MICROBIAL CONTAMINATIONS IN MILK AND IDENTIFICATION OF SELECTED PATHOGENIC BACTERIA ALONG DAIRY VALUE CHAIN IN TANGA, REGION, TANZANIA

Presented by Fortunate Shija at the first international One Health conference of One Health Central and Eastern Africa (OHCEA) held at Addis Ababa, Ethiopia, 23-27 September 2013.

Introduction

- Food-borne diseases are a threat and are responsible for 33-90% cases of mortality to children
- Bacterial milk contamination causes:
 - Milk spoilage
 - Milk-born zoonotic diseases

Up to 90% diary related diseases are due to pathogenic bacteria from milk

Dairy industry in Tanzania Unpasteurized milk

Dairy industry in Tanzania Informal market

Problem statement and justification

- Risks of milk safety hazards in informal market
 are high and unknown in Tanzania
- Previous studies have been on the specific risks associated with pathogenic microbes along the milk chain (e.g. Swai and Schoonman., 2011,Kaiza et al (2011)

Problem statement and justification

- PCR detection of milk bacterial contaminants is powerful, gives reliable information on pathogens in milk
- Results of the study will be used to improve food safety throughout smallholder and informal milk value chain in Tanzania

Objectives

Main Objective:

To assess milk handling practices, bacterial contamination and determine selected milk borne zoonotic pathogens along the dairy value chain in Lushoto and Handeni districts of Tanga region

Specific objectives:

- 1. To assess the possible sources of microbial contamination of milk from farm to consumer
- 2. To establish total plate count of bacteria and coliforms in milk from Lushoto and Handeni districts
- 3. To establish the prevalence of *Escherichia coli* 0157:H7 and *Brucella abortus* in milk using polymerase chain reaction

Methodology

Study area-Tanga region –North eastern part of Tanzania

Study design: Cross sectional

Data collection

93 (65 farmers, 28 retailers) respondents

Sample collection

166 milk samples from farmers, vendors, restaurants/kiosks, collection centres and consumers

Statistical data analysis

Laboratory sample analysis

Laboratory sample analysis

Selected pathogens and Primers

Escherichia coli 0157:H7 (0157-3 and 0157-4)

Brucella abortus (BRU P5 and BRU P8)

General practices during milking storage and delivery

		No. (%) farmers	
Variable	Category	respondents	
Sources of water	Тар	26 (40.0)	
	Wells	21 (32.3)	
	Dams and/or streams	19 (29.3)	
	Cleaning animal shed before		
	milking	28 (43.1)	
Milling prostions	Wash hands before milking	46 (70.7)	
minking practices	Wash cow's teats before		
	milking	41 (63.1)	
	Wash hands after milking	47 (72.3)	
	wide necked aluminium vessel	2 (03.1)	
Containers used for milk	Wide necked plastick vessel	56 (86.1)	
storage	Used water and oil bottles	6 (09.2)	
	Cooking pan "sufuria"	1 (01.5)	
	wide necked aluminum vessel	0 (0.0)	
Containers used for	Wide necked plastick vessel	38 (58.5)	
delivery/transportation	Used water and oil bottles	8 (12.3)	
	Cooking pan "sufuria"	3 (4.6)	
	Others e.g traditional pots	16 (24.6)	
	On foot	37 (56.9)	
Means of delivery	By bicycle	9 (13.8)	
	By motorcycle	3 (4.6)	

Total plate counts and coliform plate counts

Variable	Observation	Mean	Std. Dev	Min	Max		
	8	(log10	(log10)				
		cfu/ml)					
		Total Plat	e Count				
Farmers	21	5.3	5.4	3.3	5.8		
Vendors	5	5.8	5.7	4.6	6.1		
Restaurants	7	4.9	4.9	0	5.3		
Coliform plate count							
Farmers	22	4.8	4.9	2.5	5.5		
Vendors	4	4.8	5.1	3.3	5.4		
Restaurants	7	3.6	3.9	0	4.3		

Detection of *B. abortus*

42% positive

Detection of *E.coli*

Risk factors associated with microbial contamination of milk for farmers

	Risk factors		p-value	Mean TPC	Mean CPC	p-value
Milking practices	WHBM	81.8	0.47	2×10^{5}	5.9×10 ⁴	0.48
	WCTBM	63.6	0.52			0.40
	CAHBM	36.4	0.26			0.31
	WNAC	13.6				
Types of container	WNPC	72.7	0.35	2×10^5	5.9×10 ⁴	0.39
S	Cooking pan "sufuria"	13.6				

Risk factors associated with milk contamination for milk vendors and restaurants

					p-value
Factors		Vendors	Restaurants	p-value (TPC)	(CPC)
Source of milk	OF		20%		
	MTOF		80%	0.28	
Type of milk	Raw	60 %			
	Fermented	20 %		0.28	0.26
Containers for selling	WNAC		57.1	0.32	0.42
	WNPC		42.9		
How milk is delivered	SSP		85.7	0.32	0.71
	MR		14		
Container used for selling	NNPC	80 %		0.28	0.26
	WNPC	20 %			
	By bicycle	60 %		0.27	0.23
	By motorcycle	20 %			
How customers get milk	SSP	20 %			

OH aspect of the study

- Questionnaire set up
- Involvement of the community
- Findings

Discussion

- Poor hygienic practices at milking and selling places contributes to increase in microorganisms
- Lack of knowledge on zoonotic diseases and their causes in farmers contributed to poor unhygienic practices in milky activities
- The prevalence of *B.abortus* suggests high contamination rate- relates to findings by Schooman and Swai (2005)

Recommendations

- Veterinary/extension services should be provided to livestock farmers on proper animal husbandry and control of diseases
- Responsible authorities must ensure that existing regulations are instituted and where possible there should be a mandatory screening of milk before sales to the public

Recommendations

• Consumer practices, such as milk boiling should be further encouraged

• Further study to relate the findings with human brucellosis in that area should be carried out

Acknowledgement

OHCEA

Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung

INTERNATIONAL Livestock research I N S T I T U T E

