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INTRODUCTION  
Animal diseases are responsible for a number of economic impacts, affecting those 
involved in the livestock sector as well as a range of ancillary sectors that directly or 
indirectly depend on livestock.  In much of the developing world, livestock serve both 
livelihood functions and as a potential pathway out of poverty (Perry and Grace, 2009).  
Animal-source foods are also an important source of protein for the poor; they enhance 
physical activity among children and reduce morbidity from illnesses (Sadler et al., 
2012).  In such contexts, livestock contribute to household food needs, income, draught 
power for crops, an asset base, and various social functions, suggesting that the impacts 
of animal disease occurrences, and in particular their ramifications on poverty, may be 
difficult to tease out (Rich and Perry 2011; Randolph et al., 2007; Perry and Grace, 
2009).   
 
While disease impacts are most obvious and direct in the livestock sector itself, disease 
outbreaks have a variety of downstream impacts. In particular, supply chain linkages 
among various interconnected stakeholders modulate shocks from the impacted animal 
sector along agro-food supply chains and consumers.  Some diseases, particularly those 
of a zoonotic and transboundary nature, can generate spillovers to other economic 
activities (tourism, health services, trade and transport, environment, etc.) in which the 
indirect effects of disease outbreaks can far outweigh direct ones.  Moreover, an 
additional component of impact concerns public and private responses to the real or 
perceived risk of the disease and their potential effects rather than just the actual, direct 
on-farm impacts (Rich and Roland-Holst 2013).  Thus, any policy interventions need to 
address stakeholder reactions, interests, and incentives that could either reinforce or 
undermine both risk management and outbreak response programs (Rich et al. 2013). 
 
At the same time, not all livestock diseases impact the economy in the same way. In 
particular, diseases can vary in their impact depending on whether they are epidemic or 
endemic, zoonotic or confined to animal populations, transboundary or locally 
concentrated, and the extent to which local, regional, national, or international 
externalities exist (table 1). For example, transboundary diseases such Rift Valley Fever 
(RVF) or foot-and-mouth disease (FMD) have impacts on local and international trade, 
with numerous effects on other sectors such as crops that use livestock as an input to 
production.  By contrast, some diseases may have less in the way of international 
impacts, but may have local impacts and/or externalities on the environment (e.g. the 
impacts of acaracides for tick-based disease on groundwater stocks) (Rich and Perry 
2011).   
 
We synthesize the universe of disease impacts by overlaying two separate conceptual 
frameworks. First, Rich and Perry (2011) identify five dimensions of disease impact 
based on the characteristics of the disease and their setting: (i) disease characteristics, 
(ii) production systems characteristics, (iii) market characteristics, (iv) livelihoods 
characteristics, and (v) control characteristics. Second, Rich, Roland-Holst, and Otte 
(2013) look at disease impacts at different levels of aggregation i.e., (1) household or 
farm level impacts, which can include non-farm related livelihoods impacts; (2) cattle 
sector impacts; (3) general livestock sector impacts, including substitution effects at 
production and consumption levels; (4) national-level value chain impacts based on the 
forward and backward linkages of livestock with other sectors of the economy, 
particularly agriculture; (5) downstream national level impacts in non-agricultural 
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sectors such as tourism, as well as other externalities such as effects on the 
environment, wildlife, and (for zoonotic diseases) human health; and (6) impacts at the 
global or sub-regional levels due to international trade bans, for instance. Figure 1 
distills this combined framework graphically, while table 2 applies it in the context of 
RVF to show the various impacts of disease at different levels of analysis. 
 
This framework for assessing animal diseases suggests a need for more holistic, systems 
approaches to impact assessment. Numerous methods have been suggested and applied 
in an animal health economics context over the past 20-30 years (see Rich, Winter-
Nelson, and Miller 2005 for a review), with an overwhelming majority of these relying 
on the simple computation of disease costs at a farm-level. These methods largely ignore 
the behavioral response that animal diseases engender upon different stakeholders 
(Rich et al. 2013; Rich, Roland-Holst, and Otte 2013). A particular gap remains at meso 
levels such as the value chain in quantifying impacts among different stakeholders.  Most 
value chain studies of animal diseases tend to be qualitative and descriptive, suggesting 
potential critical control points, but lacking empirical rigor in comparing between 
different intervention options (Rich and Wanyoike 2010; Rich and Perry 2011). Indeed, 
as noted by Rich (2007) and Rich and Perry (2011), what is crucially missing is a way to 
close the feedback loop between the impact of disease and the behavioral response to it 
throughout the value chain.  
 
In this paper, we propose the use of system dynamics (SD) as a way of better 
addressing the multifaceted impacts of animal diseases. As elaborated below, SD models 
have the advantage of modeling the interface of disease dynamics with production and 
behavioral dynamics, including downstream activities in the agrifood value chain, which 
are not possible to model in other meso-level platforms (e.g., multimarket models, social 
accounting matrices). Moreover, as dynamic simulation models, they can be used to 
conduct scenario analyses of different policy interventions (disease-related, production-
related) and their predicted ex-ante impact on the system over time. In this manner, SD 
models give us a useful framework for assessing tradeoffs, particularly in climates of 
increasingly scarce resources (Rich et al. 2013). 
 
AN OVERVIEW OF SYSTEM DYNAMICS MODELS 
An SD model is a dynamic model that maps out the flows, processes, and relationships 
between actors that exist within a complex system (Sterman 2000). SD models have 
been used in a variety of applications, including economics, ecology, public policy, 
natural systems, and environmental sciences, among others. Fundamentally, SD models 
are simulation approaches in which the evolution of the process is of interest rather than 
a specific equilibrium or “optimal” solution. Indeed, SD models are essentially systems of 
differential equations with no “closed-form” solution, where comparison of the 
evolution of different simulation runs based on alternative shocks to the system over 
time is the primary mode of analysis. 
 
SD models utilize another key difference relative to standard modeling frameworks – 
they use a graphical interface for modeling. That is, rather than coding the system in a 
programming language (e.g., such as GAMS, SAS, R, or Matlab), a graphical interface is 
used to construct the structure of system relationships, with many structural 
relationships automatically calculated by the software through the linking of graphical 
relationships. This not only eases model conceptualization and communication, but also 
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allows for the multidisciplinary development of models from users of various 
backgrounds. 
 
SD models have a number of key building blocks and concepts: 

 Stocks are accumulations at a particular point in time. In a livestock context, 
stocks could be the number of animals held by farmers, animals (or meat) traded 
by different value chain actors, or animals in a particular disease state (infected, 
susceptible, etc.); 

 Flows are the rate of change in a stock. The amount present in a particular stock 
at time t depends on how much enters the stock (inflows) and how much exits 
(outflows); 

 Converters (or parameters) modulate the relationships between stocks and 
flows, and could include technical parameters that define how fast particular 
inflows or outflows influence the volume of a stock at a point in time. 

 
Perhaps the simplest metaphor for these initial building blocks of SD models is that of a 
bathtub. In figure 2, a simple model is illustrated in the iThink modeling software 
(http://www.iseesystems.com) that graphically models this example. The rectangular 
shape labeled as “Water in Bathtub” represents a stock. We denote two types of flows 
entering and exiting the bathtub. These are illustrated by the thick arrow shapes 
entering (“Water entering tub”) and exiting (“Water existing tub) the stock. We have one 
converter, named “Water valve,” that regulates the speed of inflow of water into the tub. 
In figure 2, the value for the parameter “Water valve” could be based on technical or 
other information at hand. However, the software automatically calculates the 
stock/flow relationship, which is formally defined as a differential equation. In iThink, as 
with other SD modeling platforms (e.g. Vensim, Powersim, STELLA), model equations 
are stored in the background, but are not directly programmed as such.  
 
We provide another example of an SD model in figure 3. Here, we represent the 
standard SIR (susceptible-infected-removed) model from epidemiology in iThink. Before 
explaining figure 3 in depth, it is useful to write out the standard SIR equations defined 
below in equation (1). Recall that S, I, and R are different states of nature of the 
population (i.e., susceptible to disease; infected with disease; or removed from the 
system, either by death, exits through sales, or natural recovery), while the parameters  
and α represent the infection rate and time to recover, respectively: 
 

I
dt

dR

SII
dt

dI

SI
dt

dS













  (1)

 

 
 
In figure 3, our stocks are the three different states of nature – susceptible, infected, and 
removed. Our system has two flows – a transition from susceptible to infected 
(“infection rate”) and from infected to recovered (“recovery rate”).  The latter flow 
depends solely on the inverse of duration of illness (i.e., α in equation (1) above, which is 

http://www.iseesystems.com/
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equal to 1/D, where D is disease duration) multiplied by the number of infected 
individuals in the system. The former flow depends on , the infection rate, which is the 
product of the contact rate between individuals, how infectious the disease is 
(“infectivity”), and the total population, as well as the mixing of susceptible and 
infectious individuals in the system.  
 
Figure 3 highlights an additional important component of SD models – the concept of 
feedback. Feedback is the process by which changes in one part of the systems affects 
other parts and, consequently, impacts the original component over time (McGarvey and 
Hannon 2004). In SD models, we can predict different types of system behaviors based 
on the combination of feedback patterns that exist.  
 
We consider two types of feedback patterns in SD models. Positive feedback (also called a 
reinforcing feedback loop) is a state in which behavior is reinforced over time, whether 
positively or negatively (see figure 4a). Such behavior takes an exponential shape. For 
instance, in the feedback between, say, eggs and chickens, more eggs leads to more 
chickens, which leads to more eggs and so on. By contrast, a balancing loop (also called a 
negative feedback loop) is one in which there is behavior that counteracts change (see 
figure 4b). As a simple example, consider the feedback loop between chickens and road 
crossings. More chickens leads to more road crossings, but more road crossings leads to 
fewer chickens (ostensibly squished on the road from crossing!). More generally, as 
noted in figure 4b, balancing (or negative) loops incorporate some sort of corrective 
action, often due to a gap between a desired state and the actual state. In such feedback 
loops, we observe behavior that converges on a steady state (see figure 4b) (Sterman 
2000). 
 
When we observe multiple feedback structures in the same system, we can predict 
behavior based on the relative strength of feedback loops at different points in time. For 
instance, S-shaped growth (figure 4c) results from the combination of a reinforcing loop 
and a balancing loop. In such systems, the reinforcing loop dominates system behavior 
at early periods of time until limits on resource availability start to bind, switching 
system dominance to the balancing loop and converging on the level of carrying 
capacity. Oscillation behavior (figure 4d) arises when balancing loops have delays 
between different actions, preventing a convergence to a steady state. S-shaped growth 
with overshoot (figure 4e) is a variant of S-growth in which the balancing loop has 
delays, while overshoot and collapse (figure 4f) is characterized by switching from 
reinforcing to balancing loops with eroding (non-renewable) carrying capacity.  
 
In our SIR example from figure 3, we have three feedback loops – one positive or 
reinforcing loop and two balancing or negative loops. Our positive loop is that between 
our infected population and infection rate – the more infected people in our population, 
the greater the infection rate, and the greater the infection rate, the more infected 
people will be in our population. Counteracting this are two balancing loops. First, 
consider the feedback between the susceptible population and infected rate – the 
greater the susceptible population, the greater the infection rate.  However, as the 
infection rate rises, there will be a smaller susceptible population to infect. Similarly, as 
the number of infected individuals rises, the recovery rate rises. But, as the recovery 
rate rises, fewer people will be infected in the future.  The behavior in the SIR model is 
illustrated in figure 5 for each of the states. The positive feedback loop dominates the 
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two negative feedback loops at early stages of the epidemic, but as the pool of 
susceptibles falls (due to prior infection), the number of newly infected people falls, with 
the recovery rate rising faster than new infections at later periods in the epidemic.   
 
Delays are also an important component of SD models. As noted earlier, delays can 
modulate and influence different feedback structures (see figure 4). We consider three 
different types of delays – material delays, pipeline delays, and information delays.  A 
material delay is a delay in the flow of goods within the manufacturing or supply chain 
process, but in which there is the mixing of goods within the delay process. For instance, 
suppose there is a one-week delay between the delivery and use of an input and the final 
output. In a material delay, the length of delay is an average delay period – some goods 
may finish earlier or later than the average. This type of delay captures the mixing of 
goods within a process. By contrast, a pipeline delay is a fixed period delay in a process.  
For instance, in the manufacturing of a good on an assembly line, all products take the 
same amount of time to be transformed from input to output. An information delay 
captures delays in perception. For example, there could be delays in expectations on 
orders or prices that influence ordering or production behavior with a lag.   
 
OPERATIONALIZING SYSTEM DYNAMICS IN LIVESTOCK SYSTEMS AND VALUE 
CHAINS 
SD models have been used in a number of recent livestock applications.  Rich et al. 
(2011) proposed the use of system dynamics (SD) tools in livestock settings to model 
livestock value chains, given the complexity of both production and market transactions.  
Rich (2007) developed a framework in which a simple livestock supply chain was 
integrated with an epidemiological model of poultry disease, with changes in disease 
and control strategies affecting value chain dynamics, and vice-versa.  Hamza (2012) 
developed a similar structure in the context of sea lice control in Norwegian salmon, 
integrating the epidemiology of the host-parasite relationship with intervention options 
and an assessment of cost-effectiveness.  Similarly, Naziri, Rich, and Bennett 
(forthcoming, 2014) implemented an SD model of the Namibian cattle value chain in 
which herd dynamics, FMD risk status, and downstream cattle marketing were 
integrated to assess the cost-effectiveness of alternative protocols to implement 
commodity-based trade protocols.  Rich, Perry, and Kaitibie (2008) used an SD approach 
to look at the competitiveness of Ethiopian beef exports to the Middle East under an SPS 
certification program. Ross and Westgren (2006) developed an SD model of 
entrepreneurial behavior in hog value chains in the United States.  Recently, Hamza et al. 
(2013a, b) has expanded these models to look at the marketing of smallholder livestock 
in their different value chains in Botswana and Mozambique, respectively. The common 
thread in all of these applications was the need to capture the feedbacks within complex 
livestock systems, in terms of the interactions between biology, markets, and external 
shocks. 
 
To motivate how we can use SD in livestock systems, we first start with a simple model 
of supply and demand developed by Whelan and Msefer (1996). This model is the 
foundation for modeling market dynamics within a complex system, to which more 
complex relationships such as the biology of animal production, interfaces with animal 
disease, and modeling of downstream value chain actors can be added.   
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The initial building blocks of the supply and demand model are a stock-flow diagram, 
illustrated in figure 6. Both supply and demand are calibrated by price relationships 
(more details on price formation can be found in figure 7) as in a neoclassical economic 
model. The simple example of Whelan and Msefer (1996) used graphical functions of 
supply and demand, though supply and demand functions can be more explicitly defined 
based on econometric data (see Rich and Roland-Holst 2013 for an example).  
 
Figure 6 also highlights the pivotal role of inventories in the model. The stock of 
inventories is the key component that not only regulates inflows of supply and outflows 
of sales, but also is responsible for price adjustments. Unlike a neoclassical model of 
supply and demand in which prices quickly adjust to shifts in the supply or demand 
curve, an SD model relies on the relationship between actual inventories and desired 
inventories (defined as the parameter “Inventory ratio”) to change prices. When actual 
inventories exceed desired inventories, there is pressure on the system to reduce those 
inventories, which arises by reducing prices. Similarly, when desired inventories are too 
low relative to actual inventories, prices are bid up to encourage the building up of 
inventories.  Desired inventories in figure 6 are a function of demand and the number of 
weeks of stock desired by a decision-maker.  
 
Price formation in the model is also modeled as a stock-flow relationship (figure 7), 
based on the inventory relationships discussed above and in turn influencing how much 
is supplied and demanded in the system.  Price is modeled as a stock, with the level of 
price changing each period based on the inflow “Change in Price”. This inflow is modeled 
as a biflow, which means that the flow can either be positive or negative (i.e., prices can 
go up or down). “Desired price” is the product of the parameter “Effect on price” and the 
stock “Price”. “Effect on price” graphically defines the inverse relationship between price 
and the inventory ratio – recall that when the inventory ratio is large, prices should fall 
and vice-versa. “Effect on price” could also be defined analytically as a function as with 
supply and demand. The gap between “Desired Price” and “Price” is what changes prices 
in subsequent periods and affects supply and demand. The model further assumes a 
delay in the adjustment of prices based on decision-makers’ perceptions on price 
adjustment times.  In the steady state, “Inventory ratio” will be valued at 1, which means 
that “Effect on price” will be 1 and “Desired Price” will be equal to “Price”.  
 
The Whelan and Msefer (1996) model is at the core of modeling value chains using SD. 
In livestock settings, we elaborate upon this setting by expanding our supply and 
demand relationships, but the basic market interactions with more complex models are 
the same.   
 
We first illustrate how to expand the supply side of the model to incorporate livestock 
production. Our starting point is modeling the population structure of livestock. Here, 
we start with a stock-flow relationship of the life cycle of a typical animal from birth to 
final sale or death. Figure 8 illustrates a simple population model for female cattle (male 
cattle can be likewise modeled) based on the DynMod model developed by Lesnoff 
(2008). Each stock represents a state of nature for an animal (juvenile animals, sub-
adult animals, adult animals). Animals move between different states of nature through 
flows between stocks that are calibrated based on various probabilities of sale or death 
(purchases of animals, while not modeled here, could be added). The entry of new 



 7 

animals depends on the stock of female adult animals and technical parameters related 
to parturition and prolificacy rates.  
 
Within the female part of livestock demographics are decisions whether to hold animals 
for breeding or to sell them. In commercialized systems, these decisions are based on 
price movements but in a developing country setting, they could also be dictated by 
various livelihood considerations (e.g., school fees or other family necessities). In figure 
8, we consider a simple elasticity-type response to the decision to sell animals. However, 
other SD models incorporate a separate stock for breeding stock and consider the 
difference between actual breeding stock and desired breeding stock. The latter could be 
determined by carrying capacity, income levels, etc. In figure 9, we present a similar 
population model of poultry that illustrates how a breeding stock could be modeled in 
the system. Note that the transitions in figure 9 are less complex than in figure 8, as the 
latter model was developed explicitly to replicate the dynamics embedded in the 
DynMod model. Note further in figure 9 the interaction between the population model 
and downstream inventory. In the rest of the model (not shown), the demand, price, and 
inventory modules are analogous to the supply/demand model illustrated in figures 6 
and 7.  
 
We can extend the demand side of the model as well to examine dynamics downstream 
in the value chain. Figure 10 models the cattle value chain in Botswana based on Hamza 
et al. (2013a). The model includes three main sectors: (1) production, (2) domestic 
marketing, and (3) export marketing. The model also includes a policy module that 
governs changes in trading and management practices resulting from different policy 
scenarios. In the lower portion of the figure, we present a simplified model of livestock 
population dynamics. Exits from the stocks of calves (weaners) and adult cattle go to 
different markets, including export markets and different domestic markets of various 
quality profiles. Some sales are made via intermediaries such as feedlots.  Price 
movements in different end channels are endogenized and influence producer behavior 
to sell or hold animals, but only partially as livestock herds are also maintained as a 
source of assets. The model further considers the feedbacks between environmental 
carrying capacity and producer profitability, as limits to the resource base (calibrated by 
available rainfall) influence cattle mortality and fertility (Hamza et al. 2013a). 
 
The model was used to explore the viability of market liberalization and investment 
policies. In Botswana, the Botswana Meat Commission (BMC), a government parastatal, 
strictly regulates exports.  BMC is the monopsony buyer of animals for export and the 
monopoly seller of meat for export. This market structure depresses the prices paid to 
producers at levels less than export parity, reducing incentives for producers to supply 
BMC and reducing throughput at BMC abattoirs, resulting in increasingly high losses for 
BMC.   
 
One proposed reform is to partially liberalize the export market by allowing the sale of 
live weaners to South Africa, though this could have significant impacts on different 
value chain actors and the dynamics of the cattle sector in Botswana. Model results 
indicated a very marginal improvement in producer income from such proposed partial 
market liberalization and very modest reductions in the profitability of feedlots and 
BMC. However, the mitigating factor in fully opening up markets is the continued 
presence of FMD in Botswana. Scenarios that alternatively consider investments in FMD 
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control in conjunction with market liberalization are significantly much more lucrative 
for producers as well as BMC, with the latter benefitting more from market access to 
European markets from FMD control than from the loss in its monopoly power (Hamza 
et al. 2013a).  
 
In a meso-level context, model structures as discussed above are extremely useful in the 
development and analysis of policy scenarios at a value chain level. As discussed earlier, 
SD models are extremely adaptable to the modeling of value chain dynamics in a way 
that other meso-level approaches, such as multimarket models or social accounting 
matrices (SAMs), are not. Multimarket models at the level of the value chain, for 
example, would necessitate the modeling of numerous and overly specific supply and 
demand relationships that would be difficult, if not impossible, to econometrically 
parameterize. They could also omit the structure of various institutional, non-economic, 
and/or livelihoods aspects of the value chain that SD models can more easily 
incorporate. Similarly, SAMs are much more aggregated than SD models in their 
treatment of livestock markets – indeed, many SAMs do not have livestock accounts at 
all – while SD models can capture a multiplicity of different marketing channels and 
producer and consumer segments. Modeling market and biological dynamics as well as 
integrating economics with epidemiological phenomena is also problematic with either 
multimarket models or SAMs. For instance, the multimarket model of FMD control in 
South America of Rich and Winter-Nelson (2007) was only loosely integrated with a 
epidemiological model (incidentally an SD model programmed in STELLA, see Rich 
(2008)), with the market and biological dynamics in the multimarket model were 
nowhere near as realistic as those found a more structured herd demographic approach 
in an SD model. 
 
Given our extended livestock supply/demand model, we can consider the incorporation 
of a number of other modules that influence this system and, in turn, are influenced by 
market and biological dynamics. Consider first the influence of animal disease in our 
system. As noted by Rich (2007), one of the underappreciated and under-analyzed 
dimensions of the impact of animal diseases is the failure to incorporate the feedbacks 
between disease evolution and behavior. Most animal health studies look only at the 
one-way impact of disease i.e., the impact of disease on producers or other actors. 
However, actions taken by producers also influence the course of disease. For instance, 
distress sales made by afflicted producers during an outbreak can modulate the 
duration, intensity, and spatial spread of disease. A unique advantage of SD models is 
their ability to capture these feedback effects. In turn, given these feedbacks, decision 
rules can then be added and endogenized as well - Duintjer Tebbens and Thompson 
(2009) did this when looking at the prioritization of interventions for human diseases 
based on their cost-effectiveness, which can shift over time (see figure 11 for an SIR 
model incorporating their approach).  
 
Rich and Roland-Holst (2013) recently looked at the impact of FMD in Cambodia. In 
their SD model, they considered the interaction of FMD and disease control 
interventions on market dynamics, the means by which market dynamics and response 
to disease (e.g., market closures, distress sales) influence disease evolution, and how 
related downstream markets are affected. In the latter case, they considered the impact 
of FMD on rice markets, given that cattle are a source of draught labor for plowing. 
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While declining in importance – only about 5 percent of farmers in Cambodia rely on 
cattle for plowing – these impacts are particularly relevant for smallholders.  
 
Figures 12 through 14 provide snapshots of the disease and rice modules of the model. 
The supply and demand side of the livestock model is analogous to what was earlier 
presented in figure 8, and figures 6 and 7, respectively. In figures 12 and 13, we model 
an SIR model (recall figure 3), with an added flow to incorporate a vaccination policy. 
The key to integrating an SIR model with our herd population model is to ensure 
balance between the population within the SIR model and the livestock demographic 
model. This requires ensuring that entry into the disease model comes from births and 
purchases, while non-disease related exits come from natural mortality and sales (figure 
12). Similarly, deaths from FMD need to be added to the livestock demographic model 
(not shown). Finally, we need to ensure that there is population balance between the 
epidemiological and biological modules (figure 13).  
 
In figure 14, we model rice as a supply-demand model. Supply and demand are 
calibrated through the use of a simple double-log functional form based on elasticities 
from the literature.  The duration of the FMD outbreak, modeled by the stock “FMD 
duration counter” and the proportion of land impacted calibrates how much aggregate 
rice yields are reduced as a result of an FMD outbreak.  
 
We illustrate some suggestive results from this model in figure 15(a)-(h) below.  In 
these simulations, we considered the following: 

 Scenario 1: A baseline scenario (status quo) against which to compare results 
from other scenarios, with production data and population calibrated to fit 
population growth in Cambodia (about 1.5% per year);  

 Scenario 2: An initial FMD outbreak in week 280 affecting an initial group of 
1,000 animals. We assume that 20% of domestic markets are closed during the 
outbreak until less than 1% of the population is infected – at this point, 90% of 
markets are open. Once the proportion of infected animals is less than 0.02%, we 
assume that all markets re-open; 

 Scenario 3: A similar sized outbreak as in (2) but in which distress sales last for 
10 weeks instead of 4; 

 Scenario 4: A similar sized outbreak as in (2) but in which only 60% of markets 
are open during the major part of the outbreak (instead of 80% as in (2)); 

 Scenario 5: A similar sized outbreak as in (2) but where paddy crops affected by 
FMD are 27% of total production instead of 5%, based on alternative data cited in 
Rich and Roland-Holst (2013). 
 

Rich and Roland-Holst (2013) found that herd dynamics are influenced by the relative 
changes in prices induced by the outbreak.  Initially, there is a small surge in distress 
sales, but with resulting market closures, there are incentives to hold animals (panels 
(a) and (b)), causing herd populations to rise.  Depressed supplies and sales cause prices 
to spike in the meat market, which are exacerbated when distress sales occur over a 
short period of time (panels (c) through (e)).  At the same time, differences in the time in 
which distress sales take place have no appreciable impact on the evolution of disease 
(panels (f) and (g)).  However, scenario 4, in which 40 percent of markets are closed, 
considerably amplifies these affects, particularly on prices, trade, and the number of 
infected animals, which rise relative to the other scenarios.  The rice scenario (scenario 
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5) has a very modest impact on traded rice and rice prices, causing a slight decline in 
domestic trade and a slight increase in prices during the initial harvest year in which the 
outbreak takes place.  However, these impacts reverberate over time, as price effects in 
the year of the outbreak, combined with the fact that the outbreak continues at low 
levels over subsequent years, amplify these impacts over the remainder of the 
simulation. 
 
The applicability of this model to the case of RVF control is clear. As noted in Rich and 
Wanyoike (2010), market movement bans were an important feature of RVF control 
during the 2007 outbreak. However, delays in market closure combined with distress 
sales had important impacts on the spread of disease, as well as on livelihoods later 
given the severe reduction in prices associated with the impact. While not modeled in 
the Cambodia paper, extending this framework to incorporate downstream interactions 
and impacts (as in the Botswana model of Hamza et al. (2013a)) would not only better 
quantify the totality of disease impact but also help gauge the behavioral reaction and 
practices of downstream actors such as traders on disease transmission. Rich and 
Wanyoike (2010) inventoried the various downstream impacts of RVF, particularly on 
livelihoods in local communities, but more precise quantification of these impacts was 
not possible at a meso level. An SD framework would provide greater guidance on 
potential economic impacts as well as a framework to model ex-ante the effects of 
alternative intervention strategies. This is an area where ongoing RVF impact 
assessment work could benefit from such an SD model.  
 
A complication of RVF is that it is a vector-borne disease. So far, we have only 
considered animal diseases that are primarily spread through animal contacts. However, 
latent mosquito populations that emerge during El Niño events initially seed RVF 
outbreaks. This requires not only looking at animal movements, but host-parasite 
interactions as well. The sea lice model of Hamza (2012) is instructive here. Sea lice are 
a parasite which attack wild and farmed salmon populations, reducing weight gain and 
productivity of younger fish, and causing mortality during severe infestations. Sea lice 
control measures involve controlling the vector population through either in-feed or 
chemical treatments, or the use of cleaner fish that feed on the lice population. The sea 
lice model of Hamza (2012) used SD techniques to model both host-parasite interactions 
and the cost-effectiveness of different treatment options. Figure 16 models the causal-
loop diagram of the evolution of the sea lice population, while figure 17 illustrates 
treatment options for sea lice control based on government mandated thresholds of sea 
lice populations in production areas at different times in the year.  An interesting feature 
of this model is the ability to run treatment scenarios in real-time, adjusting treatment 
policies as the simulated outbreak unfolds. This approach could provide a more realistic 
modeling of RVF disease dynamics that is integrated within their spatial context and the 
livestock market dynamics present there.  
 
Data needs for calibrating SD models of animal disease and livestock value chains are 
relatively modest. Table 4 summarizes some of the key parameters that are required. 
One of the important data collection needs is a shift in approach towards gathering 
information about dynamic behavior and phenomena while building upon traditional 
value chain data collection means. As SD models address dynamic systems, it is crucial 
to obtain information on production and trade per unit time, for example. Issues such as 
the seasonality of prices and production play an important role, as do non-economic 
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considerations such as livelihoods rationales for marketing livestock that may not follow 
market-based rationales. A crucial aspect of using an SD model is modeling the system 
structure and processes appropriately, including feedback and behavioral mechanisms. 
 
So far, we have looked at the integration of animal diseases within livestock value 
chains. However, other types of market shocks can affect livestock value chains and 
mitigate market access for smallholders. Food safety regulations are an emerging 
obstacle for smallholders to access increasingly quality-conscious markets in developed 
and developing countries alike. The lack of smallholder compliance with food safety 
regulations often arises due to a host of production practices that are often rooted in 
traditional behavioral practices or social norms that are difficult to change.  Market-
based incentives are one means to raise food safety levels, but need to be sensitive to the 
socio-economic and socio-cultural context in which production and decisions take place. 
A key attribute of any such intervention is linking behavioral change with improvements 
in livelihoods and market access.  
 
Two SD models of behavioral change are potentially instructive here. Feola and Binder 
(2010) developed what they term an “integrated agent-centered” (IAC) approach that 
looks at the behavioral drivers and reactions behind individual decisions.  Figure 18 
illustrates their framework, highlighting how expectations, habits, social norms, and 
network considerations can influence behavior within a system. Figure 19 applies this 
general framework in a causal-loop diagram of the disuse of personal protective 
equipment against pesticide contamination among farmers in Colombia (Feola, Gallati, 
and Binder 2012).  In this model, different simulations related to improving education, 
influencing peer networks, improving treatment, and reducing the cost of equipment 
were run to examine their influence on farmer perceptions and behavior on the use of 
safety equipment. The authors found that no single policy would bring forth sustainable 
behavioral change, with a need for either constant outside pressure or an internal 
participatory approach to change mindsets (Feola, Gallati, and Binder 2012).   
 
A second model by Ulli-Beer, Anderson, and Richardson (2007) looks at modeling 
behavioral change towards recycling practices in Switzerland. Their model (see figures 
20 and 21) is potentially more applicable in a value chain setting in the sense that it 
could be overlaid in the production or marketing decisions at a node (or nodes) within 
the chain. In their model, they consider the behavioral feedbacks that could arise from 
different types of policies that mandate the separation of material for recycling. For 
instance, the imposition of a garbage bag fee is intended to make it costlier for those that 
do not separate rubbish. However, the unintended effect of such a policy was that the 
volume of non-recycled solid waste fell, reducing revenues of the trash authority and 
creating a budget deficit. Raising the garbage fee further, however, did not impact 
separating behavior and made the quality of separated rubbish worse (Ulli-Beer, 
Anderson, and Richardson 2007). Their model simulations (see figure 21) looked at 
alternative scenarios of taxes and fees to induce recycling behavior in the wake of these 
behavioral feedbacks. This approach at a value chain level could allow one to assess 
which combination of practices could be most effective in terms of behavioral uptake as 
well as on the performance of the value chain itself. 
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CONCLUSIONS 
SD models are particularly amenable to the analysis of livestock systems and value 
chains.  By modeling the entire value chain and highlighting the dynamic feedbacks 
among and between the actions of different nodes, SD models overcome many of the 
limitations inherent in sectoral approaches to economic analysis. Moreover, by using a 
common modeling platform (e.g., iThink, STELLA) to look at the interactions between 
different phenomena (e.g., animal disease and livestock markets), SD models provide a 
unique unified framework for analysis and simulation that is easily assessable across a 
multitude of disciplines. 
 
Of course, SD models are not the only platform in which to conduct livestock value chain 
analysis in a systems setting. For instance, network models and agent-based models 
(ABMs) provide alternative vantage points on system-wide behavior. Agent-based 
models look at a much more micro-level of analysis – the level of the individual decision-
maker – to simulate aggregate system behavior (see Rich, Winter-Nelson, and Brozovic 
2005 for an example in a FMD setting). Similarly, network models specifically look at 
individual-level market and social interaction patterns, and could be used to understand 
how social interactions influence trading patterns or other types of marketing behavior. 
SD models, by contrast, are more aggregate, or meso-level, models, looking instead at 
the level of a representative agent or set of agents. Nonetheless, SD models are very 
much complementary to network models and ABMs, given their systems vantage point 
and incorporation of behavioral feedbacks in their analysis. Future research should 
elucidate upon these complementarities, particularly in animal health settings.  
 
SD models represent an important evolution in value chain analysis (VCA) more 
generally. While traditional value chain analysis has provided a number of important 
insights over the past 15 years, it has generally remained qualitative and descriptive, 
and incapable of empirically comparing and prioritizing between different intervention 
options. SD models allow us a means to build upon the strengths of traditional VCA by 
overlaying an empirical framework and structure on top of the qualitative description of 
the value chain, generated value chain maps, and insights into issues of governance and 
upgrading. As demands for analysis at the value chain level grow in importance among 
donors and policy makers, SD models provide us with a powerful tool to contribute to 
policy debates.   
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Table 1 
A simple typology of animal diseases 
  Type of animal disease 
  Chronic/endemic Epidemic 
Human populations 
affected 

No (a) Helminthiasis, 
mycoplasmoses 

(b) FMD, classical swine fever, 
African swine fever, PRRS 

Yes (c) Zoonoses and food-
borne diseases (e.g. 
brucellosis, rabies 
salmonellosis) 

(d) Avian Influenza (e.g. HPAI 
H5N1, H7N9) 

Source: Rich and Roland-Holst (2013). 
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Table 2 
The impacts of animal diseases based on different dimensions and characteristics of 
epidemiological and economic impact: an application to RVF 
Dimension of impact Disease characteristics by level of analysis 

 Level 1: Farm Level 2: 
Cattle 
sector 

Level 3: 
Livestock 
sector 

Level 4: 
Agricultural/ 
Value-chain 

Level 5: 
National 

Level 6: Global 

Disease characteristics 

Severity of disease High mortality 
in cattle – strong 
livelihood 
impacts in 
pastoral settings 

High mortality impacts: 
production systems 
oriented at risk 
management rather than 
productivity 

Trade bans  at 
local level 
further 
accentuated 
by disease 
effects 

Intensity fuelled 
by animal 
movements  

Strong 
externality 
impacts across 
borders 

Frequency Sporadic, timing often coincides with periodic El Niño events 

Mode of transmission Primarily through combination of vector (mosquitoes) and animal contacts (local, regional, global) 

Spatial spread Transboundary fuelled by pastoral and animal movements (local, regional, and global) 

Public health Yes, particularly at farm/processor levels 

Production characteristics  

Production system Generally 
extensive, 
pastoral 
(particularly in 
Africa) 

Predominance of traditional, informal 
markets, loose value chain linkages 

Transboundary movements 
important 

Production cycle Long production cycles for cattle, sheep, and goats 

Population size Variable population sizes Impact depends 
on net 
import/export 
status 

Importance of by-
products 

High, particularly in terms of meat, milk, hides, manure, and 
animal traction 

  

Market characteristics 

Level of 
commercialization and 
market integration  

Smallholder and commercial sectors both 
affected; large impacts in pastoral settings and 
domestic markets 

Market access 
impacted for 
smallholder 
and 
commercial 
sectors 

 Informal 
marketing 
problematic for 
transboundary 
spread 

Scope of value chains Relatively simple, arms-length transactions, with limited value-adding or innovation downstream 

Non-sector impacts    Impacts in 
agricultural 
and service 
sectors based 
on forward 
and backward 
linkages 

 Impacts in 
agricultural and 
service sectors 
based on 
importance of 
trade 

Level of socio-
economic development 

Generally low in affected regions 

Livelihoods characteristics 

Role of livestock in 
livelihoods 

High 
importance in 
pastoral settings 

     

Cultural importance of 
livestock 

High 
importance in 
pastoral settings 

     

Control characteristics 

Effectiveness of 
current control 
technologies 

Vaccines exist, though mobilization and administration difficult given sporadic nature of disease. 
Vaccination usually achieves about 20% coverage. Vector control also exists, but application sporadic.  

Resource 
requirements for 
control 

Costs associated with vaccines, delivery, and laboratories; donor support has been crucial in the past 
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Dimension of impact Disease characteristics by level of analysis 

 Level 1: Farm Level 2: 
Cattle 
sector 

Level 3: 
Livestock 
sector 

Level 4: 
Agricultural/ 
Value-chain 

Level 5: 
National 

Level 6: Global 

Maintenance costs for 
control 

Importance of sero-surveillance in difficult 
environments; CAHW and participatory 
epidemiology play key roles 

  Coordination 
necessary across 
borders 

Externalities related to 
disease control 

  Possible 
positive 
externalities 
of vector 
control 

 Environmental 
consequences on 
carrying 
capacity. 

 

Institutional capacity Strong international coordination with local partners in successful campaigns 

Source: Adapted from Rich, Roland-Holst, and Otte (2013), supplemented by information from Rich and 
Wanyoike (2010). 
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Table 3 
Alternative market scenarios of FMD impact in Cambodia 

Scenario Initial number 
of animals 

infected with 
FMD 

Distress sale 
period 

Markets closed Paddy affected 

S1 Baseline: No FMD outbreak 
S2 1,000 4 weeks 20% 5% 
S3 1,000 10 weeks 20% 5% 
S4 1,000 4 weeks 40% 5% 
S5 1,000 4 weeks 20% 27% 

Source: Rich and Roland-Holst (2013) 
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Table 4 
Data requirements for developing integrated quantitative value chain models 
Type of data Description Possible sources 
Livestock demographics & 
population dynamics 

 Initial stocks of animals 
 Shares of age/sex 

classes in livestock 
populations 

 Mortality rates by 
age/sex class 

 Average life span by sex 
 Parturition rate (by 

month) 
Net prolificacy rate 
(average proportion of 
animals born alive per 
parturition) 

National statistics, farm 
surveys, interviews with 
key informants 

Animal movements data  Offtake rate by sex/age 
class  

 Movements of animals 
to/from region  

Farm surveys, interviews 
with key informants 

Elasticities  Supply 
 Demand 
 Income 

Derived from household 
surveys, published 
estimates 

Value chain process 
variables 

 Period of time taken 
between farm sales and 
market arrivals 

 Period of time taken 
between sales from 
farms and slaughter 
(weeks) 

 Inventories of meat 
(weeks) 
 

Farm/trader/processor 
surveys 

Epidemiological data  Contact rates between 
animals 

 Between-farm contact 
rates 

 Infectivity rates 
 Mortality by age/sex 
 Vaccination coverage 
 Incidence rates (this is a 

result of some of the 
above) 

Farm surveys, interviews 
with Veterinary Services, 
epidemiology literature 

Market prices   Prices of animals by 
sex/age class 

Farm/trader surveys, 
national statistics, 
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Type of data Description Possible sources 

 Prices of meat by cut 
 Prices of major crops 
 Rental prices of animals 

for draught labor 
 GDP and GDP per capita 

interviews with 
processors/retailers 

Control costs   Medicine costs 
 Additional feed costs 
 Treatment costs  
 Vaccination cost 

Farm surveys, interviews 
with Veterinary Services 

Draught labor parameters  Number of animals used 
per hectare 

 Duration animals used 
for plowing 

 Time of the year 
animals used 

 Yields of rice/other 
crops using draught 
labor 

 Yield loss associated 
with lack of draught 
labor 

 Time animals 
unavailable for draught 
labor due to disease 
 

Farm/trader surveys, 
national statistics, 
interviews with Veterinary 
Services and Extension 
Services 

Source: Rich and Roland-Holst (2013) 
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Figure 1 
Interactions of disease characteristics and levels of economic impact 

 
Source: Rich and Roland-Holst (2013), based on Rich, Roland-Holst, and Otte (2013). 
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Figure 2 
A simple example of stocks, flows, and converters in iThink 
 

 
 
Source: Based on Sterman (2000). 
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Figure 3 
A simple SIR model of disease spread in iThink 
 

 
 
Source: Adapted from Sterman (2000) 
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Figure 4 
Common feedback structures in SD models 

 
(a) Positive feedback (reinforcing loop) 

  
(b) Negative feedback (balancing loop) – goal-seeking behavior 

   
(c) S-shaped growth 

  
(d) Oscillation 
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(e) S-shaped growth with overshoot 

 

 
(f) Overshoot and collapse 

 
Source: Sterman (2000) 
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Figure 5 
Model dynamics from the SIR model 
 

 
 
Source: Model simulations using the model in figure 3.  
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Figure 6 
A simple SD model of supply and demand 
 

 
 
Source: Whelan and Msefer (1996) 
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Figure 7 
Price formation in an SD model of supply and demand 
 

 
 
Source: Whelan and Msefer (1996) 
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Figure 8 
An SD model of livestock population dynamics 
 

 
 
Source: Rich and Roland-Holst (2013), based on the DynMod model of Lesnoff (2008) 
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Figure 9 
An SD model of poultry population dynamics 
 

 
 
Source: Rich (2007) 
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Figure 10 
An SD model of downstream actors in a livestock value chain 
 

 
 
Source: Hamza et al. (2013a).  
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Figure 11 
Incorporating decision rules in an SD model of disease 
 

 
Source: Duintjer Tebbens and Thompson (2009) 
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Figure 12 
An extended SIR model of animal disease  
 

 
 
Source: Rich and Roland-Holst (2013). 
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Figure 13 
Balancing epidemiological and economic population in an integrated disease control model 
 

 
 
Source: Rich and Roland-Holst (2013) 
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Figure 14 
Integrating related markets in an SD model (crop-livestock systems) 
 

 
 
Source: Rich and Roland-Holst (2013)



 

Figure 15 
Results from an integrated SD model of FMD in Cambodia 

(a) Herd dynamics 

 

(b) Total animal sales 

 

 



 38 

 

(c) Total meat sales 

 

 

(d) Expected prices of meat 
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(e) Evolution of susceptible population during the FMD outbreak 

 

(f) Evolution of infected animals during the outbreak 
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(g) Trading of rice stocks 

 

(h) Evolution of rice price movements 

 

Source: Rich and Roland-Holst (2013) 
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Figure 16 
Dynamics of sea lice population growth 
 

 
 
Source: Hamza (2012) 
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Figure 17 
Policy options to control sea lice in farmed salmon 
 

 
 
Source: Hamza (2012) 
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Figure 18 
Schematic of the integrative agent-centered framework 
 

 
 
Source: Feola and Binder (2010) 
  



 

Figure 19 
Causal-loop diagram of pesticide use behavior among farmers in Colombia 
 

 
Source: Feola, Gallati, and Binder (2012) 
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Figure 20 
Model structure to examine behavior towards recycling in Switzerland 
 

 
Source: Ulli-Beer, Anderson, and Richardson (2007) 
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Figure 21 
Policy interventions to influence behavior towards recycling in Switzerland 
 

 
 
Source: Ulli-Beer, Anderson, and Richardson (2007) 


