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Abstract  

Rainfall in the Northern India-Nepal-Bangladesh region is crucial for farmers, water 
managers and others in the region. Most precipitation falls predominantly during the 
south Asian summer monsoon season. The phase of El Niño-Southern Oscillation 
(ENSO) affects the monsoon as well as winter rainfall in some of the region, but the 
spring predictability barrier and weakness of ENSO-monsoon relationships lead to 
relatively low-to-moderate seasonal forecast skill in the region during summer. This 
report documents a set of tools developed to facilitate the analysis of the mean climate 
and the predictability of seasonal climate in the region and presents preliminary 
results for the summer monsoon season. These tools advance the tailoring of historical 
and forecast climate information for agriculture and increase the accessibility of the 
information via online map rooms to benefit stakeholders throughout the region. 
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Introduction 

One of the goals of the Climate Change, Agriculture and Food Security (CCAFS) 
program is developing adaptive management in response to intraseasonal-to-
interannual climate information through community-level participatory action 
research on climate risk management. The CCAFS project is preparing to select 
among a set of candidate sites at benchmark locations in India (Punjab or Haryana, 
and Bihar), Nepal and coastal Bangladesh (see map in figure 1). An assessment of 
seasonal predictability is needed at these locations to assess feasibility and inform the 
design of actionable seasonal climate information for participating rural communities. 
 
Rainfall over the Northern India-Nepal-
Bangladesh region derives predominantly 
from the south Asian summer monsoon 
(SASM) during the months of June to 
September and secondarily through wintertime 
mid-latitude “western disturbances” over 
northern India and Nepal. Tropical cyclones in 
the transition seasons occasionally impact 

Bangladesh as well. Temperatures follow an 
expected seasonal progression while being 
strongly impacted by the monsoonal rainfall. 
They tend to peak during the early summer before monsoon onset before lowering due 
to decreased incident solar radiation because of monsoonal cloud cover and 
evaporation of monsoon rains. Mid-latitude cold air outbreaks in the winter half of the 
year and summer heat waves associated with monsoon breaks can have significant 
agricultural impacts. 
 
ENSO exerts a long-established yet fickle impact on the SASM (Gadgil, 2003, Gadgil 
et al., 2011) as well as on the wintertime Northeast monsoon (Yadav, 2011) and 
winter rainfall in the western Himalayas (Yadav et al. 2009). However, the El Niño-
Southern Oscillation (ENSO) spring predictability barrier together with the weakness 
and apparent non-stationarity of ENSO-monsoon rainfall relationships at regional 
spatial scales conspire to produce generally low-to-moderate forecast skill in modern 
global climate model (GCM)-based seasonal forecasts (Kulkarni et al., 2011). Certain 
daily characteristics of seasonal rainfall of relevance to agriculture, including the 

Figure 1. Location of study 

outlined in the black box 
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number of dry days during the monsoon season and even the onset date of the 
monsoon, have been shown to be sometimes more seasonally predictable than the 
seasonal total of rainfall itself (Moron et al., 2006; Robertson et al., 2009).   
 
This report documents a set of web-based tools that has been developed to facilitate 
the analysis of the mean climate and the predictability of seasonal climate as well as 
some preliminary results for the summer monsoon season. 
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Datasets 

Observed Data 

Besides the necessity of access to historical records of the output of GCM forecast 
systems, tailored daily rainfall quantities forecasts require long data records of daily 
observed rainfall both to develop and test GCM regression tailored forecast systems. 
In the following, we make use of the APHRODITE daily rainfall dataset (1951–
2007), which is a gauge-based gridded daily dataset compiled in Japan at a spatial 
resolution of 0.25 degree and 0.5 degree (Xie et al 2007). The dataset is based on 
World Meteorological Organization (WMO) Global Telecommunication System data, 
pre-compiled datasets as well as a new compilation of station data that includes data 
form Bangladesh, India and Nepal. 
 
Over India, the India Meteorological 1 degree daily temperature dataset (Srivastava et 
al., 2008) is used for 1 Jan 1969 to 31 Dec 2005; it is produced from station 
observations over Northern India and interpolated to 1 degree grids (66.5E to 100.5E; 
6.5N to 37.5N).  
 
Over Bangladesh and Nepal, WMO Global Summary of the Day station data 1979-
2011 is used. The CRU dataset (Mitchell et al., 2005) from the Climate Research 
Unit, University of East Anglia, provides mean monthly surface data (1901-2009) 
over global land areas, excluding Antarctica, interpolated from station data to 0.5 
degree lat/lon for a range of variables. It is used for assessing General Circulation 
Model (GCM) seasonal forecast performance. The NASA POWER daily temperature 
data (1 Jan 1982 to 30 Sep 2012) is based upon reanalysis from the NASA GMAO 
GEOS-4 assimilation system (Bloom et al., 2005), available at 0.5 degree grids in 
South Asia (60E to 98E; 6N to 39N), and is used here for data comparison.  

 

General Circulation Model Data 

Extensive sets of GCM retrospective seasonal forecasts have recently been developed 
at IRI using multiple GCMs. These have been archived in the IRI Data Library 
(IRIDL), where similar sets of seasonal retrospectives from the National Oceanic and 
Atmospheric Administration’s NCEP CFS models have also been archived. In all, 
hindcasts from about eight GCMs are available (about half of which are coupled 
atmosphere-ocean models) for the period 1982–present. In the second phase of tool 
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development, a new database of GCM retrospective forecasts was used, from the U.S. 
National Multi-model Ensemble (NMME) project. The models used are state-of-art 
coupled ocean-atmosphere GCMs from the NCEP CFS v2, NASA GMAO, GFDL 
CM2p1 and COLA RSMAS CCSM3. Seasonal forecasts from these models are 
publicly available online in the IRI Data Library at 
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/, retrospectively for the 
period 1982–present, as well as in real time. 
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Tool Development 

The following tools have been developed for the CCAFS-Asia region and can be 
accessed online at http://iridl.ldeo.columbia.edu/maproom/Agriculture/index.html:  
 

1. Historical temperature and precipitation map room: this map room allows a 
user to easily calculate and visualize historical statistics of daily precipitation 
and temperature for a chosen calendar season of interest across Nepal, 
Bangladesh and Northern India. Some examples of the statistics for rainfall 
include the historical probability of getting less than a specified number of rain 
days within a growing season and the historical risk of dry spells (of user-
chosen durations) within a critical crop stage. Statistics for temperature 
include average minimum or maximum daily temperature over the season, 
heating degrees days (summations of negative differences between the mean 
daily temperature and user-defined reference base temperature during the 
season), and the number of cold and hot days relative to a user-defined 
threshold. The mean temperature is defined as the average of the minimum 
and the maximum. An additional version of the maproom is available for 
Northern India based on IMD data, for data comparison purposes (note that 
this dataset is not available outside of India).  

2. Probabilistic ENSO-phase composites of seasonal-average rainfall anomalies: 
This map room allows the historical impact of El Niño and La Niña to be 
quickly assessed for Nepal, Bangladesh and Northern India, in terms of three 
characteristics of precipitation. They are (a) the historical probability of above-
normal, near-normal and below-normal tercile-category seasonal precipitation 
conditional upon ENSO state; (b) the historical mean of the seasonal 
frequency of daily precipitation above/below a selected threshold conditional 
upon ENSO state; (c) the historical seasonal mean daily precipitation intensity 
(above a selected daily precipitation threshold) conditional upon ENSO state. 

3. Probabilistic ENSO-phase composites of temperature anomalies: This 
maproom allows the historical impact of El Niño and La Niña on temperature 
to be quickly assessed. Three different products are available: (a) seasonal 
average temperature, for daily average, daily minimum and maximum 
temperature (Tavg, Tmin, Tmax ), for (a) South Asia from the GSOD station 
dataset, and (b) India for the IMD gridded dataset; (c) the frequency of days 
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with Tavg, Tmin, Tmax above/below a chosen temperature threshold from the 
GSOD. In each case the maps show the historical probability of getting the 
below-normal or above-normal tercile category of temperature, given a 
particular phase of ENSO.  The maproom is applicable to any season (i.e. set 
of consecutive calendar months) of choice, such as for a cropping season.  
If the ENSO situation and forecast, for example updated monthly from the 
CPC/IRI ENSO Update indicates high likelihood of a La Nina or El Nino 
event persisting, these map rooms could be used to inform crop choice. 

4. Anomaly correlation “skill” maps of 
precipitation and temperature from 
individual GCMs: A set of maprooms 
was developed to calculate and display 
the anomaly correlation skill of the 
individual NMME models for 
precipitation and temperature for any 
chosen season. The GCM hindcasts 
were interpolated spatially onto the 
0.5-degree grid of the APHRODITE 
data for precipitation, and CRU TS3p1 
for temperature. Maps are shown for 3-
month averages at 1-month lead, thus 
for example, for the July–September 
season for forecasts initialized on June 
1. Figure 2 shows the Dec–Feb 
temperature skill of the CFSv2 
forecasts made on Nov 1, of each year 1982–2011. This map shows very high 
skill levels over southern India and the Himalayas, while skills are low over 
northern India and Bangladesh. 

5. Experimental downscaled forecast maprooms: New maprooms for 
experimental downscaled seasonal forecasts were built for APHRODITE 
seasonal precipitation total and seasonal mean CRU TS3p1 temperature. This 
product is based on the ECHAM4.5 atmospheric GCM’s response to statistical 
forecasts of sea surface temperature (available at 
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.ca_
sst/). The maprooms downscale the GCM’s simulations of precipitation and 
near-surface temperature using the IRI Climate Predictability Tool (CPT; 
available at http://iri.columbia.edu/climate/tools/cpt). The maprooms provide 
the downscaled real-time forecast, along with anomaly correlation skill maps. 

Figure 2: Anomaly correlation 

skill for Dec–Feb temperature 

forecasts from the CFSv2 

initialized on Nov 1, for 

hindcasts for 1982–2011. 
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Clicking a location on the map brings up a time series of past forecast 
performance, as well as the real-time forecast presented as a probability of 
exceedance. Figure 3 shows an example of the maproom output for Jan–Mar 
2013 temperature (Tavg) forecast made from a GCM initialized on 1 Dec 2012. 
A point over Nepal was selected in the bottom panels. In this case, the ENSO 
condition is neutral, and the forecast anomaly is very weakly positive. This is 
reflected in the forecast probabilities of exceedance (bottom left panel, red) 
being very close to the historical distribution (blue). The observations at this 
point (bottom right panel, blue) show a warming trend since about 1990 that is 
not reflected in the model hindcasts, which may indicate a deficiency of the 
latter. 

 

In addition to these project-specific products, a recently developed Verification Portal 
is available on the IRIDL (http://iri.columbia.edu/climate/forecast/verification) that 
documents the skill of the multi-model IRI Net Assessment seasonal forecasts of 
seasonal-average precipitation and temperature for the period 2001–2011.  

Figure 3. Example of the downscaled temperature forecast maproom. 
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Results 

Mean Precipitation Climatology 

An example of the 
historical precipitation 
map room is illustrated 
in figure 4. It shows the 
June–September (JJAS) 
mean seasonal total 
precipitation 
climatology (1951–
2007) for the three 
target regions. A strip 
of higher rainfall 
extends along the 
Himalayan escarpment 

over Nepal while 
seasonal rainfall totals 
over Bangladesh are 
largest. This map room 

enables mean historical amounts of rainfall to be calculated and displayed for an 
arbitrary seasonal window at daily resolution. It also allows various spell statistics of 
daily rainfall to be calculated in place of the seasonal total as well as exceedance 
probabilities—for example the ability to compute the probability of exceeding two dry 
spells of a week or longer within the specified seasonal window. 
 

Temperature Dataset Comparison 

As an example of candidate sites at benchmark locations in India, a specific grid box 
(near 26.5N, 80.5E) in Northern India has been chosen in order to compare 
interannual variability of temperature mean, maximum, and minimum, based on CRU, 
IMD and NASA data sets (figure 5). The time-series over the common period 1982-
2005 displays those temperature quantities for the winter season December-February 
(DJF). Note that the NASA POWER is based upon reanalysis, and it indicates 

Figure 4. JJAS mean seasonal total precipitation 
climatology (1951-2007) from the 0.25-degree 
APHRODITE dataset. Units in millimeters. 
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'systematic' warm bias relative to the other two data sets. Therefore, the POWER 
temperature quantities minus 2.0 (hereafter referred to as POWER-2) are applied in 
the time-series plots. 

The time-series of temperature quantities for DJF 1982-2005 compare well between 
CRU and IMD for mean or minimum, and relatively not so well with POWER-2. For 
maximum temperature, however, IMD appears to be closer to POWER-2 with each 
other than with CRU. The POWER-2 data also indicate more frequent and larger 
interannual variation than the other two, especially prior to the mid-1990s.  
 

Summer Rainfall Predictability 

The historical probability of seasonal precipitation anomalies during El Niño and La 
Niña events is shown in figure 6 over Northern India and Nepal for the JJAS season 
(1951–07) in terms of seasonal rainfall total, rainfall frequency and mean rainfall 
intensity on wet days. The maps in figure 6 show the probability of receiving rainfall 
in the below-normal tercile category during El Niño events (top) and the below-
normal tercile category during La Niña events (bottom), both of which correspond to 
the “canonical” ENSO pattern over South Asia during summer. While there is a 
general historical tendency for this ENSO-related signature, it is only a moderate 
tendency with tercile-category probabilities generally in the range 0.4–0.6 and present 
a noisy spatial pattern. There are more elevated probabilities in the case of rainfall 
frequency, reaching 0.6–0.7, while rainfall intensity shows the weakest signal. Over 
the study regions, Punjab and Haryana regions show a strong enhanced probability of 

Figure 5: Comparison of temperature datasets for a gridbox near 26.5N, 

80.5E, for (a) Tmin, (b), Tmean, and (c) Tmax, averaged over the DJF season. 

Two degrees C was subtracted from the NASA Power.  
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drought during El Niño for rainfall frequency. Meanwhile higher rainfall intensities 
are more likely during La Niña events over Nepal and northern Bangladesh. 

 

The ENSO associations with rainfall characteristics shown in figure 6 indicate 
potential predictability of the latter based on the established predictability of the 
former, although the seasonality of ENSO events is such that their predictability 
reaches a minimum in April and May, (known as the ENSO spring predictability 
barrier). The skill of the IRI Net Assessment forecasts for July-September (JAS) 
seasonal precipitation amounts for forecasts issued in mid-May are shown in figure 7. 

Figure 6. Historical probability of seasonal anomalies during the 
different ENSO phases for the JJAS season. The top three panels show 
the probability of below normal tercile precipitation during El Niño. The 
bottom three panels show the probability of above normal tercile 
precipitation during La Niña. The left panels compare total JJAS 
precipitation, the middle panels show the number of days where it rains 
greater than one millimeter and the right panels show the average 
rainfall intensity on wet days (1951-2007). The ENSO state is dictated by 
seasonal average sea surface temperature in the NINO3.4 region. 
 

Figure 7. Skill of IRI Net 
Assessment JAS precipitation 
amount forecasts for 2001-
2011 using generalized 
relative operating 
characteristic. 
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IRI’s Verification Portal has many means of measuring and comparing skill of IRI’s 
forecasts. The method displayed in figure 7 is the generalized relative operating 
characteristic (ROC) skill score. These forecasts show modest some skill over the 
Punjab/Haryana region but none over Nepal and Bangladesh.  
 
To analyze in more detail the performance of GCM forecasts over South Asia, figure 
8 shows maps of the Pearson anomaly correlation coefficient between the hindcasts of 
JAS precipitation amount (i.e. forecasts made retrospectively) and the APHRODITE 
data. These hindcasts were started from initial conditions on June 1 of each year over 
the 1982–2007 period, and figure 5 shows the results for five different GCMs. Two of 
the GCMs stand out as exhibiting high positive correlations over the CCAFS-relevant 
regions, namely the CFSv2 (figure 5b) and ECHAM-MOM (figure 5d), for Punjab, 
Haryana and Nepal respectively; these two models will be considered in more detail 
in the following figure. None of the five models perform well over Bangladesh. 

 

Figure 9 shows similar correlation maps but for the full JJAS season for hindcasts 
made on May 1 using the CFSv2 (top) and ECHAM-MOM (bottom) models. The 
results for seasonal total rainfall (left column) are similar to those in figure 8 for the 
reduced season. Breaking the seasonal rainfall into rainfall frequency (middle) and 
intensity (right) components suggests slightly better performance for rainfall 
frequency. 
 

Figure 8. Pearson 
correlation coefficient 
between APHRODITE 
JAS seasonal 
precipitation and 
1982-2007 
retrospective GCM 
hindcasts initialized on 
June 1 of each year. 
The performance of 
five different GCMs is 
shown. 
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The maps in figures 8 and 9 suggest promising GCM performance over the 
Punjab/Haryana region in CFSv2 and over Nepal and Bihar in ECHAM-MOM. To 
determine the extent to which this is reflected in actual hindcast skill, figure 10 shows 
cross-validated skill scores of CFSv2 and ECHAM-MOM models in terms of Pearson 
correlation (top) and ROC area for the below-normal tercile category. The maps again 
validate the models against APHRODITE 0.5-degree data using the closest GCM 
gridbox value and thus represent a crude spatial downscaling. Some cross-validated 
hindcast skill is evident for all the CCAFS regions except Bangladesh.  

 
A more sophisticated regression-based spatial downscaling was not found to improve 
the skill levels presumably due to the modest strength of the predictive relationship 
coupled with the relatively short training period under cross-validation—here 21 

Figure 10. Cross-validated 
skill scores of CFSv2 and 
ECHAM-MOM models for 
hindcasts of JJAS seasonal 
total precipitation. Upper 
panels show Pearson anomaly 
correlation while lower 
panels show the area below 
the ROC curve for the below-
normal tercile category. 

Figure 9. Same as figure 
5 but for retrospective 
forecasts for JJAS 
seasonal precipitation 
for the CFSv2 model 
(top) and ECHAM-MOM 
(bottom). 
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years. It should be noted that the maps in figures 6–10 are not strictly comparable 
because of the different ranges of years considered in each case, which can make a 
substantial difference in the case of the South Asian monsoon where sampling 
variability is high and the ENSO-monsoon relationship is known to be period-
dependent. Whether this is a result of simple sampling variability or true non-
stationarity is still under debate. 
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Conclusion  

A new suite of maproom tools has been developed for CCAFS regions of South Asia 
that enable rainfall and temperature climatological characteristics, seasonal 
predictability, and downscaled seasonal forecasts to be accessed and analysed from an 
agronomic perspective.  Some modest seasonal predictability of summer monsoon 
precipitation is found over the Punjab/Haryana region in the CFSv2 model and over 
Nepal and Bihar in ECHAM-MOM model. There is some evidence of slightly 
enhanced predictability of rainfall frequency compared to seasonal rainfall total, but 
the difference is not pronounced over the project regions. There is no evidence of any 
summer monsoon predictability over Bangladesh from the analyses reported here.  
 
The accuracy of the results is dependent on the quality of the observational datasets 
used, which is a nontrivial issue for daily precipitation and temperature data. For daily 
precipitation, we have relied on the APHRODITE station-based gridded product, 
which extends over monsoonal Asia. For daily temperature there are fewer large scale 
observational datasets available, although numerical weather prediction model 
reanalysis datasets provide a potential alternative. For this reason, we compared three 
daily temperature datasets over India, which is the most data-rich region due to the 
IMD products. For interannual variability our results (figure 5) showed that there are 
still large errors in the NASA POWER reanalysis product, while the CRU and IMD 
compare quite closely. However the CRU is a monthly product. 
 
Several extensions for future work are suggested: 
 

• Some of these maprooms already extend over SE Asia. Contingent on the 
availability of observed daily precipitation and temperature data, they could be 
extended to other regions.  

• It would be valuable to extend the dataset comparison study to include the 
GSOD station data and other reanalysis products. The ENSO composites that 
use the GSOD and IMD temperature data do not agree closely, and this should 
be resolved. 

• The GCM skill maproom could be extended to a probabilistic verification 
measure, as well as to allow the forecasts at multiple lead time to be viewed. 

• The forecast maprooms are still a prototype, and consider only seasonal 
averaged quantities. These could be extended to consider some of the daily 
characteristics of precipitation and temperature that are available in the 
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historical monitoring maproom. They could also be extended to consider the 
multi-model average of the NMME coupled models. 
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