yield changes

were consistent with the studies of Challinor et al. (2007), Challinor and Wheeler (2008b),

Challinor et al. (2009c) and Singh et al. (2012), which have projected crop yield gains

towards the west and north-west of India and crop yield losses towards the south-east

(Figure 6.8 and 6.9). In the first three studies, yield gains were reported as a result of

increased crop duration due to the exceedance of optimal temperatures for development

–though for instance in Challinor and Wheeler (2008b) the findings were not consistent

across the three crop models used. Differences in the processes may arise between this

study and others partly because these studies focused on climate scenarios of greater

warming (i.e. by 2100), and partly because the terminal drought stress mechanism (a key

one in this chapter) was not included in two of the mentioned studies. In the study of

Singh et al. (2012), however, processes were not explicitly investigated, but the reported in-

creases in seasonal precipitation, the little impact of temperature change in crop duration,

and the fact that yield gains were reported even without accounting for CO2 stimulation,

suggest that reduced water stress and increased biomass production were the causes for

the yield gains.

Disagreement with respect to the abovementioned studies, however, arose in eastern and

south-eastern India, where the present study projected a higher likelihood of crop yield
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gains, while the other two studies projected yield loss. The reason behind these differences

may be in the fact that yield changes may change in direction with larges increases in

temperature. For instance, Thornton et al. (2009) reported that in some 20 % of bean

producing regions of East Africa experience yield increases in the near term (ca. 2020)

just before crop yields decline significantly towards the mid- and end- of the 21st century.

The results presented herein and those of Singh et al. (2012) (by 2050s) and Challinor

et al. (2007) (by 2100) would imply that similar trends are to be expected in some of

the areas (e.g. southern Gujarat, and eastern India) although any remarkable differences

could also be caused by choice of climate simulations, emissions scenario, crop model and

model parameters.

Despite relative increases in crop yields in some areas, actual crop productivity under

future climate is still expected to remain low in relation with other producing countries,

unless improved management and input optimisation is further pursued across major pro-

ducing areas. In addition, in spite of a significant reduction in drought stress across western

and north-western India, drought impact will likely still be a major player by the 2030s,

suggesting that further breeding of drought tolerant genotypes may be warranted toward

the future. Furthermore, the fact that interannual variability was projected to increase in

many areas is particularly worrisome, since the low inputs of majority of groundnut sys-

tems across India and the large yield gaps may indicate very low coping capacities at local

levels Bhatia et al. (2009); Licker et al. (2010). To this aim, genotype characterisation,

targeting and improvement activities carried out by both national (e.g. Directorate of

Groundnut Research) (Ajay et al., 2012; Nautiyal et al., 2012) and international (e.g. the

International Crops Research Institute for the Semi-Arid Tropics, ICRISAT) (Upadhyaya,

2005) research organisations are of high relevance to maintain and improve groundnut

production in both quantity and stability.

6.5.2 Sources of uncertainty in crop yield simulation

Crop modelling studies have typically focused on reporting total uncertainties (e.g. Os-

borne et al. 2013 and Sultan et al. 2013), with few studies also analysing individual uncer-

tainty sources (Koehler et al., 2013; Vermeulen et al., 2013). A thorough understanding

of uncertainties and their main sources is a critical piece of information for both research

and policy purposes. Assessing and reporting associated uncertainties with a given impact
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can, at the very least, help focusing the spatio-temporal scale of future attempts to adap-

tation and vulnerability reduction (Vermeulen et al., 2013). Here it was shown that robust

impacts estimates can also be obtained by using large crop-climate prediction ensembles.

Attention must be paid to the design of the ensemble and to the key uncertainties that need

to be reduced, or whose impact was the largest and thus need to be further investigated.

Various important points arose from the analyses and results presented here. Firstly, the

assessment of uncertainty sources revealed that the largest source of uncertainty was the

structure of the GCMs, with 1.2-1.7 times more relative importance than the second most

important source –crop model parameters. GCM uncertainty did not only affect the di-

rection and extent of impact, but it also affected the driving process of the impact. This

became evident since the use of raw GCM data reduced the model skill in the baseline,

caused an unrealistically large and widespread impact of drought stress (Figure 6.3), and

unrealistically increased the effect of heat stress in certain areas (e.g. southern India).

However, it is worth noting that there were some climate simulations for which realistic

simulations were achieved. Thus, although the risks posed to impact prediction by cli-

mate uncertainties seem rather high, they depend on the quality of the underlining GCM

simulation (Baigorria et al., 2008; Randall et al., 2007). On this last point, for instance,

(Challinor et al., 2005a) reported skilful crop simulations when climate model output was

used directly into GLAM, but (Koehler et al., 2013). Further, Hawkins et al. (2013a) con-

cluded that correcting the means can be as important as correcting the daily variability

of the GCM simulations. Furthermore, while there are obvious benefits in bias correcting

GCM output for impact assessment, there is a vast diversity of bias correction methods

(Ehret et al., 2012). Importantly, some cases qualitative conclusions were contingent on

the choice of method (see Figure 6.6). This has also been shown in existing literature for

other crops and/or regions (Iizumi et al., 2012a; Koehler et al., 2013). This suggests that

there is no general prescription regarding the treatment of climate model information for

impact assessment and probably highlights the need of developing an appropriate under-

standing the realism of a given GCM simulation is for a given region, and how the bias can

be corrected. Such understanding may entail many of the aspects analysed in Chapter 4

of this thesis, but may also require a sufficient understanding of the regional circulation

patterns (Jourdain et al., 2013). In this chapter, for instance, the unrealistic simulation

of the monsoon in the HadGEM2- models led to crop simulations that were inconsistent

with the control simulations. In fact, the varying quality of the monsoon simulation was
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vastly different across the GCMs generated a broad range of responses in both the baseline

and projection periods. Equally important to assessing the needs and usefulness of bias

correction on a study-specific basis, an assessment of the uncertainty in the choice of bias

correction method is important for impact studies.

Secondly, even though the response of crops to CO2 has been regarded as one of the largest

sources of ‘unknown unknowns’ in the crop modelling literature (Challinor and Wheeler,

2008b; Leakey et al., 2009; Long et al., 2006), this study reports that it is a relatively minor

source of uncertainty. There may be two reasons for this: (1) the projections assessed here

focus on near-term (i.e. 2030s) climate change and a relatively moderate RCP scenario

(also see Ruane et al. 2013); and (2) the parameterisation of CO2 response in GLAM is

prescribed using one specific method, and it is likely that using different approaches (e.g.

radiation-use efficiency as in some CERES models, Jones et al. 1986; Nain et al. 2004),

or the increase in gross canopy photosynthesis of the CROPGRO models (Alagarswamy

et al., 2006; Boote et al., 1998) in conjunction with the one used here may lead to a larger

uncertainty contribution (Tubiello and Ewert, 2002).

Thirdly, despite uncertainties it was possible to identify both robust signals in crop yield

and duration changes under the future climate scenarios considered. Projections of in-

creases in crop yields were highly likely across north-western and western India. There

was a more uncertain signal elsewhere, with a higher likelihood of negative impacts in cen-

tral and south-western India, and a slightly higher likelihood of yield gains than of yield

losses in south-eastern and southern India. Hence, the use of an ensemble of crop-climate

simulations led to a clearer understanding of impacts by both drawing probability dis-

tributions (Sect. 6.4.2) and disentangling the key processes behind the projected changes

(Sect. 6.4.3). Similarly, it was possible to identify key uncertainties that need to be re-

duced and potential shortcomings in the framework. The most critical uncertainty source

to be reduced is that of arising from climate modelling. However, it was also found that

certain crop model parameters contribute to uncertainty in the response and thus that

could be better constrained. In particular, the rate of change in LAI ((∂L/∂t)max) was

found to produce unrealistically low crop yields in some simulations, particularly when

biased GCM weather was used into the crop model (Sect. 6.4.1).

The simulations of this study were internally consistent and realistic. However, additional

uncertainties may arise from empirical components in GLAM –also typically present in
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other crop models (Jones and Thornton, 2003; Lizaso et al., 2011; Ritchie et al., 2009).

Clear examples of such components in GLAM are the responses to high temperature stress

developed using regressions from field experiments (see Sect. 3.5.1.8 and Challinor et al.

2005b), the simple parameterisation of rate of growth of leaf area index (i.e. a linear growth

rate), and the simplistic simulation of assimilate partitioning in the plant (Boote et al.,

2013; Challinor et al., 2005d). Empirical components could lead to lack of transferability

and the need of re-calibration, and thus become a limitation for climate change impacts

projections. In this work, GLAM was cross-calibrated for two different time periods and

the simulations found consistent (see Sect. 5.4.2.3). However, future studies using GLAM

should aim at testing the model in environmental conditions under which the model was

not developed (e.g. under extreme temperatures or extreme drought) as well as more

systematically testing its transferability both in space and time.

6.5.3 Adaptation of groundnut systems to climate change

The vast diversity in growing conditions and management across India implies that adapt-

ing groundnut systems has no single ‘silver-bullet’ solution, but rather that a set of mea-

sures may be required to either abate negative effects or capitalise significant opportuni-

ties. The most promising strategy for climate adaptation is the development of improved

germplasm. Targeting crop improvement activities on the basis of crop model simulations

requires deeper analyses (see Chapter 8 and Singh et al. 2012). Additionally, as stressed

earlier (see Sect. 6.4.2 and 6.4.3), the many interacting factors in a crop yield simula-

tion under future climates are difficult to isolate and thus further complicate preliminary

assessments of potential crop improvement scenarios. The simulations and processes of

importance suggest some that the most important avenue for crop improvement is the

increase of drought-tolerance traits in existing germplasm; however, a more profound in-

vestigation of genotypic adaptation is presented in Chapter 8.





Chapter 7

GLAM and EcoCrop: a joint

assessment of future groundnut

cultivation

“... y mi sombra,

por los rayos de la luna proyectada,

iba sola,

iba sola,

iba sola por la estepa solitaria...”

J. A. Silva

7.1 Summary

Suitability and productivity have both been used to predict and project crop responses to

the environment. Using models, modellers have assessed either, but rarely both together.

This is partly because the availability of information often constrains the choice of mod-

elling strategy (e.g. Schroth et al. 2009). This chapter uses the niche-based model EcoCrop

to project changes in crop suitability and produce a joint assessment of crop suitability and

crop productivity (Objective 4-B, Sect. 1.6). The niche-based model EcoCrop was first

used to (1) simulate present-day climatic suitability, and (2) project future (i.e. 2030s,

215
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RCP4.5) climate change impacts on groundnut suitability. Present-day and future suit-

ability simulations were compared with present-day and future GLAM simulations. The

skill of EcoCrop was measured using the area under the receiving operating characteristic

curve (AUCI) –a measure of discrimination accuracy, the true negative rate (TNR) and

the false negative rate (FNR). Baseline suitability predictions were first regressed against

simulated GLAM yield and production (i.e. yield ∗ area harvested). The residuals of any

significant regressions were then regressed against sub-seasonal GLAM prognostic vari-

ables (e.g. number of water-stress days, number of heat-stress days). Future projections

of suitability were then produced to quantify the climate change impacts on groundnut

suitability. The agreement between suitability and yield projections was finally assessed

and further compared with literature on climate change impacts on groundnut productiv-

ity.

The skill of EcoCrop in the baseline period was high, with AUCI (area under the receiving

operating characteristic curve) between 0.67 to 0.74, true negative rates (TNR) in all cases

above 90 %, and false negative rates (FNR) values between 1 and 10 %. Simulated present-

day suitability was found to not be related to crop yield, but it was found to be significantly

(p < 0.05) related to crop production (i.e. yield ∗ area harvested). Multiple regressions

of residuals of suitability vs. production relationships indicated that within-season water

stress was a key driver behind these differences, and that the amount of heat units and

total effective solar radiation played a secondary, yet important, role in GLAM production

simulations. Future projections of EcoCrop indicated that on average, suitability losses

were in the range -34 to +20 %. Crop suitability was projected to decrease in the majority

of areas, mostly as a result of increased temperature. However, in a number of cases

(10-15 % simulations) the change in precipitation niche was also a cause of suitability

loss. These projections were in little agreement with those of GLAM (Chapter 6), except

for central India –where both models and previous literature suggested negative impacts –

though driven by different factors. Furthermore, there was limited or no spatial agreement

between crop yield and gains or losses in suitable areas.

Much of this disagreement can be attributed to: (1) the different response to increases in

precipitation in EcoCrop, which projected range loss –as opposed to the increase in total

biomass and yield projected by GLAM, particularly at elevated CO2 concentrations; and

(2) the apparent higher sensitivity of crop suitability estimates to temperature increases
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that triggers range loss –whereas in GLAM exceedance of optimal temperatures increases

crop duration and tends to increase crop yield (as long as critical temperatures for flowering

are not exceeded). The results herein presented imply that uncertainties arising from the

use of various impacts estimates (suitability vs. yield) are large. Model outputs of a single

crop model should be interpreted carefully and at the very least compared with existing

estimates of climate impacts in the search for robustness.

7.2 Introduction

Understanding patterns and mechanisms of plant responses to environmental changes is

central for climate change impacts and adaptation. Two measures have been used to

project responses of crop plants under future climate scenarios: crop suitability (e.g. prob-

ability of occurrence) and abundance (e.g. population density, biomass, yield) (Estes et al.,

2013a; VanDerWal et al., 2009a) (see Sect. 3.2 for definitions). Models exist to predict

both quantities. Species suitability –mostly studied by ecologists (but see Estes et al.

2013a,b), is typically modelled using a type of empirical model called ‘species distribu-

tions models’, or simply ‘niche-based models’ (see Sect. 2.3.2.2 for a description of these

models). Suitability (or success of a population) can also be modelled using mechanistic

models (e.g. Keenan et al. 2011), although these are very data intensive and hence less

widely used (Estes et al., 2013a). Abundance (i.e. crop yield) can be modelled either

via empirical or process-based models. Empirical models are achieved through statistical

regressions of historical crop yields (e.g. Lobell and Burke 2010, Sect. 2.3.2.1). Con-

versely, process-based models are physiologically-based models that explicitly account for

non-linearities in the plant-soil-environment interaction through detailed equations that

describe soil-root water and often also nutrient dynamics, assimilate production, respi-

ration and evapo-transpiration, light interception, and reproductive development (Boote

et al., 2011; Challinor et al., 2009b) (see Sect. 2.3.2.3 and 2.3.2.4 for a more complete

description of process-based models).

Significant structural differences exist between suitability and process-based models (Challi-

nor et al., 2009b; Keenan et al., 2011), which stresses the need for both types of models

outputs to be used in appropriate contexts. Even though research has been conducted ear-

lier with regards to the agreement between empirical and process-based models, very little
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research has been done that combines both approaches (Estes et al., 2013a; Morin and

Thuiller, 2009; Serra-Diaz et al., 2013). However, the combination of both approaches is

contingent on an appropriate understanding of the relationship between abundance (crop

yield) and suitability, which can be contradictory: Pearce and Ferrier (2001) concluded

that the positive relationship between probability of occurrence and abundance was ar-

tificially caused by the difference between occupied and unoccupied sites (extremes of

suitability), and Nielsen et al. (2005) demonstrated that the environmental drivers of suit-

ability are not the same as those of abundance. However, VanDerWal et al. (2009b) showed

that suitability can be a good predictor of the upper level of abundance in a significant

number of species in eastern Australia.

This chapter addresses Objective 4-B (Sect. 1.6). To that aim, observations of crop pres-

ence were used to parameterise the EcoCrop model. Baseline suitability predictions were

first regressed against GLAM predicted yield and total production. The residuals of these

regressions were then regressed against sub-seasonal groundnut-specific meteorological in-

dicators. Future (i.e. RCP4.5, 2030s) simulations of crop suitability were performed and

compared with yield impact estimates of GLAM (fully presented in Chapter 6). Finally,

an analysis of possible niche expansion and/or contraction was performed in order to high-

light areas where there could be potential for groundnut production in the future, or where

groundnut production is expected to become unsuitable. The underlining hypotheses here

are: (1) that suitability and a number of sub-seasonal climatic indicators can be used to

predict crop yield and/or total crop production, (2) that such relationship leads to co-

herent projection of climate change impacts across both models, and (3) that given the

coherent projection of impacts, the possible range expansion projected by EcoCrop can be

used to define areas where the crop can be grown in the future.

7.3 Methodology

The approach followed in this chapter has four different steps:

• the parameterization and evaluation of the EcoCrop model for Indian groundnut

using present-day climate and crop occurrence data;
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• the comparison of EcoCrop present-day suitability and GLAM simulated potential

production and the establishment of a relationship between the two biophysical mea-

sures; and

• the analysis of similarity between the projected climate change impacts by the two

ensembles of model simulations: EcoCrop and GLAM.

7.3.1 EcoCrop calibration

The process herein termed model calibration is the process of determining ecological pa-

rameters for the crop to be modelled, based on crop presence data (Sect. 3.4.2.2) and 20th

century spatially explicit climatology data (CL WC-QA, Sect. 3.4.1, Table 3.1). The aim

of determining the ecological parameters is to explore the data using some basic statistical

concepts and understand the ecological ranges of the crop. For this purpose, 80 % of the

presence points were used to develop a set of ecological parameter sets, and the remaining

20 % of the points were used for selecting those that represented the crop’s suitability

most realistically.

For each of the data points in the EcoCrop calibration dataset (described in Sect. 3.4.2.2),

the corresponding monthly temperature (maximum, minimum and mean) and precipi-

tation data were extracted from CL WC-QA (Table 3.1). Data were extracted only for

those months that defined the crop growing season (as prescribed by the E-LGP dataset,

Sect. 3.4.2.3). Using the monthly data, for each point, the mean, maximum and minimum

of each of the temperature variables (i.e. maximum, mean, and minimum temperatures)

were calculated. For precipitation, only the total across all months was computed over the

prescribed growing season. This resulted in a set of 10 variables (9 for temperature and

1 for precipitation, each being a vector of n = 1, 464 of occurrence points) that describe

the growing season conditions under which the crop is typically grown. The maximum,

mean and minimum values of TMIN , TMAX , and TMEAN were then combined into one

single vector. These data were then used to calculate different parameter sets as explained

below.

In order to determine the crop ecological parameters, a probability density function (PDF)

was first drawn using both the temperature and precipitation vectors (see Figure 7.1 for

an example) and used as the base to derive a set of potential parameter sets. A ‘reference
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point’ was chosen for each PDF as the point of highest likelihood of presence of the

crop (i.e., the point at which the centre of the optimal conditions is expected, continuous

vertical red line in Figure 7.1). Five temperature and four precipitation thresholds were

extracted and assigned as the different ecological parameters to be used for running the

EcoCrop model (Figure 7.1). The position of these thresholds was calculated using the

proportional area under the PDF curve to each side of the reference point. For TKILL,

the minimum absolute temperature was used (i.e. 100 % area to the left of the reference

point). For the remainder of parameters, various proportional areas were used in order

to reflect uncertainty on the choice of thresholds. This allowed constructing a perturbed

parameter ensemble.

Thresholds were carefully chosen so that the range between TMIN−C (RMIN−C) and

TOPMIN−C (ROPMIN−C) did not overlap with the range between TOPMAX−C (ROPMAX−C)

and TMAX−C (RMAX−C). Ranges chosen followed typical EcoCrop ranges (e.g. Ramirez-

Villegas et al. 2013b 40 % and 80 %) but were broader so as to account for possible

parameter variability. For temperatures, thresholds were equidistant from the reference

point since the temperature PDF derived from the occurrence point followed a normal dis-

tribution. For minimum and maximum absolute temperatures (TMIN−C and TMAX−C)

six equally-distanced values between 90 % and 100 % (to the left and right of the reference

point, respectively) were used, and for TOPMIN−C and TOPMAX−C five equally-distanced

values between 40 % and 60 % were extracted.

In the case of precipitation, the PDF followed a gamma distribution. The parameter

selection thus had to take into account the skewness of the PDF, with values closer to the

reference point for RMIN−C and ROPMIN−C, and values closer to the tail for RMAX−C

and ROPMAX . RMIN−C was thus given values at six equally-spaced positions between 85

% and 100 %, while ROPMIN−C was given values between 40 % and 60 % to the left of the

reference point. RMAX−C was defined between 97.5 and 100 % and ROPMAX−C adopted

values between 85 % and 95 % to the right of the reference point. This procedure resulted

in 30 potential parameter sets that were assessed for skill (see Sect. 7.3.2 below).
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Figure 7.1: Example of parameter selection for the climate distribution of a particular
crop for (A) temperature and (B) precipitation. Vertical red continuous line represents
the highest frequency value of each distribution, long-dashed lines show the optimal pa-
rameter values, short-dashed lines show the marginal parameter values. Dotted line in

(A) indicates TKILL.

7.3.2 Parameter selection and model evaluation

A very first set of simulations was performed to evaluate the model with the independent

district-level presence-absence data (described in Sect. 3.4.2.2). These simulations were

conducted at 2.5 arc-minutes (CL WC-QA) and 1 degree (combining CL CRU-EC and

CL IMD-EC) resolutions (see Sect. 3.4.1, Table 3.1). The latter simulation is also referred

to as control simulation –CTRL (Table 7.1). The skill of EcoCrop was assessed in order to

develop a final parameter ensemble. The following measures of accuracy were computed:

• The omission rate (OR, Eqn. 7.1) was computed using the 20 % of testing points as

the number of locations that fall in suitable areas (i.e. SUIT > 0%) (nNZ) to the

total number of points (n).

OR =
nNZ

n
(7.1)

• The RMSE equation (Eq. 3.46) was modified so that O = 1 for all locations

(Eqn. 7.2).

RMSE =

√

∑n
i=1(1− Pi)2

n
(7.2)



Chapter 7. Combining EcoCrop and GLAM 222

where Oi is the predicted value and n is the number of points used for the calculation.

EcoCrop yields an spatial prediction for a climatological mean and in consequence

the RMSE was calculated spatially –i.e. using all grid cells in the study area.

• The true positive rate (TPR, Eq. 7.3) as the number of pixels predicted as suitable

by the model and marked as cropped in the evaluation data (NTP ) to the total

number of available pixels to assess (NTOTAL). To calculate TPR, only suitable

pixels (i.e. SUIT >0 %) were used.

TPR =
NTP

NTOTAL
(7.3)

• The false negative rate (FNR, Eq. 7.4) as the number of pixels predicted by the

model to not be suitable for the crop, but marked as cropped in the evaluation data

(NFN) to the total number of available pixels to assess (with the same suitability

threshold being used).

FNR =
NFN

NTOTAL
(7.4)

• The independent-evaluation area under the receiving operating characteristic (ROC)

curve (AUCI) was used as it is a threshold-independent measure of model accuracy

(Peterson et al., 2008; Smith et al., 2013). AUCI measures the ability of a model to

discriminate between presences and absences by constructing a plot of the omission

and the commission errors for a sequence of suitability thresholds (Peterson et al.,

2008). Given that the absence of the crop is not purely driven by the environment,

but is also dependent on other factors such as market access, commodity price,

input availability, and culture (most of which are difficult to quantify in the models

used here), the calculated AUCI probably represents the lower bound of model

performance. This also meant that neither the true negative nor false positive rates

could be calculated.

A parameter was selected for the final ensemble of suitability simulations if it met the

following two criteria:

1. The AUCI in both high (2.5 arc-min) and low (1-degree) resolution simulations was

above 0.7 (Warren et al., 2013).
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2. Following Ramirez-Villegas et al. (2013b) the upper limits for OR and RMSE were

0.1 and 0.5, respectively. A minimization of both OR and RMSE values was not

sought when assessing the preliminary suitability runs as it is not certain how suit-

able these environments are and therefore, in the comparison between the randomly

selected known presences of the crop and the suitability surfaces it cannot be assumed

that a presence point means the crop is 100 % suitable.

The TPR and FNR were not used since both measures were already contained in the

AUCI . Finally, a visual assessment of the suitability predictions was done by comparing

these against the known distribution of the crop (Monfreda et al., 2008; Portmann et al.,

2010; You et al., 2009).

7.3.3 Simulations of crop suitability

In addition to the BE-EVAL and BE-CTRL simulations (see above), the selected EcoCrop

parameterisations were used to conduct two additional sets of simulations. The first set

is referred to as the baseline simulations and used two sets of baseline climates: BE-RAW

and BE-LOCI, both at a resolution of 1 degree (note that the BE-CTRL runs are also

part of the baseline simulations). The second set of simulations used the future climate

projections (P-RAW, P-LOCI, and P-DEL), all at a resolution of 1 degree. A summary

of all simulations is given in Table 7.1.

7.3.4 GLAM simulated output

Since crop suitability is most likely to be related with the upper bound of crop productivity

(see Sect. 7.2 and VanDerWal et al. 2009a), simulated GLAM yield and total production

were taken to be the maximum possible in each pixel. Given that GLAM was optimised

using the maximum yield per groundnut growing zone (see Sect. 5.3.2), simulations with

CY G = 1 would reflect the upper level of simulated yields (i.e. maximum potential farmer’s

yield) of each grid cell. CY G = 1 simulations were hence used to assess the relationship

between crop suitability, productivity and production.

GLAM’s 28-year yield simulations were first averaged for each pixel and converted to total

production by multiplying the crop yield times the observed mean harvested area. Crop
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Table 7.1: Simulations performed in this chapter. All simulations, except BE-EVAL
were performed at 1x1 degree resolution.

ID Type Description

BE-EVAL Baseline Simulation using CL WC-QA at 2.5 arc-min for model
evaluation

BE-CTRL Baseline Control simulation using observed climate data (base-
line corresponding to the P-DEL simulations). Also
used for model evaluation

BE-RAW Baseline Original GCM output (i.e. without bias correction)
BE-LOCI Baseline GCM output with Local Intensity Scaling on precipi-

tation
P-RAW Projection Original GCM output (i.e. without bias correction)
P-LOCI Projection GCM output with Local Intensity Scaling on precipi-

tation
P-DEL Projection GCM output with delta method applied to the means

yield (Y ) and total production (TP ) values were then linearly scaled so that the minimum

received a value of 0 and the maximum received a value of 1 (Eq. 7.5).

XS =
Xi −max(X)

max(X)−min(X)
(7.5)

where the subscript S indicates scaled value, i refers to each location within India, and

X is either crop yield or total crop production. The maximum and minimum values were

calculated using the time-averaged yield and production values of all grid cells.

7.3.5 Assessment of yield- and production-suitability relationships

As stated above, one of the objectives of this chapter was to compare estimates of crop

suitability, productivity and total production. To that aim, four types of analyses were

performed:

1. Comparison of classes: EcoCrop’s scale was divided into 11 classes: values equal

to zero and 10 equally-spaced classes (of 10 % range each class). A box plot with

mean suitability and production values across classes was produced. Similarly, the

scaled GLAM yield and production were divided into 11 equally-spaced classes. A

box plot for each mean yield and production and suitability values was produced.
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2. Spatial similarity: Similarity between simulations of both models was assessed

by computing the relative rank score (RR) (Warren and Seifert, 2010). The RR

measures ranges from zero to one and measures the probability that both models

infer the same relative rank of any two randomly chosen locations, irrespective of

the exact value of their normalised scores. RR was estimated by randomly sampling

two points without replacement in geographic space (until all points were sampled)

and then determining for each pair of points whether their ranking (i.e. point 1 has

a larger value than point 2, or vice versa) was the same in both models. The number

of successes was divided by the number of comparisons.

3. Regressions: GLAM simulated potential yield and total production were each re-

gressed against suitability using three types of regressions: (a) linear, (b) log-linear,

and (c) robust linear regression (Maronna et al., 2006). Only these three models were

used since there was no evidence for a more complex fit (Vermeulen et al., 2013).

Robust regression was used in order to assess the influence of outliers that may arise

from errors in the structure of either EcoCrop or GLAM so as to be able to detect

the yield-suitability signal more clearly (Serra-Diaz et al., 2013).

4. Analysis of residuals: Residuals of these three regressions were then used as

dependent variables in a multiple regression against climatological means and stan-

dard deviations of 17 sub-seasonal agro-meteorological indicators (AMIs, Table 7.2)

derived from GLAM’s simulated daily output. These 17 variables were chosen as

they provide a complete description of the main groundnut processes in GLAM (i.e.

radiation absorption, crop development, water stress) in addition to intra-seasonal

variability (temperature and precipitation coefficient of variation) and temperature

and precipitation extremes (number of days above various thresholds). The time-

means and standard deviations of each AMI were computed. This produced a total

of 17 * 2 = 34 variables for the regressions.

For all regressions, 100-fold leave-one-out cross-validation regressions were performed,

and Akaike’s Information Criterion (AIC) used to select the most parsimonious model

in each fold. Interactions were not considered in the models and only quadratic terms

were allowed (Lobell and Burke, 2010). This meant that a total of 34 * 2 = 68 poten-

tial predictors were initially used for the regressions. In order to avoid overfitting, the

100-fold cross-validated regressions were repeated only with those predictors whose
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Table 7.2: Agro-meteorological indices used to explain the yield/production-suitability
relationship.

Parameter Name Units

RD.0 Number of days with precipitation (precipitation > 0 mm) days
RD.2 Number of days with more than 2 mm precipitation days
RD.5 Number of days with more than 5 mm precipitation days
RD.10 Number of days with moderate precipitation (precipitation >

10 mm)
days

RD.15 Number of days with moderate to high precipitation (precipi-
tation > 15 mm)

days

RD.20 Number of days with high precipitation (precipitation > 20
mm)

days

HTS1 Number of days with maximum temperature above 34 ◦C days
HTS2 Number of days with maximum temperature above 40 ◦C days
TETR1 Number of days with maximum temperature above 35 ◦C days
TETR2 Number of days with maximum temperature above 47 ◦C days
RCOV Coefficient of variation of growing season precipitation mm
TCOV Coefficient of variation of growing season temperature C

ERATIO25 Number of days with ratio of actual to potential evapotranspi-
ration below 0.25

days

ERATIO50 Number of days with ratio of actual to potential evapotranspi-
ration below 0.50

days

ERATIO75 Number of days with ratio of actual to potential evapotranspi-
ration below 0.75

days

EFF.GD Total number of days in which days mean temperature is above
8 ◦C, minimum temperature is above 0 ◦C, and ratio of actual
to potential ET is above 0.5

days

EFF.SRAD Sum of solar radiation during days where mean temperature is
above 8 ◦C, minimum temperature is above 0 ◦C, and ratio of
actual to potential ET is above 0.5

W m−2

either quadratic or linear form were present in at least 50 % of the initial regressions

within the 100 initial regressions.

7.3.6 Patterns of agreement across future projections

Using the future projections of suitability, changes in suitability (∆S) were calculated as

the difference between projected future suitability and baseline suitability. Three compar-

isons were performed:

1. Spatially-explicit changes in climatic suitability as simulated by EcoCrop were com-

pared across the 1-degree size grid cells of India with the changes in simulated yield.
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Geographic patterns of agreement were used to identify areas where differences be-

tween suitability and productivity estimates differed, thus likely increasing impact

uncertainties.

2. Following Ramirez-Villegas et al. (2013b), a comparison between future projections

of EcoCrop, those of GLAM (Chapter 6) and those reported in previous studies

was performed. To that aim, a compilation of existing studies assessing climate

change impacts on groundnut crop yields in India was done in order to assess the

agreement of previous estimates with those of EcoCrop. Estimates of future changes

in crop yields from the studies of Lobell et al. (2008) (LO2008); Challinor et al.

(2007) (CH2007); Challinor and Wheeler (2008b) (CW2008); Challinor et al. (2009a)

(CH2009) and Singh et al. (2012) (S2012) were plotted for comparison with the sim-

ulations of this thesis. It must be noted, though, that it is difficult to quantitatively

compare results from other studies mainly because they used (a) a different emis-

sions scenario, (b) a different set of GCMs, (c) a different time period, or (d) a

combination of (a), (b) and (c).

3. Using the future projections of suitability, the possible expansion / contraction of

groundnut suitable areas was assessed using a threshold of suitability determined by

examining the ROC curve constructed in Sect. 7.3.2. The threshold used here is often

referred in the niche-modelling literature as the “max SSS”, which is the maximum

sum of sensitivity and specificity, or in other words the top-leftmost point of the ROC

curve. This threshold was chosen due to its demonstrated performance in the niche-

modelling literature (see Liu et al. 2013). Areas below such threshold both at present

and in the future were considered as unsuitable, whereas areas above the threshold

were considered as suitable. Since future harvested area cannot be estimated with

GLAM and was hence assumed to remain constant by 2030s, the direction of yield

changes is the same to that of changes in total production. Thus, only crop yield

changes were analysed in areas that either become suitable or unsuitable by 2030s.
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7.4 Results

7.4.1 Baseline suitability simulations

7.4.1.1 Skill of suitability simulations

Figure 7.2 shows the FPR, FNR and AUCI values for low (1x1 degree) and high (2.5

arc-min) resolution baseline simulations. A total of 18 (60 %) of the ensemble members

were highly accurate (i.e. OR < 0.1 and RMSE between 0.25 and 0.5) and showed an

AUCI < 0.7. Omission rates were in the range 1 to 6 % for all ensemble members. There

was some overlap in the upper bound of the RMSE range for both sets of ensemble

members, with RMSE values between 0.21-0.38 for all ensemble members. AUCI varied

between 0.67 to 0.74, with slightly lower values for the low-resolution simulations. Values

of TNR were in all cases above 90 %, while FNR values were between 1 and 10 %.

(a) AUCI (b) TPR (c) FNR

Figure 7.2: Results of independent evaluation of EcoCrop: (a) AUCI , (b) true positive
rate, and (c) false negative rate.

The rather small differences between the two spatial resolutions at which simulations

were conducted indicated that the up-scaling of input data had little impact on model

skill. Some differences were observed between selected and discarded ensemble members

at both resolutions (Figure 7.3), particularly in eastern India and some parts of central

India, where groundnut is grown less intensely or is totally absent. The discarded ensemble

members indicated very high climatic suitability.



Chapter 7. Combining EcoCrop and GLAM 229

(a) Selected (2.5 arc-min) (b) Discarded (2.5 arc-min)

(c) Selected (1x1 degree) (d) Discarded (1x1 degree)

Figure 7.3: Mean crop suitability across selected and discarded EcoCrop ensemble
members at 2.5 arc-minute (a, b) and 1x1 degree (c, d) resolutions.

Significant agreement was observed between EcoCrop’s simulated suitability and the re-

ported area harvested of the crop (Figure 7.4). The areas where the crop is most inten-

sively grown are located in the states of Andhra Pradesh (southern) and Gujarat (western).

These match the high suitability areas of the model predictions.

Values for model parameters are shown in Figure 7.5. These indicated that low tempera-

ture constraints may arise if minimum monthly temperatures go below 5 ◦C [-4 ◦C = 1], is

not suited if mean temperatures are below 11.3 ± 3.3 ◦C, thrives optimally between 21.2

◦C and 29 ◦C and is heat stressed if temperatures are above 34.7 ± 1.5 ◦C. Regarding

precipitation, the crop is harmfully stressed if the total rainfall during the growing season
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(a) SPAM (b) MIRCA2000 (c) Monfreda

Figure 7.4: Harvested area as reported by different spatial datasets: (a) spatial alloca-
tion model (SPAM) (You et al., 2009); (b) MIRCA2000 (Portmann et al., 2010); and (c)

Monfreda et al. (2008).

(a) Temperature (b) Precipitation

Figure 7.5: Values adopted by temperature (a) and precipitation (b) EcoCrop’s model
parameters. Blue dots represent selected parameter sets, and red dots represent param-
eter sets that were deemed not accurate enough according the RMSE, OR and AUCI

(Fig. 7.2).

is less than 53 ± 21 mm (drought) or above 2,754 ± 780 mm (excess water, or waterlog-

ging). Groundnut develops best between 170 and 1,036 mm of rainfall during the growing

season.
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7.4.1.2 Modelled productivity- and production-suitability relationships

Boxplots of yield and production across suitability classes are shown in Figure 7.6. This

exploration of spatially-explicit suitability and potential yield and production simulations

indicated that, as expected, simulated normalised production increased across suitability

classes. High normalised production was never found within low suitability areas (i.e. <

15 %). Nevertheless, the same was not observed for crop yields, which tended to stay

constant or to decrease at values of suitability above 30 %.

(a) Yield (b) Total production

Figure 7.6: Variation of (a) mean normalised GLAM yield, and (b) mean normalised
GLAM production across equally-spaced suitability classes. Spread in the boxplots arises
from combinations of individual EcoCrop and GLAM ensemble members. Black horizontal
lines represent the median of each class, boxes enclose 25-75 % of the data and whiskers
represent the 5-95 % percentiles. The red continuous line is a spline with 3 degrees of

freedom fitted through the medians.

The variation of suitability across GLAM potential yield values indicated that high pro-

ductivity values are as likely as low productivity values to be associated with low crop

suitability (Figure 7.7). Conversely, at high suitability classes (i.e. > 80 %), extremely

low values of crop production were rarely found. There were a number of suitability classes

that presented a mixture of high and low normalised production values, indicating that

climatic suitability alone may not be the only predictor of crop production. Values of

suitability in general showed decreasing variance for higher production classes. The fact

that a large spread of values was found in various classes highlighted the importance of

other factors driving the presence and actual production of the crop in the different areas.
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(a) Yield (b) Total production

Figure 7.7: Relationship between suitability and equally-spaced values of (a) mean
normalised GLAM yield, and (b) mean normalised GLAM production. Additional details

as in Figure 7.6.

As stated above, the next step in the comparison of both models was the spatial comparison

of their predictions. The relative rank score –a measure of how similar is the ranking of

sites for the measures in question, is shown in Figure 7.8. In general, greater similarity

between suitability and total production was observed. The RR varied between 0.38 and

0.65 for total production (mean=0.54), whereas it varied between 0.25 and 0.6 for crop

yield (mean=0.45). This result confirmed the fact that an stronger relationship was to be

found between suitability and total production, and not yield. For total production, the

two measures agreed, on average, in roughly 50 % of the cases when ranking locations, at

least 20 % more than the measured spatial agreement between suitability and crop yield.

The final step when comparing suitability, yield and total production was to regress suit-

ability against both total production and yield. Figure 7.9 shows a scattergram of predicted

baseline suitability to productivity (Figure 7.9(a)) and also suitability to production (Fig-

ure 7.9(b)). The relationship between crop yield and suitability was unclear, with both low

and high values of crop yield occurring along the whole range of suitability. Conversely,

the relationship between total crop production and suitability occurred as expected. This

is, in general, low values of suitability were never associated with high or even moderately

high values of crop production. Similarly, the range of production values increased across

the suitability scale, with the highest values of suitability (i.e. > 90 %) showing a large

spread of production values. This result indicated that low crop production occurs mainly
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(a) Yield (b) Total production

Figure 7.8: Spatial similarity between EcoCrop and GLAM’s simulations as measured
by the relative rank score (RR) for (a) crop yield and (b) total crop production (yield *
area harvested). PDFs are formed using paired comparisons of all ensemble members of
EcoCrop and GLAM. Vertical lines show the comparison of the ensemble means of each

model.

(a) Yield (b) Total production

Figure 7.9: Scatterplot of the ensemble mean suitability (x-axis) and GLAM simulated
yield (a) or total production (b).

because of lack of climatic suitability to grow the crop, but that at high climatic suitability

crop production can be either high or low –owing to a variety of reasons, including market

preferences, pests and diseases, or crop management.

Regressions of suitability and production in all cases indicated that there is a strong

and statistically significant relationship between the suitability of a crop as simulated by
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(a) Yield (b) Total production

Figure 7.10: PDFs of the leave-one-out cross-validation correlation coefficient of the
regressions between (a) suitability and yield, and (b) suitability and production. Only for
total production (b) all correlation coefficients were significant at the p<0.05 level. PDFs
are formed by all combinations of GLAM and EcoCrop ensemble members, including the

mean.

EcoCrop and the normalised production as simulated by GLAM (Figure 7.10). Pearson’s

product-moment correlation coefficient of these regressions as assessed by leave-one-out

cross-validation varied between 0.1 and 0.3 for total production, but it was very low,

negative and not statistically significant (p < 0.05) in many cases (see Figure 7.10(a)).

For total production, even though the correlation coefficient was not very high, it was

statistically significant in all cases (p < 0.05), whereas the same was not observed for crop

yield. The relatively low (i.e. < 0.5) correlation coefficients in these regressions implies

that a significant portion of the variance in the normalised GLAM production could not be

explained by EcoCrop’s climatic suitability. This suggested that additional factors needed

to be taken into account in order to assess total production variations.

The slope of the production vs. suitability regression was in all cases positive and varied

from 0.05 to 0.25 [in units of normalised production divided by fraction suitability], with

higher values for the simple linear regressions. Importantly, the result is consistent across

all combinations of ensemble members, the ensemble means, and the three regression

methods. The same was not observed for crop yields, in which case the slope of the three

types of regressions was negative in more than 50 % of the cases, particularly for the

linear regressions. Since the relationship between suitability and yield was unclear and

non-existent in many cases, all following analyses were only performed for total production.
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7.4.1.3 Unexplained suitability-production variance and sub-seasonal weather

variations

Regressing the residuals of the suitability-production regressions resulted in the identifi-

cation of key sub-seasonal variability descriptors that allowed a robust prediction of crop

production on the basis of suitability. Out of the total 68 potential predictors, the mean

and standard deviation of the heat-stress AMIs (i.e. TETR1, TETR2, HTS1 and HTS2)

and their quadratic forms had very low variance and were thus statistically insignificant in

all regressions. This reduced the total number of predictors to 52. Figure 7.11 shows the

PDF of the correlation coefficient for multiple regressions between suitability-production

residuals and the 17 AMIs of Table 7.2. The continuous lines show the bootstrapped corre-

lation coefficient for the initial regressions containing the remaining 52 potential predictors

(step-wise selected using AIC), with colours indicating the three different sets of residuals

(from linear, log-linear and robust regressions). The dashed lines show the bootstrapped

correlation coefficient for the final regressions, in which only those AMIs that were present

in at least 50 % of the initial 100 cross-validated folds were used.

Agro-meteorological indices (AMIs) explained a large amount of the variance in the resid-

uals of the suitability-production relationships described above. Using all possible terms

in the multiple regression (continuous lines in Figure 7.11), around 40-80 % of the variance

in the residuals was explained. However, using all AMIs and their quadratic transforma-

tions (i.e. a total of 52 possible predictors) also produced large variation in the correlation

coefficient across the bootstrapped trials. Out of the 52 potential predictors in the initial

regressions, 23 (44 %) were present in 50 % or more of the bootstrapped trials (linear

residuals). A lower number of predictors showed a frequency above 50 % for log-linear (19

predictors, 36 %) and robust (20 predictors, 38.4 %) regressions. Among these predictors

the time-mean coefficient of variation of total precipitation (RCOV, present in 90-94 % of

the bootstraps) was the most important one, followed by the time-mean number of days

with extreme water stress (ERATIO25, 86-91 %). The temporal standard deviation coef-

ficient of the temperature coefficient of variation (TCOV) was present in 76-90 % of the

bootstraps, while the temporal variability in effective solar radiation (EFF.SRAD, 72-86

%), the time-mean effective number of growing days (EFF.GD, 69-86 %), and the square

of ERATIO25 (80-82 %) were also highly important for the three types of regressions.

Conversely, the number of rainy days (RD.0), the number of days with precipitation above
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Figure 7.11: Results of multiple regressions between residuals of linear (red), log-linear
(blue) and robust (green) regressions and the agro-meteorological indices (AMIs) listed in
Table 7.2. PDFs are the result of 100 bootstrapped samples. Continuous lines correspond
to the first iteration (i.e. where all AMIs were used) and dashed lines correspond to the
second iterations (i.e. where only AMIs occurring in > 50 % of the bootstraps of the first

iteration were used).

2 mm (RD.2) and 20 mm (RD.20), as well as their squared transformations were present

in less than 30 % of the bootstraps. The results were consistent across the three types of

residuals (i.e. linear, log-linear and robust).

Permutation importance was calculated for the final set of multiple regressions. Per-

mutation importance is often used to measure variable importance in an statistical model

(Altmann et al., 2010). To calculate permutation importance, each of the predictors in the

models was separately randomised. A model prediction was made each time and the result

then compared with the original prediction (i.e. the one with true values for predictors)

using the Pearson product-moment correlation. Permutation importance was calculated

as 1 minus the correlation coefficient. Figure 7.12 shows the permutation importance for
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(a) Linear (b) Robust

Figure 7.12: Permutation importances of predictors in multiple regressions between
residuals of linear (a) and robust (b) suitability-production regressions and AMIs. Names
of predictors are given in Table 7.2. The labels “ME” and “SD” at the end of the name

of the predictor indicate time-means or standard deviations, respectively.

all selected variables in the second iteration of the multiple regressions. Results indicated

that the most influential variables in the models were the time-means of the number of

days with precipitation above 10 mm (RD.10), 5 mm (RD.5) and 15 mm (RD.15), the

number of days with Ea/Ep ratio below 0.5 (ERATIO.50), the coefficient of variation in

seasonal precipitation (RCOV), the number of days with Ea/Ep ratio above 0.25 (ERA-

TIO.25). The least important variables were generally related to interannual variations

of the same predictors (Figure 7.12). These results were consistent across the different

regression residuals (i.e. linear, log-linear and robust).

Predictors were also found to have consistent coefficients across the bootstraps, the two

iterations and the three different regression residuals. Such coefficients were also sensibly

related to the residual values. For instance, the intra-seasonal precipitation variability

(RCOV) always had a positive coefficient (ranging between 0.1 and 1.53), indicating that

large positive residuals (which occur when the normalised production is larger than pre-

dicted by the suitability-production regression) are typically associated with more variable

precipitation (i.e. less uniform) during the growing season. This is probably due to the

occurrence of larger-than-normal precipitation (i.e. > 10 to 20 mm day−1 events) that

provide soil moisture for relatively long periods of time. This is confirmed by the fact

that the time-mean number of days with precipitation above 15 mm also showed positive
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coefficients. Similarly, the number of days with extreme water stress (ERATIO.25) showed

negative coefficients (-0.01 to -0.05), indicating its association with the negative residuals

that occur when actual production is below the prediction of the suitability-production

regression.

7.4.2 Impacts of climate change on crop suitability

Figure 7.13 shows the projected impacts of 2030s climate conditions on crop suitability as

a function of the different bias correction methods (Table 7.1). Average projected changes

in suitability were in the range -34 to 16 % (P-DEL), -19 to 13 % (P-RAW) and -26 to

20 % (P-LOCI). Crop suitability was projected to decrease in the majority of areas, with

the most significant decreases occurring in the north-western and the western regions.

The western region has the largest area harvested across the country. These results were

consistent across the three bias correction methods, though the extent of the change was

greater for P-DEL simulations. In the west of the eastern part of India, where groundnut

is currently less intensely grown (as compared to the west and south of India), changes in

suitability were positive. Central India depicted a relatively uncertain outcome, though

with a greater proportion of simulations indicating negative impacts.

Even though significant variation was observed across ensemble members owing to the

different parameter sets and GCMs used, robust signals were found in certain areas of

India. Probabilities of exceeding 10 % change in suitability are shown in Figure 7.14. The

probability of exceeding -10 % change in suitability was 80 % or more in the western part

of India and in some areas of the south-eastern coasts, particularly for P-DEL simulations.

Similarly, moderate (30-50 %) probabilities of increases in suitability were found in central

India, with significant differences across bias correction methods.

Figure 7.15 shows the importance of temperature and precipitation for future suitability

projections. The top row shows the proportion of model simulations (with respect to the

total number of simulations that showed negative changes in suitability) in which changes

in temperature-related suitability (TSUIT ) were larger than changes in precipitation-related

suitability (RSUIT ). The bottom row shows the proportion of simulations in which changes

in RSUIT were larger than changes in TSUIT . In all cases, negative changes in crop suit-

ability entailed changes in both TSUIT and RSUIT , indicating that crop suitability was
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Figure 7.13: Impacts of climate change on groundnut suitability as predicted by the
EcoCrop model. Each row shows a different statistical feature of the ensemble of 18
parameter sets and 32 GCM simulations. Lower: the lower quartile (bottom 25 %),
mean: average of all simulations, and upper: the upper quartile (top 25 %). Each column

refers to a method of bias-correcting the climate model output (see Table 7.1).

sensitive to changes in both variables. Across most of India, increases in growing season

temperature were the most prominent cause of negative effects, with more than 70-100 %

of the simulations showing more drastic drops in TSUIT than drops in RSUIT for most grid

cells. However, precipitation was highly important for some areas in the very eastern, the

centre and at the south-west coast.
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Figure 7.14: Probability of exceeding 10 % positive (top row) or negative (bottom row)
change in crop suitability with respect to the baseline. Each column refers to a method

of bias-correcting the climate model output (see Table 7.1).

7.4.3 Uncertainty in projections of crop suitability

As has been reported earlier in this thesis, climate uncertainty plays a very important role

in crop simulation under future scenarios (see Chapter 6). As done in Chapter 5 for GLAMs

yield simulations, uncertainty in future suitability was decomposed herein (Figure 7.16).

Only model parameters and input climate data were investigated as sources of uncertainty

since for EcoCrop these are the most relevant inputs to the model. For future projections

of crop suitability, the contribution of climate uncertainty to total uncertainty was above

50 % for all bias correction methods. Fractional climate uncertainty was remarkably high

for P-RAW and P-LOCI simulations (> 80 %), indicating that the noise that arises from

climate model structure is very high even for climatological averages of both temperature

and precipitation (also see Joshi et al. 2011 and Forster et al. 2013). The contribution of

climate to total uncertainty decreased from left to right of Figure 7.16, as more variables

were bias corrected in P-DEL with respect to P-LOCI, and in P-LOCI with respect to

P-RAW.
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Figure 7.15: Importance of temperature and precipitation in EcoCrops projected future
suitability. The top row shows the proportion of ensemble members that show larger de-
creases in temperature-related suitability (TSUIT , Eq. 3.43) as compared to precipitation-
related suitability (RSUIT , Eq. 3.44) to the total number of ensemble members that show
decreases in suitability. The bottom row shows the proportion of ensemble members that
show larger decreases in precipitation-related suitability to the total number of ensemble

members. Columns indicate different bias-correction methods (see Table 7.1).

7.4.4 Implications of suitability changes for major growing regions in

India

At the sub-national and national level, average suitability changes depicted different de-

grees of agreement across the ensemble of model simulations (Figure 7.17). The north-west

and west of India show in all cases a higher likelihood of negative changes, peaking at a

decrease of 10 to 20 % in crop suitability. The central zone depicted an uncertain response,

with slightly higher likelihood of negative changes. In this region, changes were much lower

in extent than those in the west and north-west. In the southern and south-eastern zone,

P-DEL simulations showed negative changes, whereas P-RAW and P-LOCI showed two

peaks –one in the positive side and other in the negative side.

In most regions the differences stemming from the use of different bias correction methods

did not alter significantly the direction of the change. The use of raw temperature or

precipitation data changed the direction or the likelihood of either negative or positive
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Figure 7.16: Contribution of crop model parameters (top row) and climate model struc-
ture (bottom row) to total uncertainty in suitability. Each column refers to a method of

bias-correcting the climate model output (see Table 7.1).

climate change impacts. In the north-west, correcting precipitation increased the likelihood

of negative impacts. For this region, further increases in the likelihood of negative effects

were observed if both GCM temperature and precipitation data were corrected. The

western region showed substantial similarities between P-DEL and P-LOCI, indicating

that robustness was mostly contingent on precipitation responses. Conversely, the central

and south-eastern zones depicted high similarity between the P-LOCI and P-RAW, whilst

P-DEL showed a PDF shifted to the right (positive impacts) and thus a response that was

much more contingent on the EcoCrop ensemble member used. In the southern region,

P-LOCI and P-RAW showed a similar response –with a general trend for suitability loss,

whereas P-DEL depicted more substantial suitability losses.

7.4.5 Agreement in impacts projections

A comparison was performed between the projected changes in crop suitability and the

projected changes in crop yields presented in Chapter 6. Sub-national comparisons indi-

cated very little agreement between the models in all areas except central India, where



Chapter 7. Combining EcoCrop and GLAM 243

Figure 7.17: Probability density functions of changes in mean suitability across various
regions of India and in the country as a whole. Sub-national-level changes were computed
following the growing zones defined in Figure 3.2 (Chapter 3). Lines indicate different

bias-correction methods (see Table 7.1).
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Figure 7.18: Projected changes in groundnut crop yield (filled circles) as simulated by
GLAM and suitability (hollow squares) as simulated by EcoCrop. Each of the regions
and the whole country of India are shown. Dots show the median and bars extend to 5-95
% of the data. The spread in GLAM results arises from the ensemble of runs described
in Chapter 5, whereas the spread in EcoCrop results arises from multiple crop ecological
parameter ensemble, GCM simulations and bias-correction methods. Naming of zones
follows that of Figure 7.17: NWZ (North-western), WZ (Western), CZ (Central), SEZ

(South-Eastern), and SZ (Southern).

the mean of both ensembles indicated negative impacts (Figure 7.18), though with large

dispersion toward the positive side in the case of GLAM (also see Figure 6.9). In addition,

there was significant spread in both model ensembles (particularly in GLAM’s), and this

caused some overlap in the projections of both ensembles for the south-eastern and the

southern zone. Nevertheless, changes in the main producing areas of the west of India were

in almost complete disagreement: while GLAM’s ensemble projected a median change of

+20 % (varying from -5 to 80 %), EcoCrop’s ensemble projected a median change of -16

% (varying from 5 to -35 %).
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With respect to previous estimates of climate change impacts on groundnut, at the country-

level, agreement was significant only with Challinor et al. (2007) [CH2007], although in

that case CO2 fertilisation was not accounted for and projections are for the year 2100.

In addition, even though the Lobell et al. (2008) [LO2008] study assessed an area larger

than India using a statistical model, differences were not too large (see Figure 7.19). In

central India (CZ), agreement between previous studies and the simulations presented in

this chapter and in Chapter 6 was substantial. Thus, a negative impact signal is likely

in central India. In the north-west and west of India, previous studies suggested impacts

in the same direction as those of GLAM. In southern India, projected changes in the

study of Singh et al. (2012) [SI2012] were in agreement with EcoCrop but in disagreement

with those of GLAM. In a previous study, Ramirez-Villegas et al. (2013b) reported that

agreement between EcoCrop and previous estimates of climate impacts varied depending

upon the region of study.

7.4.6 Combining suitability and productivity simulations

EcoCrop can be used either to assess the change in the degree of climatic suitability, but

also to assess changes in niche breadth (e.g. Warren and Seifert 2010, Ramirez-Villegas

et al. 2013b). Even though projected changes in suitability were not found to completely

agree to changes in yield or total production (see Sect. 7.4.5), reductions in niche extent

may be indicative of areas where future productivity is very low and thus growing the crop

is unfeasible. Increases in niche extent could indicate areas where productivity could be

high enough so as to grow the crop profitably.

The comparison presented in this section aimed at identifying what are the changes in

productivity associated with changes in niche breadth (also referred to as range size, or

range extent). Figure 7.20 shows the yield change PDFs for the three bias-correction

methods associated with EcoCrop simulations (different-lines Table 7.1). Colours indicate

yield responses in areas that were considered unsuitable in the baseline but became suitable

in the future (became suitable ‘BS’, blue lines), and in areas that were considered suitable

in the baseline but became unsuitable in the future (became unsuitable ‘BU’, red lines).

If both models are to be combined, it follows that BU sites should depict the largest yield

losses, thus indicating that in such areas production is unfeasible. The analyses performed

indicate that this is not the case (Figure 7.20). For the three bias-correction methods,
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Figure 7.19: Projected changes in groundnut yields as reported in previous literature.
LO2008: Lobell et al. (2008); CH2007: Challinor et al. (2007); CH2009: Challinor et al.
(2009a); CW2008: Challinor and Wheeler (2008b); and SI2012: Singh et al. (2012). Dots
indicate median prediction and bars extend to reported maximum or minimum (CH2007,
CH2009) or 5-95 % percentiles of the data (LO2008, CW2008). Colours are indicative
of whether (blue) or not (red) CO2 fertilisation effects were taken into account in the
studies. CH2007, CH2009 and CW02008 are projections for 2100, LO2008 for 2030, and

SI2012 for 2050.

yield changes were more positive for BU sites as compared to BS sites. Differences between

the PDFs of BU and BS sites were similar and relatively large for P-LOCI and P-DEL

projections, but were relatively minor for P-RAW projections –suggesting that much of

the difference can be attributed the differences in temperature responses in both GLAM

and EcoCrop.
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Figure 7.20: Projected changes in GLAM crop yield for areas where suitability gains
(blue lines) or losses (red lines) are projected with EcoCrop.

7.5 Discussion

7.5.1 Relationships between suitability, productivity and production

The benefits of a simplistic approach, like EcoCrop, are considerable. EcoCrop reduces the

parameterizations to a minimum while at the same time making sense of the biology of the

crop species (Hijmans et al., 2001). EcoCrop describes the relationship between the crop’s

presence and the prevailing climate conditions in the locations where the crop is known

to be present. Nevertheless, such relationship may not be necessarily related with the

abundance of the crop (i.e. crop yield). This may be because potential ecological presence

may be related to the occurrence of optimal growing conditions during a sufficiently long

period of time (Elith and Leathwick, 2009; Soberon and Nakamura, 2009). Here, suitability

was found to be related to total production, suggesting that EcoCrop predictions are

related to extent of occurrence or, in other words, relative occurrence rates –not to crop

yield. This result may arise in part because crop yield is a complex trait resulting from
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many non-linear interactions between the plant and its surrounding environment (Bertin

et al., 2010; Nigam et al., 2005). These findings are in agreement with those of Estes

et al. (2013a), who demonstrated that a model of probability of presence across the whole

ecological range of the crop bears little relationship with crop abundance.

The analyses conducted here also showed that suitability alone cannot be used as a surro-

gate of crop production (Sect. 7.4.1.3). Previous studies have highlighted the significant

differences between suitability and abundance simulations and their respective models

(Morin and Thuiller, 2009; Serra-Diaz et al., 2013; VanDerWal et al., 2009a) as well as the

potential caveats in niche-based models for future climate change impact studies (Hijmans

and Graham, 2006; Keenan et al., 2011). No studies, however, have assessed these differ-

ences directly and/or attempted to attribute these to sub-seasonal stresses. The findings

of the present study suggest a significant role of these stresses in shaping the probability

distribution of the crop production response by reducing the mean and increasing the vari-

ance (see Figure 7.9). Sub-seasonal stresses are not included in EcoCrop (Ramirez-Villegas

et al., 2013b), and hence this may be the main cause for the reported differences between

baseline suitability, productivity and production simulations. Water stress, in particular,

and day-to-day precipitation and temperature variations played the most important role,

whilst the amount of heat units available (a surrogate of crop development) as well as solar

radiation played a secondary role (see Sect. 7.4.1.3).

The fact that water stress was the major driver behind the differences between the suitabil-

ity and production model simulations highlights one of the main limitations of EcoCrop

and of other niche-based models (see e.g. Serra-Diaz et al. 2013): the lack of soil water

dynamics mechanisms (see Sect. 7.5.2). It is likely that incorporating additional complex-

ity into EcoCrop would improve the agreement between its suitability simulations and the

production simulations of GLAM, but such additional complexity would be at the expense

of input data requirements –something that will inevitably bring along additional uncer-

tainties into the niche-based modelling process (Adam et al., 2011; Watson and Challinor,

2013).
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7.5.2 Combining projections of process- and niche-based models

As reported above, the relationship between crop yield and suitability was non-existent.

In addition, despite a statistically significant and strong relationship between suitability

and total production, the lack of agreement between impacts projections of both models

suggests that it is difficult to combine both models’ projections. This may be attributed

to various reasons. Foremost, decreases in crop suitability may not necessarily imply

decreases in productivity (see Sect. 7.4.5). In addition, apart from a disagreement in the

direction of the change, the projections of both models disagreed in the reasons behind

the change (i.e. responses to temperature and water availability) (see Figure 7.15).

In ecological studies, evidence for a relationship between abundance and suitability is

scarce and contradictory (Nielsen et al., 2005; Pearce and Ferrier, 2001). Limited evi-

dence also exists regarding the agreement between both niche and process-based model

projections (Morin and Thuiller, 2009; Serra-Diaz et al., 2013). This lack of agreement

suggests that if anything, uncertainties in projections of climate change impacts remain

large. For Indian groundnut, suitability and productivity projections showed disagreement

across most of India, except in the central zone, where even though the median change

was found to agree in direction, there was large spread in both GLAM and EcoCrop model

ensembles. In the present study, the difference in the response of EcoCrop to temperature

and precipitation with respect to GLAM, constituted the main difference between both

model projections.

Increases in precipitation amounts generally increase available soil water, water uptake,

actual evapotranspiration, carbon exchange rates and biomass (Boote and Sinclair, 2006).

However, increases in heavy precipitation events can cause waterlogging and decrease

crop productivity (Kahlown and Azam, 2002). Since waterlogging is not parameterised

in GLAM (Challinor et al., 2004), the second main factor to which differences in future

projections can be attributed is the response to increased water availability. Such response

to increased water availability is of particular importance herein because projections of

June-July-August precipitation for India depict a higher likelihood of increases by 2030s

(Figure 7.21).

The difficulty in representing responses to increased precipitation has been hypothesised

as the main factor leading to differences between suitability and abundance (Serra-Diaz
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(a) Precipitation (b) Temperature

Figure 7.21: Changes in June-July-August (JJA) total precipitation (a) and mean
temperature (b) as projected by the CMIP5 ensemble by 2030s (RCP4.5). Values shown
correspond to the mean of the GCM ensemble. Models included in the calculation are

listed in Table 3.4, (Chapter 3).

et al., 2013). Because currently grown varieties and crops are adapted to the existing

ecological niche and because EcoCrop is parameterised under the assumption that climate

is the major driver of the distribution of the crop at present (see Sect. 7.3.1), areas at or

above the optimum rainfall are likely to experience unrealistic suitability losses. This is

because even very limited increases in rainfall cause a niche shift (in EcoCrop), whereas

such increases in a process-based model like GLAM would typically enhance biomass

accumulation and yield –particularly with CO2 stimulation. In western India in particular,

there was substantial disagreement between EcoCrop and GLAM projections (Figure 7.18),

and also between EcoCrop and previous estimates of climate impacts on groundnut yields

(Figure 7.19). It is likely that the lack of an appropriate water balance mechanism in

EcoCrop, in conjunction with increased water-use efficiency due to CO2 stimulation, is

the cause of these differences.

An additional factor that may account for some of the differences between suitability and

productivity may be the mechanisms through which temperatures have an impact in the

two measures. In GLAM, mean temperatures act by changing crop duration –which in turn

affects totals of precipitation, solar radiation, biomass and yield (Challinor and Wheeler,

2008b) or by increasing evapotranspiration and thus enhancing water stress (at constant

or decreasing precipitation levels). Extreme temperatures in GLAM cause direct yield
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loss through effects on reproductive units (Challinor et al., 2005b). In the simulations pre-

sented in Chapter 6, temperature increases do not increase water stress since precipitation

and water-use efficiency increase (Sect. 6.4.3, Chapter 6, and Figure 7.21); crop duration

increases as the optimal temperature for crop development (typically around 28 ◦C) is

exceeded; and there is little impact of heat stress on reproductive units (see Sect. 6.4.3,

Chapter 6). In EcoCrop, as optimal temperatures are exceeded and duration stays con-

stant at the monthly scale, suitability decreases linearly until the maximum temperature

(TMAX , 34-40 ◦C in this study) is exceeded and the crop is deemed unsuitable for that

particular site. In EcoCrop, therefore, not only optimal temperatures can be exceeded

with relatively low levels of change in seasonal temperatures, but also increasing mean

temperatures tend to have a much more marked negative effect if optimal temperatures

are exceeded (also see Vermeulen et al. 2013). In particular, in the simulations presented

here mean temperatures are the most important driver of crop suitability changes (see

Sect. 7.4.2). In southern India, differences occurred between GLAM, previous estimates

and EcoCrop simulations. This may be in part because heat stress is projected to impact

crop yields at longer lead times in process-based crop models (see Singh et al. 2012, which

focuses in the 2050s and Challinor et al. (2007), which focuses in 2100).

Additional factors may also cause differences between suitability, productivity and produc-

tion simulations, and these include errors in the structure of the models (see Chapter 5),

responses to aggregation errors (Angulo et al., 2013b), the difference in temporal scales at

which the two models operate (Vermeulen et al., 2013), and possible problems in model

evaluation (DelSole and Yang, 2011). The latter is of particular importance because it has

the potential to affect parameter values and/or the acceptance of parameter sets. Model

evaluation for both GLAM and EcoCrop was in this work carried out by directly comparing

observed and simulated quantities (see Sect. 3.6). However, a more robust model evalua-

tion procedure could have been achieved by performing field significance tests. Methods

for testing single- and multi-variable field significance have been proposed mostly in cli-

mate science, and these focus on testing how consistent si a trend or pattern in relation to

what is expected just by pure chance (DelSole and Yang, 2011; Livezey and Chen, 1983;

Wilks, 2006). While the results of performing more robust model evaluation tests have not

been investigated in this work and it is hence difficult to determine their actual impact on

both model optimisation and skill, the uncertainty bounds in historical simulations of both

yield and suitability generally captured observations (see e.g. Figure 5.14, and Figure 7.2)
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and can thus be considered believable (Beven, 2002; Beven and Binley, 1992). Given the

scarcity of these tests in the crop modelling literature, a further investigation of the ro-

bustness of the model evaluation metrics provided by this study using field significance

tests may be warranted.

Combining both models is thus a challenging task. One possible way to achieve the

combination of both models is to use their information in a complementary way, as done in

Sect. 7.4.6. Such analysis, however, revealed that where projections of suitability indicate a

possible expansion of the crop ecological niche, productivity was projected to decrease, and

vice versa (see Sect. 7.20). Niche models are useful tools for analysing the distributional

range of a species and can be used at regional scales to produce estimates of presence and

absence areas and their changes within certain environmental boundaries (e.g. Araujo et al.

2005; Fischer et al. 2005; Jarvis et al. 2012). However, niche-based models are not capable

to appropriately capture the complex non-linearities involved in the response of the crop

to climate and hence cannot be used to model productivity. In particular, for regionalised

analyses of relativelly widely-adapted crops, there is a risk that the responses to changes in

environmental factors are exaggerated in the niche models (see e.g. Läderach et al. 2013 for

an example) –though in other cases the responses are realistic (e.g. Schroth et al. 2009).

Thus, the use of niche models in agricultural impact studies should be exercised with

caution and in all cases interpreted carefully and where possible, their impacts estimates

compared with those of previous studies.

7.5.3 Known caveats and potential for model improvement

EcoCrop offers multiple advantages. First, model parameters and model inputs can easily

be altered to investigate a broader range of crops and/or regions (e.g. Jarvis et al. 2012).

This allows assessing relevant topics related to food security, transformational change

and the development of national or regional policies for climate change adaptation (e.g.

Peterson et al. 2012). However, niche-based models may have a number of limitations that

require further research and work if such models are to be used more widely for agriculture

under climate change:
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1. For EcoCrop, perhaps the most important aspect meriting improvement is the rela-

tionship between model parameters and the agronomic or physiological characteris-

tics of the crop. Although the simplistic approach in EcoCrop tries to simulate the

non-linear effects of temperature and precipitation-related stresses, it fails to capture

many relevant plant-soil-atmosphere interactions, and thus may over-estimate poten-

tial changes in productivity. Therefore, suitability indices and their likely changes

in future climate scenarios need to be interpreted carefully as the ability of a certain

environment to allow the growth of a certain species in a broad sense. As such,

suitability models may be more useful at regional scales for predicting changes in

distributional ranges rather than at smaller scales to predict changes in abundance

(see Ramirez-Villegas et al. 2013b and Hannah et al. 2013).

2. The model does not account for drought, waterlogging, excessive heat or cold during

key physiological periods (i.e. fruit filling, flowering), leading to a climatic suitability

over-estimation. Moreover, the application of the model relies upon monthly data,

whilst stressful conditions may occur in shorter periods.

3. For perennial crops (many of which are also difficult to model in a process-based

manner), it is harder to calibrate and/or parameterise the modelling approach, since

the rainfall and temperatures during the growing season are equal to the annual

rainfall and temperature, which results in neglecting within-year seasonality. A good

option to overcome this issue would be the development of a function to involve the

concept of degree days (Neild et al., 1983), though at the expense of data input and

calibration requirements.

Given the flexibility of EcoCrop, it can be continuously improved, and some additional

processes can be incorporated. Continuous improvements to the model to allow better

simulating responses to increased precipitation, assessing soil suitability and parameteris-

ing a larger number of crops and regions so as to assess climate change impacts on food

security are topics meriting future research.





Chapter 8

Developing a genotypic adaptation

strategy using GLAM

“ ‘We also have our diplomatic secrets,

said he’, and picking up his hat he

turned to the door”

Sir A. C. Doyle

8.1 Summary

Crop improvement strategies have been major factors in increasing food production during

the so-called green revolution (Chapman, 2002). Under climate change, cultivar substitu-

tion as well as the development of ‘climate-ready’ cultivars will likely be one of the most

important adaptation strategies (Burke et al., 2009; Foley et al., 2011). In view of the cli-

mate change impacts estimates presented earlier in this thesis (see Chapter 6), a genotypic

adaptation strategy for Indian groundnut was developed (Objective 5, Sect. 1.6). To that

aim, GLAMwas used to estimate the changes in mean yields, and importantly, also in inter-

annual yield variability. Traits explored included crop growth (maximum photosynthetic

rate, maximum rate of transpiration and biomass partitioning to seeds), crop phenology

(duration of each crop stage) and tolerance to high temperature stress. Each trait was

mapped onto as many as possible GLAM parameters, resulting in a total of 13 GLAM

255



Chapter 8. Genotypic adaptation 256

parameters to be perturbed. Those corresponding to crop growth were: transpiration effi-

ciency (ET ) and maximum normalised transpiration efficiency (ETN,max) as surrogates of

maximum photosynthetic rates; the maximum rate of tranpiration (TTmax); and the har-

vest index (∂HI/∂t) as a surrogate of partitioning to seeds. Phenology parameters included

the four thermal durations (tTT0 to tTT3). Adaptation to temperature extremes focused on

two processes. Firstly, high temperature stress during flowering (Sect. 3.5.1.8), for which

the critical temperature for damage to flowers (Tmin
crit ), the limit temperature for damage

to flowers (Tmin
lim ), and the steepness of the response to daily increases in day temperature

(Tia) were perturbed. Secondly, reduced photosynthetic rates at high temperatures, for

which the critical temperature for reduction in transpiration efficiency was chosen (Tter1).

The results indicate that adaptation is possible through genotypic improvement. On av-

erage, the most effective single trait for boosting mean yields was increased partitioning

to seeds (i.e. harvest index, ∂HI/∂t, 30–80 % increase), followed by increases in the rate

of transpiration (TTmax, 40–70 %). In dry areas (e.g. Gujarat and Andhra Pradesh),

however, increasing the transpiration rate increased water stress and was thus not ben-

eficial. Increased partitioning to seeds was beneficial throughout the whole country, but

it increased yield variability by up to 60 % as a result of earlier triggering of terminal

drought. By contrast, improved photosynthetic rates increased mean yield and decreased

yield variability. Duration traits were less effective (with a maximum mean yield gain

of 25 %) as gains from enhanced durations were limited by the duration of the monsoon

period. The grain-filling duration showed the greatest effectiveness in increasing mean

yield, but the increase in vegetative and flowering period being the most effective trait

at improving yield variability. Due to the lack of heat stress by 2030s, the response of

yield means and variability to heat stress tolerance traits was negligible. According to the

results, a first breeding cycle of 2030-ready crops should keep the current focus on water-

use efficiency and better partitioning over the whole of India, and avoid focusing on heat

stress. However, towards the end of the 21st, previous studies have highlighted the need

for heat-tolerant germplasm (Challinor et al., 2007; Singh et al., 2012). It is important to

note that the traits included in physiological models cover only a part of the crop breeding

picture, since plasticity and stability may also beimportant characteristics –but are ones

that can only be achieved through the combined effect of many genes. Thus, future studies

should focus on the mapping of genetic characteristics and the use of quantitative trait
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loci (QTL) or genetic models for assessing the genetic background of existing germplasm,

along with the feasibility of achieving crosses that hold the proposed characteristics.

8.2 Introduction

Global food production has increased significantly given the increasing need to feed a

globally growing population that has just recently passed the 7 billion people (World-Bank,

2012). Crop improvement strategies have been major players in such increases, by boosting

crop yields and thus increasing the overall production intensity (i.e. efficiency in use of

resources, particularly land) in the global food system (Chapman, 2002; Foley et al., 2011).

Genotypic adaptation, defined as the development and/or targeting of crop cultivars better

suited to novel climate conditions, is also one of the most important adaptation strategies

to projected climate change (Burke et al., 2009; Challinor et al., 2009a). This type of

adaptation involves the incorporation of desirable traits aimed at tolerating stresses to

achieve higher and more stable yields, and more broadly the design of crop “ideotypes”

(i.e. varieties with ideal genetic characteristics) (Cock et al., 1979; Donald, 1968; Suriharn

et al., 2011). Ideotypes have been hypothesised for a number of crops, including rice (Peng

et al., 2008), wheat (Berry et al., 2007; Semenov and Halford, 2009), maize (Mock and

Pearce, 1975), cassava (Cock et al., 1979), and groundnut (Suriharn et al., 2011). For

Indian groundnut, specifically, Singh et al. 2012 modelled an ideal 2050 climate ready

genotype with increased photosynthetic rates, greater partitioning to seed, increased in

the duration of the seed filling stage, greater specific leaf area and heat stress tolerance

(also see Challinor et al. 2007).

Chapter 6 of this thesis concluded with a thorough identification of impacts across India

and elucidated some potential avenues for adapting Indian groundnut systems to future

climate change (i.e. RCP4.5, 2030s). While impacts on the main production areas of

western and north-western India were primarily positive owing to increases in total seasonal

rainfall, the likelihood of negative impacts was significantly larger in the southern state

of Andhra Pradesh, as well as over central India (Maharashtra and Madhya Pradesh),

where ca. 25 % of groundnut production by weight is concentrated (Challinor et al.,

2003; Mehrotra, 2011). The results of Chapter 6 stressed the need for a more profound

investigation of the effects of genotypic adaptation, not only to abate any negative climate
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change impacts, but also to capitalise on the abovementioned potential gains. In particular,

enhancing plant mechanisms for countering drought stress was suggested (e.g. increased

grain filling period, higher partitioning, and higher transpiration efficiency).

The analyses performed in this chapter aim at combining previously assessed impacts

of climate change (Chapter 6) with a framework designed at quantifying the benefit of

early breeding of specific traits in groundnut. The analyses build up on previous work by

Challinor et al. (2007), Singh et al. (2012) and Challinor et al. (2009a) by investigating

traits other than temperature-related and hence providing a better account of genotypic

adaptation gains and their associated uncertainties. By focusing on the 2030s period the

analyses presented here are also more likely to be of use to the breeding community in

early breeding cycles during the 21st century. In this chapter, specifically,

1. Important genotypic properties were identified in the literature and mapped onto the

GLAM parameter space. Since GLAM parameters are defined regionally, it may be

difficult to link hypothesised and real-world genotypes, thus limiting the conclusions

reached to the scale at which the model is used. Nonetheless, the mapping of crop

traits onto the GLAM parameter space ensured that the traits analysed were fully

represented in the simulations. Further links to genomics have proven difficult even in

more complex process-based crop models (Boote et al., 2003; Semenov and Halford,

2009).

2. The identified GLAM parameters were perturbed from the values specified in Chap-

ters 3 and 5 to reflect hypothetical crop improvement scenarios. Parameters were

perturbed both individually and in combination.

3. Mean and interannual variability of crop yields in these simulations were compared

with those reported in Chapter 6 so as to assess the potential benefit from crop

improvement.

An ensemble of crop model simulations (similar to the one in Chapter 6) was used to achieve

the three objectives. The effectiveness of the potential genotypic adaptation options in

abating negative or capitalising positive impacts was assessed by quantifying yield gains.

The results are discussed in light of previous work on groundnut breeding and more broadly

in the context of agricultural adaptation.
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8.3 Methodology

8.3.1 Crop model

GLAMwas used to capture the response of groundnut to changes in climates at the regional

scale as well as to understand how the response of the crop changes under hypothetical

crop improvement scenarios. GLAM was deemed a suitable model for the purposes of this

chapter because it is a physiological process-based model (Challinor and Wheeler, 2008b;

Challinor et al., 2004) and as such allows to analyse the benefits from phisiology-oriented

improvements in crop characteristics (see e.g. Bertin et al. 2010; Challinor et al. 2007;

Semenov and Halford 2009). Because the crop model can skilfully reproduce observed crop-

climate relationships (see Sect. 5.3.5), it follows that perturbing model parameters within

realistic (observed) ranges will reflect a realistic response of the crop to prevailing climate

conditions (e.g. Boote et al. 2003; Challinor et al. 2007; Semenov and Halford 2009). As

used here, this is a direct estimate of the potential impact of genotypic adaptation, as it

reflects the effect of varying the genotypic characteristics (expressed through physiological

responses) of the crop.

8.3.2 Identification of traits and mapping onto GLAM parameter space

Literature on groundnut breeding and genetics is generally abundant (see e.g. Upadhyaya

2005, Rao and Nigam 2003, and Nautiyal et al. 2012), but perhaps the earliest complete

description of a groundnut ideotype was done by Nigam (2009). According to that study,

an ideotype of groundnut should present the following characteristics: “(1) rapid emer-

gence, (2) early growth vigour (roots and shoots), (3) early flowering, (4) insensitivity to

photoperiod, (5) high radiation-use-efficiency (narrow leaves), (6) high transpiration effi-

ciency (thick leaves), (7) high harvest index and minimum thermal time to physiological

maturity”. Further, Nautiyal et al. (2012) report the partitioning to pods as the most

important trait for achieving high yields, besides the total number of pods, the length

of the pod-filling phase and the maximum photosynthetic rate. The same study suggests

that a crop ideotype should show reduced SLA, plant height, petiole length, leaflets length

and width, together with increased number of branches and reproductive sink size.
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Table 8.1 shows the main studies that have assessed the genotypic improvement of ground-

nut using crop models. The different studies highlight the importance of four types of

genotypic properties: (a) tolerance to high temperature events, (b) development rates

–particularly that of the grain filling phase, (c) increasing the total biomass through in-

creases in the photosynthetic rate and/or improvements in leaf thickness or size, and (d)

increasing the fraction of assimilate that is partitioned to the seeds.

GLAM parameters corresponding to each of the genotypic properties are shown in Ta-

ble 8.2. As surrogates of the maximum rate of photosynthesis, the transpiration efficiency

(ET ), maximum normalised transpiration efficiency (ETN,max) and maximum transpira-

tion rate (TTmax) were used. The rate of change in the harvest index (∂HI/∂t) was used

as a surrogate of the fraction of assimilate partitioned to seeds. SLA is a model product

in GLAM, and hence only the initial-condition control SLAmax was used to reflect im-

provements in leaf thickness. The four thermal durations (tTT0...3) were also considered.

Finally, four extreme temperature thresholds were studied: three relating to heat stress

during flowering (Tmin
crit , T

min
lim , and Tia, see Sect. 3.5.1.8) and the last one relating to re-

duced transpiration efficiency at high temperatures (Tter1, see Sect. 3.5.1.10). The root

traits studied by Singh et al. (2012) were not considered since the response of the crop

was negligible or detrimental. Due to the reduced complexity of GLAM and the lack of

parameters related to individual seed and pod growth, nitrogen content, and individual

leaf size, these traits were not analysed.

The upper-bound for each of the target parameters was derived from existing literature,

except for phenology traits, as for these literature was not specific enough (see Table 8.2).

Ranges used were broad enough so as to include potential from available germplasm in

other parts of the world (Upadhyaya, 2005). Using ranges for as many parameters as

possible was preferred instead of using a ‘conservative improvement percentage’ for all

parameters (e.g. Singh et al. 2012), since it provides a more realistic estimate of genotypic

adaptation limits (see e.g. Challinor et al. 2009a).

8.3.3 Crop improvement scenarios

Crop improvement scenarios were generated by perturbing model parameters within the

updated range shown in Table 8.2 as follows:
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Table 8.2: List of physiological traits, their corresponding GLAM parameters, and their
updated maximum values for crop improvement scenarios (see Table 5.2 for calibration

range of each parameter).

Genotypic property Parameter Max. value Reference(s)

Maximum photosynthetic rate

Brown and Byrd (1996)
ET 5.8 Pa Rao and Nigam (2003)

Jyostna Devi et al. (2009, 2010)
Brown and Byrd (1996)

ETN,max 7 g kg−1 Bhatnagar-Mathur et al. (2007)
Jyostna Devi et al. (2009)

TTmax 0.7 cm day−1 Hammer et al. (1995)
Rao and Nigam (2003)

Partitioning to seeds ∂HI/∂t 0.015 day−1 Hammer et al. (1995)

Leaf thickness and size
Phakamas et al. (2008)

SLAmax 315 g cm−2 Banterng et al. (2003)
Sheshshayee et al. (2006)

Crop development rate

tTT0 -20 % N/A
tTT0 +20 % N/A
tTT1 +20 % N/A
tTT2 +20 % N/A
tTT3 +20 % N/A

Temperature tolerance

Tmin
crit 38 ◦C Vara Prasad et al. (2003)

Challinor et al. (2005b)
Tmin
lim 38 ◦C Challinor et al. (2005b)
Tia 44 ◦C Challinor et al. (2005b)
Tter1 64 ◦C Challinor et al. (2005b)

1. Crop growth: the transpiration efficiency (ET ), the normalised transpiration ef-

ficiency (ETN,max), the maximum transpiration rate (TTmax), and the specific leaf

area (SLAmax) were increased by 25 %, 50 % and 100 % of the range between the

optimal parameter value, i.e., those defined in Chapter 5, including the CO2 response

perturbations described in Chapter 6, and the updated upper bound of the range

(shown in Table 8.2).

2. Phenology: the thermal duration from planting to start of flowering (tTT0) and

from flowering to start of pod-filling (tTT1) were increased by 5 %, 10 % and 20 %.

The thermal duration from planting to start of flowering (tTT0) was decreased by

5 %, 10 % and 20 %. The thermal duration between start of pod-filling and LAI

max (tTT2) and the thermal duration between LAI max and maturity (tTT3) were

increased by the same percentages as tTT0 and tTT1.

3. Temperature extremes: as with crop growth parameters, these changes were

done at 25 %, 50 % and 100 % of the range between the maximum reported value
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(Table 8.2) and the optimal values used in Chapters 5 and 6.

Each parameter was first tested in isolation (i.e. 14 parameter * 3 perturbations = 42

individual perturbations) and then in combination with all other parameters. The com-

bined parameter scenarios were constructed so that upper and lower bounds of each type

of trait (i.e. crop growth, phenology and temperature extremes) were combined with each

other. Since within the phenology traits the perturbation of tTT0 had to be done in two

directions this meant that each of the groups of parameters had to be tested once with

increased tTT0 and once with decreased tTT0 (i.e. 2 directions3 groups ∗ 2 bounds = 16).

The total number of perturbations was thus 42 (individual) + 16 (combined) = 58. These

were then applied to the permutation of 19 baseline parameter sets and 4 CO2 response

parameterisations (Chapter 6). This totalled 19 * 4 * 58 = 4,408 hypothetical crop im-

provement scenarios (i.e. parameter sets) to be tested in any given grid cell. Examples of

single and combined scenarios are shown in Table 8.3 and Table 8.4 (respectively) for a

parameter set of Western India.

Table 8.3: Hypothetical crop improvement scenarios using single-parameter (S) pertur-
bations for a given parameter set of Western India. Each row represents three scenarios,

specified in the last three columns in the right.

Group Perturbation Parameter Low Mid Top

Crop growth

S1 to S3 ET 4.8 5.1 5.8
S4 to S6 ETN,max 5.4 6 7
S7 to S9 ∂HI/∂t 0.0081 0.0104 0.0150

S10 to S12 TTmax 0.56 0.54 0.7
S13 to S15 SLAmax 295 302 315

Phenology

S16 to S18 tTT0 390 351 332
S19 to S21 tTT0 410 429 468
S22 to S24 tTT1 334 350 382
S25 to S27 tTT2 212 221 240
S28 to S30 tTT3 529 553 600

T. extremes

S31 to S33 Tmin
crit 35 36 38

S34 to S36 Tlim 41 42 44
S37 to S39 Tia 61 62 64
S40 to S42 Tter1 36.3 37.5 40.0

8.3.4 Crop model simulations

As in Chapter 6, crop simulations were conducted using the future climate scenarios de-

scribed in Sect. 3.4.1.5. Four sets of model simulations were conducted: I-RAW, I-LOCI,
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I-SH and I-DEL. Each set consisted of 13 GCM simulations, 19 parameter ensemble mem-

bers, 4 CO2 parameterisations (see Sect. 3.5.1.13, Chapter 6), the 58 crop improvement

scenarios (Sect. 8.3.3) and 195 grid cells. No offset in sowing date was attempted since

the changes in sowing date were found in Chapter 6 to be a relatively insignificant uncer-

tainty source. Thus, a total of 11,174,280 simulations (57,304 simulations per grid cell)

were conducted for each set. Simulations were conducted exclusively for the future (i.e.

RCP4.5, 2030s). Yield gap parameter (CY G) values for each grid cell were taken from the

respective baseline simulation and in the case of DEL-bias-corrected crop simulations from

the control simulations.

Model output was verified for consistency using maximum values reported in the literature

for three key variables: (a) crop yield, (b) crop duration, and (c) end of season harvest

index. Simulations with time-mean yields larger than 6,300 kg ha−1(Balota et al., 2012;

Caliskan et al., 2008), mean duration greater than 150 days (Nigam, 2009; Singh et al.,

2012), or harvest index greater than 0.66 (Nigam et al., 2001) were considered unrealistic

and hence rejected.

8.3.5 Data analysis

The numerical analyses focused on mean crop yields (Ȳ ) and their variability (coefficient

of variation, CV ). Changes in crop yields and variability were first quantified as per cent

deviation from the corresponding Chapter 6’s future yield projection (Eq. 8.1).

∆X =
XI −XF

XF

∗ 100 (8.1)

where X represents the mean crop yield or its coefficient of variation, and the symbol ∆ is

used to indicate a change. The change is expressed as percentage of the difference between

the improvement scenario (XI) and scenario with no improvement (XF ) (i.e. the future

scenario of Chapter 6), with respect to XF . These calculations were done per grid cell,

for each GCM, GCM bias correction method, parameter ensemble member, CO2 response

parameterisation, and crop improvement scenario. For mean yields exclusively, simulations

where ∆X was negative were rejected since the primary objective of the simulations was to
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assess yield gains –rather than yield losses. Using these values, maps and box plots of the

potential improvement from each trait and each group of traits were finally constructed.

The impacts of parameter perturbations were analysed by grouping parameters into three

groups, according to the main abiotic stress being abated. Three groups were discerned:

• Drought management: drought escape through reduced thermal time requirement

during vegetative phase (tTT0), increased water-use efficiency through increases in

transpiration efficiency (TE , ETN,max), harvest index (∂HI/∂t), maximum transpira-

tion rate (TTmax) and specific leaf area (SLAmax).

• Increased duration to enhance LAI growth and biomass accumulation through in-

creases in all thermal time requirements (tTT0 to tTT3).

• Reduced effect of temperature extremes through increased tolerance to high temper-

ature during flowering (Tmin
crit , Tlim, Tia), and improved photosynthesis response to

temperature (Tter1).

These groups are hereafter used to present and discuss the results.

8.4 Results

8.4.1 Gains from drought escape and improved water-use efficiency

Figure 8.1 shows the potential mean yield gains from improving drought-related traits

for I-DEL simulations. In this and the following sections, plots and descriptions focus on

the I-DEL simulations because these were representative of the remainder sets of simu-

lations (I-RAW, I-LOCI and I-SH). Improving the partitioning to seeds (∂HI/∂t) was by

far the most effective trait, with mean yield gains above 80 % in central and eastern In-

dia. Improving photosynthetic rates (ETN,max, ETN,max) proved to be less effective than

improving partitioning; however, significant gains in southern areas were achieved from

improving this trait. Gains from improved assimilate production ranged between 10 and

40 % for most of India, though most of the benefits were concentrated in the very south

and the north-west of the country. The impact of enhanced maximum transpiration rate
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Figure 8.1: Mean crop yield increase as a result of crop improvement related to drought
scape and water use efficiency. Shown are the ensemble mean results of I-DEL simulations
middle crop improvement range (see Table 8.2) for each of the model parameters. Only

values of ∆Ȳ > 0 were plotted.

was often larger, but located in different areas as compared to photosynthetic rates, sug-

gesting geographic complementarity between the two responses. Improving leaf thickness

(to the extent that GLAM allows via SLAmax) did not show any significant benefit. The

least effective trait was the duration of the vegetative stage: decreasing tTT0 had little

impact on yields or was detrimental to crop productivity.

Yield variability changes are shown in Figure 8.2. Changes in yield variability were much

more geographically variable than those of mean yields, indicating that greater yield means

may not necessarily improve temporal yield stability. Overall, improving the maximum

photosynthetic rate (ETN,max, ETN,max) produced the greatest improvement in yield sta-

bility –although these were concentrated in the east, some parts of the west and the south.

This was because higher maximum transpiration efficiency enhances biomass accumula-

tion in wet years with low maximum temperatures (when VPD is low). Because the east

is one of the wettest areas in the country –and hence the likelihood of wet years is higher
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Figure 8.2: Crop yield variability changes as a result of crop improvement related to
drought scape and water use efficiency. Additional details as in Figure 8.1.

(Figure 3.3), achieving a greater ETN,max produces a more temporally uniform response.

Improving partitioning to seeds (∂HI/∂t) and the maximum transpiration rate (TTmax)

were found detrimental to crop yield stability. Reductions in vegetative stage duration

were detrimental to temporal yield stability in the majority of India, except in the very

west.

8.4.2 Gains from increased crop duration

Crop yield gains from increased durations were most effective when the duration from

maximum LAI to maturity (tTT3) was increased (Figure 8.3). The greatest yield gains

from this trait were observed in eastern India, where yield gains were in the range 12 – 15

%. Gains from tTT3 were lower in western and southern India (< 8 %). The effectiveness

of tTT3 was followed by the duration from the start of pod-filling to LAI max (tTT2), indi-

cating that substantial yield gains would be achieved if both were increased simultaneously

(i.e. overall increasing the grain filling period). For tTT2, the most significant yield gains
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Figure 8.3: Mean crop yield changes as a result of increased crop duration. Additional
details as in Figure 8.1.

were found in central-southern India (8 – 10 %). A longer vegetative period (tTT0) was

less effective, with yield gains in the range generally below 10 % (compared to 8 – 15 %

for tTT2 and tTT3). The least effective trait was the duration of the flowering stage (tTT1),

with yield gains generally below 6 %.

In contrast with the geographically inconsistent changes in yield variability produced by

the drought management traits, increased duration traits showed more consistent result

(Figure 8.4). In particular, improvements in yield stability were found in most of India for

tTT0 and tTT1. Yield CV increased by up to 15 % in the east –where monsoon precipitation

is higher (Figure 3.3). For these two traits, CV decreased between -5 and -15 %. Increases

in the duration of the grain filling period (tTT2 + tTT3) both caused less stable yields. This

result may be caused because a longer grain filling period can increase the crop’s exposure

to periods of intense drought towards the end of the growing period. This is confirmed by

the fact that western India, the most drought-prone area of the country, showed decreased

yield stability for all traits.
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Figure 8.4: Crop yield variability changes as a result of increased crop duration. Addi-
tional details as in Figure 8.1.

8.4.3 Importance of heat stress tolerance

As expected from the little effect of heat stress on crop yields reported in Chapter 6, the

yield gains from improved heat stress were negligible across the whole country (yield gain

< 1 %). Figures are intentionally not shown because they bear little information (but

see Figure 8.6). As discussed in Sect. 6.5.3, the lack of effect of temperature extremes on

crop productivity may highlight the fact that the first breeding cycle (to target cultivar

release by 2030) should not focus on improved heat tolerance. This conclusion holds valid

for both heat stress during the flowering period (Challinor et al., 2007; Vara Prasad et al.,

2003) and for the effect of heat stress on photosynthesis (Challinor et al., 2009a). Previous

studies focusing on longer lead times have, however, found that heat stress is an important

trait beyond 2050, particularly in southern India (Challinor et al., 2007; Singh et al., 2012).



Chapter 8. Genotypic adaptation 271

8.4.4 Gains from breeding multiple traits

Combined traits yield gains are shown in Figure 8.5. In general, combining traits boosted

crop yields across the whole study area. Since the effect of heat stress traits was very

limited, all these gains can be attributed to increased thermal durations in addition to

greater water-use efficiency. In many areas, crop yield gains exceeded 100 % relative to

the future climate scenario projected productivity. The fact that these increases were so

large can be attributed in part to the strong effect of WUE traits and their geographical

complementarity (see Figure 8.1). In the combined scenarios, yield gains were generally

lower (about 50 % below) in the dry areas of the west and the south, indicating that

drought may preclude from fully capitalising breeding gains. However, these are the areas

where most of the groundnut production is currently located (Challinor et al., 2003).

Additionally, simulations in which improvement included reduced tTT0 all showed lower

values than those where tTT0 was increased (Figure 8.5). This suggested that the duration

of the vegetative phase needs to be sufficiently long in order to allow the crop to establish

at the beginning of the cropping season.

Interannual yield variability, as with individual traits, showed a relatively inconsistent

response both across the geographic space and across the two types of modifications (top-

right panel for decreased tTT0, bottom-right panel for increased tTT0, Figure 8.5). Impor-

tantly, however, yields were much more stable across most of the territory if the vegetative

time was slightly reduced, with reductions in CV beyond 15 % in many areas of eastern-

southern India, as well as in the north. These areas also showed CV reductions in the

range 5 – 10 %. In the rest of the study area, however, CV increases above 15 % were

observed. These increases in yield variability may be strongly related with the fact that

important traits such as ∂HI/∂t and the TTmax both increased yield variability often above

15 % (Sect. 8.4.1)

The breeding of multiple traits may, however, prove difficult in practice, particularly if

quality traits are also to be bred, or need to be preserved, in the genotypes. These

results, nevertheless, stress that in many of the areas where negative productivity impacts

are expected (e.g. central India, and to some extent also the south, see Sect. 6.4.2.2),

countering of such negative impacts is possible through breeding appropriate drought
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Figure 8.5: Crop yield mean and variability changes as a result of combined-trait im-
provement scenarios. Only results from I-DEL simulations are shown given their similarity
with respect to other sets of simulations. The top (bottom) row shows the C1 (C9) sim-

ulations.

tolerance mechanisms and/or slightly lengthening the growing cycle –particularly the grain

filling period (also see Singh et al. 2012).

8.4.5 Compared trait effectiveness

The relative effectiveness of the different traits and trait groups varied significantly for both

yield means and yield variability (Figure 8.6). Improving the partitioning to seeds (∂HI/∂t)

had a greater impact than all other individual traits, as it boosted mean yields above 50

% in more than 50 % of the grid cells (Figure 8.6(a)). This suggests that partitioning to

seeds should be a high priority trait in any breeding effort now so as to develop resilient

germplasm that can be tested sufficiently early so as to be prepared for 2030 climates.

In fact, there were greater mean yield gains from virtually all drought-related traits as

compared with longer duration traits (Figure 8.7). As mentioned above (see Sect. 8.4.3),

traits related to temperature extremes showed little or no effect and hence may not be a

high priority for adaptation in the early 21st century.



Chapter 8. Genotypic adaptation 273

(a) Ȳ

(b) CV

Figure 8.6: Comparative mean yield (Ȳ ) and yield variability (CV ) changes from dif-
ferent traits. The spread shows the spatial variation in the response of each quantity
(means across simulations for each grid cell). Names of traits are as follows: TE (TE),
TEN MAX (ETN,max), DHDT (∂HI/∂t), TTMAX (TTmax), SLA (SLAmax), VEGDEC
(tTT0 decreased), VEGINC (tTT0 increased), FLW (tTT1), PFLM (tTT2), LMHA (tTT3),
TCRIT (T lim

crit), TLIM (Tlim), TLINT (Tia), TETR1 (Tter1), CMB1 (C1), CMB2 (C9).
Thick horizontal line is the median, boxes mark the 25 and 75 % of the data and whiskers

extend to 5 and 95 % of the data.
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For yield variability (Figure 8.6(a)), it is important to note that more stability was only

achieved through traits that only improved WUE or the total assimilate production (i.e.

increases in photosynthetic rates: TE , ETN,max), through traits that improved the effective

LAI (SLAmax, increased tTT0), and also through increases in the length of the flowering

period (tTT1). Combined traits showed little benefit to yield stability, indicating that

capitalising yield gains in ‘good’ years through certain traits may come at the expense

of a less resilient response in ‘bad’ years. On average, however, it was observed that

drought-related traits were less effective in improving yield stability if bred together than

those related to duration, though none was perfect (Figure 8.7). This highlights the need

to understand and manage year-to-year yield responses through crop management (e.g.

shifts in sowing dates, supplementary irrigation).

8.5 Discussion

8.5.1 Importance of traits and underlining processes

Gains in mean crop yields were observed across virtually all the different simulated traits

across the study area, except for the reduction in the vegetative stage duration (tTT0). This

result seems robust and was in agreement with previous studies where yield gains were

reported either by enhancing crop duration or by improving crop growth and phenology

traits (see Challinor et al. 2009a; Singh et al. 2012). It must be noted, however, that the

mean yield gains reported here were much more spatially consistent than those of Singh

et al. (2012). Such differences may be attributed to the fact that Singh et al. (2012)

used very conservative (10 %) percentage changes in the model parameters, they assessed

only a handful of sites, a different period (2050), and they used a different crop model

(CROPGRO, Hoogenboom et al. 1992). Here, the most effective set of traits for improving

mean yields were those related to improved WUE (Figure 8.7(a)), and in particular a better

partitioning to the seeds (herein measured using the harvest index change rate, ∂HI/∂t,

Figure 8.6(a)). In this regard, for instance, Singh et al. (2012) reported that increased

partitioning to seed presented a more spatially consistent and stronger response than an

increase in the photosynthetic rate –as was found here. Better assimilate allocated to the

seeds has been pointed out as one of the most important traits for achieving greater yields
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(a) Ȳ

(b) CV

Figure 8.7: Comparative mean yield (Ȳ ) and yield variability (CV ) changes from differ-
ent trait groups. The spread shows the spatial variation in the response of each quantity
(means across simulations for each grid cell). Combined traits only display C1 and C9,
for convenience. Thick horizontal line is the median, boxes mark the 25 and 75 % of the

data and whiskers extend to 5 and 95 % of the data.



Chapter 8. Genotypic adaptation 276

(Nigam, 2009; Nigam and Aruna, 2008; Upadhyaya, 2005). HI is also a trait that shows

large variation within the groundnut genepool (Rao and Nigam, 2003).

GLAM is based in the principle that Y = T ∗ ET ∗ HI (where T is total transpiration)

(see Sect. 3.5.1), which has been largely used in groundnut breeding (Nigam, 2009; Nigam

and Aruna, 2008). The results presented here indicate that, as stressed by other authors

(see Nigam 2009), gains from improvements in the transpiration rate are limited to areas

where available soil moisture is sufficient during the the growing season. This was clearly

evidenced since the dry areas of Gujarat (western India) and of the south (primarily

Andhra Pradesh) showed little yield gains from improving this trait (Figure 8.1). In these

environments, however, yield gains could be achieved through greater photosynthetic rates

(higher ET or ETN,max, also see Nigam 2009). From these, it was apparent that ETN,max

(as used in GLAM) had a greater impact, which may have been caused by the lower air

moisture (i.e. high vapour pressure deficit) in many areas that enhances the response of

total transpiration and total assimilate production, particularly in the south (Challinor

and Wheeler, 2008b; Challinor et al., 2007).

Another important aspect of crop production, which is rarely assessed in climate change

studies (e.g. Easterling et al. 2007; Singh et al. 2012) is the temporal stability of yield.

Farming communities require stable harvests so as to be able to maintain and, where

possible, increase the flow of produce to national and international markets (Wheeler and

von Braun, 2013). Food security is also highly dependent on spatio-temporally stable

crop yields (Vermeulen et al., 2013; Wheeler and von Braun, 2013). Changes in temporal

variability of crop yields cause instability in the food system and the producers income.

Because such changes can increase vulnerability locally and regionally, adaptation to cli-

matic extremes is needed. In this study, the most effective traits in increasing mean yields

also caused increased vulnerability to extremes (i.e. larger yield CV ). These included

the harvest index (most effective individual trait for mean yields), the maximum tran-

spiration rate, and the increases in duration of grain filling (tTT2 + tTT3). Mechanisms

for these results can be inferred in some cases. In the case of the harvest index, for in-

stance, decreases were concentrated in dry areas. This suggested that while in wet years

increased harvest index allowed attaining higher yields, in very dry years a higher ∂HI/∂t

may trigger terminal drought earlier than normal (see Challinor et al. 2009a). Similarly,

a longer reproductive period may expose the crops to terminal drought in very dry years.
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TTmax caused the greatest yield stability reduction, probably via increased water stress

in dry years (Nigam, 2009). These results suggest that yield means and yield stability

may be achieved through different traits. There is no ‘silver-bullet’ trait for all regions,

but it is likely that the combination of traits would be beneficial for many regions at once

(Figure 8.5, also see Nigam 2009). The difficulty, however, is incorporating such multiple

traits in practice through conventional breeding.

In general, in rainfed areas where crop duration is heavily restricted by the length of the

rainy season, as in the states of Gujarat and Andhra Pradesh (where the majority of

groundnut is grown) achieving a sufficiently dense canopy in a relatively short vegetative

period is paramount for achieving stable yields (Nautiyal et al., 2012; Nigam, 2009; Rao

and Nigam, 2003). Here, decreases in tTT0 alone were detrimental to crop yield stability

(Figure 8.4), probably through reductions in LAI. However, when decreased tTT0 was

coupled with WUE traits, stability was gained in many areas (Figure 8.5, right). In areas

where soil moisture is not a limitation, the growing season can be increased so as to

capitalise on available water.

Additional constraints other than biophysical are also present in groundnut cropping sys-

tems, indicating that an integral approach to crop adaptation is needed. These include

pests and diseases (Singh et al., 1997) and sub-optimal crop management (Bhatia et al.,

2009). The preservation of a genetic pool with sufficiently diverse genetic backgrounds

(including wild species, Upadhyaya 2005) will provide the means for overcoming current

biotic and abiotic constraints, capitalising on the potential benefits from and abating the

negative impacts of climate change.

8.5.2 Crop breeding under uncertainty

Decisions on how and where to adapt a given cropping system cannot be delayed until out-

comes are predicted with absolute certainty. In terms of breeding, this study demonstrated

that despite uncertainty, GLAM can be used to make decisions related to the germplasm

that can be used under future conditions (Vermeulen et al., 2013; Weaver et al., 2013). The

methodology employed here can also be used with other crop models, thereby exploiting

the modelling tools for defining key breeding traits under climate change (also see Singh

et al. 2012; Suriharn et al. 2011). There was substantial uncertainty in the actual yield
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changes both with and without adaptation (also see Chapter 6), with percentage changes

varying substantially (see for instance the width of the PDFs of Figure 6.9). This, however,

did not preclude a consistent and coherent simulation of adaptation. Robustness in the

direction of yield changes and, importantly, in the processes behind such changes provide

important insight and are critical to assessing the extent to which a decision can be made

(see Chapter 6). The main challenge is thus to carefully interpret the model outcomes so

as to provide information that is of use for breeders. This study demonstrated that adap-

tation to climate change in Indian groundnut cultivation is possible through improvements

in the genotypic properties of currently grown cultivars. There was very high certainty

that adaptation to climate change in groundnut cultivation is possible through increases in

maximum photosynthetic rates, total asssimilate partitioned to seeds, and, only in areas

with sufficient soil moisture, also through increases in the maximum transpiration rate. It

can also be said with high certainty that heat stress is not a major concern in the next

20-30 years for breeders, though varietal substitutions may be required at local levels in

cases (Challinor et al., 2005b, 2007; Craufurd et al., 2003).

An overarching issue when breeding climate-ready crops is to identify the correct sources of

genetic variation. The most used sources of genetic variation are currently grown cultivars,

and particularly hardy landraces (Nigam, 2009; Singh et al., 1997). The literature review

used to set out the extended ranges for perturbing GLAM parameters indicated that

currently grown cultivars can be of use for breeding groundnut under a climate of change.

However, special attention must be paid to wild species both in terms of abiotic and

biotic traits. Substantial genetic and environmental variability is reported in wild Arachis

populations towards north-eastern Brazil, where drought is prevalent (Ferguson et al.,

2005; Jarvis et al., 2003). In particular, populations A. dardani and A. triseminata have

been found in areas where annual rainfall is below 550 mm and 750 mm, respectively

(Ferguson et al., 2005). Other wild species have been reported to have desirable agronomic

traits in conjunction with pest and/or disease resistance (e.g. A. batizocoi, A. cardenansii,

and A. duranensis) (Nigam, 2009; Singh et al., 1997). The results of this study suggest

that the current focus of groundnut breeding is well on target, but that particular attention

has to be paid to the risks of increasing yield variability under future climate.

A last important aspect is the selection and adoption of appropriate cultivars in the field.

Two complementary strategies may be followed: (a) the use of simple measures to measure
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complex traits, and (b) farmer-based trial networks (e.g. Jarvis et al. 2011a). In practice,

the selection of genotypes with high ET or ETN,max can be achieved through selecting for

greater SLA (i.e. thicker leaves) (Nigam, 2009; Nigam and Aruna, 2008; Rao and Nigam,

2003) or using the leaf chlorophyll concentration (Sheshshayee et al., 2006). Selecting for

higher harvest index is easier, as it is a easily measurable at harvest. Ultimately, the

adoption of novel germplasm by the farmers will depend on the demonstrated benefits of

the new cultivars as well as on the degree of involvement of such farmers in the selection

process (Mehrotra, 2011; Talawar, 2004). Thus, in order to improve farming conditions and

facilitate the adoption of novel climate-ready germplasm the implementation of farmer-

based experimental networks may prove effective (Nigam, 2009; van Etten, 2011).





Chapter 9

Conclusions

An assessment of the impacts of and adaptation to climate change for Indian groundnut

cultivation was performed. Models of climate and crops were used to simulate the spatio-

temporal variability of groundnut yields and suitability in present-day climates, and then

to produce future projections, and an extensive set of simulations of genotypic adapta-

tion. Many aspects make the presented work a unique contribution to the climate change

impacts and modelling literature. Foremost, the results presented constitute the first en-

semble of such size used for informing climate impacts and adaptation. The thorough

consideration of both climate and crop sources of uncertainty made the construction of

robust projections of climate change impacts possible, and this allowed identifying key

processes under future climate change. The agreement in driving processes across the

simulations presented ascertained various genotypic adaptation strategies. The further

comparison of a niche model (EcoCrop) and GLAM presented in Chapter 7 was critical

for contextualising all presented modelling results as well as to set out future challenges

in crop-climate prediction.

9.1 Main findings and conclusions

The analyses presented in this thesis have led to the following main conclusions.

281
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1. Agricultural impact studies are heavily reliant on high spatio-temporal resolution

climate data. Typical is to find studies that use crop models that require high spa-

tial resolution daily data for simulating agricultural productivity. However, existing

data do not meet such requirements, or if they do, these are not accessible. Analyses

of weather station networks and climate model simulations were performed in Chap-

ter 4. The main problems in the climate data were associated with lack of accuracy

in regions where landscape complexity forces large variations in meteorological fields

in short intervals of time or space. Particularly in the context of projection-based

climate change impacts and adaptation approaches, large errors in both observed

and simulated climate can severely bias impacts estimates. The results suggest that

a careful treatment of climate model bias and the creation of ensembles are criti-

cal needs for projection-based approaches, as this allows analysing more than one

aspect of crop-climate simulation, and account for possible errors in model formu-

lation, observational data, knowledge on responses to environmental factors, and

initial conditions.

2. Crop model parametric uncertainty was investigated in Chapter 5. The belief that

parameters in physiologically-oriented process-based crop models are “mathematical

constructs that reflect real world genotypes” has prevented crop modellers –at least to

some extent, from quantifying parametric uncertainty. This parameter uncertainty is

relevant to climate change impacts since insufficiently constrained parameter values

can lead to bias in the sampling of the crop’s response probability distribution. The

findings imply that none of GLAM parameters could be sufficiently constrained by

the available observational data (i.e. crop yield), and, importantly, the majority of

them did not necessarily follow a normal distribution. This indicated, firstly, that

realistic yield simulations are not associated with a single ‘perfect’ combination of

parameters, and secondly, that assumptions on the parameter probability distribu-

tions should be exercised with care. The result is consistent with previous work from

Iizumi et al. (2011) and Tao et al. (2009). Further simulations (Chapter 6) showed

that parametric uncertainty constitutes a relevant source of uncertainty, sometimes

more important than the parameterised response to increased CO2 concentrations,

and in some cases comparable to climate model structure uncertainty.

3. The nature of coupled or uncoupled crop-climate simulations makes them highly
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uncertain. Easterling et al. (2007) reported large spread in impacts estimates even

at large scales, at which projected quantities are generally more robust (see Fig-

ure 1.5). The ensemble of simulations constructed here proved that coherent crop

yield projections can be obtained despite uncertainty in actual yield values. This

was attributed to the positive changes in precipitation projected by the majority

of GCMs, which enhanced assimilate production in the simulated crop, reduced the

impact of terminal drought (hence increasing crop duration) and generally indicated

positive impacts from climate change for groundnut. Uncertainties in the projected

yield values across the GLAM ensemble were large in cases, but did not preclude

robust statements being made in four out of five regions of India. A shift from a ‘pre-

dictive’ impacts science to a more ‘process-oriented’ science, where both quantities

predicted and underlining processes are reported is warranted.

4. Chapter 7 investigated the agreement between and attempted to combine GLAM

and EcoCrop. The author of this thesis has published research using EcoCrop (see

e.g. Jarvis et al. 2012; Ramirez-Villegas et al. 2013b), with the model outputs gen-

erally agreeing with previously published results (e.g. Fig. 7 in Ramirez-Villegas

et al. 2013b). In Chapters 5 and 6, GLAM was used to simulate present and fu-

ture climate responses of groundnut –thus providing the author (and the reader) a

deep understanding of the model, its constitution and predicted responses to current

and future climate. Using both models for groundnut, this work reports substan-

tial differences between present-day suitability and productivity, and their projected

changes. These differences can be attributed to various factors, but perhaps the most

important one is the fact that simulating suitability (with EcoCrop) does not involve

accounting for any sub-seasonal weather variation. If anything, this highlights the

importance of comparing impacts estimates with those of previous studies regardless

of the nature of the model used. This also implies a challenge in reconciling both

measures (suitability and productivity) –clearly a subject of future study.

5. Existing work on genotypic adaptation has focused on assessing the impact of vari-

ous genotypic properties using highly detailed and data-demanding field-scale crop

models, but at the expense of quantifying uncertainties or mapping of probabilities

and/or probability distributions (see e.g. Semenov and Halford 2009; Singh et al.
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2012; Suriharn et al. 2011). Chapter 8 demonstrated that the development of adap-

tation strategies for groundnut was not contingent on the climate scenarios or crop

model parameter set chosen. Adaptation through improving the genotypic proper-

ties of existing cultivars is possible in groundnut. The results implied that current

breeding strategies seem to be well on track at least until 2030s, but reconsiderations

could be done towards the end of the 21st century so as to prioritise heat stress.

9.2 Implications of this research

As pointed out in Chapter 4 and in existing literature (see Challinor et al. 2009b and

Ramirez-Villegas et al. 2013a), the thoughtful creation of robust crop model ensembles is

a necessary step when aiming at improving agricultural decision making. In that sense, the

present work is a substantial way forward. In short, it provides a thorough investigation

of climate change impacts for groundnut as well as of the associated uncertainties. The

study sets out a methodology for assessing impacts and developing genotypic adaptation

strategies at the regional scale, and opens the possibility of deepening the analyses at more

local scales.

In terms of using climate models for impacts research, this study is the first in identifying

(together with Ramirez-Villegas et al. 2013a) the impacts of CMIP5 model bias on agri-

cultural impacts assessment. Climate model output should be treated with caution, and

such treatment is dependent on the scale of the impact analysis intended (Masson and

Knutti, 2011). The analyses presented in Chapter 6 imply that the decision of whether

to bias-correct a climate model output or not, and the choice of bias-correction and/or

downscaling method are significant sources of uncertainty, often larger than the structure

of climate models. In general, future impacts studies should provide a better account of

these uncertainties in order to avoid generating ‘over-confidence’ in their projections.

Impacts-based approaches are one of two main action pathways for adapting agriculture

to climate change (Challinor et al., 2013; Mearns, 2010). This work has demonstrated that

impacts-based (also referred to as top-down or projection-based) approaches can provide

information that is useful for adaptation. For the case of groundnut cultivation, robustness

in GLAM projections was achieved in virtually all India. This proved that projection-based
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approaches are not necessarily limited by modelling uncertainties. Future studies on crop-

climate impacts should attempt at assessing robustness in a similar way as done here, as

this would enhance the impacts evidence base and would hence facilitate climate change

adaptation (see e.g. Koehler et al. 2013 for an example). Lack of robustness represents a

challenge to scientists and policy makers, but it is important to identify areas and periods

where lack of robustness hinders projections of climate impacts (e.g. Koehler et al. 2013).

In those cases, a better understanding of local processes so as to adopt a more bottom-

up approach (i.e. capacity based, as in Vermeulen et al. 2013) to adaptation may be

warranted.

Perhaps the main intended users of genotypic adaptation information (as that provided in

Chapter 8) are crop breeders. However, physiological crop models are limited to providing

physiology-level conclusions. This information is often of limited use for breeders because

it does not provide sufficient detail on the genetic background of the material that could

be used for crop improvement, particularly for large-area models whose parameters are

difficult to assimilate as real world genotypes. It is thus important that the challenges

of combining physiological- and genetic-level information are overcome, without excessive

increases in model complexity and uncertainty.

9.3 Future work

The work presented in this thesis has opened a number of potential areas of future work.

First of all, work on uncertainty quantification remains incipient in many aspects of crop

modelling. Existing studies limit the quantification of modelling uncertainty to either

using multiple GCMs with a single crop model (e.g. Lobell et al. 2008; Ruane et al.

2013; Thornton et al. 2009), to the use of crop model parameter ensembles with a single

bias-corrected set of GCM simulations (e.g. Tao et al. 2009), or to the use of multiple

crop models with a single bias-corrected set of GCM simulations (e.g. Asseng et al. 2013;

Palosuo et al. 2011; Rotter et al. 2011). This study quantifies all sources of uncertainty

to the extent that available computational capacity allows. Nevertheless, it falls short in

quantifying structural uncertainty in crop models. This is clearly a point for future work.

This thesis has provided an assessment of climate model errors (Chapter 4) and of their

effect on GLAM simulations (Sect. 6.4.1). Watson and Challinor (2013) provided an
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overview of GLAM responses to errors in meteorological data at different scales for a

location in India. In line with the two studies, the identification of GCM characteristics

(e.g. components included, skill in reproducing modes of variability and teleconnection)

that lead to coherent crop simulations could be a topic for future studies.

With regards of niche-based models, EcoCrop was used to simulate groundnut suitability.

Nevertheless, other types of niche models exist, including species distributions models

(SDMs, as described in Sect. 2.3.2.2). SDMs are to an extent similar to EcoCrop, but

have a different structure and tend to be more flexible. Recent work on comparing SDMs

and process-based models for forest species has revealed that relationships are difficult to

find and highly non-linear (e.g. Keenan et al. 2011; Morin and Thuiller 2009; Serra-Diaz

et al. 2013). The combination and comparison of suitability and productivity measures

could potentially be expanded to SDMs.

A final topic of interest relating to this thesis is the scaling down of genotypic adaptation.

In this regard, using field-scale crop models that allow a better mapping of traits on

the model parameter space as well as investigating the possible coupling of physiological

information and quantitative trait loci data are topics that warrant future research.
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Appendix B

Preliminary optimisation

experiments

Introduction

Various optimisation strategies are possible in GLAM. Optimisation can be performed

using one single grid cell where crop-climate relationships are strong (Challinor et al.,

2004), using various grid cells simultaneously by randomly sampling the parameter space

(Nicklin, 2013), by manually tuning the model so that it performs well on a variety of

circumstances (Li, 2008), or by iteratively optimising all parameters using GLAM’s built-

in hypercube optimisation (Challinor, 2009).

The final objective of the parameter sets developed in Chapter 5 was the assessment of

genotypic adaptation options (Chapter 8). Work on genotypic adaptation focuses on alter-

ing values of crop model parameters that represent useful breeding traits (see Chapter 8,

Singh et al. 2012 and Suriharn et al. 2011 for more details) to then find combinations of

these that abate any negative impacts of climate change or capitalise positive ones. For

this reason, it is important that the optimal values of crop model parameters are not in-

fluenced by the CY G. This means that the value of CY G, which can be spatially variable,

has to be constant during the optimisation process. Apart from this, the selection of an

appropriate optimisation strategy is important because it can have an effect on model skill

301



Appendix B. Preliminary GLAM experiments 302

(Angulo et al., 2013a). Three fundamental decisions needed to be made before performing

any further analyses:

1. which grid cell(s) are to be used for optimisation?;

2. what are the initial values of the CY G for the grid cells of (1) above, which need to

be constant during the optimisation of all other model parameters in order to reduce

the dependence of optimal parameters on the chosen CY G values?;

3. which of the parameters of Table 5.2 need to to be optimised, so that only uncertainty-

relevant parameters are further studied?

Materials and methods

Crop model and input data

The model used was GLAM, as fully described in Sect. 3.5.1 of Chapter 3. GLAM inputs

(i.e. weather, soils, planting dates, and crop yields) were all as in Sect. 5.3.2 of Chapter 5.

Configuration of simulations

Four different sets of simulations (i.e. experiments) were carried out in order to assess each

of the three abovementioned decisions. The experiments varied in terms of the number of

grid cells used for the optimisation and the initial value of the CY G. All experiments were

performed for each zone separately (see Figure 3.2). The experiments were as follows:

1. In the first experiment (PE1), a total of 10 grid cells were selected for each zone

so that they spanned a range of mean crop yields (i.e. a range of responses) so to

capture spatio-temporal variability of crop yields. A CY G value was pre-calculated

for each optimisation grid cell using the ratio between the mean crop yield of each

grid cell (Yi) and the maximum mean crop yield amongst the 50 optimisation grid

cells (10 grid cells * 5 zones) (Eq. B.1).

CY G =
Yi

max(Yi, Yi+1, . . . , Y50)
(B.1)



Appendix B. Preliminary GLAM experiments 303

2. The second experiment (PE2) used the same 10 grid cells as in PE1. CY G values

were calculated in a similar way as in PE1, but using the maximum of the 10 grid

cells of each growing zone, instead of the whole set of 50 optimisation grid cells used

in PE1 (Eq. B.2).

CY G =
Yi

max(Yi, Yi+1, . . . , Y10)
(B.2)

3. The third experiment (PE3) used the same grid cells as in PE1 and PE2, but this time

a value of CY G =1 in all optimisation grid cells was adopted during the optimisation

procedure.

4. For the last experiment (PE4), a single optimisation grid cell was used for each zone.

Each grid cell was carefully selected so that it showed the highest crop yield in the

whole growing zone. This was done based on the rationale that these grid cells are

those where farmers achieve maximum possible region-specific yields. The use of a

constant CY G=1 seemed obvious in this case.

The following steps were then followed:

1. The order in which parameters were optimised, which due to the compensatory

nature of parameters is known to have an effect on the final parameter values, was

pre-defined. This order was chosen at random, and follows that of Table B.1 from

top to bottom row. The order was kept the same across the four experiments.

2. A total of 15 iterations to be performed were chosen. This was done because the

optimisation of a parameter can cause the optimal values of other parameters to

vary. This ensured that the optimum values of the parameters were stable; that is,

the local minimum error (see Eq. 3.46) was reached.

3. The 23 target model parameters (excluding CY G, Table 5.2) were optimised sequen-

tially (following the order defined in (1) above). Optimisation was done by iteratively

testing different values of each parameter within the ranges of values reported in Ta-

ble 5.2, and assessing the model simulated yield against observed yields using the

RMSE (Eq. 3.46).
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For each model parameter and zone, the variation in the RMSE (RMSEV ) was then

calculated to measure the effect of the parameter on the model output (Eq. B.3)

RMSEV =
RMSEmax −RMSEmin

RMSEmin

∗ 100 (B.3)

where RMSEmax and RMSEmin are the maximum RMSE values that the param-

eter produced within the range suggested in Table 5.2. RMSEV was used as a

standardised measure across parameters because minimum RMSE values for each

model parameter were different. The RMSEV measured how much relative increase

in RMSE causes a given parameter over the local minima that can be reached for

that same parameter. Using RMSEmax as the standardising value produced the

same qualitative results. Ranges of parameters were all taken from the study of

Challinor et al. (2004), unless otherwise stated (e.g. Chapter 3, Sect. 3.5.1.12).

4. Once the 23 model parameters were optimised, the planting date was determined for

each grid cell. For each grid cell, the start of a planting window was varied across

reported ranges in the Sacks et al. (2010) dataset (Chapter 4, Sect. 3.4.2.3) so that

the RMSE (Eq. 3.46) was minimised for that grid cell. This procedure ensured that

the choice of the planting date did not affect model skill, while ensuring the planting

windows were in agreement with observations (Sacks et al., 2010). In each model

simulation (i.e. in each year and location), the actual sowing date was defined as

the simulated first day with a soil moisture availability of at least 50 % (Challinor

et al., 2004).

5. CY G values were determined for each grid cell by iteratively running the model with

CY G set between 0.01 and 1.0 (in steps of 0.01). The value that minimised the

RMSE as the optimal value.

In all cases, the Rabi (irrigated winter) season was simulated separately for each gridcell

where irrigated area was reported by planting the crop between the 15th of November

and 15th of January, defined per growing zone according to Talawar (2004). An irrigated-

fraction weighted-average of the Rabi and Kharif runs was done and this was the value

used to calculate RMSE during the optimisation and calibration procedures. This was

done because the crop yield data was reported as the average of both seasons per year (i.e.

total production by total area).
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Assessment of model skill

Skill of the model in each of the four experiments (PE1 through PE4) was measured using

four simple measurements: (1) the spatial correlation coefficient of mean yields; (2) the

spatial correlation coefficient of yield standard deviations; (3) the mean (and standard

deviation) of the RMSE values; and (4) the mean and standard deviation of PRMSE

values. The spatial variation of the correlation coefficient and the maximum farmers yield

were mapped out.

Results

Table B.1 shows the overall skill of the model in the four experiments. Experiment PE3

(where 10 grid cells were used with a CY G=1) showed the lowest skill, with a correlation

coefficient of 0.89 and 0.39 for yield mean and standard deviations, respectively. Mean

values of RMSE (PRMSE) across grid cells in this experiment were 287 kg ha−1 (56 %),

while standard deviations were 212 kg ha−1 (89.1 %). Although experiment PE1 (where

10 grid cells were used with pre-calculated CY G) showed better skill, with correlation

coefficients of 0.92 and 0.42 for yield mean and standard deviations, respectively), values of

RMSE and PRMSE and their respective standard deviations were large (see Table B.1).

Table B.1: Overall skill of the different optimisation experiments.

ID R(Ȳ ) R(σ) RMSE(±s.d.) (kg ha−1) PRMSE(±s.d.)(%)

PE1 0.92 0.43 271.5 ± 191.8 57.6 ± 107.6
PE2 0.98 0.47 289.8 ± 173.4 47.2 ± 25.9
PE3 0.89 0.39 287.0 ± 212.0 56.0 ± 89.1
PE4 0.96 0.45 281.8 ± 177.3 45.6 ± 26.1

Notes: R(Ȳ ) and R(σ) refer to the spatial correlation coefficients of mean (Y ) and
standard deviation (σ), respectively. PRMSE refers to the RMSE standardised by
mean yields.

Experiments PE2 and PE4 showed the best performance overall, with PE2 depicting the

highest correlation coefficients, the lowest RMSE, as well as a relatively low PRMSE

(Table B.1). This result indicated that these two optimisation strategies were promissory.

Nevertheless, the spatial variation of the correlation coefficient was remarkably different

between the two experiments (Figure B.1). A large number of grid cells showed negative
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(a) PE2 (b) PE4

Figure B.1: Spatial variation in the correlation coefficient for experiment PE2 and PE4.

(a) PE2 (b) PE4

Figure B.2: Spatial variation of mean crop yields for simulations where CY G=1 for
experiments PE2 and PE4.

correlation coefficients throughout the analysis domain in PE2 (Figure B.1). In addition,

in PE2 (Figure B.2), simulations of maximum farmers yields (i.e. CY G=1) showed mean

yield values of up to 20,000 kg ha−1 in the north of India and the west coast. This was

deemed unrealistic (Singh et al., 2012; Suriharn et al., 2011).

Variation in RMSE, as measured by the RMSEV indicated that 19 out of the 23 pa-

rameters produced variations that were large enough as to be considered in the analyses

further developed in Chapter 4 (Table B.2). Values of these parameters were assigned as

described in Chapter 5 (Sect. 5.3.2).
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Discussion

The use of various grid cells when optimising GLAM poses the problem of selecting an

appropriate value for CY G. Setting a spatially constant CY G and optimising over more than

one grid cell (i.e. PE3) resulted in parameter sets that could not appropriately simulate

crop yields in grid cells where mean crop yields were high. This happened because optimal

values for all model parameters were determined under the assumption that all grid cells

had exactly the same influence of non-climatic processes (i.e. those accounted for by the

CY G). On the other hand, the use of pre-calculated spatially-variable CY G values (PE1

and PE2), produced simulations with better skill. However, CY G is used to account for

non-climatic drivers of crop yields, while the fraction calculated by means of Eq. B.1

and Eq. B.2 involves both climatic and non-climatic processes. This means that a CY G

calculated in such a way would constrain the model output beyond non-climatic processes,

which is unrealistic. Since the optimisation procedure aims at reducing the RMSE and no

constraints on parameter combinations other than the SLA (see Chapter 3, Sect. 3.5.1.12)

were imposed during the optimisation procedure, this produced parameter sets that tended

to simulate more biomass and yield than required under non-CY G constrained conditions

(Figure B.2). Maximum groundnut crop yields between 6,000 and 6,300 kg ha−1 have

been reported under well-watered experiments (Balota et al., 2012; Caliskan et al., 2008),

as well as in field-scale groundnut simulations (Singh et al., 2012; Suriharn et al., 2011).

Experiments PE1 and PE2 showed values 150 % larger than these, and hence were not be

considered for any further analyses.

Experiment PE4 showed performance similar to pre-calibrating the CY G using data and

also kept simulated farmers’ and potential (i.e. CY G =1) yields within realistic ranges.

This approach was also conceptually more sensible, since the use of CY G=1 in a location

where crop yields are the maximum possible can be referred to as non-limited farmers

yield. This simulation is in Chapter 5 and hereafter referred to as the “first successful

simulation (SR-1)”.
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Conclusions

Four preliminary optimisation experiments were performed in order to define the most

appropriate optimisation strategy. The use of more than one grid cell was considered un-

suitable for the purposes of the work described in Chapter 5 and further used in Chapter 6

and 8, as these involved the need of selecting a value for CY G, which proved difficult to

determine. Performance of experiments where more than one grid cell was used for op-

timisation (i.e. PE1, PE2 and PE3) was limited or parameter sets produced simulations

with unrealistically high yield values.

For these reasons, one single grid cell per zone was selected for all further optimisation of

GLAM (see Chapter 5, Sect. 5.3.2). This single optimisation grid cell was chosen so that it

had the largest possible mean 1966-1993 crop yield. This experiment (PE4) also suggested

that only 19 out of the 23 initial set of parameters needed to be optimised. Although

selecting one single best grid cell was not the most obvious choice because using a single

grid cell could lead to developing parameter sets that were too local, such approach proved

to overcome the difficulty in pre-selecting a value for the CY G. The use of one single grid

cell with maximum yields also maintained a realistic yield simulation.
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