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Abstract

Assessments of agricultural productivity and food security require process-based crop models 
to provide predictions of yields and diagnose past variations in the context of anthropogenic 
and climate factors. These models need detailed meteorological data as input, including 
precipitation, temperature, humidity, solar radiation and windspeed. This project aimed to 
apply existing methods to merge in situ, remotely sensed and modeled data sources in East 
and West Africa to produce high-quality daily meteorological data over at least 30 years. 
Specific objectives included: evaluation of the error structure of the dataset, its temporal 
and spatial characteristics and consistency and its suitability for forcing crop models, and to 
provide a framework for merging new data, in particular from the local stations of regional 
African partners, ensuring consistency across time and space and among variables, as well as 
the best use of information.  

The work successfully created a 10 kilometre, daily meteorological dataset for East and West 
Africa for the period 1979–2008, based on the National Centers for Environmental Prediction-
National Center for Atmospheric Research (NCEP–NCAR) reanalysis (NNR), merged with 
observational datasets, including the monthly gridded precipitation and temperature product 
of the University of East Anglia’s Climate Research Unit (CRU), the NASA Langley Surface 
Radiation Budget (SRB) product, and station data from the Global Summary of the Day 
(GSOD) database.  

Keywords
 
Daily meteorological dataset; data merging framework; crop modeling; East Africa;  
West Africa.
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1. Introduction

Assessments of agricultural productivity and food security require process-based crop models 
to provide predictions of yields and diagnose past variations in the context of anthropogenic 
and climate factors. These models need detailed meteorological data as input (also known 
as forcing data), including precipitation, temperature, humidity, radiation and windspeed. 
Until recently, agricultural assessments at large space and time scales have been hampered 
by the lack of detailed and accurate meteorological data to force the models. Traditionally, 
necessary meteorological data were only available from local station observations, which are 
not pervasive across all global areas and certainly not at the spatial and temporal resolutions 
that are required by crop models for most applications. In developing regions, such as most 
of Africa, the density of station data is much lower. Coupled with the lack of temporal extent 
and consistency in the majority of observations, this has made the development of forcing 
datasets using observations alone unsatisfactory. The accuracy of the meteorological data is 
also important, as first order errors in modeled states have been demonstrated to be due to 
inaccurate forcings and especially in precipitation (e.g. Robock et al., 2003; Challinor et al., 
2005). The conclusion of these and other studies is that accurate forcings are necessary to 
provide accurate simulations when compared to observations. For climate change studies, the 
temporal consistency of the forcing data is also of paramount importance. 

With the increasing availability of global remote sensing products, the prospects are more 
promising, although their generally short time period hampers development of long-term 
datasets required for climate related studies. In the global context, the use of atmospheric 
reanalysis products may be the only alternative for providing near surface meteorological 
forcings at high temporal resolution. In contrast to the lack of terrestrial observations, the 
relative wealth of observations of the atmosphere and sea surface has allowed the emergence 
of a number of global, long-term, reanalysis datasets such as the NCEP/NCAR, ERA-40, 
and NASA-DAO reanalyses. These products are constructed using ‘frozen’ versions of 
numerical weather prediction and assimilation systems that ingest a variety of atmospheric 
and ocean observations to provide long-term, continuous fields of atmospheric (and land 
surface) variables. These first-generation reanalyses have now been enhanced or superseded 
by second-generation products (e.g. ERA-interim, NARR, MERRA) that use improved 
physical models and assimilation schemes, higher resolution and novel data sources such as 
assimilation of observed precipitation. 

The power of reanalyses is their consistent and coherent framework for ingesting in situ 
and remote sensing data into a time- and space-discretized representation of the global land, 
oceans and atmosphere, in a way that is essentially impossible to achieve directly from 
observations. However, the direct use of reanalysis fields to force land models is hindered by 
inherent biases in the atmospheric model and changes in the observing systems that provide 
data for assimilation. For example, Sheffield et al. (2004) and Ngo-Duc et al. (2005) showed 
that systematic biases in reanalysis meteorology filter down into modeled land surface 
variables. Nevertheless, the results of such studies have shown that there is great potential for 
using hybrid datasets, which combine reanalysis with observation-based datasets to remove 
biases. This approach retains the consistency and continuity of the reanalysis but constrains it 
to the best available observation datasets, which are generally available at coarser resolutions 
and reduced spatial and temporal extents.

We followed this approach to develop a long-term, high-resolution, and high-quality dataset 
of daily meteorological forcings for East and West Africa that is suitable for crop modeling 
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and other modeling applications. The work builds on previously constructed long-term 
datasets of precipitation and other meteorological data (Sheffield et al. 2006) for use in 
driving hydrologic, ecosystem and agricultural models to explore relationships between 
climate and terrestrial processes. The dataset is also suitable for analysis of long-term  
changes in meteorology and some examples are shown for daily extremes of temperature  
and precipitation.The specific objectives were to: 

•	 implement existing methods for merging in situ, remotely sensed and modeled data to 
generate a dataset of daily meteorological variables over at least 30 years, suitable for 
forcing typical crop models; 

•	 evaluate the error structure of the dataset, its temporal and spatial characteristics and 
consistency and its suitability for forcing crop models;

•	 provide a framework for merging new data, in particular from the local stations of 
regional African partners, ensuring consistency across time and space and among 
variables, as well as the best use of information. 

We successfully created a gridded, 10 km daily meteorological dataset for East and West 
Africa for the period 1979–2008. This is based on the NCEP–NCAR1 reanalysis (NNR), 
merged with the monthly gridded precipitation and temperature product of the University of 
East Anglia’s Climate Research Unit (CRU) and the NASA Langley Surface Radiation Budget 
(SRB) product. The CRU products were evaluated for temporal inconsistencies attributable 
to changes in contributing gauges; adjustments were made to remove step changes and ensure 
consistency among variables, such as downward long-wave and humidity/temperature, and 
between temperature and humidity to maintain relative humidity. Empirical adjustments 
to downward short- and long-wave surface fluxes were made to achieve consistency with 
precipitation. Scaling down in space from the coarse resolution of the NNR, CRU and SRB 
products to 10 km resolution was carried out, accounting for elevation effects. 
 
The dataset was evaluated against observations from the Global Summary of the Day (GSOD) 
of the US National Climatic Data Center (NCDC) and a range of statistics on timescales 
from days to years. A method for assimilating station data into the gridded dataset was 
developed and tested and was used to merge available station data into the full 1979–2008 
gridded dataset. Products such as annual, monthly and daily statistics, and extreme values and 
potential evaporation, were calculated to demonstrate the utility of the dataset.

1	  National Centers for Environmental Prediction–National Center for Atmospheric Research.
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2. Project findings

The following sections of this Working Paper explain the key findings from the tasks involved 
in the project.

2.1 Acquire and evaluate contributing datasets 

The NNR, CRU, SRB and various evaluation datasets were obtained for their most recent 
available time period and versions. The NNR product was obtained up to 2010 for near-
surface meteorological variables at six-hour intervals. The latest version of the monthly CRU 
dataset (TS3.1) was obtained for a range of variables, including precipitation, temperature, 
cloud cover and vapour pressure. The SRB (V3.0) surface-radiation dataset was available for 
1983–2007. We also obtained the EUMETSAT CM-SAF geostationary, 3 km daily surface-
radiation products. These are based on SEVIRI/GERB instruments on the MSG satellite, and 
AVHRR sensors on MetOp and National Oceanic and Atmospheric Administration (NOAA) 
satellites, developed by the German meteorological service. 
 
GSOD data were obtained and processed for several hundred stations across East and West 
Africa. Figure 1 shows the location and number of data records for the GSOD stations as 
an example for 1990–2005, showing mean, maximum and minimum daily temperatures, 
humidity and wind speed. The GSOD data were used to evaluate the CRU datasets, which are 
generally based on much fewer stations than are available, and to demonstrate the assimilation 
of station data into the merged gridded product. 

2.2 Evaluate datasets for robustness and consistency across time 
and space

The datasets that contribute to the gridded product contain biases because of the low density 
of contributing stations and changes in stations, satellite sensors and possibly methodology. 
The CRU monthly temperature data, for example, are gridded from station data that are not 
uniform in space and time and that may induce step changes and spatial inconsistencies, as 
well as biases in regions with few stations. The SRB dataset may also contain spurious jumps 
because of changes in satellite sensors and retrieval algorithms. We tested for these changes 
(steps and trends in the mean and variability) using regime identification with a moving-
window t-test that withstands trends (Rodionov 2004) and applied simple methods to remove 
any step changes that were found.  
 
Figure 2 shows the average temperature station count in the CRU dataset for 1990–2005 and 
indicates large regions without station coverage and low temporal coverage where there is a 
station present. Over the whole period of the CRU dataset (1901–2009), there is considerable 
variation in the number of available stations with a peak between 1950 and 1990, after 
which there is drop of about 50%. The CRU data were developed by gridding the available 
station data based on the length of anomaly correlations, which are up to 1200 kilometres for 
temperature. The lower panels of figure 2 show the number of stations that contribute to the 
gridded values and these reflect the location of the stations. For some time periods and regions 
there are no available station data within the correlation distance and therefore, with no other 
information, the CRU data are set to ‘climatology.’ 
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Figure 1. Percentage of days in the GSOD database 1990–2005

We tested for trends and step changes in the CRU dataset to identify potential problems due to 
the limited station data. Some examples are given in figure 3 for monthly temperature, which 
shows the original CRU data anomalies, the number of contributing stations and a comparison 
with an alternative gridded temperature dataset of Matsuura and Willmott (2010). The figure 
shows periods with step changes based on the moving-window t-test.  
 
For the first grid cell, the identified step change is attributable to a drop in the number of 
contributing stations not seen in the alternative dataset. For the second grid cell, the step 
change does not appear to be associated with a change in stations but is spurious when 
compared to the alternative gridded dataset. An overview of identified step changes for all 
variables is given for the gridded product in the next section. Spurious step changes are 
removed by shifting the data after the step change so that its mean matches the mean of the 
data before the step.

2.3 Implement existing methods to develop a regional test dataset 
as proof of concept 

The methods of Sheffield et al. (2006) were used to develop an initial gridded dataset for the 
region at 10 kilometres, daily resolution for 1990–2005. In summary, the NNR was merged 
with gridded station data (CRU) and satellite products (SRB) at monthly time-step and 
down-scaled down in space to 10 kilometres, considering elevation effects. Figure 4 shows 
example fields of the eight variables (mean temperature, maximum temperature, minimum 
temperature, surface downward solar radiation, surface downward long-wave radiation, 
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Figure 2. Average number of stations (top) (number of stations per 
month) and contributing stations (top) (number of stations per month that 
contribute to the gridded value) for the CRU gridded monthly analysis 
shown (left) averaged over 1990–2005 and (right) the temporal evolution 
averaged over the whole region 

surface pressure, 2-metre humidity and 10-metre wind speed). This is prior to assimilating 
GSOD station observations, discussed later. 
 
The gridded data were tested for trends and step changes. Figure 5 shows the results in terms 
of the maximum step-change index value, where warmer colours indicate changes with 
higher statistical significance. Some regions, such as central East Africa stand out for shifts 
in temperature illustrated previously in figure 3. Surface downward long-wave radiation 
shows a large-scale shift that peaks around mid-1998, which is consistent with the change 
in the retrieval algorithm for the NOAA’s TIROS Operational Vertical Sounder (TOVS), 
which introduced a drop in atmospheric humidity and temperature. For other variables such 
as pressure, which for the monthly variability is derived solely from the NNR, the shifts are 
more spatially coherent and widespread, and therefore likely to be real shifts in the climate 
regime. 

However, relative humidity is also derived from the NRR and shows similar shifts around 
mid-1998, if more localized. Examination of time series at individual grid cells indicates that 
these are consistent shifts in the mean, which are simply corrected by matching the mean to 
that before the shift.
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Figure 3. Identification and attribution of shifts in the CRU data for two 
example grid cells (left and right columns). Potential spurious shifts in 
the CRU monthly temperature data identified using a 20 month moving-
window t-test (top). Number of contributing gauges (middle). Comparison 
of CRU anomalies with those from the Willmott-Matsuura product 
(bottom) 
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Figure 4. Daily example of 10 km resolution maps of the 8 variables in 
the demonstration gridded dataset
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Figure 5. Maximum step change index for the gridded dataset at monthly 
time step

2.4 Evaluate the data against station observations

The gridded daily dataset was evaluated against the GSOD database, which consists of station 
measurements from several global and regional databases. The database has reasonable spatial 
coverage except in the centre (Republic of the Congo, southern Sudan) and far eastern parts 
of the region (Somalia). Correlations of the gridded dataset with the GSOD on a daily time 
scale (figures 6 and 7) are reasonably high north of 5°N, but are very low in most of central 
Africa. Correlations are highest for minimum temperatures and relative humidity and lowest 
for wind speed, as expected given the high spatial and temporal variability of wind speed. 
Correlations are higher for monthly maximum and minimum temperatures and humidity, but 
do not improve much for monthly wind speed. 
 
Absolute errors are shown in figure 8. Daily absolute errors are of the order of 1–2°C across 
West Africa and 2–3°C across East Africa for maximum and minimum temperature, with 
maximum errors of about 4°C. Daily absolute errors in wind speed are about 1 m/s across 
the region with errors exceeding 2 m/s at some stations. For relative humidity, daily errors 
reach 15% along the coast of Guinea and across the Horn of Africa. Errors generally reduce 
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Figure 6. Pearson correlation between high-resolution gridded data and 
GSOD station data for (top) daily and (bottom) monthly time step
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Figure 7. Histograms of Pearson correlation coefficients between the 
high-resolution gridded data and the GSOD station database for (top) 
daily data and (bottom) monthly data
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Figure 8. Absolute errors between the gridded dataset and the GSOD 
station database at daily (top) and monthly (bottom) time scales  
1990–2005
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on a monthly time scale to at most 1.5°C for temperature, less than 1 m/s for wind speed, and 
about 10% for relative humidity. 
 
Figure 9 shows error statistics for extreme days, defined as the 10th or 90th percentile in the 
GSOD dataset. The gridded dataset has too many ‘very hot’ days (defined as days warmer 
than the 90th percentile) in the east and a tendency for too few in the west. For minimum 
temperatures, the gridded data is generally too warm (days warmer than the 10th percentile) 
and so has too few days with low minimum temperatures. For relative humidity, the gridded 
data has too many low-humidity days across the region.

2.5 Develop methods for merging station data

A methodology for assimilating station data into the gridded product was developed based on 
Chirlin and Wood (1982). The errors in the 10 km gridded data were corrected using station 
values by computing a set of weights based on the spatial relationship between the stations 
that best combines the correction factors from these stations. These weights were then applied 
to give a corrected grid value.
 
In the terminology of data assimilation, the original gridded data are denoted as the ‘back-
ground field.’ The corrected grid-point data value y* is computed as follows:

y* = y + G(yd –Hy)

Where: 

y = background data value
G = gain matrix (weights)
yd = value of station data 
H = measurement matrix
(yd –Hy) = correction factors
 
The solution of the gain matrix G is obtained by minimizing the mean squared error of the 
estimated value y*. This reduces the problem to the solution of a system of N linear equations, 
where N is the number of stations.

G = (P HT) (H P HT)-1

P is the covariance matrix, which defines the spatial relationship between all the data points of 
interest: the stations and the grid point to be corrected. It should be noted that given this defini-
tion of G, the station errors are negligible and thus all error is attributed to the gridded data set.  
 
In this implementation, P was calculated from the experimental variogram derived from the 
gridded data set at each time step; stationarity and isotropy were assumed. The experimental 
variogram defines the relationship between two points as a function of the distance between 
the points, as follows. 
 
h = distance between two points, C(ℎ) = number of points that are within a certain distance 
range or ‘bin.’ In essence, this is the average squared difference between all pairs of points for 
which the distance between the two points is under a given threshold. A variogram model was 
fitted to the experimental variogram to ensure a solution to the system of equations defined by 
G (figure 10). 
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Figure 9. Difference in the annual average number of days that both the 
gridded data and GSOD stations surpass a threshold set from the GSOD 
stations 

 
Assuming spatial stationarity, the covariance function C(ℎ) is computed from the variogram 
by the following equation: 

C(h) = ɣ(0) – ɣ(h)

The covariance matrix P was then populated by realizations of C(ℎ) from the distance between 
the points of interest (stations and grid point to be corrected) in the domain. The problem was 
then reduced to solving for G, and applying these weights to the correction factors to give the 
optimal solution for each grid cell (y*). 

2.5.1 Testing using Oklahoma Mesonet
 
The method was initially tested over the Oklahoma Mesonet monitoring network in the US, 
which has a dense distribution of stations and represents one of the most densely monitored 
regions of the world (figure 11). As such, it robustly tests how the method might perform over 
Africa where station density is much lower. We tested the merging method for daily tempera-
ture extremes and wind speed using the NLDAS-2 gridded meteorological dataset (Xia et 
al. 2011), which merges reanalysis with gridded observational data for the continental US at 
1/8th degree spatial resolution, and is thus similar to our gridded product. Figure 11 shows the 
influence of increasing station density on the corrected gridded field. It also shows the impact 
of the derived variogram in restricting the impact of isolated stations (e.g. n stations = 8) to 
the local area.
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Figure 10. Experimental variogram obtained from the NLDAS (see below) 
daily maximum temperature data on 1 January 2002. A spherical model 
variogram is then fitted to the experimental variogram to define the 
spatial relationship.
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Figure 12 shows time series of the areal averages and the spatial variability over the OK 
Mesonet of maximum and minimum daily temperature and wind speed. The original  
NLDAS-2 data (blue) were corrected using data from all OK Mesonet stations. The areal 
mean values for temperature are not very different between the original and corrected 
datasets; this is expected because the NLDAS-2 dataset are generally reasonable for 
temperature over large scales. The spatial variability, however, increases in the corrected 
dataset because higher or lower values at individual stations are not replicated in the 
original dataset. The differences are much larger for wind speed, especially for the spatial 
variability. This is expected because the NLDAS-2 wind speed is based on the North 
American Regional Reanalysis dataset, which fails to represent the high spatial variability 
in wind speed.
 
Figure 13 shows the error in the merged dataset (averaged over all stations) when data from 
an increasing number of randomly selected stations are assimilated. Clearly with one station 
the correction is minimal. However, as the number of stations increases, the corrections are 
more spatially extensive and the errors are reduced. Increasing the number of stations from 
1 to 20 has a large impact on accuracy, after which additional stations have little impact. 
This suggests that our method will have a positive effect on the increase in accuracy, even 
in regions with sparse networks such as in Africa. 
 
2.5.2 Demonstration for Africa

This assimilation methodology was applied initially to the data set over the entire domain 
and one year (2000). Figure 14 shows an example of combining the gridded data set with 
the observations of daily maximum temperature. In regions where the original gridded data 
set is smooth, the spatial correlation is very high and the influence of the stations on these 
grid cells is large. In other regions, such as the East African Rift, the spatial correlation is 
low and the measurements influence grid cells only in their immediate vicinity.
 
Figure 15 shows the effect of the assimilation procedure for 1 February 2000 for a region 
in Africa (Republic of the Congo) where the correlation between the observations and the 
original gridded data set, as shown in figure 6a, is low. The assimilation incorporates the 
observed lower maximum daily temperatures along the border between Congo and Gabon 
directly into the gridded data set and uses the existing spatial structure to influence the 
surrounding area.
 
Figure 16 illustrates the impact of the assimilation on the mean and spatial variability of the 
Congo–Gabon region during 2000. The seasonality in both the mean and the spatial variabil-
ity is maintained. The largest changes are an overall increase in spatial variability and a cor-
rection of the areal mean daily fluctuations to more closely match those of the observations. 

2.6 Implement existing methods to develop a 30-year meteoro
logical dataset

Building on Task 3, the methods of Sheffield and others (2006) were used to extend the 
initial 1990–2005 demonstration dataset to the full version for 1979–2008 at daily and 
10 km resolution, covering 20°W to 60°E and 5°S to 25°N. 
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Figure 12. Comparison of the areal means and areal standard deviations 
over Oklahoma before and after the correction using the entire MESONET 
network with data during 2002 
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Figure 13. Absolute error in the merged daily maximum temperature 
dataset when in situ measurements from an increasing number of 
randomly selected stations from MESONET are assimilated into the 
background NLDAS fields over Oklahoma on 1 February 2002. The 
baseline for comparison is the merged field using all available MESONET 
stations.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mesonet (2002/1/1) − Maximum Temperature Absolute Error

number of stations

Ab
so

lu
te

 E
rro

r (
C

)

Figure 14. Merging the original gridded data (background field) with 
the observations (GSOD) to arrive at a corrected field of daily maximum 
temperature (K) for 1 February 2000 
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Figure 15. Original gridded data (background field) merged with the 
observations (GSOD) to arrive at a corrected field of daily maximum 
temperature (K) over the Congo/Gabon region for 1 February 2000 

Figure 16. Comparison of the original and corrected gridded data set 
in the Congo/Gabon region for areal mean (right) and areal standard 
deviation (left) of daily maximum temperature during 2000 
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2.6.1 Infilling of missing station data to ensure temporal consistency

The assimilation method was applied to merge the GSOD station observations with the 
gridded dataset for the full period 1979–2008. This presented a number of challenges that 
become more apparent when merged over the full time period, especially for ensuring 
temporal consistency. Figure 17 shows that the vast majority of stations over the domain 
have data for less than 50% of days between 1979 and 2008. Excluding all stations that 
have less than 90% of temporal coverage results in a very small number. To ensure temporal 
consistency in the merged dataset, we required stations to have at least 20% of days with data, 
which precludes many and thus reduces the spatial coverage of stations. We therefore chose 
to implement an infilling procedure for missing GSOD station records that have more than 
20% temporal coverage (figure 17) for the entire time period. This gave a better balance of 
temporal versus spatial coverage of the station data, assuming the errors in the infilled time 
series were reasonably low. The infilling procedure is as follows.  
 
Assume the closest grid cell from a station acts as a proxy for the station itself. If a station 
value is missing, the value of the grid cell was bias-corrected using a relationship derived 
from the coinciding station and grid cell time-series when station data are available. This 
assumes that the daily variability in the gridded time series is reasonable. This results in a 
temporally consistent time series for 1979–2008 for each station. The bias correction is based 
on a quantile matching technique that translates the gridded value to an equivalent station 
value by searching for the equivalent quantile value in their respective empirical Cumulative 
Distribution Functions (CDF). The empirical CDF for the station and the grid cell were 
calculated from the daily data for all years using a 21 day window centred on the day of 
interest. This ensures that the corrected data are consistent with the distribution of the station 
data, thus correcting for the mean and variance.

Figures 18–20 illustrate the application of the method to three stations that have at least a 
20% temporal coverage of daily data from 1979 to 2008. The available station data from the 
entire period is used to correct the bias in the grid-cell data for daily maximum temperature, 
minimum temperature, wind speed and dew point; this becomes a proxy time-series for the 
station data that infills the missing records. The technique effectively captures the seasonality 
and variance of the station data and was used to generate a station dataset of daily maximum 
temperature, minimum temperature, average wind speed and dew point for the full time 
period. 

2.6.2 Assimilation of station data into the gridded dataset for 1979–2008

The infilled station data were then merged with the original gridded data to give a temporally 
consistent final dataset. An example of the influence of the station data on the gridded dataset 
is shown in figure 21 for 1 January 1979. A value of 1 equates to minimizing the mean 
squared error by relying exclusively on a linear combination of station bias-correction values 
while discarding the mean value. The closer the sum of weights is to zero, the more weight is 
given to the mean and the less to station values.  
 
Where the network density is high in West Africa, as shown in figure 21, nearly all grid cells 
are adjusted with station information. In this case, the merging method is able to optimally 
interpolate the bias-corrected values. On the other hand, in countries such as Nigeria, where 
there are no stations with sufficient records, no merging is done.  
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Figure 17. Stations from the GSOD network that fulfill the requirements 
to be assimilated into the gridded data set are shown in green  
(> = 20% of days with data) while those that do not are in red (< 20%).

Figure 18. Example of infilling missing station records for station 624140. 
Data from the closest grid cell (blue) is used as a proxy to simulate the 
station data (red) that is missing while setting the original grid cell data to 
be equal to the station value. The grid cell values are bias corrected (green) 
against the existing station data using a quantile matching technique.
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Figure 19. Same as figure 18, but for station 628050
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Figure 20. Same as figure 18, but for station 612850
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Due to the low density of the station networks, the spatial correlation of the gridded data set is 
used as a proxy for the spatial correlation of the biases. This results in low spatial correlations 
in the East African Highlands and therefore low impact on the gridded variables that are 
affected by topography. Because the original gridded dataset for wind speed was not scaled 
down to account for topography (or other factors), spatial correlation is still high. Future 
work should determine how to infer the spatial correlations of the biases from low-density 
networks.  
 
The spatial-correlation functions were found at each time-step for each grid cell. This 
results in slightly different maps of the sum of weights of the bias-correction values. 
However, because all stations reported during the entire record (due to infilling), the 
variance and mean of the sum of weights were conserved. This ensures a temporally 
consistent final gridded product. 

2.7 Evaluate the full dataset against station observations

Figure 22 shows how the Pearson correlation between the GSOD stations and their closest 
grid cells change after the assimilation. As expected, the grid cells that are closest to the 
stations used for the assimilation now show very high correlation values. The figure also 
shows the new correlations with the stations that were not used for the assimilation. In 
general, when the grid cell that corresponds to the station that was not used is close to 
another station that was used, there is an overall increase in correlation. When a station is 

Figure 21. The sum of weights show the impact of stations on the 
interpolated bias correction values on 1 January 1979. Note that for 
computational reasons, a station is never allowed to influence more than 
1 degree away, regardless of the spatial correlation.
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Figure 22. Comparison of the Pearson correlation of the closest grid 
cells to the GSOD stations before (left) and after (right) the assimilation 
procedure. The variables that are assimilated are daily maximum 
temperature (top), daily minimum temperature (top centre), daily 
average wind speed (bottom centre) and daily mean dewpoint (bottom). 
Note: If a station variable has less than 100 values, it is not used for this 
comparison. 

almost entirely out of the influence of others that were assimilated, the increase in correlation 
is negligible. Figure 23 shows a histogram of the values of the Pearson correlations from 
figure 22. Except for average wind speed, all the variables now have an average Pearson 
correlation above 0.8. 

In figure 24, three stations and their closest grid cells are chosen to illustrate the effects  
of the assimilation method at the level of grid cells. When the station is located at the centre 
of the grid cell, the corrected grid cell matches the station data perfectly (the uppermost graph 
in figure 24). When the station is slightly further away from the grid cell, the correlation is 
high but less than 1 because the station influence on bias correction decreases as a function of 
distance. The remaining two graphs in figure 24 are cases in which the stations do not have a 
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Figure 23. Histograms of Pearson correlation coefficients between the 
high-resolution gridded data and the GSOD station database for daily data

20% temporal coverage over the 1979–2008 period and thus were not used for the merging 
algorithm. These validate the algorithm’s ability to correct grid cells when no station data is 
available.  

When the influence of neighbouring stations is high, as defined by the spatial correlation, the 
station data correct the grid cell data to more closely match reality (middle graph in figure 24). 
The same is not true when the spatial correlation limits the station influence. In the limiting 
(or worst) case, where the influence of station data is 0, the grid-cell value does not change 
(figure 24, lower graph) and the correlations are very low, especially for wind speed.  

A comparison between spatial maps of the original and corrected gridded data sets is shown 
in figure 25. The annual mean of all the meteorological variables is computed for 1984. This 
year is relevant due to the severe drought in the Sahel. The corrected maximum temperature 
shows a lower daily maximum over the Sahel and a distinctively higher minimum temperature 
compared to the original gridded data. Also, higher dewpoints are found further north in 
the corrected dataset. The influence of isolated station data can be seen particularly in the 
northern Sahel for wind speed and these ‘bulls-eyes’ have been removed by increasing the 
spatial correlation length and rejecting isolated stations very different from the background 
field. 
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Station number: 612910 - Latitude: 12.5330 Longitude: -7.9500

Station: 612910 Tmax Tmin WS Tdew

Station vs original (Pearson ρ) 0.8002 0.7281 0.5897 0.9209

Station vs merged (Pearson ρ) 1.0 1.0 1.0 1.0

Station: 624140 Tmax Tmin WS Tdew

Station vs original (Pearson ρ) 0.8961 0.7683 0.0651 0.4335

Station vs merged (Pearson ρ) 0.9730 0.8197 0.5815 0.9564

Figure 24. The original (green) and merged (red) grid cell data are 
compared to their closest station. These show the impact of having a 
station in the grid cell (top), close to the grid cell (middle) and far away 
from the grid cell (bottom).
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Station: 618340 Tmax Tmin WS Tdew

Station vs original (Pearson ρ) 0.6698 0.3662 0.0802 0.7732

Station vs merged (Pearson ρ) 0.6698 0.3662 0.0802 0.7732

Figure 24. The original (green) and merged (red) grid cell data are 
compared to their closest station. These show the impact of having a 
station in the grid cell (top), close to the grid cell (middle) and far away 
from the grid cell (bottom) (continued)
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Figure 25. The original (left) and corrected (right) data sets are 
compared through their annual mean (1984) of the 4 daily meteorological 
variables: maximum temperature (top), minimum temperature (top 
centre), dewpoint temperature (bottom centre) and mean wind speed 
(bottom).
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2.8 Development of value-added products 

We have created a number of value added products including annual, monthly and daily 
statistics of the meteorological variables as well as characterization of extreme values. The 
latter includes a set of indices to characterize extreme daily values as defined by the Expert 
Team on Climate Change Detection and Indices (ETCCDI). These include the number of 
tropical nights (Tmin > 20°C) and duration of warm spells. We also generated a dataset 
of daily potential evaporation based on the Penman Monteith model forced by the merged 
dataset. This shows the utility of the dataset and is a precursor to its use in modeling crops. 
Figure 26 is an example.

2.9 Paper writing

A manuscript is in preparation that documents the methods and datasets produced under 
this project and evaluates the final merged dataset in terms of the climatology and trends in 
extreme values (Chaney et al. 2012).

Figure 26. Snapshot of 10-day average potential evaporation (mm/day) 
for West Africa calculated using the Penman-Monteith model forced by 
the meteorological dataset
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3. Conclusion and recommendations

This project developed a 10 km daily dataset of meteorological variables for 1979–2008 for 
West and East Africa, which is suitable for forcing crop and other types of terrestrial models. 
Using existing methods for creating global products, available data from global gridded 
monthly observations were merged with high temporal resolution reanalysis data and scaled 
down in space to 10 km resolution. Corrections were made for temporal and inter-variable 
consistency. The dataset was further improved by assimilating daily station data where 
available. The final dataset was used to calculate indices of extreme daily values and potential 
evaporation, in order to demonstrate its potential for use in climate change studies and for 
forcing crop models. 

Further improvements can be made by using additional sources of observational data. In 
particular, the methods developed provide a framework for merging new station data, such as 
from local stations of regional African partners that are generally not readily available, and 
from newly developed, high spatial resolution satellite-based surface radiation products.
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