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1 Quantitative methods—Important tools for AnGR 

1.1 Statistics to separate genetic and environmental effects  

The observed characteristics of animals, which is the phenotype of the animal is affected 
both by genetic and environmental factors. The genetic factors are due to random sample of 
genes received from the two parental gametes, whereas, the environmental factors include 
influences by climate, nutrition, health and management. Genetic analyses in the field of 
AnGR most often aim at separating genetic and environmental effects. For that purpose, we 
need a mathematical model which describes the phenotypic values as a function of 
genotype and environment, i.e. Phenotype = f (genotype, environment). The simplest and 
most frequently used function f is the linear ‘pattern plus residual’ model. As the genotype 
is our main interest, we start by defining a genotypic value as G, the ‘pattern’ part of the 
phenotypic observation as P and the residual P – G as an environmental effect E, explaining 
the discrepancy between the phenotypic and genotypic values. The simplest model to 
describe the above relationships is that of Falconer (1989) presented as: 

 

P = G + E + G × E 

 

It is important that we consider the specific combination effects between genotype and 
environment, and therefore, include an interaction term G×E in the model [Module 2, 
Section 3.4]. 

When we consider breeds or populations of animals, P and G are expressed as deviations 
from the population mean and we can describe and illustrate the variation within the 
population as: 

  

 

 

 

VarP = VarG + VarE + Var(G×E)  

 

 

 

Once the importance of the environmental and genetic factors for a specified trait has been 
established, methods of genetic improvement for that trait can be explored. Clearly, there is 
little or no point in attempting to improve livestock by genetic means if there is no, or very 
small genetic variation in the trait. It is therefore important to determine to what extent a 
phenotype is influenced by genetic effects (i.e. the extent a trait is heritable) and then design 
breeding programmes accordingly. With a single individual, it is not possible to separate the 
effects of genetic and environmental factors and to estimate how much of its phenotypic 
level is due to each factor. However, with groups of livestock, estimates of the relative 
importance of the environmental factors, genetic factors and interaction between the two 
factors can be obtained. The quantitative genetic methods reviewed in sections 2–5 below 
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provide us with powerful tools for analysing and handling quantitative variation in practical 
breeding 

1.2  Use of statistics to estimate genetic diversity 

Genetic diversity is the basis for both natural evolutionary changes and artificial selection in 
breeding populations. The importance of genetic diversity and measures of genetic diversity 
in livestock production are described in [Module 2, Section 3]. The Section also describes 
molecular genetics techniques that can be used to collect data for studies of genetic 
diversity. In the present module, some quantitative methods that are used to analyse 
molecular data for measuring genetic diversity in populations [Section 6.1, this Module] 
and genetic relationships between populations [Section 6.2, this Module] are reviewed.  

1.3 Statistics for genetic dissection of traits 

Currently, a lot of research effort is being put into studies of molecular genetic background 
of traits in livestock. For this purpose, quantitative methods for analysing phenotypic and 
molecular genetic data have been developed. The majority of production, functional and 
health traits are the consequences of complex physiological systems in the animal. They are 
thus influenced by a large number of genetic and environmental factors. The animals’ 
phenotypes do not fall into discrete classes, but show continuous variation. As the number of 
genes and gene interactions influencing each trait is expected to be very large, it is evident 
that the genetic basis for such quantitative traits can neither be fully clarified nor considered 
in full detail, like what is possible for qualitative traits, such as coat colour. 

However, among all loci affecting a quantitative trait, i.e. Quantitative Trait Loci (QTL), 
some contribute more and some less to the variation between individuals. Until recently, it 
was not possible to identify QTL, except the ones with the largest effects, the so-called major 
genes (Figure 1). They can be detected by segregation analysis, i.e. as deviations from the 
unimodal phenotypic distribution of the character. Examples of such major genes are the 
Culard (mh) gene causing muscular hypertrophy in cattle, the Boroola gene increasing 
fecundity in sheep etc. 

As compared to studies of phenotypic 
distributions of traits, studies of linkage 
between genetic markers and QTL 
provide a more powerful and robust tool 
to detect QTL. Thus, the development of 
relatively dense linkage maps with highly 
informative markers [Module 2 section 
3.3] has made it possible to identify and 
localise QTL for many economically 
important traits in livestock species. For 
the detection of QTL, it is essential to 
make use of efficient statistical methods 
some of which are reviewed in (see 
Section 7:1) below.  

Single genes
- detected by simple χ2-analysis

aa Aa AA

Major genes 
- detected by segregation analysis

Quantitative Trait Loci, (QTL)
- detected using genetic markers

Figure 1. The phenotypic distribution of traits 
influenced by different gene effects. 
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2 Understanding your data 

The first step in genetic studies is to collect data from a number of animals. There are two 
usual sources of data used in animal breeding. Research scientists set up experiments and 
collect data from experimental animals. Scientists should have a clear understanding of the 
principles of statistics governing the planning of experiments and the analysis and 
interpretation of experimental data. It is important to design experiments properly as poorly 
designed experiments do not produce useful data. Data must be amenable to a statistical 
analysis from which we can draw inferences or can predict future observations. However, for 
most breeding works, large data sets are required to get reliable estimates of phenotypic, 
genetic and environmental parameters. Costs usually prohibit the setting up and running of 
large experiments to collect the required data. Data is, therefore, often obtained from farms 
(field records) through livestock recording schemes (Module 3, Section 3.2). 

Data can be subjective (e.g. body score) or objective (e.g. body weight recorded on a scale). 
In both cases they can be analysed. The first step in data analysis is to check the data for 
possible errors in data recording or computer entry. Errors can then be corrected or records 
with error deleted. It is also important at this stage to understand the data structure and the 
patterns displayed in the data in order to decide how best to conduct the statistical analysis 
[Biometrics example 1]. The distribution of animals by different classification (e.g. age, sex) 
can be determined and mean, median and range for each factor or classification variable 
summarised. These statistics can then be used to group the animals into suitable subclasses 
to reflect the variation in the data expressed by a particular factor. Furthermore, such 
statistics can ensure that sufficient numbers of animals are contained within each subclass to 
allow reasonable inferences to be made about the influence of different levels of the factor 
on the trait being studied.  

The number of observations per subclass usually varies for field data and some experimental 
data. In some cases, data that initially had equal number of observations per subclass can end 
up having different numbers of observations after data editing. Data with unequal number of 
observations per subclass are known as unbalanced data and there are statistical methods that 
have been developed to handle such data [Biometrics example 2].  

In an analysis, the pattern of data is described using a model. The model that is used to 
describe the data best judges the quality of any statistical analysis. An appropriate model can 
only be chosen when one understands the data. 

3 Constructing a model 

A statistical model must, foremost, reflect the biology of the problem. A true model 
describes the pattern of the data perfectly but it is usually unknown. An ideal model is one 
that is close to a true model based on an understanding of the problem. But at times, due to 
missing information or computational problems, an ideal model may be simplified to an 
operational model. This is a model that permits predictions to be made accurately enough. 
Whenever an operational model (instead of an ideal one) is used, it is recommended that the 
ideal model is outlined and reasons for not using and problems likely to arise from not using 
it are given. The statistical models commonly used in animal breeding are linear models, 
with the set of factors being assumed to additively affect the observations. This does not 
mean that non-linear models are not important in animal breeding. Rather, the choice of 
linear models has been influenced by the traits studied and their importance (Schaeffer 
1991). 
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As an example, it is known that calf weight at birth can be influenced by the sex of calf, the 
season when the dam calved, the age of the dam, the dam and the sire of calf. These factors 
or effects can be discrete or continuous. Discrete factors have distinct levels. For example, 
for the sex of calf, there are two levels i.e. male or female. Age of dam, however, can be 
considered as a continuous variable, say 3–12 years of age. When we fit a continuous 
variable, we are fitting a straight line. The slope of this line is known as a regression 
coefficient [Biometric example 1]. Instead of treating age as a continuous variable, it is also 
possible to classify age of dam into different age categories (e.g. 3, 4–6, 7–9, 10–12 years) 
and treat the factor as discrete with four levels [Biometric example 2].  

A co-variable is a factor known to affect a performance trait but is not one of primary 
interest for the outcome of the statistical model. By including co-variables in the model, 
however, adjustments are made to the mean values of the primary factors of interest and 
corrections for corresponding variation in the mean values of the co-variables themselves are 
made. When there is a significant relationship between the trait being analysed and a co-
variable, a proportion of the natural variation among animals is explained, and this in turn 
improves the precision of comparison between mean values of primary interest [Biometrics 
example 2]. 

An effect (factor) can be fixed or it can be random. When we think of a factor as fixed effect, 
we infer that any conclusion drawn about the estimated mean for the trait applies only to the 
study itself. When a factor is considered to be random, however, results of the study can be 
extrapolated to a wider population from which the sample under investigation can be 
assumed to be drawn at random. Thus, sire, for example, is a factor that can be either fixed 
or random. If sires have been selected purposively for an experiment, then it is likely that we 
would treat the factor as fixed and calculate mean values for each sire separately. More 
often, though, it will be assumed that sires have been chosen at random from a wider 
population. In such cases the effect for sire is assumed random and any inferences made 
from the study are generalised to the wider population of which the sires are representative. 
To construct a model to be used in data analysis, the researcher has to decide, based on the 
understanding of the data, whether a factor is fixed or random.  

A model comprises three parts: (1) the equation which describes the factors (effects) and 
their levels, (2) estimates of means and variances of random effects, and (3) assumptions, 
restrictions and limitations in the use of the model. There are various types of linear models. 
The name given depends on whether it contains only regression variables, fixed discrete 
effects and the number of the fixed effects in the model, whether there are any interactions 
between factors, or whether the model contains both fixed and random effects. Thus, 
according to Searle (1971); Snedecor and Cochran (1980), some of the names that one can 
come across are: 

i linear regression models - simple or multiple linear regression  
ii correlation models 
iii classification models - one-way, two-way, three-way classification of factors 
iv classification models with interactions 
v nested (or hierarchical) models 
vi cross-classification models 
vii random models - all factors considered random 
viii mixed models - combination of fixed and random effects 
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Each of these models involves various assumptions. For example, residuals should normally 
be distributed and each observation should be randomly and independently obtained. 
Repeated measures on an animal can cause some difficulties because adjacent observations 
may be closely correlated than those further apart. Statistical procedures are generally fairly 
robust and slight departures from normality can be ignored. When data are clearly not 
distributed normally some kind of transformation (e.g. a logarithmic or square root 
transformation) of the data can be considered.  

For small data sets described by simple models (with a small number of factors), solving the 
equations may be quite easy. However, data sets in animal breeding can be very large and 
the value of a trait being evaluated can be influenced by many factors. For example, dairy 
data can include records of thousands of herds made over many years, some information can 
be missing for some herds or years, cows within the herd can be of various genotypes and/or 
age, cows may have been in lactation for different lengths of time, etc. The statistical models 
required for such data sets can, therefore, be complicated–resulting in computational 
difficulties. Different computational techniques have been developed to deal with such data 
— e.g. aborbing a factor to reduce the size of the matrix being inverted, solving the model 
iteratively by including certain covariables or secondary factors in a preliminary model and 
adjusting the data for them before fitting the final model (Henderson 1984). 

Sometimes the trait of interest is measured qualitatively rather than quantitatively, and 
observations are assigned to distinct categories or classes based on qualitative assessment of 
the trait. For example, cows may be diagnosed clinically as having mastitis and coded as 1 or 
they may be diagnosed as normal and coded 0. Such data, when expressed as the proportion 
of cases occurring for different levels of a factor, often belong to a binomial, not a normal, 
distribution. These data do not lend themselves to direct analysis by linear models for 
continuous traits, although, where large amounts of data have been collected, a normal 
approximation can be assumed (Harville and Mee 1984). In most cases, however, it is 
advisable to use logistic regression approach (Krzanowski 1988), which is a form of a 
generalised linear model that caters for binomially distributed trait.  

4 Separating non-genetic and genetic effects 

4.1 Estimating non-genetic effects 

Given the knowledge of data, a researcher will be able to develop a statistical model that 
describes the environmental factors likely to influence the trait of interest. For example, the 
environmental factors that might affect milk yield per lactation include level of herd 
management, level of feeding, health status of animal, age of cow at calving, season in 
which the cow calved, etc. Some of the environmental factors will be used in the model as 
discrete levels, others as co-variables. Some fixed effects influence data but are in 
themselves of little interest. Data is corrected and no estimations are done for these. 
However, there are some effects (e.g. trends in the year or differences in sexes) whose 
estimates may be of interest. For these estimations are done. 

Estimates for the parameters of the model can be obtained and the most common criterion of 
estimating these parameters is least squares (Searle 1971). Once the parameters have been 
estimated, tests can be done to find out whether the factors included in the model account for 
significant variation in the production trait measured. For example, for the classification 
models, estimation of linear functions and testing hypotheses related to those functions is 
done. For the effect of season of calving, for example, we may want to test that milk yield 
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for cows calving in winter differs from those calving in summer. The average yields for the 
two seasons and also differences between these yield levels can be estimated. The next step 
is to test the hypothesis that seasonal differences are not important for milk yield [see 
Biometrics example 2]. In this example, least squares analysis fitting fixed effects (discrete 
and continuous) is illustrated. The steps followed are: calculating of descriptive statistics, 
development of the model and estimation of parameters for the fixed effects. 

Once the importance of environmental factors has been established, records can be corrected 
or adjusted for these factors before proceeding to estimate genetic effects and parameters. 
Nowadays there are procedures that can estimate parameters for environmental factors, 
adjust the data for these factors and estimate genetic effects simultaneously. These are 
recommended procedures but where the required software is unavailable the important 
environmental parameters need to be determined by general least squares methods and the 
raw data corrected for these effects before proceeding to estimate genetic parameters.  

4.2  Estimating genetic effects 

Often, rather than estimating specific differences between treatments, we may be interested 
in estimating variances due to effects – see Section 3. For example, in milk production, we 
may not be interested in estimating differences between dams but rather in estimating the 
variation among them as an estimate of the variation from which they were sampled. The 
dams can be considered as random effects and the data can be analysed according to a 
random effects model [Biometric example 3].  

4.2.1 Variance component estimation 

The data described in 4.1 above is used to estimate genetic and environmental variances 
which are needed in calculating genetic parameters (e.g. heritability) and in tests of 
significance for both genetic and non-genetic parameters estimated from the data.  

When estimating variance components, the total variation for a trait under study is split into 
constituent components; genetic (additive and non-additive) and environmental. Depending 
on the data, different types of random effects models can be fitted. For example, dairy 
production data from collateral relatives (e.g. full-sibs and half-sibs) can be analysed fitting a 
sire model, and co-variances generated by these relationships provide the information 
required for estimation of additive genetic variance. However, linear models containing both 
genetic and environmental effects for each animal (animal model) have become more 
popular.  

Statistical procedures for variance component estimation include analysis of variance 
(ANOVA) type methods. These require equal number of observations in all subclasses–
balanced design). With unbalanced data, the ANOVA method for mixed models leads to 
biased estimators of variance components. Henderson developed Henderson’s methods 1, 2 
and 3, which were modelled after balanced ANOVA (Henderson 1984). These methods had 
weaknesses that other methods developed later tried to address. For example, Henderson’s 
method 2 first uses data to estimate the fixed effects of the model. Data are then adjusted by 
these estimators, and the variance components are estimated from the adjusted data. 
Henderson’s method 2 cannot, therefore, be used when there are interactions between fixed 
effects and random effects.  

The widely applied methods in variance component estimation are maximum likelihood 
(ML) procedures. These procedures estimate the fixed effects and variance components 
simultaneously. Animal breeders are more and more confronted with data sets that have 
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arisen from either selection experiments or from farm testing in which selection has been 
practised. If lack of records is as a result of selection based on some criterion that is 
correlated to trait(s) under analysis, the resultant estimates are likely to be biased by 
selection. ML estimation procedures utilise all records available and, can account for 
selection (Harville 1977). A modified ML procedure, i.e. restricted maximum likelihood 
(REML) which accounts for the loss in degrees of freedom due to fixed effects in the model 
of analysis (Patterson and Thompson 1971), has become the preferred method of analysis in 
animal breeding, not least for its ability to reduce selection bias. Graser et al. (1987) 
suggested a derivative-free method of estimating variance components, based on 
sequentially calculating the likelihood. The derivative-free approach provides a robust, 
flexible and powerful alternative to derivative-based REML algorithms. Its application for 
animal models, in which additional random effects, for instance animal’s maternal genetic 
effects or common environmental effects are included, for the univariate case was described 
by Meyer (1989) and its extension to multivariate analysis is given in Meyer (1991). More 
recently an average information algorithm giving improved rates of convergence has been 
implemented (Meyer and Smith 1996). In general, impressive progress has been made in 
developing efficient computing algorithms for REML estimates. This, together with 
increasing computing power, has enabled the analysis of quite complex statistical models in 
large data sets [Biometrics example 3]. There are several suites of programmes for 
estimation of variance components available to the scientific community, free of charge e.g. 
VCE (developed by Eildert Groeneveld) and DFREML (developed by Karen Meyer) [Web 
pages, Section 9, this Module]. 

4.2.2 Prediction of genetic merit 

There are various methods available to estimate breeding values. The quality of data will 
determine what method is chosen. Complete data sets will have information on performance 
and identity of animals. When identity and relationships are known, pedigrees can be 
compiled. Availability of pedigree data allows modern methods of prediction of breeding 
values to be used. However, to collect complete records requires that infrastructure such as 
identity and performance recording schemes be in place and that these schemes be well 
managed [CS 1.15 by Dzama]. Such schemes do not exist in most developing countries yet 
and, in many cases, financial and management constraints result in poor data sets.  

Realised values of the random variables that have been sampled from a population can be 
estimated if the variance-covariance structure of the population is known. The estimation of 
realised values of a random variable is called prediction. There are various types of 
predictors–best predictor (BP), best linear predictor (BLP, e.g. selection index) and best 
linear unbiased predictor (BLUP) (Henderson 1984). The differences between BP, BLP and 
BLUP are subtle but yet important statistically [van der Werf in ICAR Tech. Series No. 3].  

BLUP is the most commonly used predictor to evaluate the genetic merit of livestock and in 
selection decisions. Several programmes that can be used for prediction of BLUP breeding 
values, are available to the scientific community free of charge e.g. [PEST] and [DFREML] 
(seeWeb pages, Section 9, this Module). Various sources of information can be used to 
calculate BLUP breeding values. For example, when sire information is used, we have a sire 
model: and if sire and dam information is used, we have a sire and dam model. With BLUP, 
we can also do what the farmers have always wanted, i.e. combine all the pedigree 
information and performance details for all relatives in the evaluation of an individual 
(animal model) [Computer exercises, BLUP]. BLUP helps to remove some of the biases, 
such as selective mating, and takes account of genetic trend. If there are sufficient 
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connections between herds, as is usually the case with the use of AI, selection on BLUP 
values can be done on a breed (rather than herd) basis [Manual exercises: Selection index]. 

Breeding values can be estimated for each trait of interest. Hence, selection decisions can be 
made based on that trait. However, in livestock production, farmers are usually interested in 
improving more than one trait at a go. For such situations, information on several traits can 
be used to construct a multiple trait breeding value (by BLUP or selection index) [Manual 
exercises: Selection index] given that genetic and environmental correlations between traits 
can be estimated.  

Test day models in dairy production  
Genetic evaluations for dairy cattle in many countries are obtained by analysing 305-day (or 
equivalent cumulative yield records) predicted from a few test day yields. The 305-day 
yields predicted from monthly test day records can be inaccurate and biased. The error of 
genetic evaluation may further increase if 305-day yields are obtained by projecting partial 
lactations with factors that assume a constant shape of the lactation curve for all cows 
contrary to reality. Genetic evaluations based directly on test day records can overcome the 
need to predict 305-day yields or project incomplete lactations. They can also facilitate a 
cheaper and more flexible recording scheme. They, therefore, offer an opportunity to 
improve the genetic evaluation of dairy cattle in tropical production situations where there 
are limited infrastructures to support more sophisticated or detailed recording systems, often 
resulting in too small data sizes to allow for accurate genetic evaluation of bulls as 
production conditions are constrained by environment and resources (Swalve 1998). Many 
studies have been done to explore the potential of statistical and computing techniques that 
allow a direct and more efficient utilisation for genetic evaluation of all available records 
(e.g. Swalve 1995 and 1998; Jamrozik and Schaeffer 1997).  

4.2.3 Estimation of genotype by environment interactions 

Tropical countries seeking to improve production levels have often imported exotic 
germplasm and then carried out selection in the imported population and their progenies 
under local conditions. This strategy is effective if production and marketing environments 
and selection objectives are similar for both the original and the recipient countries or 
production systems. However, unfavourable interaction of genotype and environment (G x 
E) would reduce potential benefits from a strategy based entirely on continuous importation 
of superior germplasm from elsewhere [CS 1.16 by Mpofu]. The resultant G x E may affect 
ranking of genotypes and, indeed, individuals depending on the country and production 
system (Ojango and Pollot 2002). The magnitudes, in absolute or relative terms, of the 
genetic, residual and phenotypic variances obtained from populations raised and recorded in 
countries with different environmental constraints are often also different.  

Methods of estimating GxE are reviewed in Mathur and Horst (1994) and Chagunda (2000). 
They include: 

Orthogonal comparison of subclasses  
This method is normally used in factorial experiments. An example is when there are two 
genotypes raised in two environments. The interaction effect may be estimated as the 
difference between the sums of diagonal subclasses. The interaction is tested for significance 
using an F-test. 

Factorial analysis of variance  
For this method, a linear model, with environmental factors, genetic factors and interaction 
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effect between the two factors, is fitted with genetic and interaction effects as random 
effects. 

Intraclass genetic correlations  
This procedure is based on the estimation of genetic correlations between traits measured in 
two environments. The requirement is that the animals in the two environments should be 
genetically related. 

Correlation of breeding values  
This procedure is used when the same sires have progeny in the two environments. The 
product-moment correlation between breeding values of sires estimated in two environments 
gives an estimate of the genetic correlation between the environments. When calculating the 
correlation between proofs, the proofs made in the two countries need not be weighted by 
number of daughters when the method used to calculate proofs has already considered the 
amount of information going into the proof (Mpofu 1992; Ojango and Pollot 2002).  

Estimation through selection in two environments  
GxE can also be determined indirectly from direct and correlated response to selection 
(Falconer 1989). This procedure considers the problem of carry-over of improvement from 
one environment to the other. Selection in environment Y is based on selection in 
environment X. The correlated response is compared to direct response possible through 
selection in environment Y. The ratio of correlated response and direct response is computed 
and used to calculate GxE. This method, although it is likely to give a reliable measure of 
GxE, can only be applied after selection has been practised. 

4.2.4 Estimating heterotic effects 

Crossbreeding is a widely accepted livestock production practice in developing countries. 
The basis of systematic crossbreeding can broadly be classified into additive and non-
additive. The additive component is that which is due to the averaging of merit in the 
parental breeds with simple weighting according to level of gene representation of each 
parental breed in the crossbred genotype (Swan and Kinghorn 1992). Heterosis is the non-
additive effect of crossbreeding. It is the amount by which merit in crossbreds deviates from 
the additive component. Heterosis is usually attributed to genetic interactions within loci 
(dominance) and between loci (epistasis). Individual heterosis is the deviation in 
performance in an individual relative to the average of the parental breeds, whereas, maternal 
heterosis refers to heterosis attributed to using crossbred instead of purebred dams and 
occurs due to the dam itself possessing heterosis. 

The performance of crosses can be predicted using estimates of genetic parameters from 
crossbreeding experiments. Models for estimating crossbreeding parameters based on two-
locus factorial model of gene effects have been developed earlier by Dickerson (1973) and 
lately by Küttner and Nitter (1997). A case study by Kahi [CS 1.5 by Kahi] illustrates an 
example of data analysis for estimating crossbreeding parameters for milk production traits 
under the humid coastal regions of East Africa, while another by Aboagye [CS 1.9 by 
Aboagye et al.] gives such parameters for milk production, reproductive, growth and carcass 
traits in cattle under the humid West African tropical conditions. Software such as CBE 
(Crossbreeding effects) are also available that be used to estimate crossbreeding effects from 
a larger variety of data structures or experimental designs [Section 9, this Module]. 
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5 Designing and implementing on-farm surveys of livestock breeds 

In livestock production, population censuses are carried out at given intervals. Normally 
such censuses are conducted to estimate the number of animals by species (e.g. number of 
cattle, sheep or goats) or by enterprise (e.g. number of dairy cattle) and the information 
collected is used for administrative or planning purposes. In most cases, the censuses do not 
record breed types. However, developments in livestock improvement and reproductive 
physiology have resulted in some breeds being more popular than others. The unpopular 
breeds then become threatened by extinction. It has become necessary and increasingly so to 
undertake breed surveys so as to determine the status of different breeds in a country and 
then use this information to develop breed improvement and conservation strategies.  

5.1  Designing on-farm surveys of livestock breeds 

The first step is to decide what type of survey (random, purposive or representative etc.) is to 
be undertaken and then the size of the population to be surveyed. The whole population 
(complete census) or samples of the population can be surveyed. Where a sample is to be 
surveyed, a decision on the proportion of the farming community or households to be 
surveyed needs to be made. The size of the sample needs to be large to allow population 
values derived from the sample to be estimated with adequate precision. At the same time, 
costs in collecting data need to be considered as these tend to increase with an increasing 
sample size. Statistical methods that allow one to determine the sample size necessary to 
estimate population values with a required level of precision are available. Different 
sampling designs are available from simple random sampling to those using stratified and 
clustering techniques.  

Data are usually collected using questionnaire forms. The questions need to be designed in a 
way that allows accurate, unambiguous answers to be given, which can provide data for 
sound statistical analysis. 

Pre-testing of a questionnaire on a small number of farms or households is an essential and a 
very useful way of evaluating the suitability of the questionnaire and the level of detail that 
is possible to obtain from the interviewees. It is also important that the survey is designed 
taking into consideration the statistical analysis that will be carried out, again the aim being 
to collect sufficient information for every subclass. . For example, if the purpose of the 
survey is to estimate the population of livestock in a given area and the basic unit is a village, 
then it is important to ensure that: 

• the total number of households in a village is known 
• the number of such households who keep livestock is known and  
• the average number of livestock per livestock-keeping household is also known.  
These can be obtained during pre-survey visits, otherwise it would be almost be impossible 
to be able to estimate, or project how the variances estimates for the mean population, 
regional values would be, hence how best to achieve high accuracy and precision at the same 
time [see Module 2, Section 2]. 

5.2  Implementing on-farm surveys 

In implementing on-farm surveys, many things should be considered and undertaken. These 
include adequate prior and mid-stream consultations with all stakeholders (farmers, local 
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administrative officials, politicians, donors, etc); timing of the survey (season and even 
month within seasons); visiting time and where to interview respondents (in the homestead, 
on grazing fields) and who the respondents should be (household heads, children, 
employees). It is important to note that a combination of all the above may actually be used. 
For example, in a society where milking is exclusively done by children and women, the best 
answers to the question related to how much milk an animal produces daily are best given by 
the family members who actually do the milking, although the norm may be for the 
household head to respond to such questions or the entire questionnaire.  

Although breed descriptor charts and guidelines on animal phenotypic characteristics, such 
as those developed by ILR and used for the Oromiya-ILRI Livestock Breed Survey (2001), 
may be available to assist enumerators and questionnaire administrators in making on-farm 
survey decisions, occasional use of photographs to capture whole herds, while in pens, kraals 
or grazing, greatly help to counter check the accuracy and consistency of such scoring. 
Likewise, asking the same question to different members of the household may also help 
verify some discrepancies, especially where respondent, seem to giving pre-planned answers 
or non-plausible ones. 

It is always disastrous to begin a survey, with incomplete plans and inadequate resources in 
place. On the other hand, sequential survey can accomplish a lot, whenever foreseen 
financial and logistic inadequacies are taken into account and, are thus included in the 
technical planning (design) process. 

After entering the data into a computer and checking for errors and verification, the analysis 
of survey data starts with investigating the patterns in the data [Biometrics example 1]. This 
involves tabulating the information and calculating simple statistics. The data can then be 
analysed as one set or divided into subsets for analysis. There are methods that can be used 
to determine the size of these sub-samples. Statistical models can then be developed to test 
different hypotheses suggested by the preliminary analyses. Any type of models described 
earlier, e.g. analysis of variance or regression analysis, can be used.  

Sample estimates can be used to estimate population values. Formulae are available for 
calculating population mean and their standard errors for stratified or cluster sampling 
designs. 

6 Measuring genetic diversity in populations 

6.1  Determining genetic structure and genetic variability between and within breeds 

To understand the influence of selection, mating systems and other breeding interventions in 
population genetics, it is important to describe and quantify the amount of genetic variation 
in a population and the pattern of genetic variation among populations. Genetic variation 
may be measured at various levels, e.g. allelic variation at structural loci (see Module 2, 
Section 3). Genetic variation within breeds decreases as a result of selection for 
economically important traits yet genetic variation between and within breed is important as 
raw material for genetic improvement. Populations showing a great deal of variation will be 
able to adapt to changing circumstances whereas populations with less genetic variability 
will be less adaptable to sudden environmental changes. 
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6.1.1 Allele frequency determination and allelic variability  

The frequencies of an allele at loci are calculated manually by direct counting. The mean 
number of alleles (MNA) observed over a range of loci for different populations is 
considered to be a reasonable indicator of genetic variation. This holds true, provided that 
the populations are at mutational-drift equilibrium and that the sample size is almost the 
same for each population. Breeds with a low MNA have low genetic variation due to either 
genetic isolation, or historical population bottlenecks, or founder effects. A high MNA 
implies great allelic diversity, which could have been influenced by crossbreeding or 
admixture. Bar charts can be created for individual breeds to show variability in allelic 
distributions at loci. 

6.1.2 Variation in gene frequencies 

The variation in gene frequencies at each locus can be used to determine genetic variability 
between breeds. Chi-square analysis is used to test differences among loci and breeds.  

6.1.3 Variation in genotype frequencies 

Variability between breeds can be measured using the observed genotypes at each locus and 
between pair of breeds. The assumption of independent distribution of genotypes over all 
breeds can be tested by contingency chi-square analysis. Comparisons between pairs of 
breeds are performed. 

6.1.4 Testing for Hardy-Weinberg equilibrium 

The relationship between gene frequencies and genotype frequencies is of great importance 
because most deductions about populations and quantitative genetics depend on it. A 
population is said to be in Hard-Weinberg equilibrium when gene and genotype frequencies 
remain constant from generation to generation. There are factors which can cause changes in 
these frequencies (e.g. selection, migration and mutation) resulting in non-random union of 
gametes. A Hardy-Weinberg test is performed to assess the genetic structure within an 
individual breed, i.e. to check whether the gene frequencies significantly differ from the 
expected ones. The data required are gene and genotype frequencies and the size of sample 
population at each locus.  

The deviation from Hardy-Weinberg equilibrium can be tested using any one of the 
following three methods.  

(a) The Chi-square test which has been used to evaluate the overall discordance of 
genotype frequencies at each locus or population combination (Hammond et al. 1994; 
Deka et al. 1995). The test is performed for every breed at each locus. 

(b) The likelihood ratio test criterion (G statistic) has also been used to contrast observed 
and expected genotype frequencies (Hammond et al. 1994; Deka et al. 1995).  

(c) The third method uses an exact test of Hardy-Weinberg equilibrium. In addition, for 
loci or population combinations with five or more alleles, a Markov chain algorithm is 
used to obtain unbiased estimate of the exact probability of being wrong in rejecting 
Hardy-Weinberg Equilibrium. The GENEPOP package (Raymond and Rousset. 1995) 
can be used to do the test. 
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6.1.5 Estimating average heterozygosity 

Heterozygosity is a measure of genetic variation within a population. High heterozygosity 
values for a breed may be due to long-term natural selection for adaptation or due to the 
mixed nature of the breeds or due to historic mixing of strains of different populations. A 
low level of heterozygosity may be due to isolation with the subsequent loss of unexploited 
genetic potential. Locus heterozygosity is related to the polymorphic nature of each locus. A 
high level of average heterozygosity at a locus could be expected to correlate with high 
levels of genetic variation at loci with critical importance for adaptive response to 
environmental changes (Kotzé and Muller 1994). 

The observed heterozygosity is defined as the percentage of loci heterozygous per individual 
or the number of individuals heterozygous per locus. Average heterozygosity at each locus 
and for each breed can be estimated from allele frequencies at each locus. Individual breed 
average heterozygosity is estimated by summing heterozygosities at each locus and 
averaging these values over all loci. Locus heterozygosity is estimated by summing the 
heterozygosity at all loci for each breed and averaging this quantity over all breeds. The 
expected heterozygosity (also called gene diversity) is calculated from individual allele 
frequencies (Nei 1987). The DISPAN computer program (Ota 1993) can be used to estimate 
expected heterozygosity.  

6.1.6 Estimating levels of inbreeding 

Molecular data can also be used to estimate inbreeding values even though there are factors 
other than descent for two markers to be similar. It has been showed that there was no 
significant difference between average inbreeding coefficient values estimated from pedigree 
data and biochemical data (Avise 1994). 

Observed and expected heterozygotes at different loci can be used to estimate the extent of 
inbreeding. The locus inbreeding coefficients are averaged to estimate average inbreeding 
coefficients for each population. Inbreeding coefficients should only be estimated for breeds 
which show significant deviation from the Hardy-Weinberg equilibrium. A positive 
inbreeding coefficient value reflects the existence of small number of heterozygote 
genotypes and excess of homozygote genotypes. A negative value indicates the occurrence 
of heterozygote genotypes at higher proportion than the homozygote genotypes. 

6.1.7 Genetic differentiation 

Population differentiation can be assessed by determining whether allelic composition is 
independent of population assignment (Raymond and Rousset 1995). The statistical test is 
based on analysis of contingency tables using a Markov Chain procedure to derive unbiased 
estimate of the exact probability in being wrong in rejecting the null hypothesis, i.e. allelic 
composition is independent of population assignment (no differentiation). The test is 
performed for pairwise inter-population comparisons on contingency tables containing data 
from each of the microsatellite loci studied. The GENEPOP package can be used. 

6.1.8 Analysis of gene flow and genetic admixture 

(a) Use of diagnostic allele  
Diagnostic alleles are alleles that are unique to certain breeds, e.g. allele unique to 
indicine breeds or taurine breeds. They are used to determine the purity of breeds, the 
introgression by one breed type into a population and to determine the genetic 
composition of breeds. The frequencies of the diagnostic alleles or groups of alleles at a 
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particular locus are averaged to give an estimate of the frequency of the diagnostic 
alleles in each population.  

(b) Estimation of genetic admixture proportions from allele frequencies  
Genetic admixture proportions can be estimated directly using a method developed by 
Chakraborty (1985) which uses the concept of gene identity coefficient – the probability 
that two genes chosen at random from one or more populations are identical in state. 
The underlying rational to this method is that genetic similarity between populations can 
be expressed as a simple linear function of admixture proportions. This method requires 
that parental populations represent the original populations that produced the dihibrid 
populations of interest. An example would be an Asian breed (or group of Asian breeds) 
representing indicine and a group of African breeds representing a taurine population. 

A computer program called ADMIX (Chakraborty 1985) uses a vector-matrix approach to 
produce weighted least squares solution for each individual admixture proportion with 
associated standard errors. It also produces correlation coefficients for the weighted least 
squares solutions that gives an indication of the validity of the underlying admixture model 
(i.e. do present-day Asian zebu and the African breeds serve as adequate surrogates for the 
original parental populations) 

6.1.9 Tests for linkage disequilibrium 

Linkage disequilibrium (LDE) is the non-random association between different loci which 
may arise from (i) admixture of populations with different gene frequencies or (ii) chance in 
small populations (e.g. endangered breeds) or (iii) selection favouring one combination of 
alleles over another or (iv) the close association between markers in the same linkage group 
(Falconer 1989). A test can be carried out to check for the existence of the association 
between markers studied. The null hypothesis for LDE test is that all the genotypes at one 
locus are independent from those at another locus. The GENEPOP program (Raymond and 
Rousset 1995) can be used to test for LDE. The program prepares contingency tables for all 
pairs of loci in each population and in a pooled sample of all populations. Then, a probability 
test (or Fisher exact test) for each table using the Markov chain method to obtain P-values is 
performed. 

6.1.10 Distribution of genetic diversity 

The distribution of genetic diversity within and between populations is generally done 
through an analysis of molecular variance (AMOVA), which is essentially an analysis of 
variance (ANOVA). This procedure uses information from both the estimated divergence 
between haplotypes and the frequency at which each is represented in a population 
grouping. The first step is to create a distance matrix between samples in order to measure 
the genetic structure of the population from which samples are drawn. Then variance 
components are estimated. 

AMOVA separates and tests tiers of genetic diversity: among groups of populations, among 
populations within groups and among the individuals within a population. The variance 
components from the analysis are used to estimate phi (Φ) statistics that are similar to F 
statistics. The size of the Φ statistic gives an indication of changes in diversity over time.  

Software for AMOVA analysis (called AMOVA) was developed by staff of the University 
of Geneva and is available freely on the Internet. A much more sophisticated program 
called ARLEQUIN was later developed by the same group and can handle data from RFLP, 
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DNA sequences, microsatellites as well as standard multi-locus or allele data [see Section 9, 
this Module]. 

6.2. Genetic relationships between populations 

Multivariate analysis is used to describe analyses of data sets for which more than two 
observations or variables are obtained for each individual or unit studied. For genetic 
diversity studies, gene frequencies can be determined for several loci in several breeds or 
populations. Multiple regression and multiple correlation procedures are multivariate 
techniques, which have had the greatest application in animal breeding research. However, 
these techniques are not suitable when the number of observations or variables is large. 
Cluster analysis and principal component analysis are two multivariate methods that have 
been used to analyse data generated by molecular genetics studies [CS 1.10 by Okomo-
Adhiambo]; [CS 1.11 by Gwakisa]. 

6.2.1 Cluster analysis 

Clustering is a technique for grouping individuals into unknown groups to demonstrate the 
relationship between the groups (e.g. livestock populations). With cluster analysis the 
number and characteristics of the groups are to be derived from the data and are not usually 
known prior to the analysis. In animal diversity studies, cluster analysis has been used in 
classifying breeds into groups on the basis of their genetic characteristics. Before clustering 
it is usually recommended to do some initial analysis. Common initial analyses include 
scatter diagrams, profile analysis and distance measures. Scatter diagrams and profile 
analysis fail when the number of observations is large. For a large data set, distance 
measures are more appropriate. They define some measure of closeness or similarity of two 
observations. In animal breeding, distance measures are called genetic distance.  

(a) Genetic distance estimates  
Genetic distances give the extent of gene differences between populations (and hence 
genetic relationships among them) measured by some numerical quantity and usually 
refer to the gene differences as measured by a function of gene frequencies. There are 
several measures of genetic distances often highly correlated. In most situations, 
different distance measures yield different distance matrices, in turn leading to different 
clusters. Examples include the standard genetic distance developed by Nei in 1972, DA 
distance developed by Nei in 1983 and a genetic distance measure developed by 
Goldstein et al. in 1995. The efficiencies of the various measures of genetic distances 
are compared in Takezaki and Nei (1996). Several computer programs are now 
available for estimating genetic differences and an example is DISPAN (Ota 1993) (see 
Section 9, this Module).  

(b) Phylogenetic analysis  
The commonly used methods of clustering fall into two general categories: hierarchical 
and non-hierarchical. Hierarchical procedures are the most commonly used in animal 
diversity studies. When the number of variables is more than two and the data set is 
large, dendrograms have been used. In a dendrogram, the horizontal axis lists the 
observations in a particular order. The vertical axis shows the successive steps or cluster 
numbers.  

In animal diversity studies, hierarchical procedures are called phylogenetic analysis. The 
genetic distance measures are the ones used to construct the dendrograms, also called 
phylogenetic trees. The two most commonly used methods for constructing the trees are 
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unweighted pair group method (UPGMA) and neighbour-joining method (NJ) (Saitou and 
Nei 1987). The operational taxonomic units (OTUs) in breeding are livestock populations or 
breeds. Therefore, the phylogenetic trees summarise evolutionary relationships among 
breeds or populations and categorise cattle populations into distinct genetic groups. The trees 
consist of nodes and branches. The nodes are the breeds and the branch lengths between 
breeds are graphical estimates of the genetic distance between the breeds and give an 
indication of genetic relationships between breeds. UPGMA trees give an indication of the 
time of separation (divergence) of breeds. The higher the branch length the longer the 
separation period between breeds [CS 1.10 by Okomo-Adhiambo]; [CS 1.11 by Gwakisa]. 
Bootstrapping is usually done to provide confidence statements about the groupings of the 
breeds as revealed by the dendrograms and hence test the validity of the clusters obtained. 
The bootstrap values are given in percentages and the higher the value, the higher is the 
confidence in the grouping. Programs such as SAS, SPSS can produce dendrograms. 

There are some problems with hierarchical procedures. An undesirable early combination 
can persist throughout the analysis and may lead to artificial results. It may then become 
necessary to perform the analysis several times after deleting certain suspect observations. 
For large sample sizes, the printed dendrograms become very large and unwieldy to read. 
Another important problem is how to select the number of clusters. No standard objective 
procedure exists for making the selection. The distance between clusters at successive steps 
may serve as a guide. Also, the underlying situation may suggest a natural number of 
clusters.  

6.2.2 Principal components analysis 

Principal components analysis (PCA) provides a method of explaining the covariance 
structure among a large system of measurements by generating a smaller number of artificial 
variates. In this manner, principal components can be used objectively to evaluate variation 
in measurements and to increase understanding of structural relationships as an entity rather 
than a series of individual and independent relationships. In PCA, the variables are treated 
equally as opposed to being divided into dependent and independent variables as are done in 
regression analysis. The original variables are transformed into new uncorrelated variables 
that are called principal components (PC). Each PC is a linear combination of the original 
variables. The initial variates are replaced with a smaller number of latent variates (the PC) 
allowing more concise summarisation of data with minimal loss of information. Thus, 
instead of analysing a large number of original variables with complex interrelationships, the 
investigator can analyse a smaller number of uncorrelated PCs (Morrison 1976). 

One of the measures used to determine the amount of information conveyed by each PC is its 
variance (usually known as eigenvalue). For this reason, the PCs are arranged in order of 
decreasing variance. Thus, the most informative PC is the first and the least informative is 
the last while a variable with zero variance does not distinguish between the members of the 
population. To reduce the dimensionality of a problem, only the first few PCs are analysed. 
The PCs not analysed convey only a small amount of information since their variances are 
small. The number of components selected may be determined by examining the proportion 
of total variance explained by each component. The cumulative proportion of total variance 
indicates, to the investigator, just how much information is retained by selecting a specified 
number of components. Ideally, we wish to obtain a small number of PCs which explain a 
large percentage of the total variance. Once the number of PCs is selected, the investigator 
should examine the coefficients defining each of them in order to assign an interpretation to 
the components. A high coefficient of a PC on a given variable is an indication of high 
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correlation between that variable and the PC. PC scatter graphs are drawn by plotting the PC 
coefficients. Two-and three-dimensional scatter graphs have been used. Related breeds are 
clustered together. 

The PCA procedures in genetic studies were described by Cavalli-Sforza et al. (1994). In 
animal genetic diversity studies, PCs have been used to determine relationships among 
populations, supplementing relationships determined using phylogenetic analyses (e.g. 
Okomo 1997). PCs can be more convenient than phylogenetic trees if clusters of populations 
are more visible. They are also more flexible than trees since they can use a greater number 
of parameters. It is usually easier to compare PC maps than trees. 

7  Mapping quantitative trait loci (QTL) 

7.1. Strategies for QTL analyses  

The aim of QTL analyses is to detect, localise and estimate effects of QTL. The principle of 
the analyses is to search for non-random associations between phenotypic records and 
chromosome segments across the genome. Within the segments, the genetic constitution of 
each animal is deduced from the inheritance of genetic markers. Significant differences in 
phenotypic expressions between animals with different genetic constitutions indicate the 
existence of QTL in the studied chromosome segment. In some cases, candidate genes for 
QTL are known based on information from other populations or other species. If there are 
known candidate genes, these can be tested directly using polymorphisms within the gene or 
markers closely linked to the gene. When the aim is to detect unknown QTL, an initial scan 
of the entire genome has to be performed. The genome scan can show in which chromosome 
segments QTL are located, but the accuracy of the location is usually low. To increase the 
precision, and thus improve the possibilities of identifying the QTL, the chromosome 
segments of interest need to be further 
studied using other methods, i.e. fine 
mapping.  

All phases of QTL mapping (Figure 2) 
involve analyses of quantitative traits that 
have a complex genetic background and 
are influenced by environmental factors. 
Therefore, in addition to the need for 
genetic marker information, powerful 
analyses require good phenotypic records 
from a large number of animals and the 
use of suitable quantitative statistical 
methods [see Section 9, this Module]. 
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A full genome scan for QTL includes five steps:  

(i) Choice of a mapping population: In domestic animals, we can either use experimental 
crosses between divergent populations or large families within a population. Studies 
in designed crosses are powerful as they create high linkage disequilibrium, and large 
QTL effects segregate in, e.g. a backcross or intercross designs. However, such 
experiments are very costly for large animals and they do not give any direct answers 
of the segregation of QTL within the commercial populations of interest. Therefore, 
for large animals like cattle, mapping studies are usually performed in existing 
populations, within families or by selection of individuals with extreme phenotypes.  

(ii) Collection of phenotype data: To get an acceptable power in the analyses the 
phenotypes have to be recorded on large numbers of animals. They can either be the 
same animals that are genotyped and/or offspring of the genotyped individuals 
(progeny testing).  

(iii) Genotyping: Genetic maps, based on DNA markers, are available for many species. In 
livestock, short tandem repeats or microsatellites are currently the markers of choice 
as they are highly polymorphic and more than a thousand of them are available in 
most species. A subset of informative, evenly spaced markers covering the entire 
genome is selected for the population of interest. The maximum distance between the 
markers depends on the size of the population and the size of the QTL effects to be 
detected. 

(iv) Setting up a genetic model for QTL: Depending on data available, an operational 
model with one or several QTL (with additive, dominance, epistatic or substitution 
effects) as well as remaining genetic and environmental effects is used.  

(v) Drawing statistical inference from data: The statistical testing for QTL is performed 
at marker loci (single marker analysis) or at marker loci as well as in intervals 
between markers (interval mapping). Multiple testing across the genome must be 
considered when setting significance thresholds. Parameters are estimated in the most 
likely positions for QTL by regression, ML, BLUP-based or MCMC (Markov Chain 
Monte Carlo) methods. 

7.2  Why map QTL? 

The detection and localisation of QTL is valuable for several reasons. Firstly, we still know 
very little about the genetic background of quantitative traits such as growth, muscular 
development, milk yield, disease resistance, etc. Mapping of QTL gives us better insight into 
the action and interaction of individual genes, which will give us opportunities to refine the 
genetic models used to describe the variation in quantitative traits. Secondly, associations 
between genetic markers and QTL can be utilised to improve the efficiency of selection 
schemes (see Module 3, Section 4.7). Thirdly, mapping of QTL will eventually allow us to 
identify some of the genes and to study the molecular biology underlying the traits. This 
knowledge may in the near future be used for genetic modification of genes that are 
important in breeding programmes, for development of efficient vaccines etc. 
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10 Websites 

The web pages were all accessed in July 2003. 

10.1 Data bases 

Gene maps, databases etc. http://bos.cvm.tamu.edu/bovarkdb.html 

10.2 Software 

Programmes for estimation of variance/covariance components and/or prediction of breeding 
values: 

VCE: http://www.tzv.fal.de/institut/genetik/vce4/vce4.html 

DFREML: http://agbu.une.edu.au/~kmeyer/dfreml.html 

PEST: http://www.tzv.fal.de/~eg 

Programmes for estimation of crossbreeding effects:  

CBE – Crossbreeding Effects: http://www.boku.ac.at/nuwi/software/softcbe.htm 
 

Programmes for measuring genetic diversity based on genetic markers: 

Analysis of Molecular Variance,  
AMOVA:http://www.bioss.ac.uk/smart/unix/mamova/slides/frames.htm 

Arlequin: http://anthro.unige.ch/arlequin 

DISPAN: http://www.bio.psu.edu/People/Faculty/Nei/Lab/Programs.html 

Programmes for QTL mapping: 

Regression mapping; Interval mapping, inbred and outbred populations 

QTL Express http://qtl.cap.ed.ac.uk/ Maximum Likelihood mapping; Composite interval 
mapping in experimental populations;  

QTL cartographer http://statgen.ncsu.edu/qtlcart/WQTLCart.htm 
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10.3 Courses and course notes 

Schaeffer’s Note shop with course notes for animal models, quantitative genetics and 
methodology in animal breeding: http://www.aps.uoguelph.ca/~lrs/Animals/ 

Course notes on gene mapping and QTL in breeding:  
http://www-personal.une.edu.au/~jvanderw/aabc_materialsp3.htm 

http://www-personal.une.edu.au/~jvanderw/Models_for_QTL_analysis.pdf 

10.4 Organisations and networks 

Reeves J. C., J.R. Law, P. Donini, R.M.D. Koebner, and R.J. Cooke. Changes over time in 
the genetic diversity of UK cereal crops: http://apps3.fao.org/wiews/Prague/Paper12.htm 

10.5 Miscellaneous 

Alphabetic list of genetic analysis software (population genetics software and linkage 
analysis)  
http://linkage.rockefeller.edu/soft/ 


