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Abstract  

Climate prediction on decadal time scales is currently an active area of research. Although 

there are indications that predictions from dynamical models may have skill in some regions, 

assessment of this skill is still underway, and reliable model-based predictions of regional 

‘near-term’ climate change, particularly for terrestrial regions, have not yet been 

demonstrated. Given the absence of such forecasts, synthetic data sequences that capture the 

statistical properties of observed near-term climate variability have potential value. 

Incorporation of a climate change component in such sequences can aid in estimating 

likelihoods for a range of climatic stresses, perhaps lying outside the range of past experience. 

Such simulations can be used to drive agricultural, hydrological or other application models, 

enabling resilience testing of adaptation or decision systems. The use of statistically-based 

methods enables the efficient generation of a large ensemble of synthetic sequences as well as 

the creation of well-defined probabilistic risk estimates. In this report we discuss procedures 

for the generation of synthetic climate sequences that incorporate both the statistics of 

observed variability and expectations regarding future regional climate change. Model fitting 

and simulation are conditioned by requirements particular to the decadal climate problem. A 

method for downscaling annualized simulations to the daily time step while preserving both 

spatial and temporal subannual statistical properties is presented and other possible methods 

discussed. A ‘case-study’ realization of the proposed framework is described. 
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1. Introduction 

Climatic shifts that might be expected over the next few decades, sometimes referred to 

collectively as ‘near-term climate change,’ have received increasing attention in recent years. 

This owes in part to the perceived difficulty of initiating adaptive responses based on the 

projections discussed in assessment reports of the Intergovernmental Panel on Climate 

Change (IPCC), which takes a century-long perspective. Rising interest within the adaptation 

community in the evolution of climate in the near term finds a parallel in current analyses and 

experiments aimed at elucidating the potential for numerical models to forecast climate 

variations on decadal time scales; a suite of such experiments will be described in the 

forthcoming IPCC assessment (expected 2013). 

Some studies of potential decadal predictability (e.g., Boer and Lambert, 2008) suggest that 

skill in terrestrial regions is likely to be low. Other research (e.g., Teng and Branstator, 2010) 

has tended to focus on oceanic variables, perhaps based on the expectation that results are 

likely to be more promising than those obtained for land regions. In any event, reliable near-

term climate forecasts for terrestrial regions, particularly at local to regional scales, have not 

been demonstrated. Alternative methods for assessing near-term climate-related risks may 

thus have value.  

One technique that can be useful in this regard involves stochastic simulation: the creation of 

synthetic climate sequences having statistical properties representative of a region or locality 

of interest. Such sequences, while not forecasts per se, can nonetheless help to quantify ranges 

of uncertainty associated with near-term climate variability. Simulations may be structured so 

as to incorporate estimates of long-term trends associated with anthropogenically-forced 

climate change (including the uncertainty in these trends). The projected climate change 

signal then provides a slowly-changing background state on which decadal and higher-

frequency fluctuations are superimposed. Together these influences provide a better 

description of the expected range of near-term climate variations, and their potential impacts 

on statistics of interest for agriculture or other applications, than either alone. It is the 

generation of such sequences that constitutes the focus of the present report. 
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The discussion presented here constitutes an exploration of some of the practical 

considerations involved in generating such simulations. The general plan consists in 

decomposing regional climate variability into three components: A ‘trend-like’ component 

that may be associated with anthropogenically-induced climate change, an annual-to-decadal 

component, comprising variability on those time scales, and a subannual component, 

including the seasonal cycle and daily variability. As will be seen, this is a tidy description of 

what may turn out in practice to be a less-than-tidy procedure, but it can usefully serve as a 

template for simulation model development. 

The remainder of this presentation is organized as follows: In Section 2 we provide some 

theoretical background and describe the conceptual decomposition by time scale that 

underlies the proposed simulation methodology. Section 3 considers issues encountered in 

model design and specification. Section 4 presents a detailed framework for the construction 

of a simulation model, in light of the information presented in earlier sections. In Section 5 

elements of a case study that illustrate one possible realization of the simulation methodology 

is considered. A discussion and summary follow in Sections 6 and 7, respectively. 
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2. Decomposition by time scale 

Climate variability is often parsed according to time scale, the various canonical scales 

corresponding approximately to different classes of climate process. There are at least two 

reasons for the qualifier ‘approximately’: First, changes in climate behaviour on different time 

scales may not be strictly independent: there is a possibility of cross-scale influence. Second, 

and particularly with regard to anthropogenic ‘trends,’ the separation of such trends from low-

frequency variability that may not be anthropogenic in nature is not always straightforward 

(Solomon et al., 2011). 

The above caveats notwithstanding, the simulation strategy to be discussed utilizes such a 

decomposition. The three time scales are treated quasi-independently, but without ignoring 

the possibility influence of climatic change on annual and subannual variability. The 

treatment of such interaction, as well as the so-called ‘separation problem,’ are discussed in 

the relevant sections of the report. 

2.1 Climate change 

On the longest time scales to be considered are the secular climate shifts referred to as 

‘climate change,’ which play out over the course of a century or longer. These time scales 

involve, to first order, anthropogenic forcing of the climate through changes in the radiative 

properties of the Earth’s atmosphere. One well-known result of this forcing is the rise in 

Earth’s surface temperature owing to the increasing atmospheric burden of carbon dioxide 

(CO2) and other greenhouse gases. Because this forcing has an incremental character (see, 

e.g., Figure 2.3a in Solomon et al., 2007), we identify a ‘climate change’ time scale, and 

associate slow, trend-like components in the signals analyzed with it. 

2.2 Subannual variations 

At the opposite end of the spectrum we find subannual variability, including the seasonal 

cycle and daily weather fluctuations. Because the chaotic nature of the atmosphere limits 

weather prediction to a time horizon of a week or two, daily variability is often simulated for 

application purposes using stochastic daily weather generators (Wilks and Wilby, 1999; 

Wilks, 1999). This strategy is analogous to what we propose here for the annual-to-decadal 

scale, where predictability is also likely to be limited to time horizons shorter than those for 
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which future information is desired. A brief consideration of weather generation schemes that 

might be utilized in conjunction with the decadal simulations is presented in Section 4.7.2.  

2.3 The annual-to-decadal scale: ‘Near-term’ climate change 

The annual-to-decadal time scale occupies a nominal middle ground between the climate 

change and subannual (weather to seasonal) scales. Natural climate variability on this broad 

range of time scales arises from a range of processes, including the El Niño-Southern 

Oscillation (ENSO) phenomenon, large-scale decadal ‘modes,’ filtering of high-frequency 

‘weather noise’ via the large thermal inertia of the oceans, volcanic eruptions and solar 

variability. Anthropogenic factors such as land use/land cover changes and emissions of 

aerosols and certain other trace gases may also produce decadal-scale climatic responses. 

These processes are effective to differing degrees in different ocean basins, latitude bands and 

regions, resulting in a rich and complex mosaic of regionally-differentiated variability on 

annual and longer time scales. 

For the purposes of simulation it is the net effect of all of these processes, as expressed in the 

region of interest, with which we will be concerned. To the extent that it is possible to 

attribute specific components of variability to particular climate processes, such information 

may be useful in informing the generation of stochastic sequences, (this applies as well to 

trend or trend-like behaviour). Conversely, to the extent that attribution is unclear, ambiguities 

may remain, that the simulation process will need to take into account. 

2.4 Cross-scale dependency 

A modeling issue of potential importance concerns the dependence of variability at one time 

scale to shifts or changes on other scales. Such dependencies are often framed in terms of the 

effects of slow anthropogenic climate change on the more rapidly-evolving interannual or 

subannual scales. One example of such a dependency is the widely expected increase in inter-

annual precipitation variability as climate warms, owing to the rapid increase in water 

saturation vapor pressure with temperature. Shifts in daily rainfall statistics, such as wet- and 

dry-spell lengths or precipitation extremes, that might come about as a consequence of global 

warming are another possibility. 

In general, the dependency of decadal variations on climatic shifts is more difficult to 

evaluate, since longer records are required to characterize such dependencies with a 
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comparable degree of uncertainty. There is no simple solution to this problem, but useful 

information may possibly be obtained from paleorecords or climate models. 

3. Modeling contingencies 

Issues that arise in the course of simulation design include the availability of suitable data to 

which to fit the statistical model (or models) utilized, characteristics of the regional climate 

and the requirements of follow-on applications models. These are discussed in turn. 

3.1 Data 

3.1.1 Observations 

If the simulations are to have realistic properties, sufficient data, of reasonably good quality 

and of sufficient temporal and spatial extent, must be available to fit the statistical model that 

will be used to generate them. The primary source of such data over land regions, at least 

prior to the advent of satellites, is weather station records, derived from measurements made 

in situ. This means that regions in which station measurements are sparse may present greater 

modeling challenges than those for which extensive, high-quality records exist. 

Satellite data commence only around 1979, thus are rather short for the confident 

characterization of decadal signals. As an example, the Atlantic Multidecadal Oscillation 

(AMO), the primary large-scale mode of sea surface temperature (SST) variability in the 

north Atlantic, exhibits what appears to be oscillatory behaviour (Figure 1). From the satellite 

perspective, that is, beginning in 1979, the series has the appearance of an upward trend, with 

little suggestion of this behaviour. 

3.1.2 Paleodata 

Given the limited length of many observational records, one can imagine a role for 

paleoclimate data, which may extend hundreds of years or more into the past. Tree-ring 

reconstructions were used e.g. by Prairie et al. (2008), for stochastic simulations of Colorado 

River streamflow. The paleorecord in that case shows evidence of ‘megadroughts’ — dry 

epochs whose lengths greatly exceed those in the historical record. Beyond the obvious 

requirement that suitable paleorecords, applicable to the region under study, must be 

available, the introduction of such data raises calibration and other technical issues. 
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Figure 1: Atlantic Multidecadal Oscillation (linearly detrended) as computed using the 

Hadley Center HADISST v 1.1 SST data, and a lowpass-filtered version, generated with a 

filter having a half-power point at period of 30 years. 

 

If these can be resolved in a satisfactory manner, appropriate paleodata may prove of value in 

the characterization of decadal variability. (Tree-ring evidence was considered for the case 

study discussed in Section 5, but coverage in that case was deemed insufficient). 

3.1.3 Spatial coverage and domain size 

Training data for the statistical model should be representative of the locality or region for 

which simulations are to be generated. However, these data also serve to characterize regional 

low-frequency variability. If the ‘region’ under consideration is too small, any low-frequency 

component that is present may be masked by the relatively larger local variability in the 

record. Decadal-scale processes tend to have relatively large-scale footprints. Modeled 

regions should be of sufficient spatial extent to capture such fluctuations, while also 

remaining representative of the study area for which simulations are to be generated. 

If the region of interest is climatically coherent it may be reasonable to model its spatially 

averaged variables directly. (This procedure is followed in the case study). However, if 

sufficiently extended it may be preferable to prefilter the data in terms of empirical orthogonal 

functions (EOFs), modeling instead a subset of the expansion coefficient time series. This 
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would permit the statistical model to capture behaviour having more complex spatial 

signatures while also increasing the signal-to-noise ratio in the modeled data. In the more 

detailed discussions that follow we offer a conceptual description of such a strategy. 

3.2 Regional climate characteristics 

We review here the three time scales referenced in Section 2, from a general modeling-based 

perspective. 

3.2.1 Trends and trend-like behaviour 

Trends represent nonstationarity in the mean: a local average, changing with time, around 

which decadal and higher-frequency signals fluctuate. Even if the character of these 

fluctuations changes little, a persistent trend will eventually bring about the occurrence of 

climate anomalies lying outside the range of the observational past. An agriculturally-

significant maximum temperature threshold may be crossed more and more often as climate 

warms, for example or a critical number of consecutive frost days may be exceeded less and 

less frequently. The inclusion of trends in simulated sequences is thus essential from the 

estimation-of-risk perspective. 

Observed trends may tell us something about regional sensitivity to anthropogenic forcing, 

particularly with regard to temperature. However the warming observed during the 20th 

century has not been large compared with that expected for the future. In addition, certain 

anthropogenic inputs, such as aerosol or ozone forcing, may change in the future in ways that 

are not reflected in the 20th century record. For these reasons it may be useful to also consider 

what climate models may have to tell us regarding future temperature and precipitation trends. 

A possible third source of information is the body of theoretical work that has developed in 

regard to future climate expectations. The expectation that global warming will bring about a 

poleward shift of the dry subtropical zones and mid-latitude storm tracks, for example, 

preconditions the discussion and may tilt the balance in favour of accepting, or at least 

entertaining, a projection that is consistent with such an outcome. 

3.2.2 Systematic vs. random variations 

We model annual-to-decadal variability as a combination of what can loosely be termed 

‘systematic’ and ‘random’ variations. In practice this means that we adopt, as a random 

climatic background, the first-order autoregressive, or AR(1) process. Because the model may 
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comprise more than a single variable this background may be multivariate. Signal components 

that demonstrably do not conform to the AR(1) model are then defined as ‘systematic.’ 

Given the wide range of random process types from which one might choose, there would 

appear to be a degree of arbitrariness in the way this distinction is drawn. The AR(1) structure 

seems appropriate, however, because it is the simplest such process having ‘memory,’ and 

because it requires few assumptions about underlying physical mechanisms. As noted earlier, 

the AR(1) response can arise simply as a result of random high-frequency ‘weather noise,’ 

forcing a sluggish, high-inertia ocean, this in fact being the paradigm for the generation of 

low-frequency stochastic variability in middle and high latitudes. It is not accidental that 

AR(1) noise is often taken as the classical ‘null hypothesis’ for oceanic variability in these 

regions (Deser et al., 2010). 

In some situations climatic variations may follow ‘regime-like’ behaviour. Such behaviour is 

characterized by states having residence times that are long, compared with the time required 

for state-to-state transitions. Such behaviour might occur on the subannual scale, for example, 

in connection with transitions among a set of ‘weather states,’ or regimes, and state-based 

models have been utilized to good effect for the purposes of downscaling (e.g., Greene et al., 

2008, 2011). However, it may be difficult to distinguish between ‘regime-like’ and ‘wave-

like’ systems: there is not a sharp demarcation, but rather an infinite range of gradations 

between the two types of behaviour (Rudnick and Davis, 2003; Overland et al., 2006). 

Ultimately, if it is decided that the system to be modeled is in fact regime-like on the annual-

to-decadal scale, a state-based model may prove more appropriate than one based on the 

systematic/random dichotomy described above. This sort of model is exemplified in the 

streamflow simulations of Prairie et al. (2008). 

Aside from the low-order physical justification, use of the AR(1) process clarifies the 

modeling framework, by providing a baseline statistical structure with which climate records 

that are candidates for simulation may be compared. Rejection of the AR(1) null hypothesis is 

then taken as evidence for the existence of a ‘systematic’ signal. Such a signal would require 

either a reconsideration of the basic structure of the data, or possibly an independent 

submodel, in the same way that seasonality requires its own submodel when analyzing data 

containing seasonal effects: The seasonal cycle is not AR(1). A modeling framework 
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consistent with the systematic/random paradigm, wavelet autoregressive modeling (WARM) 

is described by Kwon et al. (2007, 2009). 

3.2.3 Subannual variability 

Seasonality is a significant factor in many, if not most, regions. In the simulation context it 

may useful to model only the rainy season, since this is likely also the growing season and 

outside this window little significant precipitation may occur. A variety of daily weather 

statistics, including distribution shape, extremes and spell lengths, for both temperature and 

precipitation, may be at issue, and the daily component of a complete simulation scheme 

should attempt to account for these. 

Since the simulation context is malleable and dependent on setting, it may prove desirable in 

some cases to produce simulations that are not daily-resolved. Agricultural models typically 

do require daily values of climate parameters, but there may already be an extant daily 

simulator (weather generator), for example, tuned to the localities of interest and designed to 

accept monthly mean values as inputs. In such a situation the simulation model can be 

modified so as to generate monthly sequences, for subsequent use in driving the weather 

generator. 

3.3 Follow-on modeling requirements 

Ultimately, it is the application model that determines whether simulations need extend to the 

daily time step, and which data are to be simulated. If required variables have not been 

recorded, empirical rules, perhaps based on data from similar sites, may have to be devised in 

order to obtain values. An example would be the creation of two insolation distributions, for 

wet and dry days, in the case that adequate primary data are not available. Insolation would 

then be simulated by sampling from these distributions conditional on the occurrence of rain, 

as generated by the core simulation model. 

In some cases, such as the Colorado River streamflow mentioned earlier, univariate 

simulations are sufficient: A single variable encodes sufficient information for inference 

concerning relevant ‘downstream’ impacts. In others, such as the case study to be described, 

multivariate simulations are required; intervariable correlation on annual and longer time 

scales then becomes an important simulation target. Follow-on models will also play a role in 

determining simulation statistics of interest, and thus the generation of simulation ensembles. 
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3.4 A note on modeling philosophy 

As with many statistical models, the machinery of simulation provides many ‘knobs’ that the 

experimenter can turn at will, generating in the process a potentially wide range of outcomes. 

We believe that it is most sensible, given such a choice, to focus on climatic shifts that 

external evidence informs us are likely to occur, or whose occurrence are supported by 

theoretical arguments. Otherwise the risk exists of generating scenarios that have little 

probability of actually coming to pass. In effect this is simply a recommendation for the 

principle of parsimony. 

4. The simulation model 

4.1 Overview 

Model development is keyed to the decomposition by time scale (or more or less equivalently, 

process class) discussed in Sec. 2, as conditioned by the contingencies discussed in Section 3. 

These include the availability of observational training data, requirements of agricultural or 

other follow-on models and the characteristics of regional climate variability. We note here 

the ways in which these contingencies affect the development of a suitable model. 

Model requirements may be expected to differ from setting to setting, and design must adjust 

accordingly. What is common is the separate treatment of trend, annual-to-decadal and 

subannual variability (considering possible cross-scale interactions), the introduction of 

climate information beyond that embodied solely in the datasets employed, and the use of an 

AR (1) model as random background on the annual-to-decadal time scale, against which 

systematic variations play out. 

4.2 Treatment of trend 

First, we require a detrending procedure, to remove the estimated forced response from the 

observational data on which the decadal component of the simulation model is to be trained. 

Second, in the simulation step we require an estimate of how mean process levels will evolve 

in the future. Past and future trends need not be the same.  

There are many options available for fitting both linear and nonlinear trends to time series, the 

simplest perhaps being the straight line fit. Such a line can be extrapolated, providing a trend 
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for the future. However, past and future trends may differ, rendering such an approach 

questionable. The use of nonlinear trends, using exponential or other parametric forms, does 

not address this problem. Further, trends computed as a function of time alone have no 

physical underpinning, being essentially numerical in nature. 

We propose instead to parameterize trend in terms of regional climate response to global 

temperature change: Since we associate anthropogenic trend with warming of the planet (so-

called ‘greenhouse warming’), we model local trends in terms of a linear association with 

global temperature change: In the absence of anthropogenic forcing the globe does not warm 

and future trends are null. We utilize a model representation of the global mean temperature, 

solving both past and future trend problems at once: 20th century model values are used for 

detrending and 21st century values for projection, harmonizing the response across centuries. 

The planet is not expected to warm uniformly; modeling local trends as dependent on the 

global mean temperature takes such spatial variation into account. 

For local temperature we model both past and future trends based on the assumption that it is 

the spatial pattern of temperature dependence, rather than the local rate of warming that is 

stationary. Thus, regional or local temperature trends are regressed on a global mean 

temperature signal, according to 

!! =   !! +   !!!! 

where !!   is the regional or local temperature record, !!  is a multimodel-mean, global mean 

temperature signal, !!  is an intercept term and !! represents the regional response to global 

temperature change. The fitted values !!  are used to detrend the observed temperature record, 

while the !! and !!are used to project local temperature forward, based on the future global 

mean temperature signal. The multimodel mean global mean signal used as regressand is 

derived from an ensemble of GCMs participating in a recent IPCC Assessment Report. 

The assumption of a consistent relationship between both past and future local temperatures 

and the global mean temperature can be verified in the GCM domain. If the climate models do 

not confirm such consistency the modeler will have to consider the available information and 

make a reasoned choice about how to proceed. In the case study, temperature, but not 

precipitation trends were found to behave consistently across centuries. The manner in which 

(1) 
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this inconsistency was resolved is illustrative, but not comprehensive, since many types of 

behaviour may be possible. 

The global temperature signal used as regressand is shown in Figure 2. To obtain this series 

the global mean temperature records for the 20th and 21st centuries from an ensemble of 14 

GCMs from the Coupled Model Intercomparison Project (CMIP5) were first concatenated 

into records spanning the years 1901–2095. Each GCM’s record was then smoothed, using a 

Butterworth filter (Smith, 2003) of order five, having a half-power point, or ‘cutoff,’ at a 

period of 10 yr. (Results are not sensitive to the particular method of filtering.) The plot 

shows the average of the 14 smoothed series thus obtained. 

Internal variability is intrinsic to each of the GCMs but is largely incoherent among them. 

Averaging thus acts to suppress this variability, while enhancing that part of the signal that the 

GCMs have in common — that of climate change. Thus, model averaging enhances the 

climate change signal while attenuating ‘internal variability noise.’ The filtering further 

smooths this signal, suppressing residual high-frequency variability and short-lived transients 

such as the effects of volcanic eruptions (although the latter are still discernible in Figure 2, 

and may be reflected to a modest degree in inferred 20th century trends). Volcanoes are treated 

here as unpredictable external forcing, unrelated to climate; no attempt is made to simulate 

their future effects. The simulations thus produced may be considered as representing a 

volcano–free perspective on the next few decades. 

When a local or regional signal is regressed on the series of Figure 2, the fitted values, now 

representing the local or regional climate change trend, appear as a scaled and shifted version 

of that series. This process and its result are shown in Figure 3, where we have taken as an 

example the AMO signal described earlier. The original signal is shown in panel (a), along 

with the fitted trend, which appears as a scaled and shifted version of the curve shown in 

Figure 2. Note that this trend, although linearly dependent on the global mean temperature 

signal, is not linear in time. In particular, because the globe has warmed (in GCMs, but also in 

reality) more rapidly toward the end of the century, the trend accelerates during this period. 

The effect is that a greater portion of the AMO signal is assigned to anthropogenic causes 

than would be the case if the AMO were linearly detrended. 
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Figure 2: The smoothed global mean, multimodel mean temperature time series used as 

regressand in the detrending of observations and for the projection of future trends. 

 
Residuals from the regression fit of the AMO to global mean temperature are plotted against 

time in Figure 3b. The curve exhibits large interdecadal swings, of peak-to-peak amplitude 

~0.4oC. This slow ‘oscillation’ identifies the AMO signal as one of the principal large-scale 

modes of decadal climate variability. It can also be seen that fluctuations are not limited to the 

multidecadal band, but comprise considerable year-to-year variation as well. Thus, the 

‘annual-to-decadal’ component in this case includes variability on multiple time scales. 

The response of precipitation to changes in global mean temperature has an important indirect 

component, in that it depends not just on shifts in temperature but also, and possibly in a 

significant way, on changes in atmospheric circulation. Thus, projecting forward the results of 

a 20th century regression is a less certain enterprise than is the case with temperature. 

Additional evidence, in the form of GCM simulations, attribution studies or detailed model 

experiments may be helpful in informing the modeler’s judgment in this case. Shin et al. 

(2010) present an attribution study along these lines. Ultimately it may be prudent to provide 

explicit uncertainty bounds when projecting precipitation trends. 
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Figure 3: (a) The raw AMO time series (Kaplan SST data) and a fitted trend computed by 

regression on the global mean temperature signal shown in Figure 2. (b) Residuals from 

this regression, representing the ‘natural’ component of variability. 

 

 

 

4.3 Treatment of ‘systematic’ components 

The objective now is to fit a statistical model to time series that correspond to what is shown 

in Figure 3b for the AMO-detrended sequences, comprising a possibly wide spectrum of 

variability on periods of one year and longer. If the data is determined to be regime-like, a 

hidden Markov model or some elaboration thereof might be considered (e.g., Norris, 1997). 

Such models are based on the idea that the underlying process is governed by transitions 

between well-defined ‘hidden states,’ that can be inferred via the observations. The strategy 

followed here is not state-based, but follows instead the systematic/random signal 

decomposition described in Section 3.2.2, by testing the candidate series against a red-noise 

null hypothesis. 
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4.3.1 Wavelets 

Wavelet analysis (see, e.g., Mallat, 1999) provides a way of examining variability in both the 

time and frequency domains simultaneously. The wavelet decomposition, or spectrum, as 

applied to a time series, is represented by a two-dimensional plot showing time along the x-

axis and period (as in the period of an oscillation) on the y-axis. Examination of the spectrum 

reveals intervals when the signal variance is high in particular frequency bands, while a time-

averaged summary, the ‘global’ wavelet spectrum indicates whether frequency-specific 

behaviour differs significantly from AR(1) noise, the criterion we utilize for differentiating 

systematic from random variability. An example will illustrate the principle. 

Figure 4 shows a wavelet decomposition of the NINO3 SST index (Trenberth, 1976), with 

Figures 4a, 4b and 4c showing the NINO3 time series, the wavelet spectrum and the global 

wavelet spectrum, respectively. In the last of these three plots, the dotted line indicates the 

10% red noise significance level. Spectral power exceeds this level in the ENSO band, 

corresponding to periods of roughly 2–8 years, meaning that the probability is less than 10% 

that ENSO-band signal variance represents the expression of an AR(1) process. Simulations 

generated by a red-noise model would not be likely to exhibit such a spectral peak. By our 

definition, a systematic component has been detected in the data. 

Figure 4 also shows that activity in the ENSO band has not been constant over time, with a 

period of relative quiescence between about 1920 and 1960. Assuming that systematic 

NINO3 variability can be modeled with a higher-order stochastic model of some sort, the 

modeler is now faced with a question: On which period should the NINO3 model be trained? 

Such a model might be based on the ‘active’ periods in the record, resulting in a relatively 

vigorous simulated ENSO. Alternatively, the ‘quiet’ period could be modeled, resulting in 

simulations having relatively weak ENSO variability. A second-order model might also be 

utilized, in which ENSO activity is amplitude-modulated on multidecadal time scales. In the 

latter case a decision would be required regarding the modeling of transitions between strong 

and weak ENSO phases: Should a regime-like model be used, or one in which transitions are 

more gradual? More generally, does the data permit differentiating between these 

alternatives? 
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Figure 4: Time series plot of the NINO3 index (a), wavelet spectrum (b) and global 

wavelet spectrum (c), showing the 10% significance level for a red noise process. This is 

a spectral decomposition of the signal as a function of time, which appears on the 

abscissa. Period appears on the ordinate and spectral power is indicated by colors (i.e., 

levels) on the plot. The 10% significance level is indicated in (b) by black contours and 

in (c), which averages the spectrum over time, as a dotted line. ENSO variability in the 

2-8 year band, as defined by this metric, differs from red noise at the 10% significance 

level. Analysis courtesy of http://paos.colorado.edu/research/wavelets 

 

 

 

Because future climate behaviour is at issue, a role is suggested for GCM-based information 

that might help inform the modeler’s decision. GCMs exhibiting realistic ENSO variability 

tell us only that anthropogenic influence on ENSO in the coming century is likely to be weak 

(Coelho and Goddard, 2009); the best alternative might thus be to include both strong and 

weak variability, in a model in which transition characteristics are to be determined. 
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4.3.2 Representation of systematic components 

An objective method for decomposing signals using wavelets, identifying components that 

differ significantly from a red noise background, modeling those components individually as 

low-order autoregressive processes and combining results in order to generate simulations is 

known as wavelet autoregressive modeling (WARM) (Kwon et al., 2007, 2009). Such a 

method is inherently consistent with our systematic/random decomposition. Kwon et al. 

discuss only univariate series, but extension to the multivariate case should not pose a 

significant obstacle to implementation. Thus, the combination of WARM with the other 

elements described herein could constitute a complete ‘toolkit’ for the generation of stochastic 

decadal simulations. 

Another option, also utilizing a sophisticated red-noise significance test, is Monte Carlo 

singular spectrum analysis (MCSSA) (Allen and Smith, 1996). The resulting spectral 

decomposition also resolves the target signal into systematic and random (red noise) 

components; the former can be projected forward using a technique called linear predictive 

coding (Press et al., 1986-1992), while the multichannel variant of SSA (MSSA) offers an 

extension to the multivariate case. These methods are perhaps more appropriate when it is 

believed that the systematic component is at least quasi-periodic. 

As suggested in Section 4.3.1, a systematic component such as that represented by the 2–8-

year band in the NINO3 series might possibly be represented by a stochastic model of higher 

order than AR(1). Kwon et al. claim that the WARM decomposition performed better than a 

single model fit to those time series with which they have experimented, but for a given series 

this is a testable hypothesis, and in some cases a single model might provide a parsimonious 

alternative to WARM, in which every frequency component exceeding the global significance 

level is effectively assigned its own model. 

4.3.3 Oceanic variability and predictability 

Since the source of much low-frequency variability is believed to reside in the oceans, 

predictability studies have tended to focus on oceanic variables, typically SST or upper ocean 

heat content (Knight et al., 2005; Newman, 2007; Teng and Branstator, 2010). Although such 

studies may be informative, for the purpose of simulating terrestrial variations it is ultimately 

necessary to deconstruct and model them directly. A consideration of the efficacy with which 

oceanic signals are communicated to land regions via atmospheric teleconnections, lies 
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beyond the scope of the present report, but in general it appears that such signals are diluted in 

transmission, rendering terrestrial decadal predictability weaker than that for the oceans. Teng 

and Branstator (2010) report extratropical Pacific SST predictability of just a few years. 

Given dilution of the predictable signal in transit, the potential for introducing a true 

predictive element into the stochastic simulations may be limited. The decadal hindcast 

experiments that are being performed in conjunction with the next IPCC report, part of the 

Coupled Model Intercomparison Project (CMIP5), should shed light on the skill with which 

current generation GCMs are able to predict terrestrial decadal variations (Goddard et al., 

2012). 

4.3.4 Range of possible models 

Evidently, systematic behaviour can assume many forms, this being one reason that a 

definitive formula for decadal simulation is difficult to specify a priori. If, however, as 

suggested by WARM modeling, most systematic elements can be represented, for the 

purposes of simulation, as the sum of low-order autoregressive components, the minimally-

sufficient model class would be limited to a reasonably small set. Application in a variety of 

simulation settings will help to delimit this class. We note in passing that the reports of Kwon 

et al. focused on the simulation of nonlinear elements, without specifically addressing regime-

like behaviour. 

4.4 Treatment of random components 

By construction, that part of the target signal not identified as systematic does not differ 

significantly from AR(1) noise. An AR(1) model is thus taken here as a basis for the random 

simulation component. Since this process has memory, it can generate ‘slow’ fluctuations, 

including potentially long spells above or below the mean (if the autoregressive parameter is 

large enough). However, although such processes may meander up and down, they are not 

periodic: The AR(1) spectrum has no peaks. 

Because agricultural or other applications models typically require multivariate input, we 

consider a natural generalization of the AR(1) model, the first-order vector autoregressive, or 

VAR(1) model: 

!! = !"!!! + !!, (2) 
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where !! is the process vector at time t, ! is a matrix of coefficients and !! is a stationary 

white noise process with expectation ! and covariance matrix = ! !!! .!   Note that this is 

completely analogous to the univariate AR(1) model, the difference being that scalars have 

been replaced with vectors (or in the case of !, by a matrix). The process represented by (2) 

represents not only serial autocorrelation but also first-order lag correlations across variables.  

4.5 A nonparametric alternative 

Nonparametric resampling techniques such as the k-nearest-neighbor (k-NN) method (Lall 

and Sharma, 1996; Rajagopalan and Lall, 1999) offer a possible alternative to (parametric) 

stochastic models for the annual-to-decadal component. The k-NN method can in theory 

account for serial correlation in the data, and because it ‘blindly’ mimics the target series 

without parametric constraints it is capable of generating simulations with distributional 

properties that might be difficult to reproduce with parametric methods. Using such a scheme 

it might even be possible to dispense with the disaggregation into systematic and random 

components, regenerating the statistics of the complete annual-to-decadal signal via 

resampling alone. Depending on the complexity of the target series, the method may require a 

large training set for reasonably precise replication of desired statistical properties. 

Experimenting with such methods may prove worthwhile, however. 

4.6 Reassembly 

In generating the simulated sequences the decomposition process is reversed: The trend and 

annual-to-decadal components are simulated individually and the results then combined. In 

Section 3.1.3 we mentioned two possibilities: Treatment of the primary climate variables 

averaged over the simulation domain and prefiltering in terms of EOFs. Details will depend 

on which of these alternatives is adopted. 

If domain-averaged variables are utilized there will exist both a trend model and a stochastic 

simulation model for the annual-to-decadal component, both applicable to the domain as a 

whole, Both the projected trends and the simulated variability will presumably be 

multivariate; they are combined variable by variable, resulting in a regional-scale simulation 

that is temporally complete down to the annual level. This simulation will then be propagated 

to locations within the domain, effecting a spatial downscaling on the annual-to-decadal level. 
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Prefiltering in terms of EOFs implies a domain of sufficient extent so that climate variability 

is better described in terms of patterns, as opposed to simple regional averages. Subject to 

experiment, detrending may be performed either at the local level prior to computing EOFs or 

on those of the principal component (PC) time series having significant trends. In either 

situation the relevant signals are regressed on the global mean temperature record, as with 

regionally-averaged variables. Operating on the PCs implies a stationarity assumption on 

intervariable trend covariance, establishing an internal control on future projections, but also 

may be viewed as entangling temperature and precipitation trends, thus enforcing a 

relationship that may or may not be appropriate for the future. 

As in the case of regionally-averaged variables, there will exist a model, or models, for 

annual-to-decadal variations, now applicable not to the regional climate variables but to those 

PCs that have been retained as being statistically significant. Systematic, then random 

components would then be simulated and combined as before, again resulting in a simulation 

that is temporally complete down to the annual scale. However, the simulations in this case 

would already be spatially disaggregated down to the local scale (i.e., the spatial scale of the 

data on which the EOFs are computed). 

4.7 Downscaling 

The resultant of the ‘reaggregation’ procedure described in Section 4.6 is a simulation 

resolved at the annual level. If domain-averaged climate variables have been utilized the 

simulation will apply to the region as a whole; if prefiltering by EOFs, the simulation will be 

expressed at individual locations, being already downscaled at the annual time step. In the 

latter case it is presumed that only a small number of EOFs/PCs are retained, according to 

some test of statistical significance (typically a ‘stopping rule’ in the case of PC analysis). 

Variance at individual locations will then have to be increased if it is to match that of the local 

signal being simulated. Since the ‘discarded’ PCs are assumed to represent noise, the missing 

variance can be consistently supplied by adding uncorrelated noise at each location. 

In the case that domain-averaged climate variables are modeled there will be a single 

(multivariate) simulation for the entire domain. This may be propagated to individual 

locations via linear regression, again adding uncorrelated noise to bring simulation variance 

into agreement with what is observed at the location. 
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For either of the above strategies the result at this stage will be a fully spatially resolved 

simulation that incorporates both expected climatic trends and variability down to the annual 

level. Assuming that daily values will be required in the final simulation product, what 

remains is to disaggregate the annually-resolved signal to the daily time step. In doing so 

several data characteristics must be respected: First, the annual values generated by the 

simulation procedure up to this point must be reproduced. Second, spatial covariability at the 

daily level must be preserved. Note that this is in addition to the spatial coherence imposed at 

the annual-to-decadal level. Third, to the extent possible, future behaviour with respect to 

significant characteristics of daily variability, such as spell lengths and extremes, should be 

anticipated. 

4.7.1 Resampling 

Use of a nonparametric scheme, with specific reference to k-NN, was mentioned as a means 

of simulating annual-to-decadal variability. Use of such a method is also feasible for the 

simulation of daily variability. Spatial coherence may be preserved by resampling the entire 

domain at once. However, literal resampling of the observational data will result in 

discrepancies in annual values, since the available set of observational records is finite and 

will not in general comprise exact matches with the imposed simulation values. An additional 

shortcoming arises in the case where climate change measurably shifts the range of simulated 

values with respect to the range of the observational data. In this case there may not exist, in 

the observational record, values that are representative of the simulation. Resampled 

observations may be rescaled to match the imposed simulation, but this may have the 

undesirable effect of distorting daily distributions (of precipitation, for example). Moreover, 

rescaling does not account for potential changes in spell lengths. In spite of these 

shortcomings resampling methods may be acceptable in some circumstances. A k-NN scheme 

is utilized in the case study. 

4.7.2 Weather generators 

Stochastic weather models offer an alternative means of generating daily weather sequences 

that are consistent with stochastic decadal simulations of interannual variability. The input 

parameters of a stochastic weather generator can be manipulated to reproduce synthetic 

weather having the statistical properties of interest. This approach is often used to provide 
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daily weather inputs for agricultural or hydrological models for climate change impact 

studies, based on GCM or RCM simulations of future climate. 

Changing individual parameters can have unintended consequences on the statistical 

properties of simulated weather sequences because of the dependencies in time and among 

meteorological variables. For a class of relatively simple, parametric stochastic weather 

models, work by Wilks (1992); Katz (1996) and Mearns et al. (1997) are illustrative, and 

provide useful guidance on how to adjust parameters to approximate (with sufficient 

replication) target statistics. 

Adapting this approach to stochastic decadal simulations would be more complex than 

adjusting parameters to capture the statistics of a future climate: First, to capture trends and 

multi-decadal variability, the parameters would need to be adjusted for every year of each 

realization of the stochastic decadal simulation. Second, because stochastic weather models 

have their own interannual variability (although most tend to under-represent it), 

superimposing generated daily weather sequences on stochastic decadal simulations without 

correction would inflate the variability (in time and among realizations) of annual statistics 

and the uncertainty of the modeled agricultural impact. 

A more promising approach is to constrain the generated daily sequences to match target 

monthly or seasonal values. Generated temperature data can be rescaled to match a target 

mean through a simple additive shift. To avoid unrealistic combinations of rainfall frequency 

and intensity, rainfall can be constrained to a target value by iteratively sampling and testing 

generated sequences for a target period (e.g., month or season) until the total is acceptably 

close to a target value, then rescaling to exactly match the target (Hansen and Indeje, 2004; 

Kittel et al., 2004; Hansen and Ines, 2005). Advantages of this approach are: (a) it is easier to 

implement since it does not require complex parameter adjustments or a large number of 

replicates each year, (b) it would not inflate the variability of the stochastic decadal 

simulations, and (c) variation in rainfall frequency and mean intensity would be more 

realistic. Hansen and Ines (2005) describe an implementation built on the stochastic weather 

generator distributed with the Decision Support System for Agrotechnology Transfer 

(DSSAT) crop modeling suite (Jones et al., 2003). 
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4.8 Additional considerations 

Although the simulation model can be fit to annual mean values, this is not necessarily 

optimal. The rainy season, for example, may cross the calendar boundary from one year to the 

next, so it might be more sensible to define a hydrological year that differs from the calendar 

year. Modeling annual values for a specified season less than 12 months in length may also 

constitute a useful strategy, perhaps utilizing climatology for the portion of the year not 

simulated explicitly. In general, simulation design will be constrained by follow-on modeling 

requirements. 

We have assumed that simulations will be downscaled to daily time resolution, but this may 

not always be required. Some hydrological applications, such as reservoir management, may 

function adequately using monthly values. The strategies outlined above should be amenable 

to generating monthly outputs, if these are desired. 

A resampling method, used for downscaling to the daily level, may implicitly encode some 

dependence between climate change (i.e., trend) and subannual scales, via the selection of 

‘neighbors’ from which the resampled statistics are ultimately drawn. Weather generators 

may include such linkages explicitly. However we have not described a mechanism for 

linking changes in climate to variability on the annual-to-decadal scale. An example of such a 

link would be an increase in interannual precipitation variance as global temperature 

increases. Such dependencies can be investigated with the aid of GCMs and, if deemed 

significant, incorporated explicitly in the simulation model. 

4.9 End product 

The end result of the above steps is a set of daily-resolved simulations that are spatially 

resolved at the station or gridbox level (depending on the nature of the training data). These 

simulations will include trends that may vary over the domain and that have been informed by 

observational data and/or GCM simulations of future climate, and possibly theoretical 

expectations regarding future climatic tendencies. Variability on both the annual-to-decadal 

and daily time scales, including spatial coherence over the domain, should approximate that 

represented by the observations, again as informed by information from GCMs and theory 

(insofar as the modeler has chosen to incorporate particular inferences in the simulation code). 
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It will evidently be worthwhile for the modeler to validate the simulations, to verify that 

statistical properties are as expected. This can be accomplished through the usual statistical 

comparisons, in particular using simulations of the observational period. Assessments of 

simulation-model adequacy must take into account the degree to which any deficiencies 

identified are actually material with respect to eventual application. 

Finally, sequences can be generated that explore a range of plausible climatic futures for the 

region of interest. Since all of the variability is model-generated it becomes possible to 

quantify the likelihood of particular outcomes, either by direct computation or by the analysis 

of simulations, in the case that the model incorporates nonparametric elements. When 

translated, for example, into crop yields, through the agency of an agricultural model, results 

should prove useful for purposes of planning or adaptation. This is the motivation for the 

methodology described in this report. 

5. Elements of a case study: The Berg and Breede 

Water Management Areas, Western Cape, South Africa 

The ideas and methods presented herein represent an attempt to generalize some lessons 

learned from both the implementation described in Greene et al. (2012) and ongoing work in 

implementing the method in other regions, including southeastern South America and parts of 

monsoonal Asia. We abstract here certain elements of the first of these implementations, to 

show how the framework described in the foregoing sections might be realized in a specific 

regional setting and application-model context. The treatment here is abbreviated; the reader 

is referred to Greene et al. (2012) for additional information. The code used to generate the 

subject simulations, along with a user guide, is available for download. See 

Acknowledgments for details. 

5.1 Setting 

The study region (Figure 5), located in the Western Cape province of South Africa, comprises 

the Berg Water Management Area (WMA) and parts of the Breede WMA and covers ~19000 

km2.  
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Figure 5: The study area. Inset map shows location within South Africa. Reproduced 

from Greene et al. (2012). 

 

The Berg and Breede rivers drain into the Atlantic and Indian oceans, respectively, but there 

are interbasin transfers between them, and the two WMAs are managed as an integrated 

system. 

In addition to economically significant agriculture, the WMAs provide water for industrial 

use and constitute the principal source of supply for the city of Cape Town (Figure 5). Urban 

water demand has steadily increased over the last three decades, tripling since the late 1970s, 

while there is a moderately strong consensus among the IPCC models (see, e.g., Ch. 11 in 

Solomon et al., 2007) that the region will dry in coming decades, with rising global 

temperatures. The combination of economic importance (in large part attributable to the 

production of high-value crops), rising urban demand and potentially decreasing supply has 

motivated intensive study and modeling of the region’s water resources. Greene et al. (2012) 

constitutes a part of this effort. 

An agrohydrology model developed at the University of KwaZulu-Natal (Pietermaritzburg, 

South Africa), denoted ACRU (Schulze, 1995; Smithers and Schulze, 2004) has been used to 

model the WMAs. The simulations to be described were designed to drive this model, 

considerations ranging the use of input data keyed to subcatchments within the WMAs and 

the simulation of a minimally required suite of input variables, to the detailed file formatting 
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requirements of ACRU. As its designation suggests, ACRU represents not only basic 

hydrological responses such as runoff and soil moisture, but also includes some crop 

modeling capabilities. Further along in the chain, a general equilibrium economic model, 

developed at the UNEP Risø Centre on Energy, Climate and Sustainable Development 

(Roskilde, Denmark), is being used to assess potential economic impacts of the modeled 

climate fluctuations. It is worth noting that the existence of a comprehensive follow-on 

modeling framework is synergistic with the production of simulated climate sequences: It 

energizes and guides the generation of the simulations while also benefiting from them, in the 

context of an integrated approach to impact assessment. 

5.2 Data 

5.2.1 Observations 

The WMAs have been mapped into 171 quinary-level catchments, for which a daily dataset 

spanning the years 1950-1999, including precipitation and maximum and minimum daily 

temperatures (pr, Tmax, Tmin), was available. These three variables represent the minimal set 

required for driving ACRU. The annual-to-decadal simulation model is based on a 

multivariate ‘regional’ signal consisting of the catchment-averaged variables, reduced to 

annual time resolution (Figure 6). Trend lines shown in the figure are based not on time, but 

on the regional response to global mean temperature change, as discussed in Section 4.2. It 

can be seen that upward tendencies for both Tmax and Tmin begin around 1970; the global 

signal also exhibits this behaviour, and provides a better fit to data than does a linear trend. (In 

the case of precipitation the trend is essentially null, and the shape of the regressand makes 

little difference). 

5.2.2 Information from GCMs 

Simulations of temperature and precipitation for both the 20th and 21st centuries (the 

‘historical’ and ‘RCP4.5’ experiments, respectively) were obtained from the most recent 

archive of the Coupled Model Intercomparison Project (CMIP5). These were utilized, at the 

regional scale, for inference regarding past and future trends. In addition, temperature was 

utilized at the global scale for detrending and projection, as described in Section 4.2. 
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5.3 Implementation 

5.3.1 Preliminaries 

Use of catchment-averaged variables represents the approach whereby the entire region is 

modeled as a unit, rather than that in which the spatially-differentiated data is prefiltered in 

terms of EOFs. We believe the regionally-averaged approach is justified here because the 

study area – the combined WMAs – behaves coherently on the annual-to-decadal level. In 

propagating both trend and annual-to-decadal fluctuations to the catchment level, mechanisms 

are included that permit a degree of intercatchment dispersion, mimicking that in the 

observational record.  

Figure 6: Regional trivariate observational record for the Berg catchment, reduced to 

annual time resolution. Dashed lines show fitted trends. 

 
 

To detrend the regional series, each component was regressed on the global temperature 

signal shown in Figure 2. The fitted values are overplotted on the regional series in Figure 6. 

The fitted trends are subtracted from the series to obtain the residual ‘natural’ component of 
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variability. Like the regional series, this natural residual, which becomes the target for the 

annual-to-decadal simulation model, has annual time resolution. 

The wavelet spectrum of each of the three detrended variables (pr, Tmin, Tmax) was 

computed; these spectra gave no indication that the component series differed from red noise. 

In other words, systematic variability, as previously defined, was not detected in the regional 

record. Because of this, a modeling step accounting for such variability would have been 

superfluous. A significant degree of serial autocorrelation was identified in both of the 

temperature series; the red-noise model is thus not only sufficient for representing the 

statistics of these series, but also necessary. The regional precipitation signal was 

indistinguishable from white noise. 

Figure 7: A schematic representation of the case study simulation process. Downward 

arrow from ‘Future Trends’ signifies the linkage between climate change and both 

classes of variability; dashed line indicated by ‘Resample’ indicates information from 

the observational record used, along with climate change expectations, to condition 

subannual variability. Figure reproduced from Greene et al. (2012). 

 

 

The absence of a systematic element in the target records, by removing a degree of ‘modeling 

freedom,’ renders the method perhaps less interesting than might have been the case in other 

regions. A survey of annual and seasonal precipitation around the globe (not shown) suggests, 

however, that regions where significant deviations from a red noise (or, in the case of 
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precipitation, even white noise) background occur tend to be the exception, rather than the 

rule. Reduction of the annual-to-decadal model to a VAR(1) structure may thus represent a 

widely applicable situation. 

A schematic of the case study simulation is provided as Figure 7. This is a simplified picture, 

in which some of the symbols have multiple levels of meaning. For example, the method of 

projection differs for temperature and precipitation trends, but only a single path is shown. 

Details are elucidated in the text, and in Greene et al. (2012). 

5.3.2 Treatment of the annual-to-decadal component 

A first-order VAR model was thus fit to the detrended regional series. A single, very long 

simulation (500 ky) was then generated, using the inferred parameter values. This is 

equivalent to an ensemble of 10000 50-year simulations, many more than would be required 

for driving ACRU. However the abundance of simulation data is useful in that it provides a 

large ‘library’ from which shorter sequences having desired statistical properties can be 

extracted. Statistics computed on the simulated sequence indicate that it reproduces well the 

observed intervariable correlations as well as serial autocorrelation (thus persistence, or low-

frequency variability in the AR(1) sense) in the individual variables. 

For purposes of illustration we focus on deviations from the long-term trend of 10-year mean 

precipitation, modeling the 5th and 95th percentiles (for 10-year means). The simulated 10-year 

mean deviations are situated in the 2041-2050 decade; by this time the projected median trend 

results in a reduction in regional mean annual precipitation of about 10%. 

The very long simulation sequence permits fairly precise screening, enabling the 

identification of 10-year sequences for which the mean precipitation falls very near the 

specified percentiles, while corresponding means of Tmin and Tmax lie reasonably close 

(plus or minus about half a standard deviation) to their conditional means, given the specified 

value of pr. This second condition is imposed so that hydrology driven by the simulations will 

not be accidentally biased by atypical, if nevertheless possible, temperature values. In addition 

it was required that the 10-year mean pr anomaly during the preceding decade (i.e., 2031-

2040) not be large, so as to avoid accidental bias owing to hydrologic memory. 



 37 

 

5.3.3 Treatment of trend 

Analysis of the CMIP5 ensemble indicated that for temperature, 20th and 21st century regional 

trends behaved consistently with respect to the global mean trend, while precipitation trends 

diverged, the 20th century trend being essentially null while the 21st century trend was 

significantly negative. Because of this divergence the two variables were treated differently 

with respect to future trends.  

For the temperature components (Tmax, Tmin), each catchment’s record was regressed on the 

20th century global-mean multimodel-mean temperature (Figure 2); the derived coefficients 

were then used, in conjunction with the 21st century global mean temperature, to project 

temperature trends forward, enforcing consistent behaviour across centuries. For precipitation 

the 21st century trend was computed using the GCM ensemble without reference to the 

observations. There is significant dispersion among the model trends, the multimodel 

ensemble mean and standard deviation amounting to -6.7% and 6.6% change in regional 

precipitation per degree global warming, respectively. Of the 14 models in the ensemble, 

three exhibit wetting tendencies for the Western Cape region, suggesting a distinct, if 

relatively small, probability of such an outcome. It is worth noting that a drying trend is 

consistent with theoretical expectations regarding expansion of the dry subtropics with global 

warming, with a particularly robust response occurring toward the poleward margins of the 

subtropical dry zones. Southwestern South Africa lies in just such a zone (See Figure 11.2 in 

Solomon et al., 2007). The temporal pattern of drying expressed by the model ensemble 

seems consistent with the poleward advance of a dry subtropical regime that reaches, and 

eventually overrides, the region of the Western Cape. Owing to the dispersion in ensemble 

precipitation response, it is left to the modeler to select a quantile for simulation from the 

multimodel distribution. This choice is made at runtime, as the simulations are generated. 

5.3.4 Downscaling 

Modeling of the trend and annual-to-decadal components, as described above, produces an 

intermediate simulation product, applicable to the regional as a whole and resolved on the 

annual time step. Downscaling involves the propagation of these sequences to the individual 

catchments, as well as the generation of subannual variability: 
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1. Subannual values are generated by resampling the observations in one-year blocks over 

the entire domain, then scaling observed values to agree, in the regional annual mean, 

with those of the imposed simulation, including both trend and annual-to-decadal 

variations. As a preliminary to this procedure the sequence of observed years 

corresponding to the simulated sequence is selected using a modified k-NN scheme. 

2. Temperature trends are propagated to the catchment level as described above, through 

linear regression on the 20th century global mean, then projection using the 21st century 

global mean. Because modeled regional values represent catchment averages the average 

of future catchment trends will approximate the imposed regional trend. 

3. The regional precipitation trend, as selected by the modeler, is imposed, but it would be 

unrealistic to simulate identical trends at all catchments. Thus the 20th century 

precipitation trends are used to induce some scatter around the imposed trend value. 

Again, the average over catchments produces an overall trend closely approximating the 

imposed value (since the average 20th century trend is near zero). 

4. Separately, imposed annual–to–decadal variations are propagated to the catchments via 

linear regression, uncorrelated noise (at the annual level) being added in order to replace 

variance lost to regression. 

5. To generate subannual variability, resampled values at each catchment are rescaled — in 

one-year blocks — so as to match the simulated trend plus annual-to-decadal variations, 

as propagated to the catchment level. In effect subannual patterns of variability are 

preserved, but annual-mean amounts are substituted for the intrinsic observational mean 

values. Because the resampling is performed over the domain as a whole, spatial 

coherence is preserved at subannual scales. 

5.3.5 Model validation 

On the annual-to-decadal scale, both intervariable correlation and serial autocorrelation in 

individual variables were found to be quite well-simulated, justifying ex post facto the use of 

the VAR(1) model. 

Comparison of simulations for 1950–1999 with the observational record indicated that the k-

NN scheme captured well the observed dependencies of daily precipitation statistics on 

annual mean precipitation, both for the study area as a whole and with respect to individual 

catchments. Statistics examined were wet- and dry-spell counts and lengths, wet-spell mean 
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amounts and three-day extreme precipitation. Resampling was able to account for ~90% of 

the variability in annual mean precipitation, meaning that little rescaling was necessary in 

order to bring resampled values into agreement with the imposed simulation. These results 

suggest that, given the relatively modest warming expected during the next few decades 

(~1ºC), the simulation scheme should be able to capture reasonably well shifts in daily rainfall 

statistics that may come about as a result of global temperature increases. 

5.3.6 Example simulations 

Two simulated sequences, for the same quinary catchment, are shown in Figure 8. For the 

sake of comparison with the simulations, values for 1950–1999 consist of the original 

catchment observations. The precipitation trend was specified at the 50th quantile; combining 

this with a small negative 20th century catchment trend resulted in a net sensitivity of -7.2% 

per degree global warming, slightly more negative than the multimodel median. 

Decadal fluctuations representing the 5th and 95th percentiles for 10-year mean precipitation 

(left and right panels, respectively) are imposed during the 2041–2050 decade, demarcated on 

the plot by red vertical lines. The values of trend and decadal fluctuations are such that for the 

5th percentile the long-term drying tendency is approximately doubled, while for the 95th 

percentile it is approximately canceled. Temperature fluctuations during 2041–2050, as well 

as 10-year mean precipitation during 2031–2040, are constrained as indicated in Section 

5.3.2. In general, the balance between trend and decadal fluctuations will vary by catchment, 

in part because the imposed trend is expressed as a percent change per degree warming, and 

will depend, in the absolute sense, on the individual catchment’s mean annual precipitation, 

while the imposed decadal fluctuation has a dependence on the degree to which the catchment 

‘subscribes’ to the regional mean signal and the individual catchment variance. These 

variations superimpose a degree of randomness on intercatchment variability, increasing 

simulation realism. 
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Figure 8: Two simulated sequences for the same quinary-level catchment, reduced here 

to annual time resolution. Decadal precipitation fluctuations for 2041–2050 lie at the 5th 

and 95th percentiles in the left and right panels, respectively. Figure reproduced from 

Greene et al. (2012). 

 

Figure 8 shows that both decadal and anthropogenic signals play out against a background of 

strong year-to-year variability. Planning for climatic stresses on interannual time scales thus 

remains an important consideration in the overall risk assessment profile. 

6. Discussion 

The methodologies we have discussed above comprise at least two levels of generality: The 

simulation framework itself is broadly sketched out, while realization at the level of the case 

study is considerably more particularized. Starting from a broad-brush outline, then, 

simulation details must be elaborated according to the available evidence and particularities of 

the setting under consideration. Evidence to be considered includes the observational record, 

information from GCMs, theoretical expectations and possibly paleorecords, if the latter are 

available. These sources must be weighed with respect to both content and reliability and a 

coherent narrative woven from the various evidentiary threads that they present. Constructing 

this narrative may not be a simple task. 

The simulation methodology described, like many statistical models, is computationally 

inexpensive compared with both global and regional dynamical models. It is also informed, as 

we have discussed, by a multiplicity of sources. It is both a strength and a weakness that the 

modeler can combine these sources according to their perceived degrees of reliability, arriving 
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at a final structure that reflects a differential, and perhaps personal, view of climate 

information. Of course the metrics involved in information assessment are at least semi-

objective, and every statistical model begins with some intuitive, if initially inchoate, sense of 

the relationships between covariates and predictand. In the end, the advantages of such 

models must be weighed against their inability to anticipate shifts or changes owing to 

processes or interactions that have not been accounted for in some way. This justifies reliance 

on a broad informational background during model design. 

An illustration of such reliance can be provided for the case of temporal precipitation 

variability. As a result of anthropogenic warming it is widely believed that this variability will 

increase, owing to the rapid increase of water saturation vapor pressure with temperature: A 

warmer atmosphere can transport more water vapor. Because of this it can rain more but also 

become drier, since atmospheric demand can also increase. There is no mechanism in the 

statistical model we have described that would act to bring such an increase about. 

Precipitation variability in southwestern South Africa in both the CMIP3 and CMIP5 

simulations was analyzed, however, and found not to increase (or decrease) significantly 

during first half of the 21st century. Thus no basis was found for including a cross-scale 

mechanism linking interannual precipitation variability in the subject region to global 

temperature change. 

The initialized decadal hindcast experiments being performed as part of CMIP5 were 

mentioned in Section 4.3.3. At present, predictive skill for SST appears limited to less than 

one decade in most oceanic regions, so the degree to which such simulations might help to 

constrain future terrestrial variations is not clear. However, ocean initialization has been 

limited by a lack of subsurface observations, a situation which is being remedied, and models 

are constantly being improved. There also may be particular regions where predictive skill is 

significant. While these outcomes remain to be determined, the potential for initialized 

forecasts to guide the evolution of modeled trend and low-frequency simulation components 

remains. 
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7. Summary 

We have described a framework for the generation of stochastic simulations, with the end in 

mind of driving agricultural or other applications models that require detailed climate 

information, including a realistic representation of decadal variability. The incorporation of 

such variability into impacts studies represents an advance over the simple comparison of 

mean states that has typically been performed in climate change impact studies. 

The approach presented is based loosely on classical time series analysis, in that an 

observational record, which is taken to represent regional climate variability, is decomposed 

into trend, systematic and random components, each of these being treated independently. An 

association is made between trend — a secular shift in the mean — and anthropogenic 

forcing. Accordingly, this component of variability is modeled by regression on a global 

mean temperature signal, meaning that it is modeled as a response to global temperature 

change, rather than simply as a time-dependent level. Detrending, as refracted through this 

procedural prism, then amounts to separating climatic changes due to anthropogenic effects, 

and natural variability intrinsic to the climate system itself. Possible problems that arise in 

attempting to effect such a separation using short time series were discussed. 

Trend having been removed, the residual variability is examined for evidence of systematic 

processes, in the sense that the residual variations differ significantly from AR(1) noise. If 

such processes are identified, they would be modeled as separate independent components, 

with the residual from this step modeled as an AR(1) stochastic process. This component of 

the analysis offers perhaps the widest latitude in the simulation scheme, depending as it does 

on the available climate records, which may exhibit widely varying characteristics. It was 

noted that the presence of regime like behaviour, although sometimes difficult to verify, may 

require state-based or other alternate model forms. 

It is hoped that the methodology outlined here will prove useful in delineating uncertainties 

owing to natural internal variability, in the context of a background climatic state undergoing 

secular forced shifts. Indeed, this is the situation in which we are likely to find ourselves in 

coming decades. The investigation and characterization of such uncertainties can play an 

important role in anticipating potential climate risks in the near term; the more confidently 
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such risks can be defined, the better prepared we will be to deal with them in coming years 

and decades. 
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