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Abstract 

The objective of this study is to integrate socioeconomic, biophysical, and remote-sensing 

information to enhance the understanding of climate change, agriculture and food security 

within and between CCAFS sites. The purpose is to assess the agricultural production system 

in the CCAFS site Katuk Odeyo, Nyando (Western Kenya) to explore potential indicators that 

can be long-term monitored. Ecosystem health determines energy supply and demand by 

sustaining the productive capacity of the landscape. The study uses a pixel-based RapidEye 

satellite image classification and assessment of agroecosystem health (for agricultural 

practices and landscape health relations) to characterise Katuk Odeyo into four functional 

agro-zones: highly intensive agro-zone condition (IAC), good agricultural condition (GAC), 

potential agricultural condition (PAC), and semi agricultural condition (SAC).  

Different approaches for pixel and object based classification were evaluated. The accuracy 

assessment involved collecting ground truth data within the 10x10 km study location. The 

overall accuracy for the best classification, combining a pixel-based approach with 

digitization by hand, amounts to 48% for the ground truth data. Statistical analysis revealed 

that household locations had a significant effect on household innovativeness. Despite coarse 

input parameters, the variable functional agro-zones explained 7% of the variation in 

innovativeness. Land segmentation into functional agro-zones based on availability of farm 

resources provided reliable data for the subsequent farming system assessment. However, the 

main threat is the lack of imagery to show seasonal changes – e.g., ¾ of bare soils are shown 

on the dry season RapidEye image but did not match rainy season ground truth data. Results 

obtained between functional agro-zones and land size, transport assets, farmer adaptations for 

crops and animals, water resources, and innovativeness were significantly different. 

Landscape health factors provided insights regarding the productive function of the farming 

system. The main threats are degradation and loss of forest to maintain the energy demand, 

which depends on optimal inputs from key environmental health factors such as woody 

biomass, water resources, and soil fertility. The choice of the functional agro-zones approach 

to assess the productive function of the farming system proved pertinent. 

Keywords 

Subsistence farming; Climate change; Food security; Integrated-analysis; Image processing; 

Remote sensing 
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Introduction 

This study has two dimensions: firstly, it explicitly addresses the complex interactions and feedback 

between human and natural systems. Secondly, it aims to integrate knowledge from ecological and 

social sciences, as well as other disciplines such as, remote sensing (RS) and geographic information 

system (GIS) for data collection, management and analysis, modelling, and integration of the datasets.  

  

Healthy ecosystems are essential for resilient agricultural systems. Environmental services provided 

by healthy ecosystems are important assets for rural livelihoods and, at the same time, rural land use 

and environmental management change the functioning of these ecosystems and shape its 

environmental services (Farber et al., 2006; Palmer et al., 2005). Understanding how to manage 

feedback between ecosystems and humans is vital if one is to move towards more sustainable land use 

(Collins, 2010).  

 

While the need for integrative research (Liu et al., 2003; Liu et al., 2007 Pickett et al., 2005; 

Robertson et al., 2004) has been widely accepted, the key question is how to do it. A fundamental 

problem of integrative research is to cross-link socio-economic and biophysical data that are often 

collected at the different scales. National census data may only be available at administrative units 

such as district level or country level, while panel data are often taken at household or village level.  

Agro-ecological data is typically taken at farm or plot level and matched with remotely sensed data 

with spatial resolutions as low as one meter. Even linking a farmer’s household characteristics to the 

on-farm biophysical parameters can be difficult, especially when farmland is fragmented and not in 

direct vicinity of the house. Practical approaches and methodologies to link social and ecological data 

are urgently needed.  

 

The purpose of this study is to a) investigate whether remotely sensed data can be used to derive 

information about the status of the agro-ecosystem that farmers depend on and to b) link this 

information to social-economic data in order to understand what makes some farmers and regions 

more vulnerable to the effects of climate change than others. The study hypotheses are; i) subsistence 

farming activities within an agro-ecological system cannot be sustained unless provided by sufficient 

farm supports from a healthy ecosystem, and ii) people and community adaptation strategies within an 

agro-ecological system can be better understood and predicated than social-ecological systems. 

 

The overall aim of this study is to integrate and analyze socio-biophysical and RS information in 

order to have a good understanding of the interactions between climate change, agriculture and food 

security within CCAFS sites. The objectives of this study are: 

 To use remote-sensing information as a tool to form critical linkages between social and 

biophysical domains within agro-ecological systems.  

 To identify gaps in the methodological approach taken.  

 To recommend appropriate data management solutions. 

The CCAFS baseline data
1
 was used for this study. Similar to Kristjansen et al. (2009), socio-

economic household information consisted of 16 socio-economic indices that were calculated from 

the CCAFS household level baseline data. These were then analysed using functional agro-zones in 

order to draw conclusions about greenness (above ground biomass), soil organic carbon content, and 

farmers’ adaptation, while taking key differences in poverty levels, trends, and environmental health 

factors into consideration.  

 

 
1 http://ccafs.cgiar.org/resources/baseline-surveys 
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Background 

Remotely sensed data can be utilised using two different approaches: firstly by extracting information 

from remotely sensed images as continuous covariates or secondly by using spectral features of the 

image to partition an image space into a set of non-overlapping, meaningful, homogeneous regions, 

where the term ‘meaningful’ is problem-dependent. 

There are advantages and disadvantages to both of these approaches. For example, the African Soil 

Information System (AFSIS) project at ICRAF is using the first approach to produce predicted soil 

degradation indicator maps for Africa. Spectral measurements of soil samples and visual ground 

sampling information at sentinel sites, combined with spectral information from satellite data allow 

for the prediction of soil and landscape characteristics at any location within the satellite image 

(Shephard K, Gunner Vågen, Gumbricht T., 2011 unpublished). This approach is useful if high-

resolution imagery is available and it provides detailed information on soil biophysical and landscape 

information at a very large scale. The constraint of this approach is that it requires recalibration of the 

models if different satellite data are used. In addition, while continuous covariates provide very 

detailed information, sometimes it is difficult to match this information with household 

characteristics, especially in situations where only the exact location of the homestead is known, but 

not the locations of other parts of the farm. Smallholdings are more and more characterized by 

fragmented farmland, with individual plots or fields being considerable distances apart.  

Remotely sensed images are normally poorly illuminated (Curran, 1981; Baumgardner et al., 1985; 

Heute and Jackson, 1987), highly dependent on environmental conditions, and often have very low 

spatial resolution. Often a scene contains many ill-defined and ambiguous regions. Extracting numeric 

values for each pixel to create continuous covariates or assigning unique class labels (land-use 

classification) with certainty is an inherent problem for remotely sensed images (Baumgardner et al., 

1985; Foerster et al., 2010). Under these circumstances, segmentation, defined as the partitioning of 

an image space into a set of non-overlapping, meaningful, homogeneous regions, can be a better 

alternative (Gamanya et al., 2007). Segmentation refers to the process of assigning a label to every 

pixel in an image, such that each pixel in the same segment shares certain visual characteristics – say, 

color, intensity, texture. Adjacent regions are ideally expected to be significantly different with 

respect to these characteristics. This approach provides information about the dominant features in the 

image and makes interpretation easier but, only at the cost of fine resolution. The success of any 

subsequent image analysis depends on the quality of the segmentation. Segmentation of satellite 

images is the standard process used for land-cover and land-use classification. The drawback of this 

approach is that the commercial software available is often very expensive and that the segmentation 

process done automatically by the program follows a black box approach.  

Given the size of the CCAFS sites – the CCAFS baseline was conducted in10km by 10km sampling 

frames in broader landscapes – and the lack of available high resolution imagery it was decided to test 

whether image segmentation could be a useful tool to simplify remotely sensed data into something 

that is more meaningful and easier to analyse in the context of smallholder farming systems. Rather 

than applying a black box approach, the present study tries to use the approach of image segmentation 

into different functional agro-ecological zones. Factors considered for this analysis include main land-

cover types, infrastructure, soil carbon, topography, moisture, and greenness/biomass. 

Following site-specific management criteria developed by Precision Farming concept (see Box 1) the 

CCAFS 10km by 10km sampling frame was divided into four agro-ecological zones depending on 

observations during the ground truth survey. 

 Good Agricultural Condition (GAC) - Highly intensive to semi-intensive agro-landscape, 

with good support from a healthy ecosystem and farm resources/supports.  
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 Intensive Agricultural Condition (IAC) - Very intensive land use where farm resources 

(woody biomass, water, and soil nutrients) are depleting due to highly intensive human 

consumption. It must noted that IAC may be a non-agricultural area depending on the land 

use types but may also represent a kitchen garden, grazing areas around and within villages or 

crop lands. 

 Potential Agricultural Condition (PAC) - Available land with good access for agricultural 

activity, but landscape is underutilised and/or still maintained in a good fallow condition with 

bushy vegetation or high-density biomass. Area does not have to be perfectly physically 

suitable for agricultural activity when considering topographic factors such as steep slope and 

wetlands.  

 Semi agricultural condition (SAC) – Area is maintained for agricultural activity but has 

limited access to farm resources. The definition of SAC areas fits between GAC and IAC. 

Box 1: Key considerations for the delineation of management zones, adopted from Ortiz, 2011 
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Materials and Methods 

CCAFS Household Baseline data 

The household level model integrates household demography (e.g. household size, ages, and highest 

schooling levels of each family member), household economy (land use activities, income, and 

expense sources, etc.), attitudes toward issues of interest (e.g., climate change and food security), and 

agricultural activities. In total there are fifteen CCAFS sites in three different regions of East Africa, 

West Africa and South Asia, representing twelve different countries
2
. CCAFS began collecting 

socioeconomic, demographic, and behavioural baseline data in September 2010, when 140 

households were interviewed from each random chosen village within each of the sites, using 

standardised tools and approaches. 

CCAFS Village Baseline data 

In March 2011, CCAFS the village baseline tool was tested in Nyando. Implementation of the village 

baseline followed across all sites during late 2011 and early 2012. Since macro-level socioeconomic 

factors (i.e. contextual factors beyond the household level, such as roads, trade-centres/markets, 

administration buildings, bridges, dams, schools, and organisational landscapes) also influence 

population, land use, and environment interactions, CCAFS obtained these types of information by 

conducting different exercises with community groups during the village baseline. 

Satellite images 

The following satellite images have been utilised for this study: 

 RapidEye, February, 2011 (5 bands, 6.5 m resolution; contain band 4 or Red-Edge band) 

 SPOT-VGT for cumulative degree of greenness (CNDVI) 1km resolution (time-series 

February 1999 – May 2011), Kenya, Uganda, Somalia, Ethiopia, Tanzania and Rwanda 

 NOAA-AVHRR satellite for rainfall estimate from 1km resolution (time-series February 

1999 – May 2011), Kenya, Uganda, Somalia, Ethiopia, Tanzania and Rwanda 

 Predicted soil carbon concentration based on Quickbird imagery (1m resolution) provided by 

AFSIS group ICRAF 

Ground Truth data 

For the case study of Nyando, additional ground-truth (GT) information on major land-use covers and 

features was obtained in October 2011. Table 1 provides a summary of data available and utilized for 

this report. 

 

 

 
2 http://ccafs.cgiar.org/where-we-work 
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Table 1.  Overview of major variables and information available for this study. 
CCAFS Baselines3 Remotely-Sensed Images4 Field Observations Other sources Additional information 

 Household Baseline 

-140 household respondents interviewed 

from each village during the CCAFS 

baseline 

-Population structure: number of 

households, number of people and 

relationships in a household, occupation, 

marital status, education level, average 

economic income, age, gender, and 

education levels. 

-Human activities: agricultural practices, 

input and production, adaptation and 

changes in agricultural practices, 

livestock, amount of fuel wood 

consumed, location of fuel wood 

collection, amount of cropland, income 

sources and expenses. 

 Village Baseline 

-Understanding the landscape in relation 

to natural resources, infrastructure and 

facilities; organizational landscapes (in 

relation to food security, natural resources 

and food crisis); communication and 

networking and visioning. 

 Mitigation questionnaires at farmer level: 

Perceptions; attitudes; concerns; needs; 

understanding. 

 CCAFS purchased RapidEye satellite 

images for all its 2011 sites (5 bands, 

6.5m resolution; including band 4 or 

Red-Edge band). The image for the 

CCAFS site in Western Kenya: Nyando, 

Katuk Odeyo 10x10km sampling frame 

was used for this study, 

 Household 

locations 

 Ground-truthed 

plot data 

 Ground control 

points 

 Forest types 

 Vegetation/ crop 

types 

 Species coverage 

 Road locations 

 Location of human 

activities 

 Elevation and 

slope aspects 

 Cumulative degree of greenness 

(CNDVI), predicted rainfall (RFE), 

and average increase in vegetation 

index provided by MARS/JRC 

covering East Africa (Kenya, Uganda, 

Somalia, Ethiopia, Tanzania and 

Rwanda): 

- CNDVI from SPOT-VGT [1km 

resolution (time-series February 1999 - 

May 2011) 

- RFE (rainfall estimate) from NOAA-

AVHRR satellite [1km resolution 

(time-series February 1999 – May 

2011) 

 Predicted soil carbon concentration 

(Nyando) provided by AFSIS at 

ICRAF 

 DEM (ASTER data) freely available 

 Western Kenya Integrated 

Ecosystem Management 

Project (WKIEMP) (KARI, 

2006) 

 Baseline Surveys,WKIEMP 

(Verchot, BoyeZomer; 

ICRAF Nairobi, Kenya, 

April 5, 2008) 

 

 
3 More information on the CCAFS Baseline tools as well as data and reports is available through http://ccafs.cgiar.org/resources/baseline-surveys  
4NOTE: *East Africa; ** West Africa and *** Indo-Gangetic plains 

http://ccafs.cgiar.org/resources/baseline-surveys
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Methods 

The delineation of the satellite image space into functional agro-zones is a 4-step procedure. 

 

 Step 1: Pre-processing of RapidEye satellite image including atmospheric corrections and 

principal component analysis (PAC). This was conducted using ERDAS Imagine. 

 Step 2: Image classification is an iterative process, which consists of unsupervised 

classification, collection of training sets during a ground survey, and a supervised 

classification. 

 Step 3: Segmentation of study block into a set of non-overlapping, homogeneous functional 

agro-ecological zones based on: 

- Natural forest cover (woody biomass or tree counts)  

- Greenness (CNDVI) 

- Main land cover features 

- River networks  

- Topography - DEM (Aster data)  

- Soil organic carbon (Tor Vagen, 2011 unpublished data) 

- Infrastructure 

 Step 4: Functional agro-zones were analysed for their differences in vegetation 

greenness (using the CNDVI index), and rainfall (using RFE data). The final results were 

then integrated with the socio-economic data from the CCAFS baseline and analysed 

using a statistical package (SPSS) to explore correlations between the landscape 

biophysical parameters and socio-economic parameters. Figure 1 provides an overview 

of the process. The next sections give a more detailed account of the different steps. 

 
Figure 1.  General work-flow and data involved and analyses. 
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Atmospheric corrections of the RapidEye satellite image 

Solar radiation reflected by the Earth’s surface to satellite sensors is modified by its interaction with 

the atmosphere (Heute et al., 1984; Baumgardner et al., 1985; Hadjimitsis et al., 2010). Due to this, 

the RapidEye satellite image was processed for atmospheric corrections (ATCOR) using ERDAS 

imagine. This section provides a detailed description of the impact of atmospheric effects, examples 

of the satellite images before and after ATCOR, and comparisons between corrected images and non-

corrected images from different sites. 

 

ATCOR is the most important part of pre-processing remotely sensed data. The objective of ATCOR 

is to determine true surface reflectance values and to retrieve physical parameters of the Earth’s 

surface by removing atmospheric effects from the satellite images (Heute et al., 1984; Curran, 1981). 

This is not only true for the extraction of spectral information from the data, but also for visual 

interpretation of images. Figure 2 illustrates the effect of hazy weather (i.e. high water vapour) on the 

spectral reflectance of the satellite image.  

 

Figure 2.  Water vapor in the air influencing the spectral reflectance of the 
RapidEye image and photo of a typical farming landscape in Kenya during 
afternoon haze (with the Rift Valley in the background).  

 
 

ATCOR normally involves modelling by processing digital images to reduce the influence of errors or 

inconsistencies (usually referred to as “noise”) in image brightness values that may limit one’s ability 

to interpret or quantitatively process and analyse digital remotely sensed images (Van der Kwast, 

2002). The algorithm accounts for horizontally varying atmospheric conditions and also includes the 

height dependence of the atmospheric radiance and transmittance functions to simulate the simplified 

properties of a three-dimensional atmosphere.  

 

The Richter database, which contains the results of radiative transfer calculations (i.e. atmospheric 

transmittance, path radiance, direct and diffuse solar flux) for a wide range of weather conditions, was 

used to correct the RapidEye satellite images using the ATCOR-2/3 (Richter, 1998) function provided 

in ERDAS Imagine. 
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Initially, digital numbers (DN) values were converted to units of radiance by using standard 

calibration values specific for tropical African conditions. Secondly, to correct satellite imagery over 

mountainous or hilly terrain, these were overlaid on the Aster digital elevation model (DEM) to obtain 

information about surface elevation, slope, and orientation as well as to visualise steep slopes. Figures 

3 to 6 show the visual sharpening of the RapidEye satellite images after ATCOR.  

 

Figure 3.  RapidEye images comparing before (left) and after ATCOR (right) for 
the CCAFS Nyando site in western Kenya 

 
 
Figure 4.  RapidEye image of the CCAFS Borana site in Ethiopia before (left) and 
after ATCOR (right) 
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Figure 5.  RapidEye image of the CCAFS Kaffrine site in Senegal before (left) 
and after ATCOR (right) 

 
 
Figure 6:  RapidEye image of the CCAFS site in Hoima, Uganda before (far back) 
and after ATCOR (right) 

 
 

Principal Component Analysis 

Principal component analysis (PCA) was used to extract linear combinations of available bands, and it 

is a prerequisite for image classification. Individual bands of hyperspectral images are spatially and 

spectrally correlated, therefore noise within one band affect information on other bands (Pandey et al., 

2011). PAC transforms the image bands into orthogonal, and hence uncorrelated, principal 
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components. During the classification procedure PCA generally results in a maximum of two bands 

due to distortions and noise recorded by the satellite within the bands. 

  

The analysis shows that the first component eigenvalues explains 94.5% of the variation contained 

within the five bands, the second component with 0.2% and the third component with 5.2%. While 

Landsat satellite images usually require 3 PCA, just 2 PCA are needed with RapidEye (see Figure 7). 

Thus, bands 4 and 5 were omitted from the selection because of distortions, and the analyses was 

conducted with three bands.  

 

Figure 7.  The PCA demonstrates PC of band 1 (far-left) PC band 2 (middle) and 
PC band 3 (far-right) 

 

Unsupervised Image Classification 

Unsupervised image classification is a data exploration step that provides information about the 

inherent variation within the area of interest. Unsupervised image classification divides the area of 

interest into classes based on spectral and pattern similarity. Classes are chosen based on a 

mathematical function to ensure that pixels within one class have the smallest variation, whereas 

pixels between classes have the highest variation (Foerster et al., 2010). The actual relationship of the 

classes with land-cover features on the ground is not established.  

 

On the other hand, with supervised classification one identifies examples of land cover types within 

the area of interest, which are called ‘training sites’. These have to be collected through a visual 

inspection of the site, whereby GPS positions of different land features are taken. This information is 

entered into the classification analysis to provide a direct connection between spectral characteristics 

of pixels and the land cover type. By identifying other pixels within the image with similar 

reflectance, the software is able to identify all regions within the image that belong to the same land 

cover type. 

 

For the unsupervised classification, the NDVI
5
 was calculated from the corrected RapidEye image. 

The NDVI values provide a good differentiation between vegetated and non-vegetated areas in the 

Nyando site (see Figure 8). However, NDVI does not allow for the differentiation between vegetation 

 

 
5 Normalized Difference Vegetation Index (NDVI): An index calculated from reflectance measured in the visible and near 

infrared channels. It is related to the fraction of photosynthetically active radiation 
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types. In addition, mining sites, fallow land parcels, dry grasslands, gully formations, roads, and 

compacted bare soils cannot be identified or differentiated with NDVI. Moreover, the river and road 

networks are almost entirely missing. It is important to note that an unsupervised image classification 

lacks important information on land-cover features and can therefore not be used for the delineation 

process. GT is crucial for any further analysis of the image.  

 

Figure 8.  Output from the unsupervised NDVI of the RapidEye image for 
Nyando, where high above ground biomass is represented by the red and non-
vegetated by the purple spectral reflectance 

 

Ground-truth survey 

A GT survey was conducted in Nyando in October, 2011, with two main objectives:  

i. To get a clear picture of the general land use cover and crop types within the sampling frame. 

ii. To obtain the ground training samples for the supervised image classification analysis of the 

RapidEye image. 

A total of 15 different land cover features were sampled (Pictures 15-17). The aim was to get at least 

three replicates for each feature class in order to achieve a good representation of the spectral 

variation between the main feature classes. In the end, a total of 54 GT points were sampled. The 

distribution of these points within the study area is shown in Figure 9. 

 

Within the Nyando sampling frame, food crops are cultivated on regularly tilled fields and on a 

rotational basis. During the rainy season both fodder and short grasses are used for grazing. In the dry 

season forestland on the higher grounds is the main source for livestock feed. Forested areas are often 

located in undulating areas in the southern part of the sampling frame, whereas extensive pastures of 

short grass species are mostly located in the northeast. 

  

Forested land and woodlands are used for the collection of fire and construction wood, whereas trees 

are maintained close to buildings to provide shade for livestock. Some species (e.g. Euphobia, Tavita, 

and Sisal) provide non-wood forest products and are planted as hedges along farm borders. The main 

building materials for houses are wood and stonewalls built with an emulsion of silt, dung, and water. 

Roofs are constructed with corrugated iron sheets. These surfaces, when older and highly weathered 
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(rusted), can be misinterpreted as bare soil during image processing analysis. Some houses also use 

hay as roof cover. Both types of houses make the spectral classification of buildings challenging. 

 

Bare soil comprises a range of different environmental conditions: rocky soil without vegetation from 

mining activities (often small boulder fields or rocky areas as a result of intensive run-off and soil 

erosion), bare soils not covered by vegetation, or tilled agricultural fields. The latter two conditions 

can be differentiated on the basis of moisture content. The co-existence of agricultural land left 

fallow, short grasses, dry pastures, and harvested crops during the dry season provide potential 

difficulties for land-use classification as all of these have similar spectral characteristics. 

 

Figure 9.  Points of the ground-truth survey in Nyando and photos of landscape 
and crop types 

 
 

 
Corn during stem elongation period (left), cotton (middle) and immature sugar 
cane (right) 
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Mature corn (second row, left) and harvested sorghum (second row, right) 

 

 
Water body, dam covered by water vegetation and surface water 

 

 
Fodder land, Napier grass (left) and wild savanna grasses (right) 
 

 
Short grasses and grazing lands 
 

 
Forest and woodland areas: primary forest area (left), plantation forest (middle) 
and acacia forest 
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Taminia tree canopy and mixed species 

 

 
Bushland types 

 

 
Non-vegetated areas exposing bare soils 
 

 
Gully formation in Nyando 

 

 
Hedge plants, Euphobia plant (left) and Tavita (right) 
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Flooded area and high moisture vegetated area 

 

 
Infrastructure and buildings 
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Results 

Spectral signature of land-cover features 

This section discusses the reflectance of different land-cover features as obtained from the analysis of 

the Rapideye image of Nyando. A large source of error was found because dates of the GT survey and 

the RapidEye image did not coincide. The RapidEye scene was taken in February 2011 during the dry 

season, whereas the ground-truth survey was conducted in October 2011 just after the main rainy 

season. 

 

Bare soils can be seen in several different reflections along with several other features (Figure 10). 

Gully formation is shown in bright white, light orange reflects exposed bare soils due to mining, dark 

brown is reflected from ploughed black cotton soils, and very light brown is reflected by dry areas and 

short grasses. Dry short grasslands display the same spectral signature as bare soils due to the strong 

reflectance of the soil background, especially during the dry season. 

 

Diagnostic absorption features of soils are due to the inherent spectral behavior of the mineralogical 

composition, organic matter, and water (Baumgardner et al., 1985; Irons et al., 1989). Thus, the only 

way to differentiate fallow land from bare, degraded soil is a ‘multi-temporal spectral analysis’ of 

images from both dry and wet seasons (Vuolo et al., 2010).  

 

Figure 10.  Primarily non-vegetated areas in Nyando and spectral signatures of 
the RapidEye image 

 
 
“Buffalo-grass” and open bare soils on courses and stony formations were found to have the same 

bright white spectral reflectance (Figure 11), which can result in a misclassification of these grass 

types as bare soil. From the GT points it was confirmed that tiller formation of the buffalo grass was 

responsible for this misclassification. 
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Figure 11.  Overview of the RapidEye image spectra and ground features in 
Nyando with photos of grass cover types and bushes 

 
 

Uncultivated land, however, can be clearly distinguished from agricultural areas. Bushy vegetation 

(uncultivated or non-agricultural lands) can be seen scattered with a coarse green spectral, while 

agricultural land areas are shown with a very light green spectral and are visible through clear land 

parcel demarcations. However, spectral reflections of different agricultural crops (and growth stages) 

are the same and thus impossible to distinguish. With the exception of a mature Eucalyptus plantation 

(black spectra), agricultural crops have the same light green spectra. However, the light green spectral 

from an immature Eucalyptus tree canopy is similar to other crop types such as sugar-cane, Napier 

grasses or corn – especially during the stem-elongation growth stages (Figure 12).  
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Figure 72.  Primarily vegetated areas in Nyando and their spectral signatures of 
the RapidEye image 

 
 

Supervised-image classification 

The output of the supervised land cover use classification is shown in Figure 13. Overall classification 

accuracy of the supervised image was about 55%. The high error of the classification is attributed to 

the fact that the GT survey did not coincide with the date of the RapidEye image. 

 

Image interpretation from the supervised image classification showed that the training sets collected 

during the GT survey provided enough information to separate dry bare soils (non-agricultural land) 

from higher moisture content soils (tilled fields) (Figure 14). Dry soil surfaces and erosion gullies 

have characteristic white spectral signatures on the ATCOR RapidEye image and dark brown spectral 

signatures on the supervised classified image, whereas high moisture tilled bare soils have a dark 

brown spectral signature on the ATCOR RapidEye image and a light green spectral signature on the 

supervised classified image. 
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Figure 13.  Output of the supervised land cover use classification 

 
 

Given the scarcity of dense forest areas within the Nyando sampling frame, the primary forest area 

adjacent to cultivated areas was located during the GT. This was clearly distinguished as a feature 

class in the supervised image classification process (marked in green polyline) (Figure 14). A few 

more areas with a similar dark green signature can be seen in the image but they were confirmed as 

highly dense bushy vegetation on a steep slope instead of forested land. 

 

The GT survey also showed that black spectral reflectance on the supervised image (yellow polyline) 

may represent mixed land cover, such as human settlement, grazing areas, kitchen gardens or even dry 

vegetation, which during the dry season may be exposing bare soils. This suggests the spectral 

representing dry above ground biomass or fallows, such as dry grasses, harvested corn or sorghum 

fields (with bare soil reflectance). The following pictures demonstrate some of these field 

observations. 

 

However, the supervised image classification showed a clear improvement when compared to the 

unsupervised image. A clear differentiation of land cover features was achieved with the supervised 

image classification; primary forest and river networks (white circled polyline areas) and all major 

vegetation types were identified (high and low density bushy vegetation, primary forest, agricultural 

crops, and dry biomass) (Figure 14). 

 
Figure 14.  Comparison of spectral classes identified in the supervised image 
and ground features depicted in the ATCOR RapidEye image 
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Overall the supervised image showed a good differentiation of land cover types, especially for the 

cultivated land parcels represented with green, orange and red spectral, whereas bushy vegetation 

(purple and light blue), primary forest (in circled green polyline), and bare soils (dark brown spectral). 

What is also shown here is that the dark brown spectral reflectance may appear the same in the 

ATCOR image but, found also in light green spectral and the other is with orange spectral as shows in 

the supervised image. This indicates a difference between land cover types, suggesting that these 

differences may be caused by differences in moisture content or soil types but may also indicate 

fallow land with small amounts of plant residue still covering the ground. In this case, the light green 

spectral is representing tilled cultivated land. 

 

 
Land cover types that may have bare soil spectral signatures during the dry season 
on the RapidEye image  
 

A comparison to the SAVI
6
image shows an overall good correspondence between vegetated and non-

vegetated areas. When compared to the NDVI image it is clear that the supervised image 

classification provided much more detail about the different land features and vegetation types (Figure 

15). Overall, the supervised image classification identified the most important land cover features that 

are needed for the delineation process to derive the functional agro-zones segmentation (Figure 16).  

 

 

 
6Soil-Adjusted Vegetation Index (SAVI): Vegetation index that accounts for, and minimises, the effects of soil background 

conditions 
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Figure 15.  Comparison between the unsupervised and supervised RapidEye 
land cover classification, February, 2011 for Nyando. The features in white 
circles represent cultivated land parcels, except the smallest circle, which is 
the primary forest classified by the supervised image classification 

 
 

Figure 16.  Comparing common vegetation indexes SAVI (far-left), NDVI 
(middle), and supervised image classification (far-right) 

 
 

Segmentation of study area into functional agro-zones 

The delineation process was based on visual interpretation of the supervised image. To sharpen the 

contrast between feature classes, the supervised image produced was filtered with Median (6x6) in 

ENVI., and further was smoothed in the same filter function (Figure 17). It is interesting that the 

primary forest cover on the block is still present, as seen on the image (dark green reflectance). 

 

Additional and important information used to aid this process is the distribution of predicted soil 

organic carbon for Western Kenya, which has been produced by the Geoinformatic unit in ICRAF 

(Tor Vagen, 2011 unpublished data). This predicted soil organic carbon concentration was derived 

from a Quickbird satellite image with finer resolution (2.5 meters) as compared to the RapidEye 

image, thus was a valuable validation for this analysis. It is important to note that the delineation was 

only possible through the site-specific knowledge of the study block gained during the GT survey.  
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Figure 17.  Output from the filtered supervised image shows distinct 
differences between land use cover within the Nyando block. 
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After application of the Median (6x6) filter, three distinctive agro-zones were clearly showed (Figure 

18): a) highly intensive agro-zone area on low soil organic carbon concentration area (white circle), b) 

major forested areas (purple and light blue spectral), and c) good agricultural condition zone that 

provides support to productive farms in the form of good quality forests, sufficient amount of woody 

biomass, rivers, and other natural water sources. 

 

 

Figure 18.  Steps in delineation process of the functional agro-zones show 
patterns of the filtered image, soil organic carbon, and supervised classification 
images from the RapidEye as tools for the delineation procedure. 

 
 

 

The delineated forestlands were further overlaid on topography (DEM, derived from ASTER data), 

which showed that more than 90% of the bushy land cover is located on the higher ground. This was 

also confirmed during the GT survey. 

 

The picture taken during the GT survey revealed that even though the block was inspected during the 

rainy season, land on the top left corner of the study site was bare and exposed, thus is characterized 

as unhealthy or highly degraded. 

 

Time-series analysis  

Software for the processing and interpretation of remotely sensed image time series (SPIRITS) is 

designed for the post-processing of time series (ten-daily or monthly composites) derived from low 

resolution sensors such as SPOT-VEGETATION, NOAA-AVHRR, METOP-AVHRR, TERRA-

MODIS and MSG-SEVIRI (Rembold, 2012). All maps generated by SPIRITS are directly compatible 

with other common image processing software like ENVI with [*.img] format. 
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SPIRITS provides summaries of seasonal variation of input parameters (Rainfall and NDVI) over a 

10-year period, which includes climate factors (rain and temperature) integral to the CCAFS research 

agenda. The advantage of SPIRITS is its ability to do time-series analysis on vegetation using low-

resolution satellite imagery. All data sets used in the analysis were rasterized in SPIRITS. CNDVI and 

RFE data sets were formatted and provided by eStation
7
 (FAO Somalia, Nairobi).  

 

The main input data sets used for SPIRITS analysis are: 

 CNDVI derived from SPOT-VGT (1km) [May 1998 – Feb 2011] 

 RFE estimate derived from NOAA-AVHRR [Jan 2000 – Feb 2011] 

 Functional agro-zones thematic map derived from the supervised image classification 

The main outputs produce by the software are: 

 Vegetation anomalies based on the comparison of the actual NDVI maps and the 

long- term average 

 Extraction of regional unmixed means statistics for CNDVI and RFE for different 

areas within an image (such as agro-zones) 

Figure 19 shows that the functional agro-zones developed for this study were used as input classes in 

further SPIRITS analysis. Each agro-zone was subsequently analysed for its temporal changes in 

CNDVI values and interactions to the rainfall estimates (RFE). 

 

Figure 19.  Clip from the SPIRITS analysis show the functional agro-zones as 
input parameter for time-series analysis. 

 
 

 

 
7 http://estation.jrc.ec.europa.eu/ 



 

25 

 

 

Time series analysis of vegetation changes in East African  

To understand the overall health of the ecosystem of individual CCAFS sites, vegetation anomalies 

were calculated.  Firstly, a long-term average of vegetation growth (CNDVI) was calculated for the 

period 1999 to 2010, whereby for each site the highest level of greenness (maximum CNDVI) within 

a year (usually the peak of the cropping season) was extracted. The calculated average is the average 

of the annual CNDVI maxima. 

 

The distribution of the average maximum CNDVI value over the Eastern Part of Africa shows a 

strong decline of greenness started in Tsavo, East towards the North.  Areas especially affected stretch 

from Lake Turkana to the Ethiopian border (Figure 20). In contrast the Northeast of Kenya to the 

Somali border has actually seen an increase of vegetation cover since 1999. 

 

Figure 20.  Average maximum CNDVI value 1999-2010 for East Africa 
representing five CCAFS sites in Western Kenya, two in Uganda, Tanzania and 
Ethiopia. 

 
 

 

With the exception of Bohero, Ethiopia, all CCAFS study sites in East African were found to be 

located within areas with small increases in greenness or vegetation cover (maximum cumulative 

NDVI-CNDVI) (Table 2). From 1999 to 2010 Bohero, Ethiopia appeared to have a relative higher 

increase in greenness than other CCAFS sites.  
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Table 2.  Groups of CCAFS sites showing the status of the land-health based on 
SPIRITS analysis. 

CCAFS 

Study sites 

Uganda 

(Hoima) 

Uganda 

(Rakai) 

Kenya 

(Nyando) 

Tanzania 

(Lushoto) 

Ethiopia 

(Yabero) 

10 year 

maximum 

CNDVI level 

Small increase Small increase Small increase Small increase Medium 

increases 

Status Low greening Low greening Low greening Low greening greening 

Land-health Good good good good good 

 

 

To understand yearly conditions, the distribution of the maximum CNDVI for each year was 

compared to the average of maximum CNDVI in ten years (Figures 21 and 22). The years with the 

largest extent of decreasing greenness (vegetated areas) were in 2000, 2001, 2002, 2005, 2009, and 

2010. In particular, 2000 and 2009 suggest a severe drought affected almost the entire Northern part 

of Kenya. However, even during these years of extreme drought, the Bohero block in Ethiopia 

showed to have a strong increase in vegetation cover, indicating that the rainy seasons were better in 

this area. For the years 1999, 2003, 2004, 2006, and 2007, a larger area represented a small increase in 

the CNDVI value, which indicates good cropping seasons for 2006 and 2007. 
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Figure 81.  Maximum CNDVI values for each year compared to the average 
maximum CNDVI values for the period 1999-2010 for CCAFS sites in four East 
African countries (Kenya, Uganda, Ethiopia, and Tanzania).
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Figure 22.  Maximum CNDVI values for each year compared to the average 
maximum CNDVI values for the period 1999-2010 for CCAFS sites in four East 
African countries (Kenya, Uganda, Ethiopia, and Tanzania). 

 
 

 

The Nyando site of Western Kenya (Katuk-Odeyo block) 

For the purpose of this case study, Katuk Odeyo, also known as Nyando block, in Western Kenya was 

particularly analysed due to the availability of data sets. This is also due to the requirements of this 

integrated analyses, which calls for optimal amounts of processed social-biophysical datasets, and 

especially processed satellite datasets that are the integral data in this study. In term of CCAFS 

research interests, this site provides a framework to improve the baseline study over the long-term 

within and between different CCAFS study areas. 
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Figure 23.  Sentinel sites for CCAFS in East and West African  

 
 

 

For the East African region, CCAFS sites consist of 10x10km locations in Katuk Odeyo in Kenya, 

two sites in Uganda at Hoima and Rakai, and Lushoto in Tanzania, as well as 30x30 km in Bohero, 

Ethiopia (Figure 23). The agro-landscape characteristics displayed by the spectral feature of the 

RapidEye images indicate similar land cover types of the 10x10km sites to Nyando. The Bohero 

landscape features are very different than the other East African sites and more similar with those in 

the West African region like Segou in Mali, Niger, Senegal and Burkina Faso that display a more 

semi-arid and desert types spectral. 

 

The CCAFS study site in Katuk-Odeyo is located within the Nyando River basin. This river basin is 

one of the seven major river basins within the Kenyan side of Lake Victoria drainage basin and covers 

an area of approximately 3550 km
2
 (KARI, 2006). Within the basin there are the Upper and Lower 

Nyando divisions and 16 sub-locations (Figure 24). The Lower Nyando block (CCAFS block) is 

located in the lake plain (Kano Plains) of Lake Victoria in Nyando and Kericho Districts. 

 

The population is predominantly Luo and Kalenjin. While the main land cover types are forestry and 

agriculture, the individual land-uses are as diverse as the basin’s soil types (Van Der Kwast, 2002). As 

observed, the block is dominating by subsistence farming practices, with a mix of crops typical of the 

lower elevations in Western Kenya. Maize and sorghum are the major crops especially in the middle 

part of block; banana and cassava are also grown. The area is also important in the production of 

mangos (ICRAF/ NALEP Project). The crop type characteristics are more diverse in the highlands 

located on the Southeast of the study block, where crops like tea, sugar cane, and eucalyptus can be 

seen growing between food crops land parcels. 
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Figure 24.  Location of the block within Nyando Basin and RapidEye satellite 
image of the study block. 

 
 

 

Nyando experiences diverse climate ranging from humid to sub humid, which is mainly attributed to 

variation in altitude from the highlands to the shores of Lake Victoria. The mean annual rainfall varies 

from 1000 mm near Lake Victoria to about 1600 mm in the highlands (Njogu, 2000). The rainfall 

pattern shows no distinct dry season. Peaks occur during the long rains (March – May) and short rains 

(October – December). The proximity to the highlands and lakeshore causes a considerable spatial 

variation of rainfall. In the lowland zones, the short rains are unreliable, and sustain only drought 

tolerant crops like millet and sorghum. 
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Figure 95.  Soil map of the Nyando River Basin (Waruru et al., 2003).

 
 

Soils in Nyando basin vary with changes in elevation and parent materials (Waruru et al., 2003). Soils 

in the highlands are well drained and deep to very deep (Figure 25). They are of moderate to low 

fertility and have shallow humic topsoil and subtle soil aggregates. These soils include: nitosols, 

alisols, luvisols and cambisols. The soils found in degraded hills and volcanic foot ridges, however, 

are shallow, rocky and boulder. These include: leptosols and cambisols. In the lowland or in the 

middle of the study block, soils are moderately deep to deep. They have impeded drainage, sodic 

subsoil and less stable aggregates. They include: luvisols, gleysols and fluvisols. 

 

Forested land falls under government designated land. Some of the larger forests in the area are: 

Timboroa, Tinderet, Londiani, Western Mau and parts of South Nandi. Some of these are commercial 

timber plantations consisting of exotic species such as Pinuspatula, Pinus radiate and Cupresses spp. 

Timber is harvested legally and illegally for pulpwood and fuel (Wagate and Macharia, 2003). 

Encroachment into natural forests is common, indicated by agricultural fields inside forests, re-

vegetated sites, grazing lands and abandoned charcoal production kilns. 

 

Agricultural activities in the basin consist of subsistence and cash crop farming. In subsistence 

farming, which is the main agricultural activity, mixed farming is common, with cattle, goats, sheep 

and donkeys kept together with maize, sorghum, millet and vegetables (Figure 26). 

 

Generally, the main cash crops in the Nyando basin are tea and sugar cane. These crops are grown in 

large plantations under the management of multinational companies. The tea growing estates are 

Tinderet and Kapchorua. Sugar cane is grown in the nucleus estates of Muhoroni, Chemelil, Soin and 

Miwani. These companies have out growers, who grow and supply additional crops to the factories. 

Other land use/land cover types in the basin are permanent and seasonal swamps. These areas are 

mainly used for farming seasonable vegetables and are harvested for grasses such as papyrus and 

reeds, however they were only observed once within the block during the GT survey. 
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Figure 26.  Land use map of the Nyando River Basin (WKIEMP, 2006). 

 
 

 

There are various changes in land use in the basin. Akotsi and Gachanja (2003) reported that 

vegetation has changed considerably from the original woody types to the present shrub types. These 

changes are attributed to human activities such as overstocking, burning of charcoal, and clearing of 

vegetation. The intensity, type and extent of crops cultivated have changed considerabley over time 

due to population increases (Wagate and Macharia, 2003). The land uses/land cover map of the 

Nyando basin is shown in Figure 26 along with the stratification of the block landscape (Figure 27). 

 

Figure 27.  Stratification of Katuk-Odeyo Sub-watershed based on slope. 
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The lower Nyando block is characterized by a distinctive gully. The formation of the gully has been 

one of the main research focuses of both the government and NGOs. Most of the past works 

conducted in Nyando have addressed issues of conservation and preservation of the watershed, while 

attempting to halt land degradation and rehabilitate the gully area. 

 

The gully itself has been considered a sub-watershed of approximately 20 km
2 

within the 400 km
2 

Awach-Kano watershed (Figure 28). The watershed extends from Sigowet Division of Kericho 

District to lower Nyakach Division of Nyando District. 

  

Figure 28.  Sub-watershed and the gully formation as seen from the RapidEye. 

 
 

During the village March, 2011 baseline survey conducted in Komango village, the community 

expressed concern due to land lost from the gully’s expansion yet also noted the gully provides basic 

materials and resources such as sand, rock, ballot for housing material, and cash income. 

 

The water sources available to the community in Katuk Odeyo/Nyando basin are rainwater harvested 

in water pans, natural water holding depressions such as gullies, and a few roof catchment systems 

(WKIEMP, 2006). This surface water is generally of low quality due to poor methods of collection 

and low levels of system maintenance. Almost all the surface water sources dry up during the dry 

seasons resulting in severe water scarcity and stress. There are a few boreholes, shallow wells, and 

springs, however they dry up during the dry season (CCAFS village level baseline 2011, personnel 

communication). 

 

Due to the rainfall pattern and catchment characteristics, there is a high potential for rainwater 

harvesting to meet local water requirements for irrigation, domestic use and environmental 

conservation. However, during the village baseline survey conducted in March, 2011 in Komango 

village, it was noticed that efforts to harvest rainwater in the area are scarce. Households rarely have 

basic water tanks and lack even gutters on roofs. Only schools and churches have water tanks, which 

are provided by NGOs like the World Vision. 

 

Land Use Cover in Nyando Block 

Based on the supervised image classification, the area categorized as settlement and/or mixed activity 

areas cover 46% of Nyando and represents the largest form of land use (Figure 29 and 30). However, 

the mixed activity within this area is not limited to only the main settlement area as it is also utilized 

for other human activities like farmland, kitchen gardens, and grazing fields. This area, which 

represent, as black spectral feature, is where human activity and utilisation are assumed the most 

intensive, therefore zoned as an Intensive functional agro zone (IAC).  
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Figure 29.  Land cover use in Nyando block. 

 
 

Forested land accounted for a total of 23%, with low density and high density covering 10% and 13%, 

respectively. The latter is mainly located on slopes (18 to > 25% steepness). The bare soils were 

represented with a dark brown spectral feature, which accounted for 8.5% of the total area. The area 

with no vegetated cover is mostly located on the upper left corner of the study block and is classified 

as highly degraded or non-agricultural land. This can be assumed since exposed bare soils located on 

the agricultural land parcels (lower right corner of the block) were classified as green spectral with the 

same condition of no biomass on the ground. However, since this finding was based on the dry season 

RapidEye image, some of these areas may be overestimated because of the vegetation changes that 

occur during the rainy season. Some of these areas are predicted as kitchen gardens and grass fields 

given they are mostly located together with settlement areas, but some of these areas may also be 

exposed bare soil agricultural lands with low water moisture content. 

  

Only 5% of the image was classified as an agricultural crops area, while short grasses accounted for 

9%. This is attributed to corn and sorghum having similar spectral signatures as sugar cane and Napier 

grass, especially during the early growth stage. It therefore assumed that some of the areas classified 

as short grasses are in fact food crops. A better differentiation could be achieved by a more in-depth 

spectra analysis of these areas utilizing the Red-Edge band (Band 4) from the RapidEye image 

(Heute, 1987; Curran, 1981). 

 

The 1% primary forest can be mainly attributed to the area’s geo-coded during the ground survey.  

Other mixed forest areas, such mature acacia forests, were classified in the same signature as highly 

dense bush vegetation.  
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Figure 30.  Supervised image classification of the RapidEye satellite image of 
the Nyando study block. 

 
 

It is important to note that the size of the area is likely to be overestimated given the high 

classification error, due to the mismatch between acquisition of the RapidEye image and the time of 

the ground survey. It is likely that areas in the vicinity of houses, such as kitchen gardens, dry grazing 

fields, dry harvested crops, and bush lands were misclassified as bare soils not covered, where in the 

rainy season these particular areas would give a strong green signature and may be classified as Good 

agriculture condition (GAC) areas.
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Four functional agro-zones within the block (Figure 31): 

 

1. Dark green: IAC - functional agro-zone 1.  

2. Blue: GAC as an agricultural area that still consists of healthy agro-ecological factors as farm 

supports - functional agro-zone 2.  

3. Green: PAC as an agricultural area that still has available space for agricultural expansion 

(area may have obstacles due to geographical factors) - functional agro-zone 3.  

4. Dark brown: SAC as an area which still has the capacity to carry out agricultural and farming 

practices, but below the GAC due to limited resources - functional agro-zone 4.  

 
Figure 31.  Output from delineation process of the functional agro-zones. 

 
 

 

SAC is similar to PAC given its vegetated land consists of bush land and kitchen garden. However, it 

does have a much larger proportion of degraded land (see description in IAC) whereas with PAC 

there is an undulating and steeper landscape. At the same time, SAC has a better supply of water 

(river network) and a flat highland plateau, which is utilized for grazing especially during the dry 

season within the block. In addition, governmental acacia forest is located within this agro-zone. SAC 

accounts for 1010 hectares, where the IAC represents the largest area within the block with 5553 

hectares respectively. Generally, it can be described that Nyando block is a highly fragmented 

landscape, severely altered by human activities. The main land use types are human settlements, 

mining, compacted and highly degraded land, tarmac and hard surfaces, and mixed with patches of 

forests (primary & secondary) that are protected by the authority or the community for its services and 

high value. 

As discussed earlier, the limitation of this study is that the satellite image was taken during the dry 

period, showing an unclear separation of soil covered by dry vegetation, which could be fallow, 

grazing areas or bare soil, making the result of degradation difficult to determine. An analysis of 
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multi-temporal RapidEye images taken during different seasons would overcome such limitations and 

improve the delineation process (Foerster et al., 2010; Tapsall et al., 2010).  

 

Table 3 provides an overview of the different land use classes for each functional ago-zone. The GAC 

accounted for a total of 1633 hectare and consisted mainly of ploughed land (270 ha), short grasses 

(899 ha) and crops (400 ha). The PAC covers an area of 1750 hectare that consists mostly of 

forestland. These areas could be potentially converted into agricultural land or into GAC but are 

limited by the steepness of the landscape regardless for their high soil organic carbon concentration 

and biomass cover. Access to water is also a limiting factor to pursue agriculture within the PAC. 

 

 

Table 3.  Land cover classes in Nyando block and areas delineated for 
functional agro-zones. 

Functional zone Land cover classes Area (ha) Area (%) 

GAC 

 
Ploughed land 270 3 
Short grasses 899 9 
Crop1 119 1 
Crop2 70 1 
Crop3 325 3 

Total  1683 17 

PAC 

 

Bushes & kitchen garden 747 7 
Dense Bushes 1003 10 

Total  1750 18 

IAC 

 
Settlements 4140 41 
Bare soils (dry) 426 4 
Bare soils (moist) 452 5 
Mining sites & bare soil 242 2 
Tarmac roads and hard surfaces 186 2 
Primary forest 107 1 

Total  5553 56 

SAC 

 

Bushes & kitchen garden 245 2 
Dense Bushes 253 3 
Settlements 512 5 

Total  1010 10 
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Infrastructure differences between the functional agro-zones 

The main highway connecting the study block with Kisumu town intersects both IAC (Zone 1) and 

PAC (Zone 3). GAC (Zone 2) and SAC (Zone 4) are disconnected from the main highway. The road 

network only consists of dirt roads, which require a 4x4 vehicle during rainy season, and exists in 

Zones 2 and 4. It was also observed that the number of villages noted by the Ministry of Public Works 

does not include the total number of existing villages within the block because there are so many 

villages that are not included especially within the study block (Figure 32). 

 
Figure 102.  Existing road network and villages (Ministry of Public Works, 
2006). 
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RFE and NDVI 

The long-term average from 2000 to 2011 for CNDVI and RFE show that on average the main rainy 

season coincided with the months of March and May, with a peak in April. The CNDVI follows this 

pattern with a lag of about 1 month. The short rains start in July, lasting until the end of the year, with 

a peak in October. The total rainfall intensity is much lower than that of the long rains, reflected in a 

very modest response of the NDVI (Figure 33). 

 

Figure 33.  Average CNDVI and Rainfall (RFE) relationships in Nyando block. 
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Figure 34.  The average CNDVI and Rainfall (RFE) in Nyando block. 

 
 

It also appears that inter annual variation is larger for the short rains than for the long rains. For the 

long rains the intensity was highly variable, whereas the timing of the onset and ending seem to be 

very predictable. It is the period of the short rains that not only varies in total amount of rainfall, but 

also in its timing. This makes planting during the short rainfall much more risky than planting during 

the long rains (Figure 34). 
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Figure 35 shows the long-term averages for rainfall and vegetation growth for the different functional 

agro-zones. There is no difference in rainfall as the resolution of the RFE data is much larger than 

10x10 km
2
. However, large differences in CNDVI values are shown. The NDVI is increasing in the 

following order: 

IAC zone 1< PAC zone 3<SAC zone 4< GAC zone 2 

 

Despite the problems of differentiating between fallow land and degraded land this result shows that 

the zones identified do represent different agro-ecological conditions within the study site. 

 
Figure 35.  Time-series of CNDVI and RFE/Rainfall for functional agro-zones.  
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Integrating Household Information to the Functional agro-zones 

Socio-economic household information used in this analysis is derived from the CCAFS household 

level baseline (available at "CCAFS Baseline Household Survey 2010-11"); 

http://hdl.handle.net/1902.1/BHS-20102011UNF:5:0XcEhtcP4B97YHKkHNT9wA== V8 [Version] 

 

The baseline survey describes its methodology in detail (Kristjanson et al., in press; Kristjanson et al., 

2009). In addition, 16 socio-economic indices were calculated from the data collected during the 

baseline. The indices used were: 

 

Food Deficit Months Number of months households have insufficient food for their family in a 

typical (average rainfall) year 

  

Innovativeness Total number of crop, livestock and/or soil, land, water management 

changes made on their own farm in the last 10 years (see supplementary 

information for full list of possibilities) 

  

Education 0 = Full-time resident of the household with no or primary education; 1 = 

Resident with more than primary education 

  

Household size Total number of people resident in the household 

 

Household  

Non-Worker % of people in the household below age 5 and over 60 years 

  

Cash sources Number of different sources of cash income 

  

Land Owned and rented land in hectares 

  

Production Diversity Number of different agricultural products produced on-farm, from list of: 

food crops, cash crops, fruit, vegetables, fodder, large livestock, small 

livestock, livestock products, fish, timber, fuel-wood, charcoal, honey, 

manure/compost, and other 

  

Information Number of information-related assets owned by household from list of: 

radio, television, cell phones, computer, and internet access 

  

Transport Number of agricultural transport-related assets owned by household from 

list of: bicycle, motorcycle, car or truck 

  

Production assets Number of agricultural production-related assets owned by household 

from list of: tractor, mechanical plough, mill, and thresher 

  

Energy Number of energy-related assets owned by household from list of: solar 

battery, generator, battery, and biogas digester 

  

Functional agro-zones 1=IAC; 2=GAC; 3=PAC and 4=SAC developed in this analysis 

  

On farm water 0= No on-farm source of water for agricultural use; 1=an on-farm source 

of water for agricultural use (water pond, tank/water harvesting, 

borehole, or irrigation) 

  

Social Number of different agriculture/natural resource management oriented 

groups of which someone in the household is a member 

http://hdl.handle.net/1902.1/BHS-20102011
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Credit 0=Not using credit; 1=Using credit 

 

Distribution of Household Survey Points across the functional agro-zones 

Figure 36 shows the distribution of households included in the 2011 baseline survey across the study 

block and on the different functional agro-zones. It is clear that the random sampling approach used 

for the survey did not result in an equal distribution of households across the different zones 

developed in this study. Most of the samples are located within IAC (Zone 1), with a total of 74 

samples. For the GAC (Zone 2) and SAC (Zone 4), both have the same sampling density with 21 

households and only 4 samples fall within zone 3. 

  

This suggests that the household information obtained from the survey does not optimally represent 

the delineated four functional agro-zones developed in this study. While the IAC (Zone 1) is 

proportionally over represented, the survey has almost no information for the PAC (Zone 3). 

 

Figure 36.  Distribution of households sampled across the different functional 
zones. 

 
 

Demographic characteristics 

Households across different functional agro-zones were found to be very similar in household size, 

number of young children and elderly. While households in SAC (Zone 4) did have on average one 

household member more than households from the other zones, the difference was not statistical 

significant (Table 4). 

 

 



 

44 

 
Table 4.  Comparison of the functional agro-zones with respect to demographic 
variables. 

Functional 

agro-zones 

IAC 

Zone 1 

GAC 

Zone 2 

PAC 

Zone 3 

SAC 

Zone 4 

P value 

(F-test) 

 Mean Std. 

Dev. 

Mean Std. 

Dev. 

Mean Std. 

Dev. 

Mean Std. 

Dev. 

 

HHSIZE 5.19 2.30 4.95 2.84 4.75 2.63 6.14 2.13 0.332 

HHLT5 1.01 1.04 0.90 0.77 1.25 0.96 1.33 1.35 0.550 

HHGT60 0.31 0.52 0.29 0.56 0.50 0.58 0.38 0.59 0.849 

HHNonWorkers 0.29 0.24 0.35 0.32 0.50 0.33 0.28 0.24 0.340 

HH (household); LT5 (below age 5); GT60 (over 60 of age) 

 

Only IAC (Zone 1) was found to have a large proportion of female-headed households, whereas male-

headed households dominated in GAC (Zone 2) and SAC (Zone 4). Out of the four households 

interviewed in PAC (Zone 3) all were female-headed, however due to the small sample size this is not 

regarded as representative (Table 5). Interestingly, neither household size nor the proportion of very 

young or very old household members was found to differ between the zones. It is therefore suggested 

that there was a relationship between the type of household and the size of household. 

   

Table 5.  Frequency distribution of different household types across the 
functional agro-zones. 01=Male-headed, with a wife or wives, 02=Male-headed, 
divorced, single or widowed, 03=Female-headed, divorced, single or widowed, 
04=Female-headed, husband away, husband makes most household/agricultural 
decisions, 05=Female-headed, husband away, wife makes most 
household/agricultural decisions, 06=Child-headed (age 16 or under)/Orphan, 
96=Other, specify 
 

Functional agro-zones 
HHTYPE 

Total 1 2 3 4 5 96 

Zone 1 Count 39 0 29 1 4 1 74 

% within 

Zone 

52.7% .0% 39.2% 1.4% 5.4% 1.4% 100.0% 

2 Count 18 1 2 0 0 0 21 

% within 

Zone 

85.7% 4.8% 9.5% .0% .0% .0% 100.0% 

3 Count 0 0 4 0 0 0 4 

% within 

Zone 

.0% .0% 100.0% .0% .0% .0% 100.0% 

4 Count 18 1 1 0 0 1 21 

% within 

Zone 

85.7% 4.8% 4.8% .0% .0% 4.8% 100.0% 

 

 

Total 

Count 75 2 36 1 4 2 120 

% within 

Zone 

62.5% 1.7% 30.0% .8% 3.3% 1.7% 100.0% 
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The majority of households across the study site did have at least primary education; less than 3% of 

the households had no education at all. Secondary schooling accounted for about one third of the 

households interviewed in both SAC (Zone 4) and GAC (Zone 2); the proportion of households with 

secondary education was found larger in IAC (Zone 1) with 45%. Households from PAC (Zone 3) 

showed more respondents completed secondary school with 50% but, again, due to the small sample 

size this is not considered representative for this zone (Table 6).  

 

Table 6.  Frequency distribution of the highest educational status of any one 
member in the household across the different functional agro-zones. (00=No 
formal education, 01=Primary, 02=Secondary, 03=Post Secondary). 
 

Functional agro-zones 
HHEDUC 

Total 0 1 2 3 

Zone 1 Count 2 34 33 5 74 

% within Zone 2.7% 45.9% 44.6% 6.8% 100.0% 

2 Count 0 13 7 1 21 

% within Zone .0% 61.9% 33.3% 4.8% 100.0% 

3 Count 1 1 2 0 4 

% within Zone 25.0% 25.0% 50.0% .0% 100.0% 

4 Count 0 14 5 2 21 

% within Zone .0% 66.7% 23.8% 9.5% 100.0% 

Total Count 3 62 47 8 120 

% within Zone 2.5% 51.7% 39.2% 6.7% 100.0% 

 

Assets, sources of cash income, food security 

The household location did not seem to influence food deficiency. Both household size and food 

deficiency vary randomly within the study area (Figure 37). Within Nyando, the average food 

deficiency experienced by households ranged from 1.5 to 2 months. There was no significant 

difference between the functional agro-zones (Table 7). 
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Figure 37.  Relationships between food deficit months and households size 
within the functional agro-zones. 

 
 

For the wealth indices it was found that there was not much difference between households located in 

different functional agro-zones. Only transport related assets (bicycle, motorbike, car or truck) were 

found to be significantly higher in IAC (Zone 1) (Table 7). Households located in this zone also have 

access to a better road network and are closest to Kisumu town. Figure 38 shows the relationship 

between on-farm production diversity and the number of transport related assets. While some of the 

farms within IAC (Zone 1) seem to have higher on-farm production diversity than farmers in any 

other zone, the variance within IAC (Zone 1) is also very large. 

 

Table 7.  Comparison of assets, sources of cash income, and food security. 

Functional 

agro-zones 
IAC 

Zone 1 
GAC 

Zone 2 
PAC 

Zone 3 
SAC 

Zone 4 
P value 

(F-test) 

 Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
 

Energy 0.19 0.46 0.05 0.22 0.50 1.00 0.10 0.30 0.191 
Information 1.51 0.69 1.48 0.68 1.25 0.96 1.38 0.67 0.791 
Transport 0.49 0.58 0.19 0.40 0.25 0.50 0.14 0.36 0.017 
Luxury 0.65 0.58 0.43 0.51 0.50 0.58 0.38 0.59 0.179 
Cash 1.77 1.05 1.62 1.07 1.50 0.58 1.86 1.46 0.875 
FSI 1.96 0.73 1.57 0.60 1.75 0.96 2.05 0.67 0.109 
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Table 8 provides details on the type of cash sources within each of the functional zones. Farmers 

within IAC (Zone 1) are also more active in business than any of the other zones. The PAC zone is 

also found to be high, but because of the small sample size this figure is seen as not representative for 

that zone. 

 

Figure 38.  Relationship between transport assets and farm produce diversity. 
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Table 8.  Comparison of cash sources. 
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  No Yes No Yes No Yes No Yes No Yes No Yes No Yes 

IAC Count 40 34 61 13 47 27 31 43 70 4 69 5 72 2 

%  54.1 45.9 82.4 17.6 63.5 36.5 41.9 58.1 94.6 5.4 93.2 6.8 97.3 2.7 

SAC Count 11 10 19 2 9 12 16 5 21 0 20 1 19 2 

%  52.4 47.6 90.5 9.5 42.9 57.1 76.2 23.8 100.0 .0 95.2 4.8 90.5 9.5 

PAC Count 2 2 4 0 3 1 1 3 4 0 4 0 4 0 

%  50.0 50.0 100.0 .0 75.0 25.0 25.0 75.0 100.0 .0 100.0 .0 100.0 .0 

GAC Count 14 7 17 4 10 11 15 6 18 3 20 1 18 3 

%  66.7 33.3 81.0 19.0 47.6 52.4 71.4 28.6 85.7 14.3 95.2 4.8 85.7 14.3 

Total Count 67 53 101 19 69 51 63 57 113 7 113 7 113 7 

%  55.8 44.2 84.2 15.8 57.5 42.5 52.5 47.5 94.2 5.8 94.2 5.8 94.2 5.8 
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Farming characteristics 

With respect to household demographic characteristics, assets, food security and number of cash 

sources, not many differences were found between the functional agro-zones. However, with respect 

to farming characteristics there were significant differences between these functional agro-zones. 

 

In terms of access to on-farm water either by pond, tank, harvesting, borehole or irrigation it was 

found that there was a significantly (2, p<0.005) higher frequency of no water sources for PAC 

(Zone 3) and SAC (Zone 4) compare to IAC (Zone 1) and GAC (Zone 2). The frequency of access to 

on-farm water decreased from IAC<PAC<SAC<GAC (Table 9). 

 

Table 9.  Availability of on-farm water for the different functional agro-zones.  

  Water Total 

  No Yes  

IAC Count 32 42 74 

 % within Zone 43.2% 56.8% 100.0% 

SAC Count 14 7 21 

 % within Zone 66.7% 33.3% 100.0% 

PAC Count 3 1 4 

 % within Zone 75.0% 25.0% 100.0% 

GAC Count 17 4 21 

 % within Zone 81.0% 19.0% 100.0% 

Total Count 66 54 120 

 % within Zone 55.0% 45.0% 100.0% 

 

Land size was found to be significantly larger in IAC (Zone 1) when compared to PAC (Zone 3). The 

numbers of changes made to either animal husbandry (adaptanimal) or field management (adaptcrop) 

were also found to be significantly different, with more changes made in GAC (Zone 2) and SAC 

(Zone 4) when compared to IAC (Zone 1) and PAC (Zone 3) (Figure 39). Farmers in GAC (Zone 2) 

were also found to have the highest production diversity, however the differences were also found to 

not be statistically significant (Table 10). 
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Figure 39.  Distribution of total number of changes in both farm management 

(crop) and animal husbandry (animal) across the functional agro-zones. 

 

 

Table 10.  Comparison of different socio-economic indices across the functional 

agro-zones. 

Functional agro-zones IAC 

Zone 1 

GAC 

Zone 2 

PAC 

Zone 3 

SAC 

Zone 4 

P value (F-test) 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.  
Land size 2.78 2.09 5.05 4.59 2.56 1.36 6.71 5.12 0.000 
          
Production Diversity 6.79 2.31 8.15 2.78 7.50 2.38 7.47 3.15 0.188 
Adapt crop 9.49 3.76 12.29 4.68 8.25 2.22 12.29 5.19 0.006 
social 0.72 0.67 0.43 0.60 0.75 0.50 0.38 0.67 0.104 

          
Adapt animal 2.35 1.71 3.48 2.48 1.25 0.50 2.90 1.55 0.033 
          
Innovativeness 11.84 4.55 15.76 5.20 9.50 2.38 15.19 6.10 0.001 
          

 



 

51 

 

From the GT survey it was observed that there are large differences in farm types and crop varieties 

between these functional agro-zones. It was found that farmers in SAC (Zone 4) and GAC (Zone 2) 

have more livestock than in the other two zones. It is clear that GAC (Zone 2) has the most suitable 

farmland, however SAC (Zone 4) is also considered a good area for livestock within the block due to 

the availability of the flat highland plateau, which is utilized for grazing especially during the dry 

season, as well as the presence of a perennial river and a governmental Acacia forest. The more 

uniform pattern of the grazing areas in SAC (Zone 4) can also be easily identified from the black 

spectral signature in the supervised image in previous Figure 29. During the village baseline, farmers 

confirmed that the flat highland plateau (Kolango Forest) is an important source of feed for livestock, 

especially when the field grasses are dried during the dry period, and the Acacia government forest is 

an important source of fuel wood. From the evidence of the spectral reflectance of the soil and the 

lower predicted soil organic carbon content, the area is also expected to have sandier soils than GAC 

(Zone 2). 

 

As previously noted that GAC (Zone 2) and SAC (Zone 4) had the highest average CNDVI over the 

last decade, it can thus be assumed that they are the areas with the least degraded and most fertile 

soils. From the soil carbon map (Figure 40), the average estimated soil carbon content for each agro-

zone can be extracted. When plotting both CNDVI and soil carbon a strong correlation between these 

two can be found. In summary, the two zones (GAC and SAC) that have the best soil, both in terms 

of fertility (soil carbon) as well as vegetation performance (CNDVI) are also the two zones with the 

largest farm sizes (Figure 41). 
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Figure 40: Relationship between CNDVI and average estimated coil carbon. 

(Vagen 2011, unpublished data).  

 

 

Figure 41.  Distribution of farm sizes and farm production diversity across the 

functional agro-zones. 
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One of the main questions to be answered in this report was whether differences in the quality of 

natural resources households have access to have an effect on the way households farm. Also, how do 

farmers adapt to changing conditions, such as land degradation and population pressures? 

 

The CCAFS baseline survey calculated an innovativeness index from questions regarding what 

changes households made over the last 10 years in practices such as crop type, variety type, land use 

and management practices, and farm animal/fish management. The total number of changes made 

was used as an indication of how much experimentation and adoption of new practices had been 

undertaken by each household and was thus used as a proxy for innovativeness. 

 

From Figures 42 and 43, it is clear that farmers with larger farm sizes were more innovative than 

farmers with small farms. One could conclude that large farm size indicates wealth and is thus an 

enabling factor that allows farmers to be innovative. However, neither the assets table (Table 7) nor 

the sources of cash table (Table 8) provide any indication for this. Instead, based on the discussion 

above, it is suggested that the health of the farmland enables farmers to be more innovative.  
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Figure 42. Distribution of land-size and innovativeness of farmers across the 

functional agro-zones. 
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Figure 43: Comparison of farmers across functional zones with respect to farm 

size and innovativeness. 
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Figure 44: Distribution of social and innovativeness across the functional agro-

zones. 

 

 

Figures 44 and 45 further show that farmers that were engaged with group activities were more 

innovative than farmers that had no group membership. In addition, the road that was turned into the 

main highway, intersecting IAC (Zone 1), was most likely the first road access to the Nyando block. 

The villages in IAC (Zone 1) are most likely the oldest residential areas in the Nyando block, which is 

reflected in the high utilization of diverse land use types. It is also the area with the highest population 

density. Thus it can be concluded that strong differences in land health between IAC (Zone 1) and 

GAC (Zone 2) and SAC (Zone 4) are a result of the differences in population pressure and land 

management. 
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Figure 45: Comparison of farmers across functional zones with respect to 

farmer group membership and innovativeness. 
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To examine what enabling factors make farmers more innovative than others, a general linear 

regression model was fitted:  

 

(Innovativeness): Constant + Energy + FSI + HHEDUC + Land + Luxury + Prod.Diversity + 

Functional Agro-Zones + social  

 

The results of the final model are shown in Table 11. The model was found to explain 46% of the 

variation between households. The variables with the largest contribution to the model were 

land size and the total production diversity. Also food deficiency was found to be important. 

The functional agro-zone does account for 7% of the variation in innovativeness (Table 12). 

While this is a relative small contribution, it was found to be significant. Given the problems 

of unequal representation (sampling) of the different functional agro-zones within the socio-

economic baseline survey, a contribution of 7% is a surprisingly high result.  

 

Table 11.  Correlation between innovativeness of farmer and other parameters 

including functional agro-zones. Parameters for factors are differences 

compared with the reference level: Factor reference level IAC (Zone 1). 

Parameter Estimate s.e. t (102) t pr. 

Constant 6.12 1.75 3.50 <0.001 
Energy 0.80 1.01 0.80 0.426 
FSI -1.035 0.520 -1.99 0.049 
HHEDUC 0.462 0.613 0.75 0.452 
Land Size 0.341 0.114 2.99 0.004 
Luxury 0.788 0.743 1.06 0.291 
ProdDiv 0.670 0.161 4.17 <0.001 
GAC (Zone 2) 2.89 1.07 2.70 0.008 
PAC (Zone 3) -2.95 2.01 -1.46 0.147 
SAC (Zone 4) 2.35 1.12 2.09 0.039 
Social 1.158 0.607 1.91 0.059 

 

Table 12.  Accumulated analysis of variance, correlation between farmer 

innovativeness and other parameters. 

Change d.f. s.s. Variance explained 

+ FSI 1 262.46 17% 

+ Land Size 1 569.21 37% 

+ ProdDiv 1 509.23 33% 

+ Functional agro-zones 3 106.19 7% 

+ Social 1 99.61 6% 

Residual 105 1550.98  

Total 112 3097.68  
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This also suggests that in the absence of human-made water resources such as ponds, tank/water 

harvesting equipment, boreholes, and irrigation, the role of natural water resources such as rivers and 

streams located within GAC (Zone 2) and SAC (Zone 4) are imperative to maintain farm produce 

diversity at large. During the GT survey, the existence of a stream within the primary forest was 

pointed out by the local coordinator of GAC (Zone 2).  

Migration within the Nyando block 

From the village level baseline survey (March 2011), farmers stated that people are moving from IAC 

(Zone 1) into PAC (Zone 3) for mining activities (ballot, stone and murram) (Figure 46). This 

supports our findings that population pressure and degraded resources (soil, vegetation, and farm 

sizes) are forcing people to look for alternative livelihoods. Unfortunately the village level baseline 

was only conducted in a few villages and does not give a good representation of the entire block. 

 

Figure 46.  Community map showing men changes of resources. 
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The household baseline provides some information with respect to new farmers (Table 12), which 

could be both new generation farmers or newly migrated farmers. While the majority of farmer’s 

interviewed had been living on the land for at least 10 years, 14% of households within SAC (zone 4) 

were found to be new farmers. Very few new farmers were found in IAC (zone 1) and GAC (zone 2). 

It is assumed that a larger percentage of new farmers settled in SAC (Zone 4) due to the continued 

availability of space and basic resources within SAC (Zone 4) such as rivers, vegetation and 

grasslands. 

 

Table 13.  Frequency distribution of long-term (longer than 10 years/ 10YR) 

and new (shorter than 10 years) farmers across the different functional agro-

zones. (01=long-term; 00=short-term). Farmer refers both to households 

conducting farming and/or keeping animals. 

 

Functional agro-zones 
FARM10YR 

Total 0 1 

Zone 1 Count 3 71 74 

% within 

Zone 

4.1% 95.9% 100.0% 

2 Count 1 20 21 

% within 

Zone 

4.8% 95.2% 100.0% 

3 Count 0 4 4 

% within 

Zone 

.0% 100.0% 100.0% 

4 Count 3 18 21 

% within 

Zone 

14.3% 85.7% 100.0% 

Total Count 7 113 120 

% within 

Zone 

5.8% 94.2% 100.0% 
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Conclusion 

The random sampling approach over sampled the IAC (Zone 1) and under sampled the PAC (Zone 3). 

If we assume that innovative farmers are those that move from IAC (Zone 1) to PAC (Zone 3) than 

the baseline sampled more “status quo” farmers than entrepreneurs. The location of households had a 

significant effect on household innovativeness. Despite the very coarse input parameters used (NDVI 

~ SPOT VGT 1km; RFE~ NOAA AVHRR 1km), the variable functional agro-zones explained 7% of 

the variation in innovativeness, which is considered good. It suggests that a stratified household 

sampling procedure will provide better representation for the functional agro-zones developed in this 

study, which may further improve correlations within and between functional agro-zones. 

  

The subsistence agricultural production system is dependent on optimal inputs from key 

environmental health factors such as woody biomass (primary and pioneer forests), water resources 

(river and watersheds), and soil fertility in order to maximize farm production and crops (Deichmann, 

1999). If soil organic carbon is a proxy for soil fertility (Tobler, 2011), which supports the production 

of biomass with adequate water and vice versa, it is therefore suggested that soil carbon content is a 

reliable indicator to monitor food security in relation to subsistence agricultural systems.  

 

However, these key environmental health factors cannot stand alone, whereby other factors such as 

infrastructure (human made facility) and especially the accessibility to the main road and nearby 

towns are proven to have a powerful effect on the overall correlation to social ecological parameters. 

As shown, key factors (forest, water and soil carbon) have allowed farmers within GAC (Zone 2) and 

SAC (Zone 4) to better cultivate with larger land size, better innovativeness, and thus larger farm 

produce diversity. However, it is also found that regardless of these advantages, bad infrastructure 

(roads) conditions may hamper the good farming potential within GAC (Zones 2) and SAC (Zone 4); 

negative trends between the social network and land sizes combined with lower transport assets than 

the IAC (Zone 1) and PAZ (Zone 3) indicates bad transport. Poor infrastructure may have especially 

hampered their marketing strategy, as well as distance from being reached by any extension services 

(organizational landscape from govt. and NGO’s agencies), which may bring important information 

and incentives to farmers. Perhaps it is the inability to market their crops that results in farmers in the 

SAC (Zone 4) and especially to GAC (Zone 2) remaining poor and food insecure despite available 

resources. 
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Regardless of difficulties encountered during the image classification analyses in this study, which is 

due to time-lap differences between the acquisition time of the RapidEye image and the GT survey 

date, results obtained between functional agro-zones with respect to the land size, transport related 

assets, farmer crop and animal adaptation, water, and innovativeness were significantly different. The 

same positive response was obtained when course image resolution from SPOT VGT and NOAA 

AVHRR satellite datasets were utilized and showed to match the site-specific characterizations of the 

developed functional agro-zones in this study. Whereas further demonstration of the vegetated 

anomalies between different CCAFS sites in East Africa using time series (1999-2011) have also 

explained and grouped the study sites in terms of their dynamic environmental health conditions, 

which is a very important, observation needs to be pursued with finer satellite datasets to show better 

accurateness. 

  

As shown from the calculated vegetation anomalies between and within sites in East Africa, there 

were trends thru all the major parts of East Africa and mainly between CCAFS study sites that a small 

increase in greenness was experienced in the past ten years (1999-2011). Even though the RFE data 

has showed no difference in rainfall patterns between these developed functional agro-zones, GT 

survey observation noted that the GAC (Zone 2) is located on a higher flat plateau located close to 

Kericho tea plantation, which indicates a consistent rainfall pattern. On the other hand, drier zones 

(IAC zone 1) showed that the short rainy period not only varies in total amount of rainfall, but also in 

its timing which makes planting during the short rainfall much more risky than planting during the 

long rains, especially where soil fertility conditions are poor as in the IAC (Zone 1). This observation 

matched our findings during the GT survey within IAC (Zone 1) where sorghum and some cotton 

fields were found, highlighting crop selection based on very low specific requirements for soil quality 

as well as drought resistance (Glemnitz and Hufnagel, 2012). Sorghum in particular takes a shorter 

period to grow than maize and it only takes two months to mature in the area (Mango J., Personnel 

communication 2011). This suggests that crop type is another important indicator parameter to be 

monitored by CCAFS in order to understand land health and vigor, farming types, and thus the 

innovativeness of the farmers in the face of environmental changes to the agroecological system. 
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The pattern of migration within the Nyando block was found strongly influenced by natural resources 

(farm supports), topography, and infrastructures. It was shown that road access (infrastructure) plays 

a critical role in terms of the migration pattern of communities between the agro-zones, where 

innovative farmers have moved from IAC (Zone 1) to PAC (Zone 3) and small numbers may have 

moved from IAC (Zone 1) to SAC (Zone 4), even though more healthy areas are located within GAC 

(Zone 2) and data did not reveal any migration pattern from IAC (Zone 1) to GAC (Zone 2). It was 

assumed that the reasons are that GAC (Zone 2) is mainly represented by steep areas and is far from 

the main road, whereas IAC (Zone 1) and PAC (Zone 3) are vertically connected with the main 

highway. In addition, most villages are located within IAC (Zone 1) and are connected closely to 

SAC (Zone 4) by roads. 

 

This integrated analysis built a framework to assess subsistence agricultural production systems or 

farming type practices towards farmer adaptation and mitigations strategies on agroecological 

landscape levels based on the assessment of ecosystem health services. This has led to the adoption of 

a “functional agro-zones” concept which has revealed that the status and characteristic of land use 

practices between these functional agro-zones are highly dependable on such environmental impacts 

and the quality of the agroecological system and farm particularly support three key factors: i) woody 

biomass, ii) water resources and iii) soil fertility. These factors are examined as indicators for 

environmental changes and food security to measure the capacity of an agroecological landscape to 

sustain human activity such as subsistence agricultural production system. It is believe that the 

absence of either one or two of these key factors will lead to further landscape degradation or land 

conversion resulting in people having to cope with their impact on the environment. The goal of this 

study is satisfactorily addressed. Nevertheless, the interpretation of results can only be regarded as 

preliminary, since further research is necessary to widen the application for other CCAFS sites. 
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Recommendations 

What needs to be done within other CCAFS sites for rapid-supervised image classification in order to 

come up with a reliable “functional agro-zones” thematic map and better understand the health of the 

agroecological landscape is detailed through the following step recommendations. 

 

Step 1: CCAFS image processing team has to improve the value of datasets by maximizing the 

utilization of the RapidEye image. The key environmental health factors/indicators (pictured below) 

covered in this study can be missed if the analysis is only based on satellite image processing. 

Therefore, the suggestions are: 

 

Picture of terrestrial permanent vegetated area in Nyando block consisting of primary forest, 

plantation Eucalyptus forest, and pioneer or Acacia govt. forest (Kolango forest) species. 

Photo: Faisal Mohd Noor. 

 

 Generate a woody-biomass (wood count) image from the RapidEye satellite imagery 

throughout all the CCAFS study blocks. The woody-biomass image will show tree counts 

from the study block (Tor Vagen, personnel communication) and most importantly the quality 

of the forest and function areas within the block. In addition, local coordinators can provide 

input from their knowledge to validate and confirm information obtained from the woody 

biomass image and vice-versa. 

 The SPOT VGT (1km) provides a coarse resolution to derive the vegetation anomaly image, 

therefore not much difference was shown between CCAFS study sites in East Africa and 

between functional agro-zones within the Nyando study block. It is recommended that a finer 

LANDSAT 30 meter resolution (in time-series) must be provided in the next analysis for 

better greenness (CNDVI) estimates. This will allow a better measure for the landscape health 

within CCAFS study sites and especially for different farming practices between the agro-

zones within the study block.    
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 Since the rainfall estimate (RFE datasets) showed no difference in the estimated rainfall 

patterns between Nyando block agro-zones, finer datasets for rainfall estimate such as the 

ones derived from the real weather stations are preferably suitable and have to be included in 

the next analyses.  

 

Step 2: Multi-temporal satellite analysis information can supply valuable information about changing 

patterns of land-cover, especially for vegetation species (Foerster et al., 2010; Vuolo et al., 2010), 

when information about the seasonal development of different land-cover types is included. This is 

the only way that CCAFS can compare the types of changes farmers have done in different functional 

agro-zones within the block, since farmer innovativeness in this study is explained based on the total 

number of changes rather than the types of changes. It is recommended that CCAFS purchase two 

sets of RapidEye images from two different seasons (dry and crop season) to limit issues due to cloud 

cover.   

 

Step 3: In-depth site-specific knowledge about the block’s biophysical characteristics and land-use 

cover by local coordinators are important assets in this analysis. This knowledge must be shared with 

image processor/soil and plant scientists so that image classification and interpretation of the study 

sites can be done efficiently. For an example, within the Nyando block it is rather easy for the local 

coordinator to identify basic farm resources/supports as well as general knowledge about landscape 

characteristics (Figure 47). Information about the topography will be provided from Aster or SRTM 

DEM data sets in this exercise, however having the local coordinator do a basic delineation process 

by providing the following basic information would be valuable. 
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Figure 4711. Overlay of RapidEye image with Aster DEM and areas that are 

potentially to be identified by the local coordinator (see description of areas). 

 

 

BLUE - highly populated area, main highway in the block, many villages and few townships;  

RED - highly populated, gully formation, intensive subsistence agricultural land parcels, and major 

crop types;  

LIGHT GREEN - basic resources are available such as, pioneer/acacia government forest (Kolango 

forest), river, farming types and field grasses; 

BLACK - undulating area to very steep areas, define greenness seen from the spectral signature of the 

RapidEye as vegetation types (dense bushes, coarse bushes, pioneer forest);  

GREEN - highland with intensive crop cultivated area due to good farm resources such as a primary 

forest, and water resources to carry out best subsistence farming practice. 

 

By getting this basic extra information, the pictures (village level baseline datasets) taken by the 

youth groups during the village baseline survey should help with the image processing procedure 

since they are geo-referenced. The limitation to fully utilize the information from the pictures in this 

process is that the type of landscape shown by the picture does not tell the scale on the ground or 

study site, which is easily provided by the local coordinators. This also provides a proper framework 

for CCAFS in dataset utilization and management. If the above procedure can be done in a controlled 

way, with the aid of soil organic carbon maps, the GT survey can be minimized or omitted, and 

should be explored by CCAFS. 
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Step 4: Create site groups representing the environmental health status. What indicators (NDVI) can 

be used to group the other fourteen CCAFS sites from healthy to degraded agroecological systems? 

The aim of the “functional agro-zone” concept is to be able to group the other fourteen CCAFS sites 

into three main groups as shown in Figure 48. If NDVI is a potential and reliable indicator to monitor 

changes between these different groups in time series, the recommendation above on utilizing the 

potential of Landsat 30 meter resolution in time-series is crucial given the size of the CCAFS study 

block is rather small to derive the best NDVI model.  

 

Figure 48. Site groups representing improved landscape group, no changes 

landscape group and degrading landscape group. 
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