Kenyan perceptions of aflatoxin: An analysis of raw milk consumption

M. Walke, N. Mtimet, D. Baker, J. Lindahl, M. Hartmann and D. Grace

14th European Association of Agricultural Economists (EAAE) Congress Ljubljana, Slovenia 26–29 August 2014

Rheinische Friedrich-Wilhelms-Universität Bonn University of

New England

- Introduction
- Study area & data collection
- Methodology
- Results
- Conclusions

- Aflatoxins are mycotoxins produced by certain species of moulds, mainly Aspergillus flavus and Aspergillus parasiticus
- Aflatoxins can be transmitted to humans through agricultural products consumption

Figure 1. Aflatoxin contamination pathway

- Aflatoxins could be responsible for:
 - Hepatocellular carcinoma in humans
 - Stunting in children
 - Acute aflatoxin poisoning due to consumption of contaminated food causes deaths
 - Chronic aflatoxin poisoning in dairy cattle, causing a reduction in milk yield
 - Decreased feed efficiency
 - Reduced reproduction efficiency

- There are no accurate estimates of incidence of chronic and acute disease related to aflatoxin exposure
- Outbreaks in Kenya (1982, 2001, 2004 and 2005) and Somalia (1997/98) indicate the magnitude of the problem
- The 2004 outbreak in Kenya was responsible for 317 cases and 125 deaths

- Kenya has among the highest milk consumption levels of developing countries (100 kg/year per capita vs. 25kg for sub-Saharan Africa)
- Around 80% of the marketed milk is sold raw and mainly through the informal market
- Research questions:
 - Are consumers aware about aflatoxins and possible milk contamination?
 - Are consumers willing to pay (WTP) for certified 'aflatoxin-free' milk?

Study area & data collection

- City of Nairobi, Kenya
- 1 area:
 - Dagoretti: peri-urban area of Nairobi low-income class respondents; raw milk consumers (323 participants)
- Sampling: systematic sampling assumptions of randomness over time
- Face-to-face interviews conducted in July and August 2013

Study area & data collection

- Face-to-face questionnaire:
 - Directed at raw milk consumers
- Questionnaire included different sections:
 - Milk purchase and consumption habits
 - Aflatoxin awareness
 - Choice experiment exercise
 - Attitudinal issues
 - Socio-demographic characteristics

Methodology

- We opted for Choice Experiment (CE) or more precisely Best-Worst (B-W) technique
- The selection of the milk attributes to design the experiment was on the basis of:
 - Research objectives
 - Review of literature and previous works
 - Respondents' ability to process the information

Attributes	Levels
Milk colour	White
	Yellowish
Milk smell	Not smelly
	Smelly
Aflatoxin	Certified retailer
certification	Non-certified retailer
Drico* (KSU/Litro)	50
	50 60
	70
	80

Table 1. Selected raw milk attributes and their respective levels

*1 Euro = 120 KSH (May 2014)

Methodology

- Raw milk attributes: $2^3.4 = 32$ different products
- Orthogonal fractional factorial design (OMP) to reduce the number of products
- OMP is reduce the number of choice cards to 8 (first alternative)

Figure 2. An example of a choice experiment card for the raw milk questionnaire

Card 5

Please indicate the most preferred cow milk and the least preferred cow milk (Tick only one case in each line)

	Milk 1	Milk 2	Milk 3
	White	White	Yellowish
	Not smelly	Not smelly	Smelly
	Aflatoxin-free certified	Non-certified	Aflatoxin-free certified
	70 KSH/litre	50 KSH/litre	80 KSH/litre
Most preferred			
Least preferred			

 Conjoint analysis arises from the theory of Lancaster (1966) which stipulates that utility is derived from the properties or characteristics that goods possess (bundle of attributes)

Consumer's utility could be expressed as:

$$U_{ij} = V_{ij} + \varepsilon_{ij} \tag{1}$$

Lancaster theory leads to the following linear additive decomposition of V_{ii}:

$$V_{ij} = \beta_1 x_{ij1} + \beta_2 x_{ij2} + \dots + \beta_n x_{ijn}$$
(2)

 x_{ijn} is the nth attribute value for card j for consumer i, and β_n represents the coefficients to be estimated

Methodology

- Following additional assumptions about the distribution of the error term, the following probability models could be derived:
- ✓ CL (McFadden, 1973):

$$Pr(j) = \frac{e^{V_{ij}}}{\sum_{k \in C_n} e^{V_{ik}}}$$
(3)

✓ RPL model (Train, 2009):

$$Pr(i) = \int (\frac{e^{\beta' \cdot X_{ni}}}{\sum_{j} e^{\beta' \cdot X_{nj}}}) \cdot f(\beta) \cdot d\beta$$
(4)

where $f(\beta)$ is the density function of β

Methodology

 Consumers' willingness to pay (WTP) in preference space was obtained as follows:

$$WTP_i = -\frac{\beta_i}{\beta_{price}} \tag{5}$$

 β_i : coefficient of the attribute level

 β_{price} : coefficient of the price attribute

• Consumers' willingness to pay (WTP) in WTP space was obtained by estimating a Generalized Multinomial Logit model (G-MNL) fixing $\theta = \tau = 0$ (Hensher and Green 2010; Hole 2011)

Table 2. Respondents' characteristics

Characteristic	Characteristic level	(%)
Age	≤ 20	6
	21-30	50
	31-40	28
	41 and older	16
Marital Status	Single	40
	Married	56
	Divorced	3
	Widow	1
Members of Households	One	14
	Two	19
	Three	22
	Four	20
	Five	18
	More than five	7

Characteristic	Characteristic level	(%)
Children living	No children	33
in the household	One child	26
	Two children	24
	Three children	14
	Four children and more	3
Education	No education	1
	Primary	23
	Secondary	49
	College	21
	University	6

Table 2. Respondents' characteristics (contd.)

Results

Figure 3. Raw milk purchase frequency

• Almost all respondents (99%) boil the milk prior to consumption

Figure 4. Reasons for boiling the milk

• Majority of respondents (95%) believe that the milk is safe after boiling

Results

Figure 5. Have you heard about aflatoxin?

Figure 6. Can aflatoxins be transferred from mouldy feed given to a cow into milk?

Figure 7. Health impact of aflatoxin on humans

Figure 8. Is it possible to make aflatoxin contaminated milk safe?

Figure 9. Opinion on food certificate/food safety labels?

Figure 10. Main sources of information*

Results

Variable	CL	RPL
White ^a	.3567***	. 6563***
Smelly ^b	-1.8465***	-5. 6716***
Certified ^c	1.7593***	4.4568***
Price	0301***	0643***
SD_White		1.1018 ***
SD_Smelly		-4.0607***
SD_Certified		3.5125***
SD_Price		0.0954***
LL	-1980.1***	-1600.9***
Pseudo R ²	0.1998	

Table 3. Estimated models' coefficients for raw milk survey respondents

^a Dummy variable takes 1 when the milk is white and 0 when it is yellowish.

^b Dummy variable takes 1 when the milk is smelly and 0 when it is not smelly.

^c Dummy variable takes 1 when the milk is certified and 0 when it is non-certified.

***Significant at 1%.

Results

Table 4. Willingness to pay (WTP) estimates (in KSH/litre) and95% confidence intervals (CI) for raw milk survey respondents

	CL	RPL
	WTP	WTP
Variable	[95% CI]	[95% CI]
White	11.8	10.2
	[7.3; 16.8]	[5.9; 15.3]
Not smelly	61.2	88.1
	[53.4; 71.6]	[71.4; 111.6]
	F0 4	
Certified	58.4	69.3
	[50.0; 69.6]	[55.3; 89.2]

Table 5. RPL model willingness to pay (WTP) estimates (in KSH/litre) and

95% confidence intervals (CI) for certified 'aflatoxin-free' milk

	WTP
Groups	[95% CI]
All sample	69.3
	[55.3; 89.2]
Heard about aflatoxin	73.0
	[55.7; 102.4]
Have not heard about aflatoxin	66.4
	[47.6; 99.5]
Aflatoxin can be transferred	154.3
	[96.3; 370.7]
It can't be transferred or I don't know	45.6
	[36.8; 57.4]

Results

Table 6. Willingness to pay (WTP) estimates (in KSH/litre) and95% confidence intervals (CI) for raw milk surveyrespondents: preference space vs. WTP space

	RPL preference space	RPL WTP space
	[95% CI]	[95% CI]
Variable		
White	10.2	5.2
	[5.9; 15.3] (2.5)	[1.8; 8.5] (1.72)
Not smelly	88.1	67.8
	[71.4; 111.6] (10.1)	[57.1; 78.4] (5.44)
Certified	69.3	58.2
	[55.3; 89.2] (7.80)	[47.4; 69.1] (5.53)

Conclusions

- Surprisingly, milk consumers/buyers' awareness about aflatoxin is relatively high in peri-urban areas (55%)
- Insufficient knowledge of respondents on the health risks of aflatoxin and if it can be transferred to milk importance to enhance population understanding (communication, TV, radio)
- A high proportion of respondents believe that boiling the milk will eliminate aflatoxin from the milk (which is wrong)

Conclusions

- Respondents are willing to pay a premium for certified 'aflatoxin-free' milk
 These results are of value to the dairy industry in the design and implementation of the necessary actions to improve the quality of the product (certification? trust?)
- Respondents' WTP depends on their awareness about aflatoxin and its presence in milk
 higher awareness implies higher premium
- RPL model is the best suited (among the other studied models: CL, OL, ROL)
- Next steps: GMNL model WTP space correlation among variables

This work is part of the FoodAfrica Programme, financed as a research collaboration between the MFA of Finland, MTT Agrifood Research Finland, the CGIAR research programs on Agriculture for Nutrition and Health and on Policies Institutions Markets led by the International Food Policy Research Institute, and GIZ.

Thanks

Contacts Nadhem Mtimet n.mtimet@cgiar.org

International Livestock Research Institute www.ilri.org

International Livestock Research Institute