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1 Quantitative methods—Important tools for animal genetic resources (AnGR) 

One of the challenges faced by livestock keepers in developing countries is the need to 
improve productivity per animal and per unit area of land. The most common question asked 
to those promoting animal genetic improvement is: ‘what is the best animal?’. To determine 
an answer to the question of what is best, one must know the traits of importance (See 
Module 2, Section 4) and how performance in the traits interacts with the available 
environment. 

A second basic question is: ‘how do you breed animals so that their descendants will be better 
than today’s animals?’. In other words, how are animal populations improved to maximize 
profitability over time? The purpose of animal breeding is not to genetically improve 
individual animals, but to improve animal populations. To improve populations, basic tools 
are required to identify and utilize genetic differences between animals for the traits of 
interest.  

The vast majority of traits of interest are polygenic. The higher the number of genes that 
affect a given trait, the more difficult it is to observe and separate the effects of the individual 
genes. Phenotypes for polygenic traits are typically quantitative in their expression, and thus 
can be numerically measured. Quantitative methods are research techniques that are used to 
gather quantitative data—they are research methods dealing with numbers and anything that 
is measurable. Statistical analyses are often used to evaluate and present the results of these 
methods. 

1.1 Statistics to separate genetic and environmental effects  

The observed characteristics of animals, which make up the phenotype of the animal, are 
affected by both genetic and environmental factors. The genetic factors are due to a random 
sample of genes received from the two parental gametes, whereas the environmental factors 
include influences by climate, nutrition, health and management. Genetic analyses in the field 
of AnGR usually aim at separating genetic and environmental effects. Statistical values for 
means, variances and the relationship between different variances are used to develop basic 
analytical principles. For this, a mathematical model is needed which describes the 
phenotypic values as a function of genotype and environment, i.e. phenotype = f (genotype, 
environment). The simplest and most frequently used function f is the linear ‘pattern plus 
residual’ model. As the genotype is our main interest, we start by defining a genotypic value 
as G, the ‘pattern’ part of the phenotypic observation as P and the residual P - G as an 
environmental effect E, explaining the discrepancy between the phenotypic and genotypic 
values. The simplest model to describe the above relationships is that of Falconer and 
Mackay (1996) presented as: 

P = µ + G + E  
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where µ = the population mean for the trait. It is the average phenotypic value of all 
individuals in a population. Means vary greatly with breed, management and physical 
environment. 

The reason for adding the population mean is to emphasize that in animal breeding, genotypic 
values, environmental effects and all other elements of the genetic model are not absolute 
values but are expressed relative to the mean of the population being considered  

When dealing with very different environments or when dealing with different genotypes 
within a given environment, it is important to include the specific combination effects 
between genotype and environment  (G × E)  (See Module 2, Section 3.4); [CS 1.39 Okeyo 
and Baker]. 

 

When considering breeds or populations of animals, P and G are expressed as deviations 
from the population mean. The variation within the population can be described and 
illustrated as follows: 

VarP = VarG + VarE + Var(G×E)   

 

where Var P, VarG and VarE refer to phenotypic, genetic and environmental variance 
respectively and Var(G × E) is the variance due to the genotype by environment interaction. 
Variation refers to differences among individuals within a population. Genetic variation is the 
source of all genetic improvement. 

Once the importance of the environmental and genetic factors for a specified trait has been 
established, methods of genetic improvement for that trait can be explored. Clearly, there is 
little or no point in attempting to improve livestock by genetic means if there is no or very 
small genetic variation in the trait. One must therefore determine the extent to which genetic 
effects influence a phenotype (Module 2 Section 3.2), and to what extent the genetic effects 
are due to separately acting genes, i.e. additive genetic effects, before designing breeding 
programmes accordingly.  

With a single individual it is not possible to separate the effects of genetic and environmental 
factors; neither is it possible to estimate how much of its phenotypic level is due to each 
factor. However, with groups of livestock, estimates of the relative importance of the 
environmental factors, genetic factors and interaction between the two factors can be 
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obtained. The quantitative genetic methods reviewed in sections 1.2–1.4 provide powerful 
tools for analysing and handling quantitative variation in practical breeding. 

1.2 Statistics to determine relationships between traits 

In addition to evaluating variation within a trait, it is important to understand how two or 
more traits or different values may vary together, covariation. Knowing that any two or more 
genes often affect more than one trait (pleiotropy), sometimes in the opposite and sometimes 
in the same direction, the phenomenon of covariation is important. Covariation between two 
or more traits can also be caused by genetic linkage between loci affecting the traits. 
Understanding covariation helps in predicting possible effects of selection and hence in 
making decisions when selecting for a specific trait. The sign (positive or negative) and 
magnitude of the relationship between the traits to be selected must be taken into account and 
means sought to achieve the desirable result when it is evident that selection in one trait will 
cause a negative response in another related trait. The correlation coefficient gives a measure 
of the strength of the relationship between two variables (or traits). As with variance, useful 
correlations are phenotypic, genetic and environmental correlations. The amount of change in 
one variable that can be expected for a given amount of change in another variable is 
measured by a regression coefficient. This can be expressed on both the phenotypic and 
genotypic scales and is related to the phenotypic and genetic correlations between the two 
variables. The regression coefficient is useful for prediction based on other pieces of 
information. For example, the regression of breeding value for a trait on phenotypic value for 
the same trait is used to help predict an animal’s breeding value based on its own 
performance. 

1.3 Use of statistics to estimate genetic diversity from molecular data 

Genetic diversity is the basis for both natural evolutionary changes and artificial selection in 
breeding populations. The importance of genetic diversity and measures of genetic diversity 
in livestock production are described in Section 3, Module 2. The section also describes 
molecular genetics techniques that can be used to collect data for studies on genetic diversity. 
Maintaining a healthy balance between adequate genetic variation in today’s livestock 
populations in order to exploit it through selection, while aiming to achieve product 
uniformity and breed identity remains a constant challenge. In this module, some quantitative 
methods that are used to analyse molecular data to measure genetic diversity in populations 
(Section 7 this module) and genetic relationships between populations (Section 8 this 
module) are reviewed.  

1.4 Statistics for deciphering effects of genes 

Currently, there is much emphasis on studies of the molecular genetic background of traits in 
livestock. The majority of production, functional and health traits are the consequences of 
complex physiological systems in the animal influenced by a large number of genes and 
varying gene interactions. The genetic basis for such quantitative traits can neither be fully 
clarified nor considered in full detail, as is possible for qualitative traits, such as coat colour. 
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However, among all loci affecting a quantitative trait, i.e. quantitative trait loci (QTL), some 
contribute more and some less to the variation between individuals. Different quantitative 
methods have thus been developed for analysing phenotypic and molecular genetic data. 
Until recently, it was not possible to identify QTL, except the ones with the largest effects, 
the so-called major genes (Figure 1). They can be detected by segregation analysis, i.e. as 
deviations from the unimodal phenotypic distribution of the character. Examples of such 
major genes are the Culard (mh) gene causing muscular hypertrophy in cattle, the Boroola 
gene increasing fecundity in sheep etc. 

 

 

 

 

As compared to studies of phenotypic distributions of traits, studies of linkage and linkage 
disequilibrium between genetic markers and QTL provide a more powerful and robust tool to 
detect QTL. Thus, the development of relatively dense linkage maps with highly informative 
markers (Module 2 section 3.3) has made it possible to identify and localize QTL for many 
economically important traits in livestock species. For the detection of QTL, it is essential to 
make use of efficient statistical methods (Section 6.1, this module).  

 

2. Data collection and management 

Clear objectives are required before a study is carried out. Based on these, the design, 
execution and analyses are planned. A key part of the research is to collect data from a 
number of animals. The data must be amenable to statistical analysis from which one can 
draw inferences or can predict future observations. There are various sources of data for use 
in animal breeding studies: 

1. Research scientists set up experiments and collect data from experimental animals. 
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2. Data can be obtained from farms (field records) through livestock recording schemes 
(Module 3, Section 4.4). 

3. Breed information data can be collected using questionnaire forms as outlined in the 
following section. 

Scientists should have a clear understanding of the principles of statistics governing the 
planning of experiments and the analysis and interpretation of experimental data. It is 
important to design experiments properly so as to collect useful data. Costs usually prohibit 
the setting up and running of large experiments to collect the required data. However, often, 
large data sets are required to get reliable estimates of phenotypic, genetic and environmental 
variation.  

 

2.1. Data sourcing through on-farm surveys of livestock breeds 

In many developing countries, information on existing livestock populations in different areas 
is not available and livestock recording is not regularly practised. In order to understand the 
production systems and develop improvement programmes, it is necessary to capture existing 
knowledge on the livestock breeds or populations that are considered to be of most interest. 
Such information is generally captured through surveys. Surveys are also used to determine 
the status of different breeds in a country, providing key information for developing breed 
improvement and conservation strategies.  

Designing on-farm surveys of livestock breeds 

The first step is to decide what type of survey (random, purposive, convenience or 
representative) is to be undertaken, and the size of the population to be surveyed. Either the 
whole population or samples of the population can be surveyed. For a sample, the proportion 
of the farming community or households to be surveyed needs to be determined. This needs 
to be large enough to allow population values to be estimated with adequate precision; it 
should also cover all strata of the population related to the topic of interest. At the same time, 
costs of collecting data need to be realistically considered. Different sampling designs are 
available from simple random sampling to those using stratified and clustering techniques 
[Oromiya document-ILRI]. Data in surveys are usually collected using questionnaires 
designed to allow accurate and unambiguous answers. Key activities when carrying out a 
survey are illustrated in Figure 2.  
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Figure 2. Key activities when planning and implementing a breed survey 

Pre-testing of a questionnaire on a small number of farms or households is an essential and 
useful way of evaluating the suitability and level of detail that it is possible to obtain from the 
interviewees. For example, if the purpose of the survey is to estimate the population of 
livestock in a given area and the basic unit is a village, then one must ensure that: 

• the total number of households in a village is known 

• the number of such households that keep livestock is known  

• the average number of livestock per livestock-keeping household is known.  

These can be obtained during pre-survey visits; they give an indication of how best to achieve 
high accuracy and precision during the survey (see Module 2, Section 2). 

 

Implementing on-farm surveys 

In implementing on-farm surveys, the following should be considered: 

• Adequate prior and mid-stream consultations with all stakeholders (farmers, local 
administrative officials, politicians, donors etc.) 

• Timing of the survey (season and even month within seasons) 

• Time for visits to farms, and where to interview respondents (in the homestead or on 
grazing fields)  

• Who the respondents should be (household heads, children or employees).  

A combination of all the above may actually be used. For example, in a society where 
milking is exclusively done by children and women, the best answers to the question related 
to how much milk an animal produces daily would be given by the family members who 
actually do the milking, although the household head to may respond to the entire 
questionnaire.  
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Breed descriptor charts and guidelines on animal phenotypic characteristics, such as those 
developed by ILRI and used for the Oromiya-ILRI Livestock Breed Survey (2001), may be 
available to assist enumerators and questionnaire administrators to make on-farm survey 
decisions. However, the occasional use of photographs to capture whole herds, while in pens, 
kraals or grazing, greatly helps to countercheck the accuracy and consistency of such scoring. 
Likewise, asking the same question to different members of the household may also help 
verify some discrepancies, especially where respondents seem to be giving pre-planned 
answers or non-plausible ones. 

2.2. Data management and exploration 

Raw data are entered into the computer in such a manner that the information can be found 
and understood long after the time of data entry, and checked for any possible errors. The 
data are then organized into an appropriate form for analyses. All data should be archived so 
that they remain available for later reference. A good data management strategy should be 
adapted using data management software such as Access or Oracle that has facilities for some 
data checking at the time of entry. Spreadsheet packages (e.g. Excel, Lotus-123) though 
simple and apparently flexible, should be used with caution for data management. 

Data exploration 

Once the necessary edits on the data have been done, it is important that one understands the 
data structure and the patterns displayed in the data in order to decide how best to conduct the 
statistical analysis [Biometrics example 1] [ICAR technical series on animal recording]. The 
distribution of animals by different classification (e.g. age and sex) can be determined and the 
mean, median and range for each factor or classification variable summarized. These 
statistics can then be used to group the animals into suitable subclasses to reflect the variation 
in the data expressed by a particular factor. Furthermore, such statistics can ensure that 
sufficient numbers of animals are contained within each subclass to allow reasonable 
inferences to be made about the influence of different levels of the factor on the trait being 
studied. 

The number of observations per subclass usually varies for field data and some experimental 
data. In some cases, data that initially had an equal number of observations per subclass can 
end up having different numbers of observations after data editing. Data with an unequal 
number of observations per subclass are known as unbalanced data; there are statistical 
methods that have been developed to handle such data [Biometrics example 2]. 

In an analysis, the pattern of data is described using a model. The final model that is used to 
describe the data will serve as the best judge of the quality of statistical analysis. An 
appropriate model can only be chosen when one understands the data. 

 



9 

 

3 Statistical models for data analyses 

A statistical model must, foremost, reflect the biology of the problem. A true model describes 
the pattern of the data perfectly but it is usually unknown. An ideal model is one that is close 
to a true model based on an understanding of the problem. At times, due to missing 
information or computational problems, an ideal model may be simplified to an operational 
model. This is a model that permits predictions to be made with an acceptable level of 
accuracy. Whenever an operational model (instead of an ideal one) is used, it is 
recommended that the principles for an ideal model are outlined and reasons for not using it 
and problems likely to arise from not using it are given. The ultimate choice of the type of 
model to use will depend on the traits being studied and the pattern of variation exhibited by 
the trait of interest. 

The statistical models commonly used in animal breeding are linear models, with the set of 
factors being assumed to additively affect the observations. The choice of linear models has 
been influenced by the fact that most economically important traits studied are linear in 
nature (Schaeffer, 1991). More recently, non-linear models are being used to evaluate traits 
that exhibit categorical phenotypes (Ducrocq, 1997) and covariance functions are used in the 
analysis of longitudinal data (Meyer, 1998).  

 

 

3.1 Components of a model 

Dependent vs. independent variables: A model comprises factors/variables that influence a 
trait. The trait under study is termed the dependent variable, while those factors affecting it 
are termed independent variables. The essence of constructing a model is to determine the 
independent variables that affect the dependent variable, obtain information on the magnitude 
of each and draw inferences that can be translated into changing animal populations. 

3.1.1 Characteristics of independent variables 

Independent variables tend to be broadly grouped in two categories: fixed effects and random 
effects. Fixed effects are those estimated using information from the data only. Any 
conclusion drawn about the estimated mean for the trait will apply only to the study itself. 
They can be either discrete or continuous. Discrete factors have distinct levels, whereas 
continuous variables have a range of values assumed to follow a certain pattern (generally 
linear or quadratic). For example, it is known that calf weight at birth can be influenced by 
the sex of calf, the season when the dam calved, the age of the dam, the dam and the sire of 
calf. For the sex of calf there are two levels, i.e. male or female. Age of dam, however, can be 
considered as a continuous variable, say 3–12 years of age. When we fit a continuous 
variable, we may fit a straight line or a polynomial function of this variable. The slope of this 
line is known as a regression coefficient [Biometrics example 1]. Instead of treating age as a 
continuous variable, it is also possible to classify age of dam into different age categories 



10 

 

(e.g. 3, 4–6, 7–9, 10–12 years) and treat the factor as discrete with four levels [Biometrics 
example 2]. 

A covariable is a factor known to affect a performance trait which adds ‘noise’ to the variable 
of interest. When there is a significant relationship between the trait being analysed and a 
covariable, a proportion of the natural variation among animals is explained by this 
covariable. This improves the precision of comparison between mean values of primary 
interest [Biometrics example 2]. 

When a factor is considered to be random, however, results of the study can be extrapolated 
to a wider population from which the sample under investigation can be assumed to be drawn 
at random. Thus, sire, for example, is a factor that can be either fixed or random. If sires have 
been selected purposively for an experiment, then it is likely that we would treat the factor as 
fixed and calculate mean values for each sire separately. More often, though, it will be 
assumed that sires have been chosen at random from a wider population. In such cases the 
effect for sire is assumed to be random and any inferences made from the study are 
generalized to the wider population of which the sires are representative. To construct a 
model to be used in data analysis the researcher has to decide, based on the understanding of 
the data, whether a factor is fixed or random. As a rule of thumb, a factor is considered as 
random as soon as one wants to make use of prior information about the variable of interest. 

 

3.2 Types of models used 

A model comprises three parts: (1) the equation which describes the factors (effects) and their 
levels; (2) the specification of the distribution characteristics of random effects; and (3) 
assumptions, restrictions and limitations in the use of the model. There are various types of 
linear models. The name given depends on whether it contains only regression variables, 
fixed discrete effects and the number of the fixed effects in the model; whether there are any 
interactions between factors; or whether the model contains either only fixed or random 
effects or both. Thus, according to Searle (1971) and Snedecor and Cochran (1980), some of 
the names that one can come across are:  

i. linear regression models—simple or multiple linear regression  

ii. correlation models  

iii. classification models—one-way, two-way, three-way classification of factors  

iv. classification models with interactions  

v. nested (or hierarchical) models  

vi. cross-classification models  

vii. random models—all factors considered random  
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viii. mixed models—combination of fixed and random effects  

Analytical models may be for a single trait at a time (single-trait models) or for several traits 
at the same time (multi-trait models). When assessing several traits on the same individuals at 
the same time, often the interest of the researcher is to determine both phenotypic and genetic 
correlations between the various traits. The models used generally involve making various 
assumptions. An assumption often made is that residuals are normally distributed and each 
observation was randomly and independently obtained. However, this is not necessarily true, 
as if one considers a multiple trait the observations of different traits on the same animals are 
not independent. Also, in case of repeated measures (single trait) the observations on a same 
animal are not independent.  

Repeated measures on an animal can cause some difficulties because adjacent observations 
tend to be more closely correlated relative to those further apart. Statistical procedures are 
generally fairly robust and slight departures from normality can be ignored. When data are 
clearly not distributed normally, the data should be appropriately transformed or alternative 
non-linear techniques can be applied. 

For small data sets described by simple models (with a small number of factors), solving the 
equations may be quite easy. However, data sets in animal breeding can be very large and the 
results for the trait being evaluated can be influenced by many factors, some of which may 
have an uneven number of observations within each subgroup (unbalanced). For example, 
dairy data can include records from thousands of herds, taken over many years: some 
information can be missing for some herds or years. Cows within the herd can be of various 
genotypes and ages, cows may have been in lactation for different lengths of time etc. The 
statistical models required for such data sets can therefore be complicated, resulting in 
computational difficulties. Over time, different techniques have been developed to deal with 
such data, e.g. absorbing a factor to reduce the size of the system of equations to be solved, 
calculating the solutions of the equation system iteratively or including certain covariables or 
secondary factors in a preliminary step and adjusting the data for them before fitting the final 
model (Henderson, 1984). 

Sometimes the trait of interest is measured qualitatively rather than quantitatively and 
observations are assigned to distinct categories or classes based on qualitative assessment of 
the trait. For example, cows may be diagnosed clinically as having mastitis and coded as 1 or 
they may be diagnosed as healthy and coded 0. Such data, when expressed as the proportion 
of cases occurring for different levels of a factor, often belong to a binomial, not a normal, 
distribution. These data do not lend themselves to direct analysis by linear models for 
continuous traits, although, where large amounts of data have been collected, a normal 
approximation can be assumed (Harville and Mee, 1984). In some cases, use of a threshold 
(probit) model is advisable. 
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4. Estimating non-genetic effects 

Given the knowledge of data, a researcher will be able to develop a statistical model that 
describes the environmental factors likely to influence the trait of interest. For example, the 
environmental factors that might affect milk yield per lactation include level of herd 
management, level of feeding, health status of animal, age of cow at calving, season in which 
the cow calved etc. Some of the environmental factors will be used in the model as discrete 
variables, others as continuous variables. Some fixed effects influence data but are in 
themselves of little interest. Data are corrected for them and no explicit estimates are 
obtained for such factors. However, there are some effects (e.g. trends in the year or 
differences in sexes) whose estimates may be of interest. For these, both the fixed and 
random effects are estimated and predicted simultaneously using the mixed model 
procedures.  

Parameter estimates for the fixed effects of the model are obtained most often using least 
squares techniques (Searle, 1971). Once the parameters have been estimated, tests can be 
carried out to determine whether or not the factors included in the model account for 
significant variation in the quantitative trait measured. The best models for evaluating fixed 
effects are those that take into account all the other effects in the model when estimating 
parameters for a given effect. In addition, estimation of linear functions and testing 
hypotheses related to those functions are carried out. Given the effect of season of calving, 
for example, one may want to test that milk yield for cows calving in the wet or cold season 
such as winter differs from those calving in the dry season or in the summer. The average 
yields for the two seasons and also differences between these yield levels can be estimated. 
The next step is to test the hypothesis whether seasonal differences are important for such a 
trait [see Biometrics example 2]. In this example, least squares analysis fitting fixed effects 
(discrete and continuous) is illustrated. The steps followed are: calculation of descriptive 
statistics, development of the model and estimation of parameters for the fixed effects. 

Once the importance of environmental factors has been established, records can be corrected 
or adjusted for these factors before proceeding to estimate genetic effects and parameters. 
Procedures, such as Best Linear Unbiased Prediction (BLUP) estimate parameters for 
environmental factors, adjust the data for these factors and estimate genetic effects 
simultaneously. BLUP stands for Best- because it maximizes the correlation between true 
and predicted breeding values (or minimizes the prediction error variance); Linear – 
predictions are linear functions of observations; Unbiased – estimation of realized values for 
a random variable such as animal breeding values and of estimable functions of fixed effects 
are unbiased; Prediction – involves prediction of true breeding value  [BLUP]. A variety of 
computer software are available at minimal or no cost to facilitate data evaluation using 
BLUP procedures [Computer Software]. 

5 Estimating genetic effects 

Often, rather than estimating specific differences between treatments, one may be interested 
in estimating variances (phenotypic, genetic and environmental) due to the effects. For 
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example, in milk production the interest may not be to estimate differences between cows, 
but rather in estimating the variation among the cows as an estimate of the variation from a 
‘larger’ population from which they were sampled. The cows can be considered as random 
effects and the data can be analysed according to a mixed effects model [Biometrics example 
3]. 

5.1 Variance component estimation 

The data described in Section 2.1 are used to estimate genetic and environmental variances 
needed to calculate genetic parameters (e.g. heritability) and the tests of significance for both 
genetic and non-genetic parameters estimated from the data.  

When estimating variance components, the total variation for a trait under study is split into 
constituent components: genetic (additive and non-additive) and environmental. Depending 
on the data, different types of random effects models can be fitted. For example, dairy 
production data from collateral relatives (e.g. full-sibs and half-sibs) could be analysed fitting 
a sire model. Covariances generated by these relationships provide the information required 
for estimation of additive genetic variance or linear models containing both genetic and 
environmental effects for each animal (animal model) could be used. 

The most widely used methods in variance component estimation are maximum likelihood 
(ML) procedures. These procedures estimate the fixed effects and variance components 
simultaneously. Animal breeders are increasingly confronted with data sets that have arisen 
from either selection experiments or from farm testing in which selection has been practised. 
If there is a lack of records because of selection based on some criterion that is correlated to 
trait(s) under analysis, the resultant estimates are likely to be biased by selection. In addition, 
following selection, variances of breeding values are reduced, breeding values of unrelated 
animals could become correlated, errors become correlated and breeding values become 
correlated with errors. ML statistical procedures can accommodate any structure of genetic 
relationship in the data, suitably weighted, do not require balanced designs and can account 
for selection of parents (Harville, 1977; Meyer, 1989; Falconer and Mackay, 1996). 

A modified ML procedure, i.e. restricted maximum likelihood (REML) (Patterson and 
Thompson, 1971), has become the preferred method of analysis in animal breeding, not least 
for its ability to reduce selection bias. It accounts for the loss in degrees of freedom due to 
fixed effects in the model of analysis. In other words, it accounts for the fact that, for a given 
data size, more information is lost and cannot be used for estimation of variance components 
when one wants to estimate more levels of fixed effects. 

There are several numerical procedures to find the variance components that maximize the 
(restricted) likelihood function, depending on whether one wants to compute only likelihood 
functions (‘derivative-free algorithm’), first derivative also (‘EM or Quasi-Newton 
algorithms’) or first and second derivatives of these with respect to the variance components 
(‘Newton, Fischer scoring or Average Information matrix’). Generally, impressive progress 
has been made in developing efficient computing algorithms for REML estimates. This, 
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together with increasing computing power, has enabled the analysis of quite complex 
statistical models in large data sets [Biometrics example 3]. There are several suites of 
programmes for estimation of variance components available to the scientific community free 
of charge, e.g. VCE (developed by Eildert Groeneveld), DMU (the Danish team in Foulum), 
REMLF90 (Mizstal) and WOMBAT (developed by Karen Meyer) [Web pages, Section 12, 
this module]. 

5.2 Prediction of genetic merit 

There are various methods available to estimate breeding values. The quality of data will 
determine what method is chosen. Complete data sets will have information on performance 
and identity of animals. When identity and relationships are known, pedigrees can be 
compiled. Availability of pedigree data allows modern methods of prediction of breeding 
values to be used. However, to collect complete records requires that infrastructure such as 
identity and performance recording schemes be in place and that these schemes be well 
managed [CS 1.15 by Dzama]. Such schemes do not exist in most developing countries yet, 
and where present, financial and management constraints result in data that has a lot of 
missing information. 

Realized values of the random variables that have been sampled from a population can be 
estimated if the variance–covariance structure of the population is known. The estimation of 
realized values of a random variable is called prediction. There are various types of 
predictors—best predictor (BP), best linear predictor (BLP, e.g. selection index) and BLUP 
(Henderson, 1984). The differences between BP, BLP and BLUP are subtle yet statistically 
important [van der Werf in ICAR Tech. Series No. 3]. 

BLUP is the most commonly used predictor to evaluate the genetic merit of livestock and in 
selection decisions. Several programmes that can be used for prediction of BLUP breeding 
values are available to the scientific community free of charge, e.g. [PEST] and [WOMBAT] 
and BLUPF90 (Mizstal) (see Web pages, Section 11, this module). BLUP can accommodate 
non-random mating and reduce bias to selection provided that the data on which selection 
was practised is included in the analysis. In BLUP analysis, one equation for each level of 
each fixed or random factor is required so that effects can be estimated simultaneously 
(Henderson, 1975). If there are sufficient connections between herds, as is usually the case 
with the use of artificial insemination, selection on BLUP values can be done on a breed 
(rather than herd) basis [Computer exercises: BLUP]. 

The various sources of information that can be used to calculate BLUP breeding values are 
parent and progeny, both of which are based on the pedigree and the performance of the 
animal. 

5.2.1 Models for calculating BLUP breeding values 

The animal model is now the standard method for calculating breeding values. In an animal 
model, the performance of an individual animal and all known pedigree relationships are used 
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to estimate its breeding value. The model is characterized by the fitting of a random 
component for the breeding value of each animal (Mrode, 2005). Use of an animal model 
results in a set of simultaneous equations with an order equal to the number of animals 
included in the analysis (with performance of their descendants), plus an additional equation 
for each fixed effect (Hill and Meyer, 1988). The animal model accounts for all the genetic 
relationships among the individuals whose breeding values are to be estimated and can 
account for repeated records, multiple traits, non-additive genetic effects, litter effects and a 
number of environmental effects, both fixed and random (Henderson, 1988). The 
implementation of animal models improves the correlation between proofs and true genetic 
values because all information is considered (Jansen, 1990; Banos et al., 1991) [Computer 
exercises: BLUP].  

Due to computing constraints and data limitations or peculiarities, approximations or other 
models simpler than the animal model have been used. These include: 

Sire models, where records are grouped according to the sire’s identity. When using a sire 
model, the dams are not represented, that is they are implicitly assumed to be non-related, 
non-inbred and unselected. Sons of sires are accounted for in the relationship matrix between 
sires. Use of sire models thus leads to a downward bias in parameter estimates as only half-
sib relationships are acknowledged (Henderson, 1986; Meyer, 1987).  

Sire maternal grandsire models, where in addition to effects in a sire model, the effect of the 
dam of an animal is considered through its maternal grand sire. Here the maternal grand dams 
are assumed unrelated, non-inbred and unselected. 

5.3 Longitudinal data analysis 

Some measured traits, such as weights or milk production, are repeated over the life of the 
animal. It is often not adequate to consider that two such observations obtained at different 
ages or stages of lactation are phenotypic expressions of the same (genetic) trait. In many 
cases, one wants to take into account the fact that two consecutive observations are more 
similar than two observations far apart in time. Furthermore, the interval between 
measurements on the same animal may greatly vary. Therefore ‘traditional discrete’ 
multivariate models are not efficient. Such traits are called longitudinal data. 

5.3.1 Random regression models  

Random regression models (RRM) can be used to analyse longitudinal data. These models 
provide a means to estimate genetic parameters for all ages without correcting the 
observations to certain landmark ages (Lewis and Brotherstone, 2002; Nobre et al., 2003). 
The models use fixed regression coefficients to account for overall and within fixed class 
trends while fitting the random regression coefficients for each individual to allow for 
individual variations in the trajectory. For example, the genetic component of the model will 
be described as a polynomial function (linear, quadratic or higher order) of time. The usual 
assumptions (multivariate normality using a relationship matrix) are extended to all (random) 
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coefficients of this function. This modelling defines a particular genetic covariance between 
any two points in time. This continuous function that represents the variance and covariance 
of traits measured at different times is called covariance function (CF) (Meyer, 1998; van der 
Werf et al., 1998; Schaeffer, 2004). CFs are an infinite dimensional equivalent of a 
covariance matrix for a given number of records taken at different ages (Meyer and Hill, 
1997; Huisman et al., 2002). For RRMs, the covariance function coefficients can be 
estimated directly by restricted maximum likelihood (REML) (Meyer and Hill, 1997; 
Albuquerque and Meyer, 2001).  

5.3.2 Test day models in dairy production 

Genetic evaluations for dairy cattle in many countries are obtained by analysing 305-day 
yields (or equivalent cumulative yield records) predicted from a few test-day yields (i.e. from 
longitudinal measurements). The 305-day yields predicted from monthly test-day records 
assumes such records within a single lactation measure the same trait for the whole duration 
of lactation. The error of genetic evaluation may further increase if 305-day yields are 
obtained by projecting partial lactations with factors that assume a constant shape of the 
lactation curve for all cows contrary to reality. Test-day records, however, are repeated 
observations measured along a trajectory (days in milk) and the mean and covariance 
between measures change gradually along the trajectory. Genetic evaluations based directly 
on test-day records can overcome the need to predict 305-day yields or project incomplete 
lactations. 

Test-day models can facilitate a cheaper and more flexible recording scheme. The advantages 
of using these models as outlined by various authors (Stanton et al., 1992; Ptak and Schaeffer, 
1993; Wiggans and Goddard, 1996; van Raden, 1997; Swalve, 1998) are: 

• They can account for variable amounts of information from different lactations. By 
having four or more test-day yields per cow per lactation, the accuracy of a cow’s 
genetic evaluation may be better.  

• They permit estimates of fixed effects to vary across herds and stages of lactation. 

• The models can describe biology and define management groups more precisely and 
can account for differences in the shape of the lactation curve. 

• They adjust for differing effects of sampling date. The models can account for short-
term seasonal effects associated with actual time of production. 

• No assumptions about the ‘normal’ length of a single lactation have to be made. 

 

Test-day models therefore offer an opportunity to improve the genetic evaluation of dairy 
cattle in tropical production situations where infrastructure to support sophisticated or 
detailed recording systems is limited, often resulting in data sizes too small to allow for 



17 

 

accurate genetic evaluation of bulls since production conditions are constrained by 
environment and resources (Swalve, 1998). Random regression analytical techniques are now 
the norm for evaluating test day yields.  

5.4 Estimation of genotype by environment interactions 

Tropical countries seeking to improve production levels have often imported exotic 
germplasm and then carried out selection in the imported population and their progeny under 
local conditions. This strategy is effective if production and marketing environments and 
selection objectives are similar for both the original and the recipient countries or production 
systems. However, unfavourable G × E interaction would reduce potential benefits from a 
strategy based entirely on continuous importation of superior germplasm from elsewhere [CS 
1.16 by Mpofu]. G × E interactions are of two forms: firstly, correlations for the same trait in 
two environments may be significantly less than one, implying that the genetic basis for the 
trait differs between environments (Falconer and Mackay, 1996). The ranking of additive 
genetic values and hence optimal choices of selected animals may not be the same in 
alternative environments (Stanton et al., 1992; Calus, 2006). The second form of G × E 
interaction occurs when the scale of differences among breeding values for a specific trait is 
unequal between environments, termed ‘pseudo’ G × E interaction (Dickerson, 1962). In this 
case, the correlation between environments for true genetic value is one and the animal’s 
ranking is the same in all environments. However, additive genetic values are lower in the 
more restrictive environment resulting in less response to selection [CS 1.39 Okeyo and 
Baker]. 

 
Cattle genotypes in diverse environments 

Methods of estimating G × E are presented by Mathur and Horst (1994), Chagunda (2000), 
Calus (2006) and Strandberg (2006). The methods include: 

• Orthogonal comparison of subclasses 
This method is normally used in factorial experiments. An example is when there are 
two genotypes raised in two environments. The interaction effect may be estimated as 
the difference between the sums of diagonal subclasses. The interaction is tested for 
significance using an F-test. 

• Factorial analysis of variance 
For this method a linear model, with an environmental factor, a genetic factor and 
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interaction effect between the two factors, is fitted with genetic and interaction effects 
as random effects. 

• Intraclass genetic correlations 
This procedure is based on the estimation of genetic correlations between traits 
measured in two environments. The requirement is that the animals in the two 
environments should be genetically related (Ojango and Pollott, 2002). 

• Estimation through selection in two environments 
G × E can also be determined indirectly from direct and correlated response to 
selection (Falconer and Mackay, 1996). This procedure considers the problem of 
carry-over of improvement from one environment to the other. Selection in 
environment Y is based on selection in environment X. The correlated response is 
compared to the direct response possible through selection in environment Y. The 
ratio of correlated response and direct response is computed and used to calculate G × 
E. This method, although likely to give a reliable measure of G × E, can only be 
applied after selection has been practised. 

• Using reaction norm models 
Estimating G × E in breeding value estimation can be done with a reaction norm 
model when the production environment can be described as a continuous variable. A 
norm of reaction describes the pattern of phenotypic expression of a single genotype 
across a range of environments. For every genotype, phenotypic trait and 
environmental variable a different norm of reaction can exist. Studies of heritability 
carried out in a single environment cannot accurately estimate the Norm of Reaction, 
and often may not predict phenotypic response in a different environment. The 
reaction norm model, analysed using random regressions, has the advantage that no 
arbitrary grouping of environments is required and it can be extended to handle 
multiple environmental scales and multiple traits (Calus, 2006; Strandberg, 2006). 

5.5 Estimating heterosis effects 

Cross breeding is a popular method of genetic improvement of livestock, especially in 
developing countries where previously such practices have been mostly inappropriately 
designed or executed [CS 1.34 Panandam and Raymond]. The basis of the effects and 
benefits derived from systematic cross breeding can broadly be classified into additive and 
non-additive. The additive component is that which is due to the averaging of the additive 
merit in the parental breeds with simple weighting according to level of gene representation 
of each parental breed in the crossbred genotype (Swan and Kinghorn, 1992). Heterosis is the 
non-additive effect of cross breeding. It is the amount by which merit in crossbreds deviates 
from the additive component. Heterosis is usually attributed to genetic interactions within 
loci (dominance) and between loci (epistasis). Individual heterosis is the deviation in 
performance in an individual relative to the average of the parental breeds, whereas maternal 
heterosis refers to heterosis attributed to using crossbred instead of purebred dams and occurs 
due to the dam itself possessing heterosis [CS KDPG]. 
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The performance of crosses can be predicted using estimates of genetic parameters from 
cross breeding experiments. Models for estimating cross breeding parameters based on a two-
locus factorial model of gene effects were developed first by Dickerson (1973) and later by 
Küttner and Nitter (1997). A case study by Kahi [CS 1.5 by Kahi] illustrates an example of 
data analysis for estimating cross breeding parameters for milk production traits under the 
humid coastal regions of East Africa, while another by Aboagye [CS 1.9 by Aboagye] gives 
such parameters for milk production, reproductive, growth and carcass traits in cattle under 
the humid West African tropical conditions. Software such as CBE (cross breeding effects) 
are also available that be used to estimate cross breeding effects from a larger variety of data 
structures or experimental designs. 

5.6 Analysis of ordered categorical traits 

Traits such as calving ease or litter size are expressed and recorded in categories. For 
example, in the case of calving ease, births may be assigned to one of several distinct classes 
such as difficult, assisted and easy calving. Usually, these categories are ordered along a 
gradient. In the case of calving ease, for example, the responses are ordered along a 
continuum measuring the ease with which birth occurred. These traits are therefore termed 
ordered categorical traits. Such traits are not normally distributed and animal breeders have 
usually attributed the phenotypic expression of categorical traits to an underlying continuous 
unobservable trait which is normally distributed, referred to as the liability (Falconer and 
McKay, 1996). The observed categorical responses are therefore due to animals exceeding 
particular threshold levels of the underlying trait.  

Linear and non-linear models have been applied for the genetic analysis of categorical traits 
with the assumption of the underlying normally distributed liability. Usually, the non-linear 
(threshold) models are more complex and have higher computing requirements. The 
advantage of the linear model is the ease of implementation as programs used for analysis of 
usual quantitative traits could be utilized. However Fernando et al. (1983) indicated that some 
of the properties of BLUP do not hold with categorical traits. In a simulation study, Meijering 
and Gianola (1985) demonstrate that with no fixed effects and constant or variable number of 
offspring per sire, an analysis of a binary trait with either a linear or non-linear model gives 
similar sire rankings. This was independent of the heritability of the liability or incidence of 
the binary trait. However, with the inclusion of fixed effects and variable number of progeny 
per sire, the non-linear model gave breeding values more similar to the true breeding values 
compared with those estimated using the linear model. The advantage of the threshold model 
increased as the incidence of the binary trait and its heritability decreased. Thus for traits with 
low heritability and low incidence, a threshold model might be the method of choice. Further 
information on these can be found in Mrode (2005). 
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6 Mapping quantitative trait loci  

6.1 Strategies for QTL analyses  

The aim of QTL analyses is to detect, localize and estimate effects of QTL. The principle of 
the analyses is to search for non-random associations between phenotypic records and 
chromosome segments across the genome. Within the segments, the genetic constitution of 
each animal is deduced from the inheritance of genetic markers. Significant differences in 
phenotypic expressions between animals with different genetic constitutions indicate the 
existence of QTL in the studied chromosome segment. For example, consider the simple case 
of a large half-sib family, whose sire is heterozygous for a QTL and a marker near that QTL 
(e.g. Q—M and q—m). Offspring inheriting the ‘M’ marker allele (and thus mostly the QTL 
allele ‘Q’) will have a different mean to those inheriting the ‘m’ marker allele (and thus 
mostly the QTL allele ‘q’). 

In some cases, candidate genes for QTL are known based on information from other 
populations or other species. Known candidate genes can be tested directly using 
polymorphisms within the gene or markers closely linked to the gene.  

When the aim is to detect unknown QTL, an initial scan of the entire genome has to be 
performed. In this case markers are genotyped at roughly even spacing across the genome. 
The genome scan can show the chromosome segments in which QTL are located, but the 
accuracy of the location is usually low. To increase the precision, and thus improve the 
possibilities of identifying the QTL, the chromosome segments of interest need to be further 
studied using other methods, i.e. fine mapping.  

All phases of QTL mapping (Figure 3)
involve analyses of quantitative traits
that have a complex genetic background
and are influenced by environmental
factors. Therefore, in addition to the need
for genetic marker information, powerful
analyses require good phenotypic records
from a large number of animals and the
use of suitable quantitative statistical
methods. 

Figure 3. The phases of QTL mapping 

A full genome scan for QTL, aimed at finding the approximate QTL location for subsequent 
fine mapping and possible use in marker assisted selection (MAS), includes the following 
steps:  

Mapping
population

Phenotypes Genotypes Statistical
methodology

”Genome-scan” for QTL

”Fine-mapping” of QTL

Characterisation 
of QTL

 



21 

 

i. Choice of a mapping population: In domestic animals we can either use experimental 
crosses between divergent populations (such as a breed susceptible to a disease 
crossed with a breed resistant to the disease) or large families within a population. 
Studies in designed crosses (e.g. back-cross or intercross designs) are powerful, as 
they help ensure that family parents (e.g. sires) are heterozygous for the QTL. 
However, such experiments are expensive for large animals and they do not give any 
direct answers in relation to the segregation of QTL within the commercial population 
of interest. The use of families within a population (e.g. a half-sib design) has the 
advantage that detected QTLs will segregate within the commercial population, but 
the disadvantage that all sires may not be heterozygous for the QTL.  

ii. Collection of phenotype data: To ensure the analysis has sufficient power to detect the 
QTL(s) of interest, phenotypes are required on a large number of animals. They can 
either be the same animals that are genotyped or offspring of the genotyped 
individuals (progeny testing).  

iii. Genotyping: Genetic maps, based on DNA markers, are available for many species 
(see http://www.ncbi.nlm.nih.gov/mapview/). Amongst others, the DNA markers 
include microsatellites (which are short tandem repeats) and single nucleotide 
polymorphisms (SNPs; point mutations in the genome). For the genome scan a subset 
of informative, evenly spaced markers covering the entire genome is selected for the 
population of interest. The maximum distance between the markers depends on the 
size of the population and the size of the QTL effects to be detected. 

iv. Setting up a genetic model for QTL: Depending on data available, an operational 
model with one or several QTL (with additive, dominance, epistatic or substitution 
effects) and remaining genetic and environmental effects is used.  

v. Drawing statistical inference from data: The statistical testing for QTL can be 
performed at marker loci (single marker analysis) or at marker loci and in intervals 
between markers (interval mapping). In practice, interval mapping is typically used, 
as in single marker analysis the recombination frequency between the marker and the 
QTL and the size of the QTL effect are confounded. Different methodologies to test 
for QTLs include regression, ML and variance component models, amongst others. 
Due to multiple testing across the genome, permutation testing is typically used to set 
significance thresholds.  

 

Genome scans usually locate putative QTL to a wide chromosomal region (e.g. 30 to 60 cM). 
For this reason a genome scan may be followed by a fine-mapping experiment which aims to 
reduce the confidence region around the QTL to less than a few cMs. Fine mapping typically 
involves: a) typing more closely spaced markers within the region of interest; b) increasing 
the experimental population size; and c) use of alternate mapping methodologies (such as 
approaches based on linkage disequilibrium (LD)). In turn, fine mapping may be followed by 
experiments aimed at detecting the actual gene of interest and the causative mutation(s) 
within the gene (see Grisart et al., 2002 as a case study).  
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Useful references on QTL mapping methodologies include the Armidale Animal Breeding 
Summer Course notes (2003) and van der Werf et al. (2007).  

6.2 Genome-wide association analysis  

QTL mapping has been successful because of the possibilities to carry out sufficiently large 
experiments to give a reasonable statistical power for QTL detection. To date, thousands of 
QTLs have been reported (http://www.animalgenome.org/QTLdb/). However, the 
identification of the underlying causative mutations remain challenging. Genome-wide 
association analysis (GWAA) provides a new approach for high resolution genetic analysis, 
thanks to the development of large panels of SNPs and the development of cost-effective 
methods for large-scale SNP genotyping and analysis. The number of SNPs required for 
GWAA depends on the patterns of linkage disequilibrium in the population. Although most 
domestic animals are not highly inbred, their population structure makes them appropriate for 
GWAA because they resemble to some extent recombinant inbred lines. Breeds have been 
developed from large populations by dividing them into many smaller often closed 
populations on the basis of specific traits. This has led to a reduced genetic diversity within 
breeds and large haplotype blocks. GWAA surveys most of the genome for causal genetic 
variants. Because no assumptions are made about the genomic location of the causal variants, 
the approach could exploit the strength of associations between individual SNPs and 
phenotypes without having to guess the identity of the causal genes. GWAA therefore 
presents an unbiased yet fairly comprehensive approach that can be attempted even in the 
absence of convincing evidence regarding the function of a location of the causal gene. One 
fundamentally different approach ‘admixture mapping’ could also gain prominence in 
unravelling the genetic basis of complex traits in domestic animals.  

6.3 Genomic selection 

Recently there has been interest in an approach termed ‘genomic selection’ (GS) as an 
alternative to the above to identify chromosomal regions of interest for subsequent use in 
selection decisions. Under GS tens of thousands of SNP markers, closely spaced across the 
genome such that most or all QTL are in linkage disequilibrium with one marker, are tested 
for non-random associations with phenotypic records. This is usually performed in a large 
population—often >1000 individuals representing a large number of families. Useful 
references for GS methodologies include the Armidale Animal Breeding Summer Course 
notes (2008), and Goddard and Hayes (2007).  

6.4 Why map QTL? 

The detection and localization of QTL is valuable for several reasons. Firstly, we still know 
very little about the genetic background of quantitative traits such as growth, muscular 
development, milk yield, disease resistance etc. Mapping of QTL gives us better insight into 
the action and interaction of individual genes, which will give us opportunities to refine the 
genetic models used to describe the variation in quantitative traits. Secondly, associations 
between genetic markers and QTL can be utilized to improve the efficiency of selection 
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schemes, although this has found limited utility in practice (see Module 3, Section 4.7; 
Marshall et al., 2009 for a discussion of marker based selection in relation to developing 
countries). In the case of GS a prediction equation is estimated so that selection of candidates 
in subsequent generations can be based on genotype information only. Thirdly, mapping of 
QTL will eventually allow us to identify some of the genes and to study the molecular 
biology underlying the traits. This knowledge may in the near future be used for genetic 
modification of genes that are important in breeding programmes, for development of 
efficient vaccines etc. 

7 Measuring genetic diversity from molecular data 

7.1 Determining genetic structure and genetic variability between and within breeds 

To understand the influence of selection, mating systems and other breeding interventions in 
population genetics, it is important to describe and quantify the amount of genetic variation in 
a population and the pattern of genetic variation among populations. Genetic variation may 
be measured at various levels, e.g. allelic variation at structural loci (see Module 2, Section 
3). Genetic variation within breeds decreases as a result of selection for economically 
important traits yet genetic variation between and within breeds is important as raw material 
for genetic improvement. Populations showing a great deal of variation will be able to adapt 
to changing circumstances whereas populations with less genetic variability will be less 
adaptable to sudden environmental changes. 

7.1.1 Allele frequency determination and allelic variability  

The frequencies of an allele at loci are calculated manually by direct counting. The mean 
number of alleles (MNA) observed over a range of loci for different populations is considered 
to be a reasonable indicator of genetic variation. This holds true provided that the populations 
are at mutational-drift equilibrium and that the sample size is almost the same for each 
population. Breeds with a low MNA have low genetic variation due to genetic isolation, 
historical population bottlenecks or founder effects. A high MNA implies great allelic 
diversity which could have been influenced by cross breeding or admixture. Bar charts can be 
created for individual breeds to show variability in allelic distributions at loci. Given that 
sample sizes are never the same for each population analysed, other indicators of allele 
variability include the effective number of alleles (ENA) and allelic richness (Ar). ENA 
denotes the number of equally frequent alleles it would take to achieve a given level of gene 
diversity. It allows one to compare populations where the number and distribution of alleles 
differ drastically. Ar, however, is a measure of the number of alleles per locus but allows 
comparisons to be made between samples of different sizes by using the rarefaction technique 
or a Bayesian simulation approach to standardize populations to a uniform sample size.  

7.1.2 Variation in gene frequencies 

The variation in gene frequencies at each locus can be used to determine genetic variability 
between breeds. Chi square analysis is used to test differences among loci and breeds.  
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7.1.3 Variation in genotype frequencies 

Variability between breeds can be measured using the observed genotypes at each locus and 
between pairs of breeds. The assumption of independent distribution of genotypes over all 
breeds can be tested by contingency Chi square analysis. Comparisons between pairs of 
breeds are performed. 

7.1.4 Testing for Hardy-Weinberg equilibrium 

Most deductions about populations and quantitative genetics depend on the relationship 
between gene frequencies and genotype frequencies. A population is said to be in Hardy-
Weinberg equilibrium (HWE) when gene and genotype frequencies remain constant from 
generation to generation. There are factors which can cause changes in these frequencies (e.g. 
selection, migration and mutation) resulting in non-random union of gametes. Deviation from 
HWE in a population indicates possible inbreeding, population stratification and sometimes 
problems with the genotyping. In populations where individuals may be affected by particular 
ailments or may be under different selective pressures, these deviations can also provide 
evidence for association. The data required to perform HWE tests are gene and genotype 
frequencies and the size of sample population at each locus.  

The deviation from HWE can be tested using any one of the following three methods:  

a. The Chi square statistic for asymptotic tests has been used to evaluate the overall 
discordance of genotype frequencies at each locus or population combination 
(Hammond et al., 1994; Deka et al., 1995). The test is performed for every breed at 
each locus. 

b. The likelihood ratio test criterion (G statistic) has also been used to contrast observed 
and expected genotype frequencies (Hammond et al., 1994; Deka et al., 1995).  

c. The third method uses an exact test of HWE (conditional exact test which is 
analogous to Fisher’s exact test for contingency tables). In addition, for loci or 
population combinations with five or more alleles, a Markov chain algorithm is used 
to obtain an unbiased estimate of the exact probability of being wrong in rejecting 
HWE. This method should be preferred for small sample sizes and multi-allelic loci 
since the Chi square test is not valid in such cases.  

d. Recently, there has been great interest in testing for HWE in GWAA in which 
departures from HWE may indicate problems with quality control for the SNP in 
question. Therefore, a fourth recently derived method is based on Bayesian 
simulations and performs an exact test on the basis of the comparison between 
weighted likelihoods under the null and alternative hypotheses. The ratio of these two 
functions gives the Bayes Factor (BF). A distribution of the BF under the null 
hypothesis defines a natural order in the sample space. The discreteness of the sample 
space causes no complications for the Bayesian approach because all inferences are 
conditional on the configuration of the observed counts which negates the need to 
consider hypothetical data realizations. Therefore the test is exact and unconditional 
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and does not depend on asymptotic results. In addition, the test is desirable in terms of 
decision theory, as it minimizes a linear combination of Type I and type II errors. 

With the exception of the Bayesian approach, GENEPOP, FSTAT, ARLEQUIN and the R-
programming language can be used to test for HWE. 

7.1.5 Estimating average heterozygosity 

Heterozygosity is a measure of genetic variation within a population. High heterozygosity 
values for a breed may be due to long-term natural selection for adaptation, to the mixed 
nature of the breeds or to historic mixing of strains of different populations. A low level of 
heterozygosity may be due to isolation with the subsequent loss of unexploited genetic 
potential. Locus heterozygosity is related to the polymorphic nature of each locus. A high 
level of average heterozygosity at a locus could be expected to correlate with high levels of 
genetic variation at loci with critical importance for adaptive response to environmental 
changes (Kotzé and Muller, 1994). 

The observed heterozygosity is defined as the percentage of loci heterozygous per individual 
or the number of individuals heterozygous per locus. Average heterozygosity at each locus 
and for each breed can be estimated from allele frequencies at each locus. Individual breed 
average heterozygosity is estimated by summing heterozygosities at each locus and averaging 
these values over all loci. Locus heterozygosity is estimated by summing the heterozygosity 
at all loci for each breed and averaging this quantity over all breeds. The expected 
heterozygosity (also called gene diversity) is calculated from individual allele frequencies 
(Nei, 1987). The FSTAT (Goudet, 1995), GENETIX (Belkhir et al., 1996-2004), R-package, 
Microsatellite Analyzer (Dieringer and Schlštterer, 2003) and MSTollkit (Park, 2001) 
computer programs can be used to estimate both observed and expected heterozygosity per 
locus and population and across all populations analysed.  

7.1.6 Estimating levels of inbreeding 

Molecular data can also be used to estimate inbreeding values even though there are factors 
other than descent for two markers to be similar. Observed and expected heterozygotes at 
different loci can be used to estimate the extent of inbreeding. The locus inbreeding 
coefficients are averaged to estimate average inbreeding coefficients for each population. 
Inbreeding coefficients should only be estimated for breeds which show significant deviation 
from the HWE. A large value reflects the existence of a small number of heterozygote 
genotypes and an excess of homozygote genotypes. A small value indicates the occurrence of 
heterozygote genotypes at a higher proportion than the homozygote genotypes. 

7.1.7 Genetic differentiation 

Population differentiation can be assessed by determining whether allelic composition is 
independent of population assignment (Raymond and Rousset, 1995a). The statistical test is 
based on analysis of contingency tables using a Markov Chain procedure to derive an 
unbiased estimate of the exact probability of being wrong in rejecting the null hypothesis, i.e. 
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allelic composition is independent of population assignment (no differentiation). The test is 
performed for pair-wise inter-population comparisons on contingency tables containing data 
from each of the microsatellite loci studied. The FSTAT, GENETIX and POPULATIONS 
statistical program’s can be used to perform the computations. 

7.1.8 Analysis of gene flow, genetic admixture and structure 

a. Use of diagnostic allele Diagnostic alleles are alleles that are unique to certain breeds, 
e.g. alleles unique to indicine breeds or taurine breeds. They are used to determine the 
purity of breeds, the introgression by one breed type into a population and to 
determine the genetic composition of breeds. The frequencies of the diagnostic alleles 
or groups of alleles at a particular locus are averaged to give an estimate of the 
frequency of the diagnostic alleles in each population.  

b. Estimation of genetic admixture proportions from allele frequencies 
Genetic admixture proportions can be estimated directly using a method developed by 
Chakraborty (1985) which uses the concept of gene identity coefficient—the 
probability that two genes chosen at random from one or more populations are 
identical in state. The underlying rationale to this method is that genetic similarity 
between populations can be expressed as a simple linear function of admixture 
proportions. This method requires that parental populations represent the original 
populations that produced the dihibrid populations of interest. An example would be 
an Asian breed (or group of Asian breeds) representing an indicine population and a 
group of African breeds representing a taurine population. 
A computer program called ADMIX (Chakraborty, 1985) uses a vector-matrix 
approach to produce weighted least squares solutions for each individual admixture 
proportion with associated standard errors. It also produces correlation coefficients for 
the weighted least squares solutions that give an indication of the validity of the 
underlying admixture model (i.e. do present-day Asian zebu and the African breeds 
serve as adequate surrogates for the original parental populations). 

Another program called GENECLASS 2.0 (Piry et al., 2004) employs multilocus 
genotypes to select or exclude populations as origins of individuals (assignment and 
detection of migrants). Both of these tests compute likelihoods using Bayesian 
simulations, allele frequency data or genetic distances between individuals to assign 
individuals to their populations of origin or detect recent immigrants. 

c. Evaluating the genetic structure of populations 
The inherent genetic structure of populations can be assessed directly using a method 
developed by Pritchard et al. (2000) and implemented in the program STRUCTURE. 
The program implements a model-based clustering method to infer population 
structure, assign individuals to populations and identify migrants and admixed 
individuals using multilocus genotype data independent of prior population 
information. The approach implemented in STRUCTURE assumes a model in which 
there are K populations (where K may be unknown), each of which is characterized by 
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a set of allele frequencies at each locus. Individuals in the sample are assigned 
probabilistically to populations or jointly to two or more populations if their 
genotypes indicate them to be admixed.  

7.1.9 Tests for linkage disequilibrium 

Linkage disequilibrium (LDE) is the non-random association between different loci which 
may arise from: (i) admixture of populations with different gene frequencies; (ii) chance in 
small populations (e.g. endangered breeds); (iii) selection favouring one combination of 
alleles over another; or (iv) the close association between markers in the same linkage group 
(Falconer and Mackay, 1996). A test can be carried out to check for the existence of the 
association between markers studied. The null hypothesis for the LDE test is that all the 
genotypes at one locus are independent of those at another locus. The GENEPOP program 
(Raymond and Rousset, 1995b) and FSTAT (Goudet, 1995) can be used to test for LDE. The 
program prepares contingency tables for all pairs of loci in each population and in a pooled 
sample of all populations. Then a probability test (or Fisher exact test) for each table using 
the Markov chain method to obtain P-values is performed. 

7.1.10 Distribution of genetic diversity (population differentiation) 

When a population is divided into subpopulations, there is less heterozygosity than there 
would be if the population was undivided. Founder effects acting on different subpopulations 
generally lead to subpopulations with allele frequencies that are different from the larger 
population. Since allele frequency in each generation represents a sample of the previous 
generation’s allele frequency, there will be greater sampling error in these small groups than 
there would be in a larger undifferentiated population. Hence, genetic drift will push these 
smaller demes toward different allele frequencies and allele fixation more quickly than would 
take place in a larger undifferentiated population. There are two commonly used approaches 
to quantify the distribution of genetic diversity within and between populations.  

a. Wright’s F statistics  
The decline in heterozygosity due to subdivision within a population has usually been 
quantified using an index known as Wright’s F statistic, also known as the fixation index. 
The F statistic is a measure of the difference between the mean heterozygosity among 
subdivisions in a population, and the potential frequency of heterozygotes if all members 
of the population mix freely and non-assortatively (Hartl and Clark, 1997). The fixation 
index ranges from 0 (indicating no differentiation between the overall population and its 
subpopulations) to a theoretical maximum of 1. In practice, however, the observed 
fixation index is much less than 1 even in highly differentiated populations. Fixation 
indexes can be determined for differentiated hierarchical levels of a population structure, 
to indicate, for example, the degree of differentiation between sub-populations within a 
population, between populations within a group and between groups of populations. To 
determine the fixation index, the mean heterozygosity at each level must be determined.  

b. AMOVA (Analysis of molecular variance) 
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The most commonly used programs for performing AMOVA are Arlequin, GDA and 
GenAlEx. To perform AMOVA, a distance matrix is created within any of the above 
programs or included within the input file. For example, Arlequin partitions the sum of 
squared deviations from the distance matrix into hierarchical variance components which 
are tested for significance using permutation tests. The AMOVA approach used in 
Arlequin is essentially similar to other approaches based on analyses of variance of gene 
frequencies, but for certain types of data it can also take into account the number of 
mutations between molecular haplotypes  (Φ; see p 65 of manual and Excoffier et al., 
1992). 

• For haplotypic data, Arlequin estimates Φ using information from both the allelic 
content and frequency of haplotypes (Excoffier et al., 1992).  

• For genotypic data, with an unknown gametic phase (as is the case for most natural 
populations) the AMOVA is based on F-statistics. 

 

AMOVAs can be used to:  (1) describe the partitioning of genetic variation among and within 
groups; and (2) test user-defined groupings of populations. AMOVA differs from a simple 
analysis of variance (ANOVA) in that data are arranged hierarchically and mean squares are 
computed for groupings at all levels of the hierarchy. This allows for hypothesis tests of 
between-group and within-group differences at several hierarchical levels. 

8 Genetic relationships between populations 

Multivariate analysis is used to describe analyses of data sets for which more than two 
observations or variables are obtained for each individual or unit studied. For genetic 
diversity studies, gene frequencies can be determined for several loci in several breeds or 
populations. Multiple regression and multiple correlation procedures are multivariate 
techniques which have had the greatest application in animal breeding research. However, 
these techniques are not suitable when the number of observations or variables is large. 
Cluster analysis and principal component analysis are two multivariate methods that have 
been used to analyse data generated by molecular genetics studies [CS 1.10 by Okomo]; [CS 
1.11 by Gwakisa]. 

8.1.1 Cluster analysis 

Clustering is a technique for grouping individuals into unknown groups to assess the 
relationship between the groups (e.g. livestock populations). With cluster analysis the number 
and characteristics of the groups are to be derived from the data and are not usually known 
before the analysis. In animal diversity studies, cluster analysis has been used to classify 
breeds or strains into groups on the basis of their genetic characteristics. Some initial analysis 
is usually recommended before clustering. Common initial analyses include scatter diagrams, 
profile analysis and distance measures. Scatter diagrams and profile analysis fail when the 
number of observations is large. For a large data set, distance measures are more appropriate. 
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They define some measure of closeness or similarity of two observations. In animal breeding, 
distance measures are called genetic distance.  

a. Genetic distance estimates 

Genetic distances give the extent of gene differences between populations (and hence 
genetic relationships among them) measured by some numerical quantity and usually 
refer to the gene differences as measured by a function of gene frequencies. There are 
several measures of genetic distances. In most situations, different distance measures 
yield different distance matrices, in turn leading to different clusters. Examples 
include the standard genetic distance developed by Nei (1972), and a genetic distance 
measure developed by Goldstein et al. (1995). The efficiencies of the various 
measures of genetic distances are compared in Takezaki and Nei (1996). Several 
computer programs are now available for estimating genetic differences, for example, 
DISPAN (Ota, 1993) (see Section 12, this module).  

b. Phylogenetic analysis 

The commonly used methods of clustering fall into two general categories: 
hierarchical and non-hierarchical. Hierarchical procedures are the most commonly 
used in animal diversity studies. When the number of variables is more than two and 
the data set is large, dendrograms have been used. In a dendrogram, the horizontal 
axis lists the observations in a particular order. The vertical axis shows the successive 
steps or cluster numbers.  

In animal diversity studies, hierarchical procedures are called phylogenetic analysis. The 
genetic distance measures are used to construct the dendrograms, also called phylogenetic 
trees. The two most commonly used methods for constructing the trees are unweighted pair 
group method (UPGMA) and the neighbour-joining method (NJ) (Saitou and Nei, 1987). The 
operational taxonomic units (OTUs) in breeding are livestock populations or breeds. 
Therefore, the phylogenetic trees summarize evolutionary relationships among breeds or 
populations and categorize cattle populations into distinct genetic groups. The trees consist of 
nodes and branches. The nodes are the breeds and the branch lengths between breeds are 
graphical estimates of the genetic distance between the breeds and give an indication of 
genetic relationships between breeds. UPGMA trees give an indication of the time of 
separation (divergence) of breeds. The higher the branch length the longer is the separation 
period between breeds [CS 1.10 by Okomo]; [CS 1.11 by Gwakisa]. Bootstrapping is usually 
done to provide confidence statements about the groupings of the breeds as revealed by the 
dendrograms and hence test the validity of the clusters obtained. The bootstrap values are 
given in percentages and the higher the value, the higher is the confidence in the grouping. 
Programs such as SAS (Statistical Analysis System) and SPSS can produce dendrograms. 

There are some problems with hierarchical procedures. An undesirable early combination can 
persist throughout the analysis and may lead to artificial results. It may then become 
necessary to perform the analysis several times after deleting certain suspect observations. 
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For large sample sizes, the printed dendrograms become too large and unwieldy to read. 
Another important problem is how to select the number of clusters. No standard objective 
procedure exists for making the selection. The distance between clusters at successive steps 
may serve as a guide. In addition, the underlying situation may suggest a natural number of 
clusters.  

8.1.2 Principal components analysis 

Principal components analysis (PCA) provides a method of explaining the covariance 
structure among a large system of measurements by generating a smaller number of artificial 
variates. In this manner, principal components can be used objectively to evaluate variation in 
measurements and to increase understanding of structural relationships as an entity rather 
than as a series of individual and independent relationships. In PCA, the variables are treated 
equally as opposed to being divided into dependent and independent variables, as is done in 
regression analysis. The original variables are transformed into new uncorrelated variables 
that are called principal components (PC). Each PC is a linear combination of the original 
variables. The initial variates are replaced with a smaller number of latent variates (the PC) 
allowing the data to be summarized more concisely with minimal loss of information. Thus, 
instead of analysing a large number of original variables with complex interrelationships, the 
investigator can analyse a smaller number of uncorrelated PCs (Morrison, 1976). 

One of the measures used to determine the amount of information conveyed by each PC is its 
variance (usually known as eigenvalue). For this reason, the PCs are arranged in order of 
decreasing variance. Thus, the most informative PC is the first and the least informative is the 
last while a variable with zero variance does not distinguish between the members of the 
population. To reduce the dimensionality of a problem, only the first few PCs are analysed. 
The PCs not analysed convey only a small amount of information since their variances are 
small. The number of components selected may be determined by examining the proportion 
of total variance explained by each component. The cumulative proportion of total variance 
indicates, to the investigator, just how much information is retained by selecting a specified 
number of components. Ideally, we wish to obtain a small number of PCs which explain a 
large percentage of the total variance. Once the number of PCs is selected, the investigator 
should examine the coefficients defining each of them to assign an interpretation to the 
components. A high coefficient of a PC on a given variable is an indication of high 
correlation between that variable and the PC. PC scatter graphs are drawn by plotting the PC 
coefficients. Two- and three-dimensional scatter graphs have been used. Related breeds are 
clustered together. 

The PCA procedures in genetic studies were described by Cavalli-Sforza et al. (1994). In 
animal genetic diversity studies, PCs have been used to determine relationships among 
populations, supplementing relationships determined using phylogenetic analyses (e.g. 
Okomo, 1997). PCs can be more convenient than phylogenetic trees if clusters of populations 
are more visible. They are also more flexible than trees since they can use a greater number 
of parameters. It is usually easier to compare PC maps than it is to compare trees. 
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11 Websites 

The web pages were all accessed in 2009.  

11.1 Data bases 

Gene maps, databases etc. http://bos.cvm.tamu.edu/bovarkdb.html  

11.2 Software 

Programmes for estimation of variance/covariance components and/ or prediction of breeding 
values: (see software) 

ASREML: http://www.genstat.com/products/asreml  

VCE: http://www.tzv.fal.de/institut/genetik/vce4/vce4.html  

PEST: http://www.tzv.fal.de/~eg  

WOMBAT: http://agbu.une.edu.au/~kmeyer/wombat.html  

  

Programmes for estimation of crossbreeding effects:  

CBE - Crossbreeding Effects: http://www.boku.ac.at/nuwi/software/softcbe.htm  

Programmes for measuring genetic diversity based on genetic markers: 

Analysis of Molecular Variance,  

AMOVA: http://www.bioss.ac.uk/smart/unix/mamova/slides/frames.htm  

ARLEQUIN: http://anthro.unige.ch/arlequin  

DISPAN: http://www.bio.psu.edu/People/Faculty/Nei/Lab/Programs.html  

Programmes for QTL mapping: 

QTL Express http://qtl.cap.ed.ac.uk/ (Regression mapping; Interval mapping, inbred and 
outbred populations)  
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QTL cartographer http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (Maximum Likelihood 
mapping; Composite interval mapping in experimental populations) 

11.3 Courses and course notes 

Schaeffer's Note shop with course notes for animal models, quantitative genetics and 
methodology in animal breeding: http://www.aps.uoguelph.ca/~lrs/Animals/  

Course notes on gene mapping and QTL in breeding: 

http://www-personal.une.edu.au/~jvanderw/aabc_materialsp3.htm  

http://www-personal.une.edu.au/~jvanderw/Models_for_QTL_analysis.pdf  

11.4 Miscellaneous 

Alphabetic list of genetic analysis software (population genetics software and linkage 
analysis) http://linkage.rockefeller.edu/soft/ 


