Serological surveillance of caprine brucellosis in western Kenya

By James Miser Akoko

University of Edinburgh summer school Makerere University, Kampala, Uganda 8 August 2014

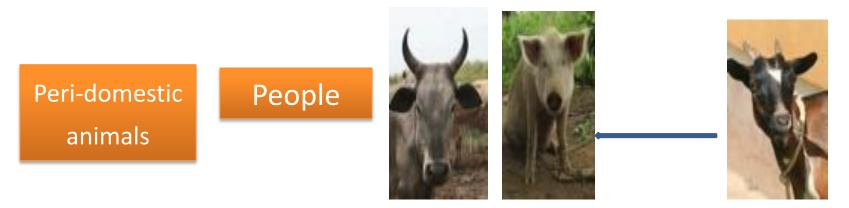
Presentation outline

People, Animals and their Zoonoses project

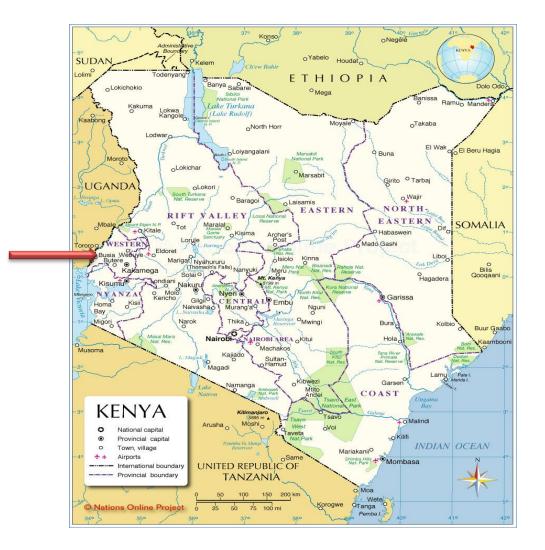
Brief overview of brucellosis in Kenya

Serological survey of caprine brucellosis in western Kenya

Pending question from earlier presentation


Brucellosis in camels?

- Waghela et al. (1978): 172 camels were sampled from Northeastern province. 11 of 172 sera tested reacted in RBPT, 11 in SAT and 21 in CFT.
- Saudi Arabia 8% prevalence *B. melitensis* (Radwan 1992)


People, Animals and their Zoonoses (PAZ) project

- Partners involved: UE, KEMRI & ILRI
- Study site: western Kenya. <u>www.zoonotic</u>-diseases.org/home/research/paz
- The caprine brucellosis work was added as a component of the PAZ project. I am very grateful for the opportunity and support offered by Professor Eric Fèvre (PI. PAZ Project)

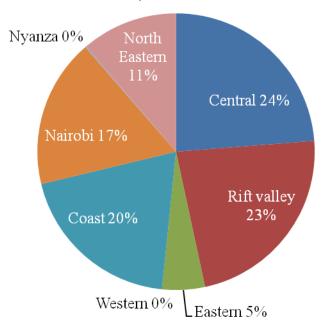
Study site

Brucellosis in Kenya

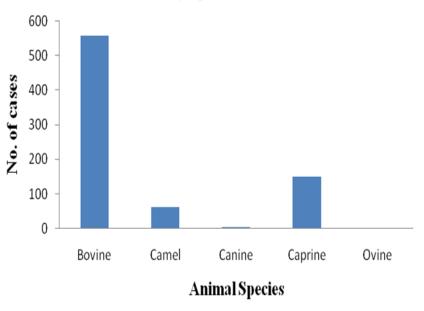
- According to WHO report, under-reporting of brucellosis in Africa is probably higher than 99%, since almost all diagnosed cases are a result of special studies on the disease (WHO 2011, P.15)
- Brucellosis persists more in the pastoral systems (Radoz et al. 2013). This

is a true reflection in Kenya.

- Brucellosis recognized as a notifiable disease in 2011.
- ZDU formed in 2008 to enhance One Health approach and co-ordination


Some of the prevalence studies done in Kenya

Author & year of study	Sample	Place	Test (s)	Prevalence (%)
Namanda (2009)	Milk (cattle)	Eldoret	MRT	0
Waghela et al. (1978)	Serum (camel)	Northeastern	RBT & SAT	6.4
Waghela et al. (1978)	Serum (camel)		CFC	12.2
Kang'ethe et al. (2000)	Milk(cattle)	Nairobi	ELISA & MRT	4.9
		Kiambu	0	3.9
		Nakuru	0	2.4
		Narok	"	3.4
Waghela (1986)	Serum (blue wildebeest)	Maasai Mara	SAT and CFT	18
	Serum (African buffalo)	υ	0	30



Brucellosis laboratory data recorded from 2003 to 2010 (Olwande 2013)

Distribution of brucellosis cases by province, DVS,2003-2010

Brucellosis cases by species, DVS, 2003-2010

Why the study?

- B. melitensis causes more prolonged, severe and debilitating illness than that caused by B.
 abortus or B. suis (McDevitt 1973)
- No data (study) on the role of goats in the epidemiology of brucellosis in western Kenya
- Farmers in western Kenya are slowly adopting dairy goat rearing, therefore consuming goat

milk

Study objectives

- Estimate the seroprevalence of caprine brucellosis in western Kenya
- Assess the spatial distribution of the sero-positive cases of caprine brucellosis in western Kenya
- Assess the risk factors associated with the transmission of brucellosis

Sample size calculation

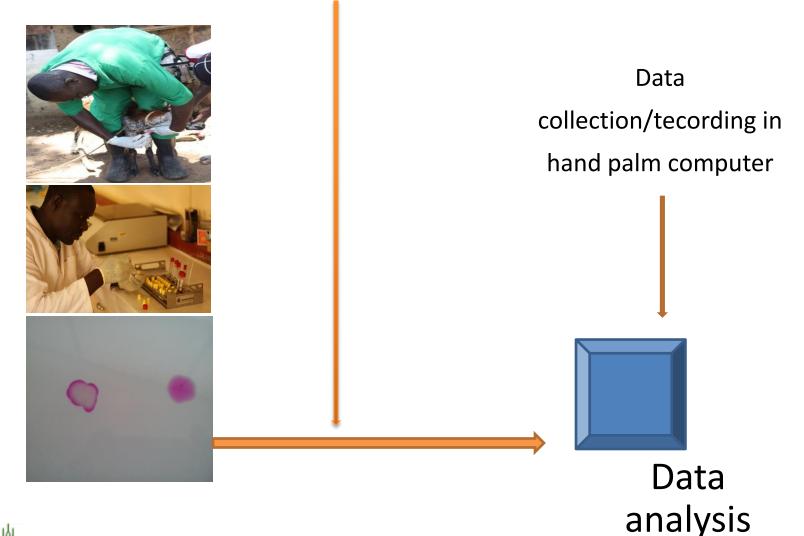
Population survey or descriptive study For simple random sampling, leave design effect and clusters equal to 1.

Population size:	999999	Confidence Level	Cluster Size	Total Sample
		80%	164	164
Expected frequency:	50 %	90%	270	270
Confidence limits:	5 %	95%	384	384
comacilac innis.		97%	471	471
Design effect:	1.0	99%	663	663
	1	99.9%	1082	1082
Clusters:		99.99%	1512	1512

Sampling design

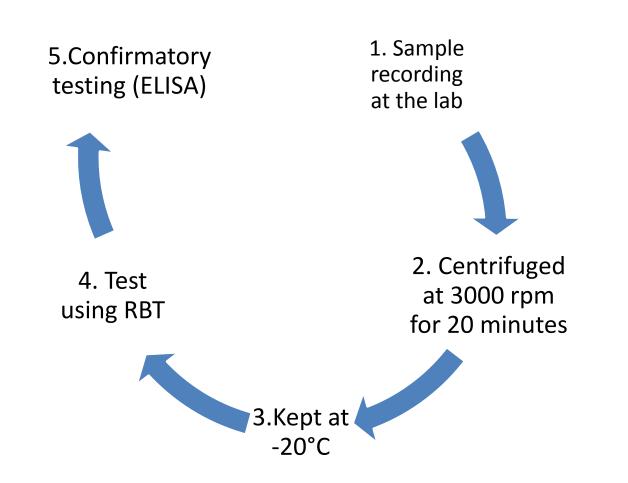
Division Since we had no sampling frame, the

number of households to be sampled per sub-location depended on the divisional livestock population. E.g. sublocations falling in highly populated livestock divisions were given more households than those with lower populations


Sub-location GPRS to select households

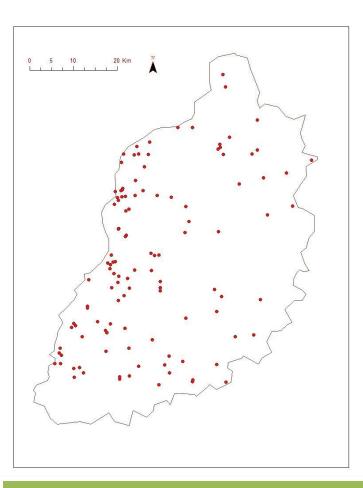
Household Goats - questionnaire and

jugular blood collection



Pictorial presentation of data collection and laboratory sample processing

Laboratory work



Results

Map of Kenya

Key: Dots represent the sampled households

Map showing the location of the sampled households

Results contd.

- A total of 412 homesteads were selected for sampling
- 27% (112/412) of the selected households kept goats
- 4.29% goats sampled had experienced abortion
- Rose Bengal Test: No positive results (n = 355)

Discussion & conclusion

- The RBT results gave a prevalence of zero, suggesting that goats in western Kenya may be free from *B. melitensis*. Since RBT has a sensitivity of 80.2% and a specificity of 99.6%, unlike ELISA that has specificity of 92.9% and is 99.6% specific(Rahman et al. 2013), there is need for this result to be confirmed with ELISA to rule out the 19.8% chance of a false negative. We will therefore use ELISA to confirm the results before making a final conclusion of this result.
- There is need for regular surveillance and education on the prevention and control of brucellosis to reduce or avoid the risk of transmission in animals and people.

Parting shot

- Goats can easily pass zoonotic infections due to their close interaction with people
- Let's join hands in controlling brucellosis for a better future!

Acknowledgements

This work was financed by

It is implemented in partnership with

Thank you

better lives through livestock

ilri.org

ilri.org better lives through livestock ILRI is a member of the CGIAR Consortium

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 4223001 Email ilri-kenya@cgiar.org ILRI has offices in: Central America • East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

The presentation has a Creative Commons licence. You are free to re-use or distribute this work, provided credit is given to ILRI.