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Abstract 

Thuli river basin, in south western Zimbabwe, is situated in a semi-arid area, where 

surface water resource availability is a constraint. There is intensive use of blue water in 

the upper catchment more than its lower reaches. The paper presents the evaluation of the 

effects of upstream water demand scenarios on downstream users in the river basin. A 

model was applied as a tool to simulate the effects. 

 

The impacts of different water demand scenarios on downstream water availability were 

evaluated. The water demand scenarios used were based on government 

recommendations and future plans on water resources development, drought risk 

mitigation, implementation of environmental water requirement and implementing inter 

basin transfer (IBT) to Bulawayo, the second largest city in Zimbabwe. The study 

showed that implementing IBT will increase water shortages for downstream users while 

enforcement of environmental water requirements, implementation of government plans 

on water resources development in the catchment and drought risk reduction; decreases 

water shortages for downstream users. 

 

It is therefore clear that while the IBT is an important development for Bulawayo, the 

river basin management of the Thuli river basin requires a holistic approach. Downstream 

users in the form of domestic and agricultural users should be considered while allocating 

water for the IBT. 

 

Keywords: Downstream water availability; Limpopo Basin; Water demand scenarios; 

Water resources management 

 

                                                           

[Sangwani M. Khosa, Phone: +265 9 274 133, Fax: +265 1 263 015, e-mail: sangwanik@yahoo.co.uk] 



 2

1. Introduction 

 

Modelling water demand scenarios can be a powerful tool in water resource system 

analyses. Such models can be used to understand and predict the future sustainability of 

water supplies for the environment (King et al., 2003; Love et al., 2006) and for different 

users (Xu et al., 2002). Models can also be helpful to understand basin-scale river 

behaviour (Gibson et al., 2005), to develop basin-scale or national water resources 

management plans (Warwick et al., 2003; Juízo and Líden, 2008) and to evaluate the 

effect of climate change on a given water resource or supply (Moyo et al., 2005; Cohen et 

al., 2006). Modelling water demand scenarios can, in other cases, be used to plan supply 

and demand for a particular water use (Shnaydman, 1993) or to examine how policies 

effect water management, currently (Gómez-Límon et al., 2002), and in the future 

(Warwick et al., 2003). 

 

The management of the water resources, in Zimbabwe is being implemented based on the 

two new acts, the Zimbabwe National Water Authority Act (1996) and the Water Act 

(1998). These two acts have given powers to stakeholders to run and manage water 

resources through the catchment councils. Decisions by these new bodies have to 

encompass all the stakeholders and the support of decision support tools may prove 

critical. In recent years, considerable effort has gone into developing decision support 

models (e.g. Hughes and Hannart, 2003; Juízo and Líden, 2008). The models contribute 

to a better understanding of the real-world processes and provide quantitative information 

to support decision-making activities.  

 

The Thuli river basin is a basin were the water use is increasing. Currently, the basin is 

more developed in its upper than lower reaches. There is intensified use of blue water in 

the upper catchment and demand from powerful sectors such as urban is increasing (Love 

et al., 2005). Furthermore, two irrigation schemes and two dams have been proposed to 

be constructed downstream in the basin. Requirements based on policies such as 

satisfying the ecological water needs and inter basin water transfer are also likely to be 

implemented. These interventions will increase the pressure on the already limited 

resources water resources. For these developments to be sustainable, proper 

understanding of the effects of water demand scenarios, brought about by such 

developments, on downstream water availability is essential for effective management of 

the water resource. 

 

Waflex, a flexible spread sheet based model (Savenije, 1995), which has been used 

successfully elsewhere in southern Africa (Juízo and Líden, 2008), was applied to the 

Thuli river basin to assess the effect of the water demand scenarios on water availability 

to downstream users in the river basin so that better decisions are arrived at when 

allocating the water to different uses. The water demand scenarios were based on:  

• Government plans on water resources development  

o Inter Basin Transfer 

o Environmental Flow Requirements 
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• Technological improvement  

o Dam improvement 

o Increase irrigation efficiency 

• Drought risk reduction 

o Changing cropping  patterns 

 

2. Study Area 

 

2.1 Thuli River Basin 

 

The Thuli river basin, which is situated in the south west semi arid areas of Zimbabwe, is 

a tributary basin to the Shashe River, which is a tributary of the Limpopo. It flows from 

Matopo Hills World Heritage site at an approximate altitude of 1450 m above mean sea 

level through resource poor communal lands and discharges in the semi-arid area south of 

Zimbabwe, on the edge of the Shashe-Thuli trans-frontier conservation area (Fig. 1).  

 

In certain parts of river courses, flow occurs only during the wet months (October to 

March); while during the dry months (April to September) the riverbed is a sandy alluvial 

bed, which provides for dry season storage of water (Görgens and Boroto, 1997). The 

amount of storage in these alluvial aquifers has yet to be determined, but similar aquifers 

in the adjacent Mzingwane Basin have been estimated to hold more than 38 Mm
3
 of 

water (Moyce et al., 2006). While the temporal distribution of rainfall follows the general 

pattern of the Southern African region with wet months between November and March 

(Unganai and Mason, 2002), the spatial distribution of rainfall is quite variable over the 

entire catchment. The annual rainfall ranges from 250 mm a
-1

 in the south to 550 mm a
-1

 

in the north of the catchment, with average of about 350 mm a
-1

 over the entire 

catchment.  

 

 
Figure 1. The study area (green), showing rivers, existing and proposed dams, gauging stations (white dots) 

and settlements (black dots) and (inset) location within the Limpopo Basin and southern Africa.  
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Thuli River is managed under the Shashe–Thuli Sub-catchment council. The catchment 

area is 79.1 km2. There are several water users, in river basin categorized into agriculture, 

domestic, urban and mines. The major water users are City of Bulawayo, Gwanda Town, 

Blanket and Vubachikwe mines and the Thuli-Makwe irrigation scheme. Satisfying the 

demand for these various users requires a management strategy for optimal utilization of 

the water resources (Nyagwambo, 1998).  

 

2.2 Water resource developments in the Thuli River Basin 

 

The Thuli river is only developed to 31% of mean annual runoff (MAR) of which 

Mtshabezi dam makes up to 18% MAR (Chibi et al., 2006). Gwanda municipality also 

takes water from Lower Mujeni (Blanket) dam on Mtshabezi river. There is a large 

irrigation scheme at Thuli-Makwe, managed by a farmer’s committee. There are three 

large dams in the river basin and two more are proposed (Table 1).  

 

Table 1. Dams in Thuli river basin. For locations, see Fig. 1. 

Dam River System Dam Capacity (Mm3) Date 

Constructed 

Thuli-Makwe Thuli 8.3 1967 

Lower Mujeni (Blanket) Mtshabezi 10.5 1961 

Mtshabezi Mtshabezi 52.2 2001 

Moswa Thuli 419 proposed 

Elliot (Manyange) Thuli 33 proposed 

 

3. Methods 

 

3.1 Runoff data 

 

Historical monthly runoff data was collected for the five selected gauging stations (B85, 

B87, B31, B67, and B55, see Fig. 1 for locations) as inputs for the model. The gauging 

stations had the runoff records varying from 31 to 48 years (Table 2). 

 

Table 2. Selected gauging stations and range of hydrological years from which the runoff 

records were obtained 

Gauging station Range of hydrological 

Years data available 

Number of years 

B85 1971/72 – 2005/06 35 

B87 1972/73 – 2004/05 31 

B31 1958/59 – 2005/06 48 

B67 1966/67 – 2005/06 40 

B55 1965/66 – 2004/05 40 

 

 Some of these runoff stations selected had the flow characteristics that had been 

significantly affected by upstream impoundments or flow abstractions and hence required 

naturalisation. The monthly data selected as input for the model was from the data 
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records of 1983 to 2005 because this was the period with few data gaps in the recorded 

runoff data.  

The runoff data were naturalized using the following equation (Wurbs, 2005):   

∑
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Where;  

QN is the naturalized runoff 

QG is the gauged runoff 

∑D is water diversion from river system upstream of gauge 

∑RF is return flows from river system upstream of gauge 

∑E is the net evaporation from reservoirs allocated upstream of gauge 

∑∆s/∑∆t is the change in storage of upstream reservoirs. 

 

The equation does not take into account seepage and transmission losses. 

 

3.2 Water demand  

 

In the absence of continuous abstraction monitoring, water demand for most of the users 

has been taken from the water permit issued by the Zimbabwe National Water Authority. 

An assumption is made that the volume specified on the water permits is equal to the 

water demand. To include the water use which does not have a water right, interviews 

have been done and the data collected (such as area and crop irrigated) has been used to 

calculate the water demand. Some permits holders are currently not active and these are 

therefore not incorporated as a water demand. 

3.3 The Waflex model for the Thuli river basin. 

 

The model is based on a network of spreadsheet cells which are interlinked. The inputs 

into the model are inflows (naturalised runoff) and water demand. Water balance is 

calculated for each cell. Each cell sums the flow that comes from upstream. For each time 

step (month), the flow is calculated in each cell adding up the flows of upstream and 

adjacent cells. Flow availability on each node is calculated by adding the inflows from 

upstream to downstream as (inflow subtracted by demand). Reservoirs can be 

incorporated into the network. A reservoir consists of three cells; an inflow cell, a storage 

cell and a release cell. The release cell acts as an inflow point to the downstream branch. 

The storage and release of the reservoir is determined in a macro subroutine and takes 

into account the flood rule curve(FRC), the utility rule curve (URC) and the dead storage 

curve (DSC). The storage can never exceed the FRC and the DSC may never be crossed 

as a result of a release. Thus the FRC and the DSC are hard boundaries. The URC is a 

soft boundary that separates two zones of differing operating rules in the reservoir. 

 

The network of the Thuli Waflex model is shown in Fig. 2. Five large dams that have 

been modelled in the catchment (see Table 1). The model incorporates twenty nine water 

abstraction nodes, see Table 2.  
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Figure 2. Conceptualisation of the Thuli river system, showing the modelled tributaries, dams and demand 

nodes. 
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Table 3. Location of the demand nodes in the Thuli  river basin, WAFLEX model 

Demand 

node # 

Water user Purpose Demand 

(*10
3
m

3 

a
-1

) 

River 

system 

1 Anglesea Agriculture 140 Hove 

2 Maleme/Damara Agriculture 8,800 Maleme 

3 Khumalo communal land Domestic 840 Mtsheleli 

4 Matopo National Park Park 4,840 Maleme 

5 Bulawayo (proposed) Urban 7,100 Mtshabezi  

6 Mtshabezi Irrigation 

scheme (proposed) 

Agriculture 4,200 Mtshabezi  

7 Blanket mine Mining 1,120 Mtshabezi  

8 Vubachikwe mine Mining 650 Mtshabezi  

9 Gwanda Urban 1,100 Mtshabezi  

10 Hampden Agriculture 700 Mtshabezi  

11 Mtshabezi mission Domestic 36 Mtshabezi  

12 Matopo communal land Domestic 48 Lumane 

13 Lumane resort Domestic 1,400 Lumane 

14 Lumane communal land Domestic 24 Lumane 

15 Longville Agriculture 1,980 Lumane 

16 Kezi Domestic 140 Mwewe 

17 Walmer/Anton Agriculture 140 Mwewe 

18 Matopo mission Domestic 72 Thuli 

19 Thuli Irrigation scheme Agriculture 1,500 Thuli 

20 Gwaranyemba Domestic 1,940 Thuli 

21 Guyu Domestic 60 Thuli 

22 Chelesa irrigation scheme Agriculture 300 Thuli 

23 Manama Domestic 40 Thuli 

24 Great Thuli Irrigation 

(proposed) 

Agriculture 42,000 Thuli 

25 Mankokoni irrigation 

scheme 

Agriculture 200 Thuli 

26 Rustlers irrigation scheme Agriculture 1,310 Thuli 

27 Shashe communal land Domestic 110 Thuli 

28 Dibilishaba communal 

land 

Domestic 1,240 Thuli 

29 Environment Environmental 

flow 

* Thuli 

* For environmental flow requirements, see section 4.3 below 
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4. Results and Discussion 

 

4.1 Model performance 

 

The model was initially run using the current water demand and historical runoff. Water 

demand for the environment and planned developments were not considered. To evaluate 

the model, the simulation of the observed runoff was analysed (Fig. 3).  

Simulation of the observed flows (1983-2003)
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Figure 3. Comparison of observed and simulated flows at Thuli Gorge (station B31), 1983-2003. 

 

The model simulated well the observed flows in most of the years. This is supported by 

the regression results, which showed that there was a closer relationship between the 

observed and simulated runoff, (r
2 

= 0.7, p<0.05). Objective functions for the model are 

given in table 4, and show good efficiency for simulation of B31, reasonable for B55 but 

less so for B85. 

 
Table 4. Objective functions for the Thuli Basin WAFLEX model 

 B31 B55 B85 

CNS 0.69 0.40 0.07 

R 0.83 0.67 0.49 
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4.2 Current water demand scenario 

 

A summary of the set-up of the various scenarios is given in table 5. 
 

Table 5 Overview development scenarios 

 run1 run2 run3 run4 run5 run6 run7 run8 run9 

Existing 

water users 

X X X X X X X X X 

Environment  X X X X X X X X 

Irrigation 

efficiency 

  X       

Changing 

cropping 

   X      

Mtshabezi 

irrigation 

scheme 

    X    X 

Greater 

Thuli 

irrigation 

scheme 

     X   X 

Inter Basin 

Transfer 

(IBT) 

    X  X  X 

Construction 

of Moswa 

and Elliot 

dam 

     X  X X 

 

The model has been run with all existing water demands (Run 1). Future water demand, 

environmental water requirements and proposed dam developments have not been 

considered in the run. Out of the 25 water demand nodes, 16 users have their water 

demand satisfied by 100 % (Table 6). Eight water users show water shortages of which 

Matopo National Park has the highest shortage with more than 60% shortages and the rest 

less than 50% shortages. 
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Table 6 Water shortages for the users in the Thuli river basins for each scenario 
Node Water user run1 run2 run3 run4 run5 run6 run7 run8 run9 

1 Anglesea 0% 3% 0% 0% 3% 2% 2% 3% 3% 

2 Maleme/Damara 0% 3% 3% 3% 3% 3% 3% 3% 3% 

3 Khumalo 

communal land 

0% 2% 2% 2% 2% 2% 2% 2% 2% 

4 Matopo National 

Park 

60% 62% 62% 62% 62% 62% 62% 62% 62% 

5 Bulawayo 

(proposed) 

- - - - - - 0% - 7% 

6 Mtshabezi 

Irrigation 

scheme 

(proposed) 

- - - - 0% - - - 22% 

7 Blanket mine 0% 0% 0% 0% 20% 20% 20% 0% 62% 

8 Vubachikwe 

mine 

0% 0% 0% 0% 22% 22% 22% 0% 63% 

9 Gwanda 0% 0% 0% 0% 16% 16% 16% 0% 33% 

10 Hampden 0% 17% 1% 1% 20% 20% 20% 1% 39% 

11 Mtshabezi 

mission 

0% 28% 6% 6% 32% 32% 32% 6% 46% 

12 Matopo 

communal land 

0% 0% 0% 0% 0% 0% 0% 0% 0% 

13 Lumane resort 0% 0% 0% 0% 0% 0% 0% 0% 0% 

14 Lumane 

communal land 

0% 0% 0% 0% 0% 0% 0% 0% 0% 

15 Longville 0% 4% 4% 4% 4% 4% 4% 4% 4% 

16 Kezi 0% 0% 0% 0% 0% 0% 0% 0% 0% 

17 Walmer/Anton 0% 0% 7% 7% 7% 7% 7% 7% 7% 

18 Matopo mission 0% 1% 6% 6% 1% 0% 0% 1% 1% 

19 Thuli Irrigation 

scheme 

0% 6% 6% 3% 6% 6% 6% 0% 0% 

20 Gwaranyemba 18% 4% 3% 3% 5% 5% 5% 0% 0% 

21 Guyu 26% 5% 4% 3% 5% 5% 5% 0% 0% 

22 Chelesa 

irrigation 

scheme 

21% 5% 5% 3% 5% 5% 5% 0% 0% 

23 Manama 28% 5% 4% 3% 5% 5% 5% 0% 0% 

24 Great Thuli 

Irrigation 

(proposed) 

- - - - - 48% - 0% 0% 

25 Mankokoni 

irrigation 

scheme 

29% 5% 5% 3% 5% 5% 5% 0% 0% 

26 Rustlers 

irrigation 

scheme 

31% 5% 4% 3% 5% 5% 5% 0% 0% 

27 Shashe 

communal land 

35% 5% 4% 4% 5% 5% 5% 0% 0% 

28 Dibilishaba 

communal land 

37% 5% 4% 3% 5% 5% 5% 0% 0% 

29 Environment - 1% 1% 1% 1% 1% 1% 0% 0% 
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4.3 Implementing environmental flow requirements 

 

In the second scenario (Run 2), the effect of implementing environmental flow 

requirements (EFR) has been assessed. All Consideration has been given to the objective 

of the draft catchment outline plan of Thuli river basin of prioritising the environmental 

requirements in water allocation. Although the determination of EFR is quite complex 

(Hughes and Hannart, 2003; King et al., 2003; Love et al., 2006), current planning by 

ZINWA allocates a simple 5% of the runoff in the river basin to the environment (Chibi 

et al., 2006). The results show that some of the upstream users now experience shortages, 

more downstream it actually decreases the shortages. The level of water demand 

satisfaction for the downstream increased because the environment is a non-consumptive 

water user, reserving water for environment will mean an increase in the downstream 

flow. Large users on the Mtshabezi river (Gwanda town and the two mines) are not 

affected. This scenario provides the minimum EFR for national planning purposes, but a 

proper EFR evaluation is needed. 

 

4.4 Agricultural water management improvements 

 

Two scenarios of improved agricultural water management have been considered: 

improving irrigation system efficiency (Run 3) and changing the cropping pattern (Run 

4). The impact of improving the irrigation system has been assessed by converting the 

irrigation system of existing government irrigation schemes (Thuli, Chelesa, Mankokoni 

and Rustlers) from flood irrigation to drip irrigation, which is 90% efficient (Savva and 

Frenken, 2002). EFR of 5% of the catchment runoff (as per Run 2) has been maintained. 

This water demand scenario affects only the water users downstream of these irrigation 

schemes. The results of Run 3 show that increasing the irrigation system efficiency to 90 

% does not change the water demand satisfaction significantly. 

 

Run 4 shows the impact of changing the current cropping pattern by replacing maize on 

the government irrigation schemes with the government-recommended drought resistant 

crops of sorghum and millet, and reducing the cropping intensity. The EFR of 5% of the 

catchment runoff (as per Run 2) has been maintained, but no changes in irrigation 

efficiency have been considered. This change does not show significant differences.  

 

The above findings suggest that proposed changes to the current government irrigation 

schemes have only a marginal affect on the basin water balance. However, it is likely that 

this is not due to the impact of the proposed changes but rather to the small scale of these 

irrigation schemes. 

 

4.6 New irrigation schemes 

 

Two proposed government irrigation schemes have been considered: Mtshabezi (Run 5) 

and Greater Thuli (Run 6). For both runs, the water demand scenario included allocating 

5% of runoff to the EFR (as per Run 2). The impacts of development of Mtshabezi 
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irrigation scheme (Run 5) are significant. Users abstracting water from Mtshabezi river 

face reductions of 20 to 30% (See Table 5) and allocating water to Mtshabezi irrigation 

scheme (demand node 5) as per projected demand. The impacts of development of 

Mtshabezi irrigation scheme were evident to users those abstracting water from the 

Mtshabezi river, who face reductions of 20 to 30. 
 

The planned 3,000 ha Great Thuli Irrigation Scheme irrigation scheme (node 24) has 

been considered in Run 6. Due to its location in the lower part of the river basin, and the 

fact that the EFR requirement also meets the needs of the small irrigation schemes 

downstream of node 24 (e.g. Mankokoni), the proposed scheme does not affect most 

downstream users, but does impose demand on the Mtshabezi River, resulting in 

increasing shortages for users on that river compared to Run 2 (Table 5). Furthermore, 

the demand for the proposed scheme, according to Waflex model can only be met to a 

satisfaction level of 38 %. 

 

4.7 Inter basin water transfer (IBWT) scenario 

 

The scenario (Run 7) considers EFR (Run 2), implementation of Mtshabezi irrigation 

scheme (Run 5) and implementation of the (currently under construction) inter basin 

water transfer from Mtshabezi dam to the City of Bulawayo, via Mzingwane Dam in the 

upper Mzingwane sub-catchment. If the IBT is met with 100 % satisfaction, then an 

increase shortage of around 20 % is recorded for all other users on the Mtshabezi River 

(Table 5).  

 

4.8 Construction of Moswa and Elliot dams 

 

The government of Zimbabwe plans construction of two dams on the lower Thuli River: 

Moswa and Elliot (see Table 1). (Run 8) considers the construction of these dams, the 

Greater Thuli Irrigation Scheme (Run 7) and the 5 % EFR. The results show that the 

operation of these dams reduces the shortages in the lower Thuli Basin (Table 5). 

 

4.9 Implementation of all the proposed plans 

 

The final scenario (Run 9) considers the 5 % EFR, the proposed IBT, the two new 

irrigation schemes and the two proposed dams. The results of the run show that the 

combined implementation of all the development plans leads to reasonable levels of 

satisfaction, except for Matopo National Park (which is not met in all scenarios) and 

users on the Mtshabezi River. Water supply to Gwanda Town is compromised 

(satisfaction of 67 %) and supply to the two mines even more so (Blanket mine 38%, 

Vubachikwe mine 37%). However, all downstream commitments are met. It is possible 

that this impact on Mtshabezi River users could be mitigated through preferential releases 

from Thuli-Makwe Dam, rather than Lower Mujeni Dam, to meet downstream demand. 

 

5. Conclusions and recommendations 

 

Implementing the proposed 5% allocation to the environmental flow requirements by the 

catchment outline plan (Chibi et al., 2006) can be achieved without major stress to water 
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users. Improved agricultural water management has a minimal effect on the basin water 

balance, although this may be due to the low total agricultural water demand at present. 

Water demand measures at new developments such as Greater Thuli and Mtshabezi 

irrigation scheme may be required. 

 

The inter basin water transfer (IBT), to Bulawayo (7.1 Mm3/a), though important to the 

city in terms of urban water use, reduces the water availability to downstream users on 

the Mtshabezi River (Run 7 / Table 5). Stress on these users is substantially increased 

when there is greater demand downstream, notably from the Greater Thuli Irrigation 

Scheme (Run 6 / Table 5). This suggests that the water balance of the basin is insufficient 

to meet all of the following needs simultaneously: (i) urban and mining demand from 

Gwanda Town and Blanket and Vubachikwe Mines, (ii) urban demand from the City of 

Bulawayo via the IBT and (iii) expansion of agricultural demand in the lower Thuli area 

through the Greater Thuli Irrigation Scheme. 

 

The construction of the Moswa and Elliot dams are essential for the Greater Thuli 

Irrigation Scheme, and can provide sufficient storage for this scheme to operate at design 

capacity. However, in the light of these findings, and the fact that construction of the IBT 

to Bulawayo has already commenced, it may be necessary to reconsider the scale of the 

proposed scheme, as its full design capacity cannot be met without compromising water 

supply for Bulawayo, Gwanda and the mines. In the event that development of the 

Greater Thuli Irrigation Scheme is pursued, stakeholders at local and national level will 

have to consider the trade offs that will necessary between the scheme and the large 

upstream users of Bulawayo and Gwanda/Blanket/Vubachikwe. 
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