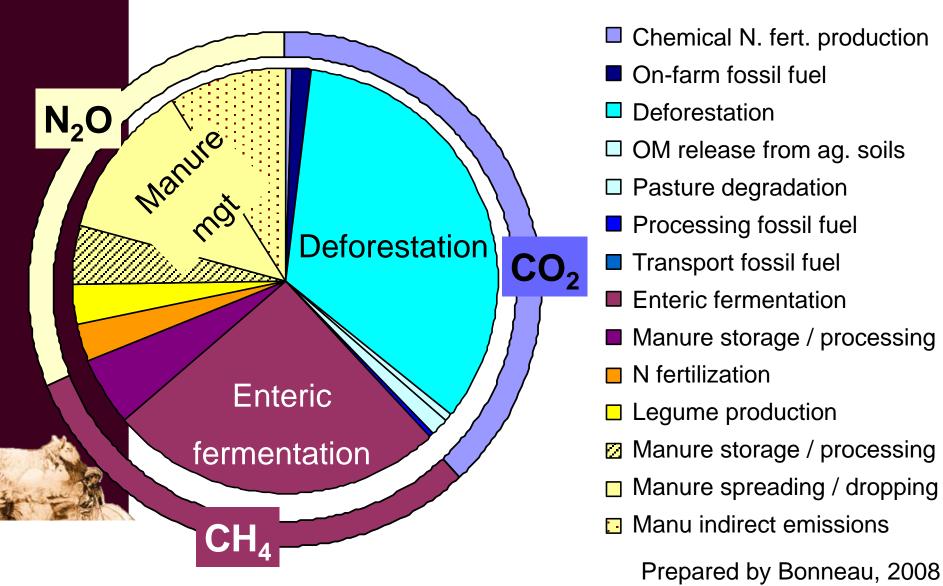
Mitigation of climate change in livestock systems in Kenya

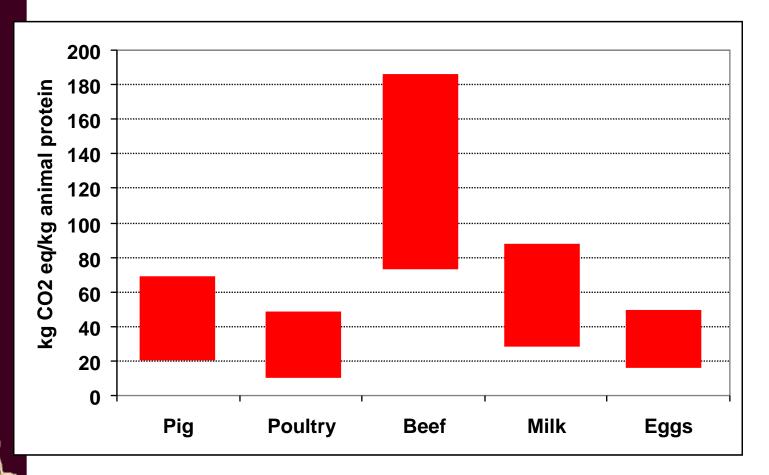
M. Herrero, S. Silvestri, E. Bryan, B. Okoba and C. Ringler


International Livestock Research Institute

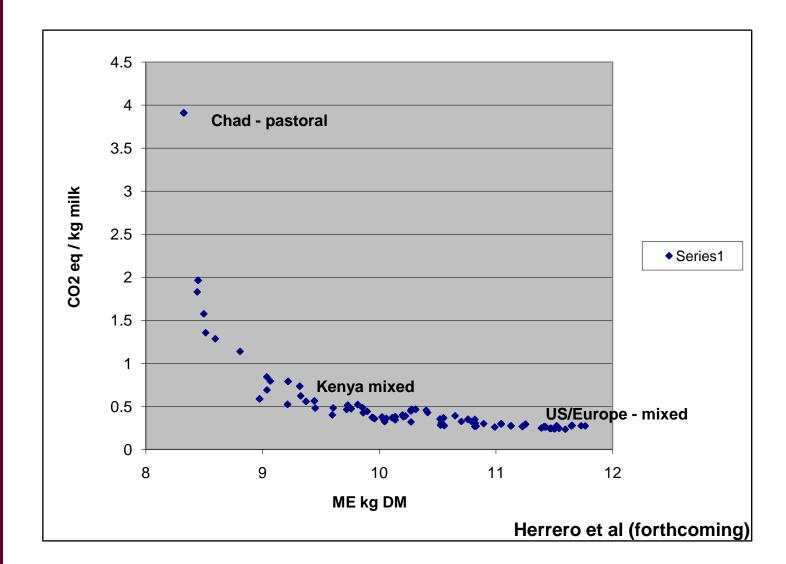
Climate Change Adaptation for Smallholder Agriculture in Kenya February 24-25, 2011 | KARI | Nairobi, Kenya

Structure of the presentation

- ✓ Background and concepts
- ✓ Methods
- ✓ Diets
- ✓ Scenarios
- ✓ Mitigation strategies tested
- \checkmark conclusions


Livestock and GHG: 18% of global emissions

Mitigation options


- Reductions in emissions: significant potential!
 - $\checkmark\,$ Managing demand for animal products
 - Improved / intensified diets for ruminants
 - $\checkmark\,$ Reduction of animal numbers
 - ✓ Reduced livestock-induced deforestation
 - $\checkmark\,$ Change of animal species
 - $\checkmark\,$ Feed additives to reduce enteric fermentation
 - Manure management (feed additives, methane production, regulations for manure disposal)
 - ✓ Carbon sequestration

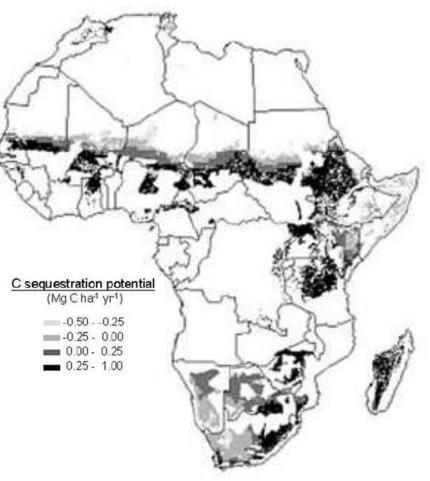
Range of GHG intensities for commodities in OECDcountries

Source: DeVries & DeBoer (2009)

Mitigation 101 – intensification is essential The better we feed cows the less methane per kg of milk they produce

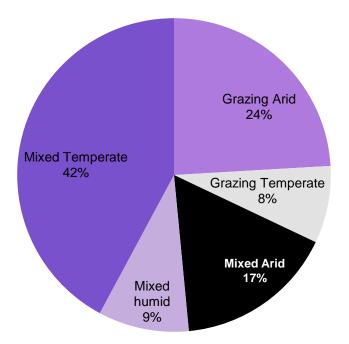
Can we tap the potential for carbon sequestration in rangeland systems?

Largest land use system


Potentially a large C sink

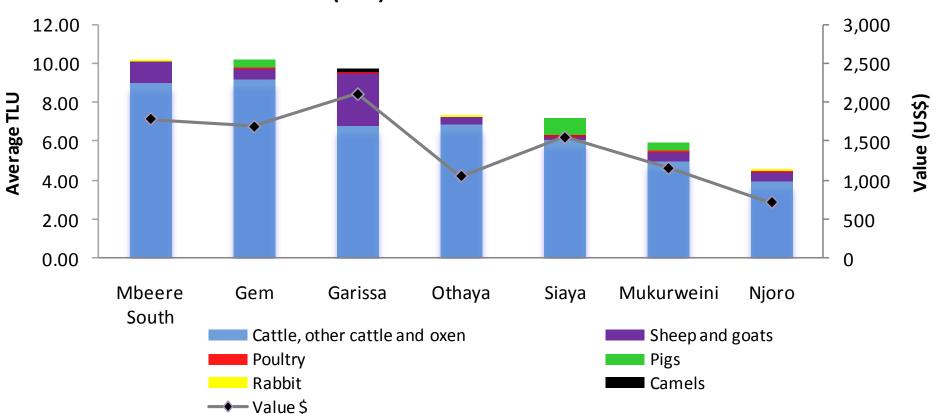
Could be an important income diversification source

Difficulties in: Measuring and monitoring C stocks


Establishment of payment schemes

Dealing with mobile pastoralists

Potential for carbon sequestration in rangelands (Conant and Paustian 2002)


Kenya Methane production from ruminants (Herrero et al 2008)

1.1 billion tonnes CO2 eq68% mixed systems / 32% grazing systems50% from the highlands85% from cattle

Methodology

- Survey in 6 districts
- Livestock species, productivity, feeding practices, etc
- Baseline diets for animals
- Simulations of productivity, methane and manure
- Scenarios with alternative diets
- Recalculation of productivity, methane and manure

Variation in size (TLU) and value of household domestic herds

Cattle dominates herds

Milk production and diets for cattle in the 6 districts

District	Milk per	Rangeland	Maize	Cut and	Roadside	Grain
	cow (kg/yr)	grazing	stover	carry	weeds	supplements
				fodder		
Garissa	275	Х				
Gem	548	х	Х	Х	X	X
Mbeere S	860	х	Х	Х	X	X
Njoro	1256	х	Х	Х	X	x
Mukurweni	2089		Х	Х	X	
Othaya	2035		Х			
Siaya	706		Х			

Manure and methane production for the baseline diets in the six districts

District	Energy	Manure per	Methane	Methane	
	density of	animal (kg/yr)	production	produced per lt	
	the diet	(CO2		of milk	
	(MJ ME/kg		eq/lactation)	(CO2 eq/lt)	
	DM)				
Garissa	8.4	693	796	2.37	
Gem	9.3	730	780	1.42	
Mbeere S	9.6	693	824	1.12	
Njoro	9.9	693	863	0.72	
Mukurweni	10.5	657	936	0.47	
Othaya	10.5	657	936	0.47	
Siaya	9.4	730	838	1.14	

Efficiency of GHG emissions from milk production in 6 districts of Kenya

Most common new feeds appearing in the last 10 years and the scenarios simulated

District	Main new feed	Scenarios of use		
Garissa	Prosopis spp.	1.5 kg offered in the diet		
		3 kg offered in the diet		
Gem	Desmodium	1 kg offered in the diet instead of stover		
		2 kg offered in the diet instead of stover		
Mbeere S	Napier grass	2 kg offered in the diet instead of stover		
		3 kg offered in the diet instead of stover		
Njoro	Нау	1 kg offered in the diet instead of stover		
		2 kg offered in the diet instead of stover		
Mukurweni	Desmodium	1 kg offered in the diet instead of stover		
		2 kg offered in the diet instead of stover		
Othaya	Нау	2 kg offered in the diet instead of stover		
		4 kg offered in the diet instead of stover		
Siaya	Napier grass	2 kg offered in the diet instead of stover		
		3 kg offered in the diet instead of stover		

Impact of alternative feeding strategies on milk, manure and methane production

District	Scenario	Milk production	Manure	Methane	Methane per
			production	production	kg milk
Garissa	Prosopis				
	1.5 kg	64	0	-2	-40
	3 kg	136	0	-5	-60
Gem	Desmodium				
	1 kg	21	5	-3	-20
	2 kg	36	10	0	-26
Mbeere	Napier grass				
	2 kg	12	11	3	-8
	3 kg	17	16	2	-12
Njoro	Нау				
	1 kg	18	-5	6	-10
	2 kg	49	-5	18	-21
Mukurweni	Desmodium				
	1 kg	9	11	2	-7
	2 kg	8	11	0	-7
Othaya	Нау				
	2 kg	9	11	2	-7
	4 kg	8	11	0	-7
Siaya	Napier grass				
	2 kg	42	0	12	-21
	3 kg	79	10	16	-35
6 districts	Average	36	6	4	-20

Conclusions

- Significant potential for mitigation (and adaptation) in livestock systems through improving diets for ruminants
- Real mitigation potential only exploited by producing the same amounts of milk with less but better fed animals
- Large differences exist between the regions under study, with the largest potential improvements in the districts with the poorer feed resources available.
- Achieving higher efficiency in GHG management will require incentives for farmers to follow a market-oriented dairy focus for their farms
- Essential to test more options