

Comparing the risk of mosquito-borne infections in humans in irrigated and non-irrigated sites in Kenya


Bernard Bett¹, Rosemary Sang², Cristobal Verdugo, Salome Bukachi³, Salome Wanyoike⁴, Mohammed Said¹, Enoch Ontiri¹, Shem Kifugo¹, Tom Fredrick Otieno¹, Ian Njeru⁵, Joan Karanja⁵, Johanna Lindahl¹, Delia Grace¹

- 1. International Livestock Research Institute
 - 2. Kenya Medical Research Institute
 - 3. University of Nairobi
 - 4. Department of Veterinary Services
 - 5. Ministry of Health

EcoHealth 2014 conference Montreal, Canada 11-15 August 2014



 More and more range lands in Africa are being converted to crop lands through irrigation to alleviate food insecurity

- These land use changes are mostly associated with:
 - ➤ Increasing human population traditional sources of food no longer adequate
 - Climate change decline in land productivity, reduction in rain-fed agriculture

- Results: major trade-offs in ecosystem services
 - ➤ More food produced (provisioning services) at the expense of biodiversity and regulatory services (disease, flooding, erosion)
 - ➤ More effects of climate change due to deforestation, use of fertilizers hence, shift in vegetation communities, biome and biodiversity

This study:

investigates whether the development of irrigation schemes in an arid and semiarid area in Kenya increases the risk of mosquito-borne infections [Rift Valley fever, West Nile virus, Dengue fever]

Study site with stagnant water in irrigation canals — source of water for the locals but also breeding grounds for mosquitoes

Hypotheses

- The creation of permanent water
 masses through irrigation alters vector
 biodiversity and abundance,
 populations of livestock and humans
 at risk and the nature and frequency
 interactions between hosts and
 vectors
- The occurrence of relatively intensive systems has impacts on health, wellbeing and economy that differ quantitatively and qualitatively from impacts in minimally altered ecosystems.

Pastoralists in the study site


Methodology

The study site:

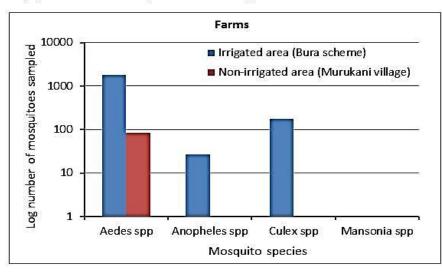
Tana River and Garissa counties, northeastern Kenya

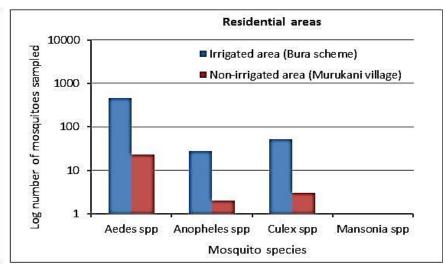
Study design

- Cross sectional surveys
- Power sample size
 estimation techniques –
 this suggested that we
 needed 220 households
 and 550 subjects

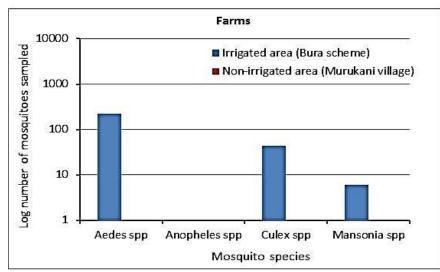
Methodology

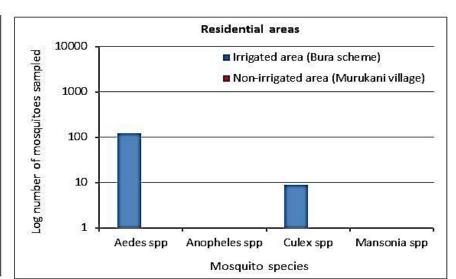
Data collection


- Collation of secondary data from the local health centres
- Entomological surveys conducted using CDC miniature light traps
- Blood sampling people
 above 5 years of age
- Laboratory screening of sera using ELISA
- Ethical approvals African
 Medical Research Foundation
 (AMREF)



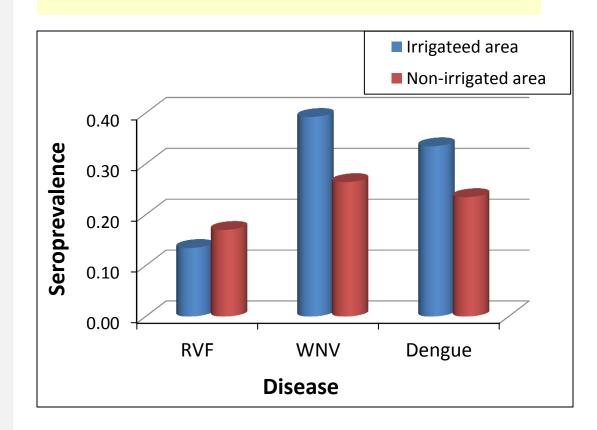
Results


Mosquitoes trapped – relative abundance and species distribution


(a) Results from surveys done when irrigation was active

(b) Results from surveys done at the inactive phase of irrigation

Results


Samples screened

- 481 samples have been screened so far
- Questionnaires
 administered to 430
 households

Serological tests

 WNV and Dengue seroprevalence apparently higher than that for RVF though confirmatory are yet to be done

Relative seroprevalence of RVF, WNV and Dengue

Risk factor analysis

Model – 2 Logistic regression models

Outcomes

- RVF
- Combined WNV and Dengue outcomes

Predictors

- Subject-level variables
- Household-level variables
- Area/village-level variables

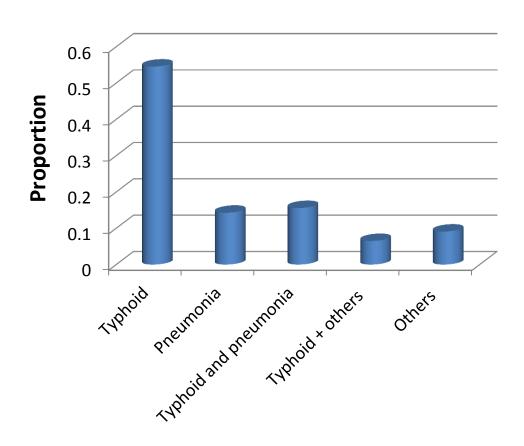
Risk factor analysis - findings

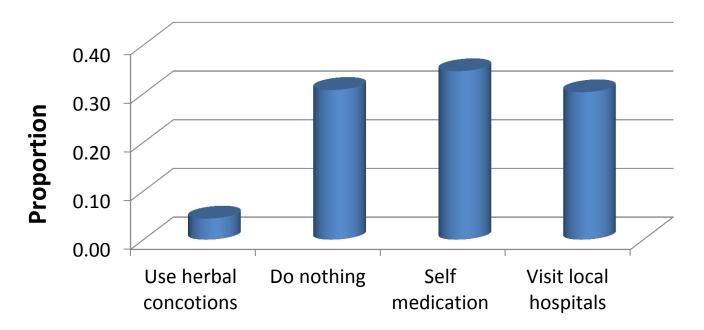
For WNV and Dengue model

- Males have a higher risk of exposure than females
- II. Farmers have a higher risk compared to pastoralists

For RVF model

I Males have a higher risk of exposure than females




Intervention points

- Create awareness among the local communities on infectious diseases associated with irrigation
- Communities' perceptions on diseases that manifest similar signs as malaria – limited knowledge on arboviruses

- Build capacity on differential diagnosis of febrile illnesses in the local health centres. Currently, most cases are treated as:
 - Malaria
 - Brucellosis
 - Typhoid

 Sensitize policymakers and health service providers to make health services more accessible to the locals – at present, less than 30% of the people utilize these services

Health-seeking behaviour

Ways in which the local communities respond to febrile illnesses such as malaria

In conclusion

- Arboviral infections are common
- Different risk factors, such as age and occupation, are important
- Need capacity building

Acknowledgements

This work falls under the project 'Dynamic Drivers of Disease in Africa: Ecosystems, livestock/wildlife, health and wellbeing: REF:NE/J001422/1" partly funded with support from the Ecosystem Services for Poverty Alleviation Programme (ESPA). The ESPA program is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC) and the Natural Environment Research Council (NERC). Other funding was provided by CGIAR Research Program Agriculture for Nutrition and Health

