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Abstract 

The need for access integrated applications such as video, voice and data with a defined 

quality of service parameter over the Internet by the users are currently increasing rapidly. 

Yet there are challenges on the Internet backbone to operate at its capacity to assure efficient 

service delivery to the users.  

One of the major challenges is called congestion collapse which results in issues like high 

packet delay, high packet loss and low packet throughput in the course of data transmission 

for various applications on the Internet. Now a day’s congestion prevention has become one 

of the most critical issues that must be confronted by the users. It is also a major challenge to 

researchers in the field of performance modelling. 

So far different researches have been carried out and remarkable achievements have been 

made in controlling congestion collapse and  achieving minimum packets loss probability  in 

both Single and Double Threshold analysis leading to Step and Linear reduction respectively. 

However, as it has been suggested by the researchers, improvements are still needed to 

achieve better performance results in this regard. 

The intentions of this project are: First formulating a new analytical model on different 

packet dropping function based on the previous model. Second derivations of performance 

metrics such as mean queue length, throughput, response time and probability of loss 

equations. Third validate the accuracy of the new analytical model through extensive 

experiment in MATLAB program. And to find out optimum packet dropping function which 

capture minimum packet loss probability and contribute to the research work in performance 

modelling. 

The results of the analysis show that exponential function is an optimum function which 

achieved lower probability of packet loss compared with others functions when the values of 
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the threshold are increasing. And also a reasonable increment have been achieved in 

throughput, average queue length, and average queuing delay as expected with a change in 

threshold values. 

Keywords: 

Analytical Model, Previous Model, Congestion Control, Optimum Packet Dropping 

Function, MATLAB Program. 
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Chapter 1: Introduction 
1.1 Background  

Today the Internet to experience continues staggering growth as it has become a powerful 

platform, offering unprecedented access to the information and exchange of ideas globally. 

Consequently, the need for high speed integrated application services such as voice, video 

and data on the Internet with specified Quality of Service (QoS) parameters request continues 

to increase. 

However, Internet traffic is variable in nature and the demand for buffer cannot be predicted 

in advance. On the other hand routers/switches have limited memory space, sometimes the 

incoming Internet traffic exceed the outgoing buffer size. Packets are heavily loaded in the 

network and congestion collapse will occurs.    

As a result of network congested packets queue lengths become very large, buffer overflows, 

packets are delayed during transmission, incomplete information accesses and the Internet 

quality of services deteriorate.  

There are different types of techniques that can be used to manage congestion.  The 

traditional buffer management technique called Tail-Drop (TD) approach was designed to be 

an efficient and implemented on routers to control congestion. [9]  

The TD technique was no congestion detected until the queue become full.  When the queue 

was full, the maximum congestion signal was generated to notify the source and all the 

subsequent arriving packets were dropped.  

Once source detects that packets were lost, it slows down the arrival rate of packets then the 

capacity of the link and packets backlog in the queue decreases. When the buffer was not full, 
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no congestion feedback signals were generated by TD technique and the source packets 

transfer rate increased until overflow happened again. [5] 

Therefore the TD technique was a cyclical of decrease and increase of packets arrival rate 

until the buffer is full and not full respectively. The technique was called best effort in 

performance modelling and had been used for several years to control congestion in the 

Internet, but it has two major drawbacks. ‘Lock-Out’ and ‘Full Queues’ [3]. 

Lock-Out means a situation that a single connection or a few flows to monopolize the router 

space, preventing other connections from getting room in the router which is the result of 

synchronization or other timing effects. [3, 7] 

Full Queues where the router was forced to have large queues to maintain high utilizations 

and TCP (Transmission Control Protocol) detect congestion from loss. The network force to 

have long standing queue in the steady- state. [3, 7] 

Therefore the TD technique is not suited for interactive applications such as voice and video 

which requires low end-to-end delay and jitter. Since the buffer is full for long periods of 

time and packets are continuously dropped until room is available to accommodate them. 

To overcome the TD technique drawbacks,  one of the Active Queue Management (AQM) 

scheme known as Random Early Detection (RED) [4] technique for congestion control at 

routers or getaway was  developed by Sally Floyd and Van Jacobson in 1993 [6, 14].   

RED technique was also recommended by Internet Engineering Task Force (IETF) [3] as a 

better technique compared to TD technique and is indeed widely implemented in routers 

today.  
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The RED technique detects the impeding congestion before it occurs and provides feedback 

to the sender [9] by either marking or dropping packets even if buffer space is available. [11]  

Basically RED technique performs the following two main tasks: 

• Estimation of the average queue size at the gateway and  

• Packet drop decision 

To accomplish the above tasks RED technique is implemented in an Exponentially Weighted 

Moving Average (EWMA) formula and calculates average queue size, and compared with   

minimum and maximum thresholds [8, 12].  

• When the average queue size is less than the minimum threshold, no packets are 

dropped.  

• When the average queue size is greater than the maximum threshold, each arriving 

packet is dropped.  

• When the average queue size is between the minimum and the maximum thresholds, 

each arriving packet is dropped randomly with probability and increased linearly from 

0 to 1. 

Consequently RED technique provides a solution to TD technique problems by maintaining a 

small size steady state queue which results in reduced packet loss, decreased end-to-end 

delay, and avoids lock-out behaviours of the routers.  

It also keeps the average queue sizes small, resulting in the efficient use of bandwidth by 

avoiding global synchronisation and biases against bursty traffic. [3, 7].  

Even though RED Mechanism is conceptually very simple,  modification of  the parameters 

used to estimate the average queue size, or to the parameters affecting the decision to drop a 

packet or not, can lead to significantly different queue management dynamics. [10] 
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Therefore, RED technique is a basis for many other AQM mechanisms and its parameters 

sensitive attract many researchers to seek effective design scheme to enhance the 

performance by tuning the parameters. As a result range of services and traffics can be 

accommodated and the quality of service delivery to the customers and network operators are 

improved.  

1.2 Motivation  

Researchers argued that the RED gateway algorithm can be implemented efficiently, with 

small number of add and shift instruction for each packet arrival in the system. Since so far 

there was no clear description of the parameters settings [4] and exact measurement was 

achieved. 

Based on the above idea, different researches had been carried out in the area of Adaptive 

Congestion Control Mechanism for Internet traffic. The study was based on RED technique 

of AQM mechanism and they had achieved optimum results in performance metrics by 

varying the parameters settings for different network traffic and contributed to the research.  

Therefore, the motivation of this project is to find out the optimum mathematical dropping 

function to drop a percentage of the packets earlier than strictly needed and avoid congestion 

[9] after implementation in the derived model called the analytical model.  

The new analytical model is the derivation of the Adaptive Congestion Control Mechanism 

Model formulated by Guan et al. [2] now called the previous model after introducing the 

optimum function in the state transition diagram. 

The function should produce better performance metrics results at optimum RED parameter 

settings and to make a contribution to the research in performance modelling. 
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1.3 Aim and Objectives 

The aim of the project is to find an optimum mathematical function which give better  

performance metrics results particularly lower average queuing delay and high throughput 

[14] compared with others functions after implemented in the analytical model. 

The new analytical model is derived from the previous model formulated by Guan et al [2] 

and the optimum function will be an input to the research in performance modelling. 

The objectives will be the optimum dropping function should expect to produce the following 

results when the performance metrics expression is implemented in MATLAB program with 

a range of threshold values: 

• Achieve minimum packet dropping probability: 

When the threshold values increases the optimum function should expect to produce 

low packets drop probability compared to other functions.    

• Achieve low propagation delay for maximum throughput in the network :  

The optimum function should achieve low network delay at the maximum throughput 

compared with others functions. 

• Determine the optimum average queue size:  

The calculated average queue size should expect to be the optimum approaches to the 

maximum threshold compared to other functions.  

1.4 Structure of Dissertation 

The remainder of this project is organised as follows: Chapter 2 contains detailed 

methodology for the implementation of the study, Chapter 3 deals with literature review, 

Chapter 4 performance modelling basics, Chapter 5 performance modelling and analysis of 
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the project, Chapter 6 contain analysis of result and Finally Chapter 7 deal with conclusions 

and future works of the project. 

Chapter 2: Methodology 

This section explains detailed and systematic approaches used during the implementation of 

the project: 

2.1 Analytical modelling 

The proposed new analytical model is derive from the  previous model formulated by Guan et 

al [2] after introducing a mathematical function to capture packets loss at the threshold value 

greater than or equal to L1 in the state transition diagram. 

2.2 Performance matrices derivation 

Subsequently from the new analytical model using virtual mathematics the balanced 

equations based on Markov chain state transition diagram , normalized equations based on 

equilibrium probability and  initial state coefficient (π0 )  computing formula  from the 

normalized equations are derived. 

In addition   mean queue length after applying first order derivative to the summation of both 

the equilibrium probability and generating function product, using Little’s rules  throughput 

and mean queue delay and finally, probability of packets loss computing formulas derivation 

are carry out. 

2.3 Numerical results  

The derived performance metrics mathematical formulas are validated by setting different 

values for RED parameters such as packet arrivals, departures, thresholds and for functions 
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using MATLAB program. Numerical results are produced for comparisons to identify the 

optimum function. 

2.4 Graphical analysis 

Graphs for visualizing and comparing the mean queue length, throughput, mean queue delay 

and probability of packets loss against a range of thresholds values for different functions are 

generated using MATLAB program. 

2.5 Summary of the results 

Each performance metrics numerical and graphical results obtained using MATLAB program 

are compared for each of the functions used in the analytical modelling. Summary of the 

compared results, contribution to the research in performance modelling and the direction of 

future work are produced. 

Chapter 3: Literature Review & Related works 

This section deals with literature review of different research papers on the area of congestion 

control in both dynamic threshold and dropping function analysis in performance modelling 

of Adaptive Congestion Control Mechanism for the Internet traffic. The aim of the review is 

to appreciate the various research approaches used to prevent congestion with particular focus 

on achieving minimum packet loss via maximum throughput in the course of applications 

transmission over the Internet. 

The researches are based on RED techniques which is an AQM method in heterogeneous 

traffic and working conditions.  The following are some of the works done so far by different 

researchers:  
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3.1 Modelling with Discrete-Time Queue 

Today, developments in practical world computers and communications systems are 

becoming more and more digital, or discrete- time in nature.  Hence Michael E. Woodward 

wrote a book called modelling with discrete-time queue [1] which introduced the concept of 

developing accurate models of communications or computer networks based on discrete-time 

queuing theory which can be used to analyse the performance of a network.  

In a continuous-time only a single state change can occur at any given time instant. This 

makes it difficult to apply the concept of performance modelling in the digitized computer or 

communication networks 

However in the discrete-time because of the finite size of a time-unit, multiple state changes 

can occur from one time-unit to the next in digital forms. Performance modelling based on 

these techniques become very easy but needs conscious design concept to apply the 

techniques in the digitized computer or communication networks. 

In addition some of the most important performance measure parameters of a communication 

or computer networks has been mentioned. Parameters such as throughput, message delay 

and probability of message loss are adopted as key performance measures for all network 

consideration. In particular probability of message loss can be used in assessing the 

transmission quality for certain types of data such as voice and video. 

Further more he pointed out that sufficient state transitions descriptions using Markov chain 

process can be one way of modelling the performance of a digitized computer or 

communication networks. 
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Since many physical systems such as communication or computer networks operate on time-

slotted basis and these can be conveniently modelled by discrete time-time Markov chain 

process. The process specifies a one-to-one correspondence between a time-slot in physical 

system and unit time in the model. Then performance measures for the system can be 

extracted from the equilibrium probability distribution of the Markova chain process. 

 

The Markov chain state transition process has been illustrated by a discrete-time M/M/1/J 

queue system using Kendall’s notation in [13] with the assumptions that  probability of 

packets arrival in the slot α, no packets arrival (1-α), the probability of packets departure in a 

slot be ß, no packets departure (1-ß) and α <ß. 

 

Further more the queuing system in equilibrium and the state transition diagram had finite 

state space J (J packets or customer in a system)  which satisfies the conditions to have a 

unique stationary probability distribution compared with infinite queuing process where the 

number of customers in the system will build up to infinity. This is shown by figure 1 below. 

 

Figure 1: State transition diagram for a discrete-time M/M/1/J queue 

Therefore, the above model provided vital information to both practitioners and researchers 

concerned with communication and computer networks performance evaluation.  
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And also today most researches in Adaptive Congestion Control for Internet traffic based on 

AQM techniques with finite buffer schema adopt the above model to measure the 

performance metrics of the system. 

3.2 Dynamic threshold analysis 

3.2.1 Congestion Avoidance Techniques Based On RED at the getaways  

Sally Floyd and Van Jacobson proposed the RED gateways for congestion avoidance 

techniques in packet-switched Networks [6]. The gateways detect incipient congestion by 

computing the average queue size. 

The average queue size, using a low pass filter with an exponential weighted moving average 

(EWMA) [4] equation has been calculated:  

 

 

                                              

Equation 1: Exponential weighted moving averages 

 

The average queue size is compared to two thresholds, a minimum (minth) threshold and a 

maximum (Maxth) threshold [4] and proposed the following points:  

• If the average queue size ≤mint, then no incoming packets are dropped. 

• If mint ≤ average queue size ≤ Maxth, then the arriving packets are dropped with 

probability Pb, where Pb, is a function of   the average queue size. 

• Finally, if the average queue size > Maxt then all incoming packets are dropped, this is 

shown at figure 2 below. 

Avg(t + 1)= (1 - w
q
).Avg(t) + w

q 
B(t) 

Where w
q 
is an averaging time constant, and B(t) is the instantaneous queue occupancy. 
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Figure 2: Dropping Probability Vs Average Queue Size of the RED algorithm 

Each time a packet was marked, the probability that the marked packet was dropped for that 

particular connection roughly proportional to that connection’s share of the bandwidth at the 

gateway. [6] 

Two separate RED gateway algorithms were used in their proposal. The first algorithm to 

compute the average queue size that determined the degree of burstiness allowed in the 

gateway queue. The second algorithm to calculate the packet-marking/dropping probability 

determined how frequently the gateway marks/drops packets, given the current level of 

congestion. 

The above two RED gateways algorithms efficient implementation as a congestion avoidance 

mechanism achieved the following major goals: [6] 

• Congestion avoidance: - In RED gateway algorithm packets are dropped when 

average queue size exceed maximum threshold. However If the weight for the 

EWMA procedure has been set appropriately RED gateway guarantees that the 

calculated average queue size does not exceed the maximum threshold.  

 



12 

• Appropriate time scales: - In RED gateways, the time scale for congestion detection 

roughly matches the time scale required for connections to respond to congestion. 

RED gateways don’t notify connections to reduce the traffic as a result of transient 

congestion at the getaway. 

 

• No global synchronization: - RED gateways avoid global synchronization by 

assigning low probability of marking for each arriving packets in the event of low 

congestion and higher probability of marking for each arriving packet during higher 

congestion. The gateways avoid global synchronization by making packets at as low a 

rate as possible. 

 

• Fairness: - RED gateway does not discriminate against particular connections or 

classes of connections. Packet marking for each connection is roughly proportional to 

that connection’s share of the bandwidth. But do not attempt to ensure that each 

connection receives the same fraction of the total throughput.  

 

• Parameter sensitivity: - RED gateways apply the following rules or assumption  for 

parameters to give adequate performance under a wide range of traffic conditions: 

 Ensure adequate calculation of the average queue size: w
q >0.001. The weight 

w
q
should not be set too low, so that the calculated average queue length does 

not delay too long in reflecting increases in the actual queue length.     Where 

w
q
queue weight. 

 Set min
th 

  sufficiently high to maximize network power: The thresholds min
th

 

and max
th

 should be set sufficiently high to maximize network power. 



13 

 Make max
th

 - min
th   

sufficiently large to avoid global synchronization: As a 

rule of thumb usually max
th

   to be at least twice min
th     would be. 

However, in spite of the fact that RED is the most promising AQM [12] scheme for 

congestion avoidance and control, research has shown that the performance of RED is highly 

dependent upon the way its parameters are tuned and the network environment where it is 

used.  

 

When maximum probability of marking (maxp) is large and/or network is lightly congested, 

the average queue size is near minth; conversely when maxp is small and/or the network is 

heavily congested, the average queue size is close to maxth. Thus, the queuing delays at the 

routers cannot be easily estimated because the changes in the average queue size vary widely 

according to the parameters and congestion in the network. [12] 

Finally they cited the following points as a future work of direction: 

• Making conscious decisions and determination of optimal average queue size for 

maximizing throughput and minimizing delay for various network configurations. 

•  Traffic dynamic mix of TD and RED gateway implementation in the current Internet.  

• Study the behaviour of RED gateway other than TCP protocols.  

• Implementation of packet marking priorities based on the connection at the RED 

gateway. 

3.2.2 Discrete-Time Performance Modelling Based On RED and Queue Threshold  

Guan et al in [2] was implemented two discrete-time setting using queuing threshold 

congestion control analytical models for performance evaluation of Internet traffic. 
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The analytical models were based on RED mechanism, i.e.  RED is recommended by the 

Internet Society in [3], which compared the performance metrics parameters against 

thresholds in each of the two implemented models. 

The numerical analysis of the two models was conducted based on  the assumption that 

departure always takes place before  an arrival in any time unit or slot, arrivals follows an 

independent Bernoulli process, the system have finite waiting room or buffer space and the 

queuing discipline was  First-come First-served (FCFS).  

Model 1: 

In model 1 there was a step reduction in the probability of arrival rate from α1 directly to α2 

when the queuing reached at threshold value L1. However the source operates normally and a 

reduction in arrival rate achieved through implicit feedback from the queue to arrival process, 

the probability of a departure is β and arriving packets dropped with a probability 1-α2/α1 

after threshold value L1. 

Model 1 represented by figure-3 is shown below: 

 

Figure 3: Single Buffer with One Threshold L1 

The corresponding state transition diagram of the above figure using Markov chain finite 

state space process is represented by figure 4 as shown below. 
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Figure 4: State Transition Diagram for Discrete-Time Finite Queue with Threshold value L1 

 

Subsequently  from the state transition diagram assuming α1≠β,  α2≠β, and α1> α2, the balanced 

equations, normalized equations, mean queue length, throughput, mean queue delay and  

probability of packet loss calculated and numerical results was generated [2]. 

Model 2: 

Model 2 was slotted into two thresholds and probability of an arrival in a slot be α1 before 

the number of packets in the system reaches the first threshold L1, the probability of an 

arrival in a slot be reduced to α2 after the number of packets in the system reaches the second 

threshold, the probability of a departure be β and the dropping probability increased linearly 

form 0 to the maximum 1- α1/ α2 within the two thresholds. 

Model 2 illustrated by figure 5 is shown below: 

 

Figure 5: Single Buffer with Two Thresholds L1 and L2 
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The corresponding state transition diagram of the above figure using Markov chain with a 

finite state space process represented by figure 6 as shown below. 

 

Figure 6: Double Threshold Transition Diagram for Discrete-Time Finite Queue 

 

Therefore, from the state diagram assuming α1≠β, α2≠β, α1> α2 and full buffer (L2+N=M) 

situation the balanced equations, normalized equations, mean queue length, throughput, mean 

queue delay and probability of packet loss calculated and numerical results was generated [2]. 

The numerical result of model 1 produced a ‘stepwise reduction’ in probability of packets 

arrivals rate from α1 to α2.  While a ‘Linear Reduction’ in probability of packet arrivals from 

α1 to α2 between the two thresholds L1 and L2 achieved in model 2.  This is shown by  

figure 7 below. 

 

Figure 7: Step Reduction and Linear Reduction 
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From the overall numerical analysis Guan et al in [2] concluded that to achieve a lower delay 

for a specific probability of packet loss the following parameter settings should be used: 

• A high maximum drop probability 

• A low setting for the threshold   

• A narrow separation of the threshold 

 

Also to achieve a lower probability of packet loss the following parameters setting should be 
used: 

• A low maximum drop probability 

• A high setting for the threshold 

• A  wide separation of the threshold 

Therefore, based on the type of services required such as real time and non-real time services, 

the above parameters setting should be adjusted. 

 

Finally Guan et al in [2] suggested that future work should aim to generalize the results 

obtained to some extent by allowing multiple arrivals in a slot which can be applied to any 

arrival process. Furthermore, implementations of this model to Internet traffic e.g. a TCP/IP 

flow so that the technique of variable thresholds and blocking can be applied as a congestion 

control mechanism. 

3.2.3 A New AQM Algorithm for Congestion Control 

Alraddady, F. and Woodward, M. E [4] proposed a new AQM algorithm based on RED to 

control congestion on the Internet. 

The algorithm was implemented by modifying RED and providing a flexible way of 

adjusting the maximum dropping probability between the two thresholds [4], improving 

throughput and delay compared to RED. 
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In RED algorithm [3], the probability of packet dropping increased linearly with the average 

queue size between the thresholds [2]. The slope of its packet dropping probability line 

depends on maximum packet dropping probability which has manually adjustable parameter. 

This is shown in figure 8 below. 

 

 

 

 

Figure 8: RED Algorithm 

In contrast, the proposed model adjusted the slope of the line dynamically by adjusting 

maximum dropping probability depending on the average of incoming arrival rates. This is 

shown at figure 9 below. Where Pd is packet dropping probability, λ1 and λ2 arrival rate, L1 

and L2 are thresholds.  

 

 

 

 

 

 

 

                                                                               Figure 9: Proposed Algorithm 

Therefore, the proposed model algorithm has variable packet dropping probability that 

reflects the slopes which was calculated on the bases of a linear equation [4] using Mean 

Queue Length Target (MQLT) and incoming packet arrival rate. 
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If there is a change between the current mean queue length and the target mean queue length, 

new maximum packet dropping probability was calculated which results in a new slope. And 

also moves the mean queue length back to the target mean queue length. 

And also if there is an increase in arrival rate compared with the target arrival rate again, this 

also leads to new slope by calculating new maximum packet dropping probability.  

The target mean queue length and the target average arrival rate of the system at the steady 

state was estimated from the know service rate and known the target delay by assuming a 

Poison source and using the M/M/1/K [12] model as in [4]. 

This was achieved by the following two steps: 

• First, calculated the model the target average arrival rate for given service rate and the 

target delay at steady state after  simulating the model M/M/1/K as in [4] 

• Second, calculated the model the target average queue length at steady state for a 

given target average arrival rate and target delay after simulating the model M/M/1/K 

as in [4] 

Then the average incoming arrival rate (AIAR) was calculated by using the weighted moving 

average for the delay of the system and the current queue length at every packet arrival and 

applying Little's law [1]. Next the dropping probability at the target mean queue length was 

calculated by using the target average arrival rate as specified by an equation (3) in [4].  

The simulation result in [4] shows that for different arrival rate and fixed service rate the 

purposed model achieved lower delay, lower variance in average mean queue length and 

similar throughput compared with RED and Adoptive RED.  
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On the other hand the correlation effect of the throughput doesn’t have significant effect on 

delay for Adoptive RED and the proposed model algorithm but have significant effect of 

increased correlation on increased delay on RED algorithm. 

In general the performance of the proposed model is at least as good as Adoptive RED. But 

as to the original RED it has a problem of subject to further parameterization. 

3.2.4 Analytical Modelling Based On Dynamic RED  

Hussein Abdel-jaber, Mike Woodward, Fadi Thabtah and  Mahmud Etbega [17] implemented 

a Discrete-Time Queue Analytical Model based on Dynamic Random Early 

Detection(DRED) technique to control congestion in the wireless and fixed network. They 

compared the results to the original DRED algorithm in terms of the performance metrics 

parameters. 

The analytical model was enabled to accommodate single event i.e. arrival or departure of 

packet can take place in a slot or multiple event, where both arrival and departure could take 

place in the same slot with a finite capacity, including packets in the service. 

The model has a single threshold (th) and packet arrival at each slot has identical independent 

distribution (I.I.D) Bernoulli process [1].The queuing discipline was FCFS. Figure 10 shows 

the queuing system of the proposed model. 

 
Figure 10: Queuing system model 
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To generate the state transition diagram they assumed packet transmitted at the rate α1 before 

the threshold value th, packet dropped probability was Dp=0.  When the rate decreases from 

α1 into α2 after the threshold value th, the packet dropped probability increases from 0 to 

(α1- α2)/ α1. Average packet departure was represented by β in the model. 

In addition they assumed that the analytical model queuing system in equilibrium and queue 

length process a Markov chain with finite state space (k). They generated the state transition 

diagram, as shown by figure 11 and the balanced equations from the diagram were created. 

[17]  

 
Figure 11: The state transition diagram for the DRED analytical model 

Sequel to the balanced equation using virtual mathematics and Little’s rule [1] they were 

generated performance metrics equations such as Average queue length (aql), Throughput 

(T), Average queuing delay(D), Packet loss probability(Ploss) and Packet dropping probability 

(Dp) .[17] 

An inputs value has been assigned for the analytical model parameters and calculated the 

numerical values and simulation graphs of the performance metrics. They also recorded the 

packet dropping probabilities results for both methods in order to evaluate which method 

drops fewer packets. 

The simulation analysis as it was clearly shown with a diagram in[17] both method 

consistently produced  similar results with regards to throughput(T) and packet loss 
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(Ploss)When the traffic load increasing up to a certain value level. After that the original 

DRED algorithm dropped at a higher rate than the analytical DRED. Hence its throughput 

performance deteriorated. 

However with regard to Average queue length (aql) and Average queuing delay (D) results, 

the original model DRED algorithm performed better than the analytical model DRED. [17] 

With regards to packet dropping probability (Dp), the diagrams in [17] shows that the 

analytical model achieved smaller dropping probability than the original DRED algorithm.  

Therefore the analytical model DRED technique throughput performance was sustained 

regardless of the traffic load rate as it was shown in [17] and produced better performance 

than the original DRED. 

3.3 Dropping functions analysis 

3.3.1 Analytical Modelling Based On Gentle-RED  

LanWang, Geyong Min, Irfan Awan [8] were develop original analytical model of 

performance analysis using Gentle- RED (GRED-I) techniques of AQM [9] scheme under 

two heterogeneous classes of Internet traffic. 

The traffics were non-bursty(e.g. Text data) and busrty (e.g. Web and voice) traffic classes 

which modelled with  Poisson Process and Markov-Modulated Poisson Process (MMPP) [13] 

respectively.  

The analytical model assumed to have MMPP average arrival rate, a single server, 

exponentially distributed service time for both traffic classes, and shared buffered 

management for the two traffic based on First-in-First-out (FIFO) queuing discipline. [9]  
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The threshold for each traffic class k (k = 1, 2) is denoted by thk [8].  When the number of 

packets in the system exceeds threshold thk, the forthcoming packets of Class-k will be 

dropped randomly depending on the dropping probability [8]. This is shown by figure 12 

below. 

 

Figure 12: Dropping probability of for two traffic classes 

The diagram shows that dropping probability increase linearly from 0 to the maximum 

dropping probability (1 − dkmax) which is set to 1.  

Since data traffic was more sensitive to packet loss than bursty voice traffic, Class-1 traffic 

was dropped earlier than Class-2 in the presence of the sign of congestion. Thus, th1 was set 

to be less than th2. 

Assuming the state transition diagram of the queuing system follows Markova chain to set up 

equilibrium equation. The probabilistic flow rate into and out of the system becoming at a 

certain state in equilibrium condition with the sum of probability is equal to 1. Derivation of 

performance metrics was performed [8]. 

Using virtual mathematics and Little’s rules [1] different equations was derived to calculate 

the aggregate and marginal performance metrics such as mean queue length, response time, 
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throughput, and loss probability. And also the accuracy of the analytical model was validated 

through extensive simulation experiments. 

Comparisons of validating the analytical model to that of simulation was made and the 

following consistent results were obtained:   

• The effects of the increase threshold th1 under high bursty traffic was resulted an increase 

in the marginal mean queue length, mean response time and throughput but a decrease in 

loss probability. However at the low bursty traffic of the marginal loss probability 

increased as the result of growth of th1.  

The more common phenomena is that the marginal mean queue length, throughput, 

response time and loss probability of bursty traffic are become closer to those of low 

bursty traffic as threshold th1   decreases. 

On the other hand the aggregated utilization, mean queue length, throughput, and mean 

response time increase but the loss probability decreases as threshold th1 increases. The 

aggregated mean queue length, response time, and loss probability increase and the 

aggregated utilization and throughput decrease when traffic burstiness increases. Theses 

demonstrate the detrimental impacts of traffic burstiness on the performance of AQM 

mechanism. [8] 

 

• The effects of the  increased threshold th2 with a fixed th1 under low bursty traffic  was 

resulted in an increase in  the marginal mean queue length, mean response time and 

throughput but a decrease in  loss probability.  

On the other hand throughput of bursty traffic tends to decrease and the mean queue 

length, loss probability and delay increase. 
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In addition the effect of th2 on the marginal performance metrics for low bursty traffics 

more noticeable than high bursty traffics. It shows a more remarkable change when the 

rate of traffic is higher than when the traffic rate is lower. 

• The effect of aggregate performance metrics when traffic rate increases resulted in an 

increase in utilization, mean queue length, throughput, mean responding time and loss 

probability as threshold th2 increased. 

When the traffic rate decrease as threshold th2 increased, there was an increase in mean 

queue length, throughput, mean responding time and a decrease in loss probability. 

Therefore, the analytical model based on GRED-I in heterogeneous traffic environment 

validated using simulation and also illustrated with diagrams in [18]. The procedure used in 

the derivation of the model was general and can be easily extended for others AQM methods. 

3.3.2 Analytical modelling and comparison of AQM based congestion control 

An improvement in performance over the RED algorithm by comparing the effect of different 

probability of packet drop functions using instantaneous queue length model have been 

proposed by Lan Wange, Geyong Min, Itfan Awan.[18] 

The traffic arrival process of the proposed model was two states Markov Modified Poisson 

Process (MMPP-2). This is shown by figure 13 below. 

                  

Figure 13: Two-state MMPP 
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The two different states S1 and S2 considered which represented two different traffic arrival 

rates λ1 and λ2 respectively. The intensities of the transition between S1 and S2 were 

represented by δ1 and δ2 respectively. 

To maintain the main strategies of AQM that is to drop packet before congestion occurs, 

while the queue length is not smaller than the threshold value, different dropping functions 

have been introduced in the state transition diagram to achieve a step reduction of the arrival 

rate.  

Theses process can be seen as a decrease of the arrival rate for each function with some 

probability (1-dij) after the threshold values.  Where i,j mean number of packets in the queue 

and Markova state respectively. 

From the above two state MMPP-2 diagram the corresponding state transition diagram in 

[18] were generated for calculating the performance metrics using virtual mathematics and 

equilibrium probabilities. 

Five different functions have been used to compare their performance metrics with the 

change of threshold value with the same RED parameter setting.   

The results of  one threshold analysis clearly shows in [18] that with an increasing the 

threshold value  mean queue length, throughput, and mean queue delay under each function 

are increases as expected and loss probability tends to decrease. In particularly the 

exponential function, ax,  at  a=1.1 and with increasing threshold value, found to be an 

attractive function  offer a better performance such as lower mean queue delay, higher 

throughput but less packet loss probability compared with others functions. 
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Two threshold analyses have been also show in [18] that the mean queue length, throughput, 

and mean queue delay are lower for the lower first threshold setting and increasing with 

enlarge the distance of two thresholds. 

In general the review of the above literatures shows that RED or RED  variant techniques of 

AQM  methods are parameter sensitive and there will be a possibility of implementing  those 

techniques through  optimal setting of the parameters to achieved better results compared so 

far achieved. 

However the optimum stetting of RED parameters required conscious design decision to 

achieve in minimum packet drop probability during congestion for variable Internet traffics. 

In this project new analytical model from the previous model, the work done by Guan et al 

[2] derivation is made by introducing different packet dropping functions in the state 

transition diagram after the threshold value. The optimum function which produces better 

performance metrics results at optimum RED parameters settings should identified in order to 

make contribution to the research in performance modelling. 

 

Chapter 4: Performance Modelling Basics 

This section of the project deals with the fundamental properties of discrete-time queuing 

system that can be used in the actual implementation of the analytical model. 

4.1 Queue Modelling and Fundamental Properties  

4.1.1 Discreet-Time Queue 

The new analytical model is based on discrete-time queue system which is one of the main 

mathematical techniques used to analyze packet arrival, packet departure, waiting time in the 
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queue, and the number of servers in the system as it was used in the original model 

formulated by Guan et al [2]. The basic queuing system is shown by Figure 14 below. 

 

                                                   Figure 14: Basic queuing system 

 

The new analytical model maintains the following important characteristic of a discrete-time 

queue system: 

 
• The packet arrival process: 

 
It is assumed that the inter arrival times are follows identically independently 

distributed Bernoulli process, 

• The service times: 
 

It is assumed that the service times are independent and identically distributed, 

and that they are independent of the inter arrival times.  

• The service discipline: 
 

Packets are transmission based on First-come First-served discipline, i.e. in order of 

arrival. 

• Servers and service capacity: Single server and finite service capacity. 

According to Kendall notation [12] the new analytical model classified as M/M/1/N=L1+J 

discreet-time queue system. Where M is stands for Markova (Memory less).  
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Since the model is a discrete-time queue system both inter arrival and service times are 

followed a geometrical distribution with zero or one arrival or service is permitted in a unit of 

time. This implies the arrival process is a Bernoulli process [1] ,  one server and having finite 

waiting room, represented by N=L1+J.[16] 

The properties of the  discrete-time queue queuing system  is also enabled for the derivation 

and calculation of performance  metrics measures such as mean queue length, mean waiting 

time, throughput and probability of packet loss [15] for the analytical model. 

4.1.2 Performance Measures 

The performance of the new analytical model assessed based on the three most commonly 

used parameters for measuring Internet traffics, namely, throughput, packet delay and 

probability of packet loss. 

Throughput is the number of successful transmitted packet per mean transmission of packets, 

and packet delay is the time interval in unit of average transmission time of a packet from the 

moment a packet generated to the instant it is correctly received. 

In this paper the mean value of throughput and packet delay are represented by the symbol S 

and W respectively. 

 

Probability of packet loss, which is represented by PL in the model, is the fraction of packets 

that are lost due to no buffer space being available at the time of their arrival. [1] 

4.1.3 Little’s Law 

In the new analytical model for calculating the performance metrics, Little’s Law (1961) 

which is one of the basic theorems in queuing theory, is used. [1] 
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The mean number of packet in a stable system (over some time interval) is equal to their 

mean arrival rate, multiplied by the mean time in the system. 

This is a general procedure adopted to measure the mean waiting time of any queuing system 

and the calculation depends only on mean values and not on distribution.   

4.1.4 Discrete-Time Markov chain 

The new analytical model is implemented by Markov chains discrete-time state transition 

processes either at each step the system may change its state from the current to another state, 

or remain in the same state, according to a certain probability distribution.  

The change of states are called transition, and the probabilities associated with various state-

change are called transition probabilities.  

The model satisfies the Markov chain property as the evolution of the system after a given 

time instant depends only on the state at that instant and not on any past history.  

A steady state (at equilibrium) analysis is conducted in order to derive the balance 

equilibrium as well as performance metrics expressions. 

Chapter 5: Performance Modelling and Analysis 

This section of the project deals with the actual implementation of the new analytical model 

derived from the previous model formulated by Guan et al [2] by carrying out the following 

series of steps: 

5.1 Previous model 

The previous model [2] was a discrete-time queuing system derived based on the Markova 

chain state transition process with the assumption that departure always takes place before 
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arrival in any unit time. Each arrival follows an independent Bernoulli process with a finite 

buffer capacity (L1+J), the queuing discipline was First-come First-served (FCFS) and the 

system had a single server.  

In addition the adopted model had one threshold value L1.  α1 and  α2 were packet arrivals 

before and after the threshold respectively. β was packet departure. There was a step 

reduction in the arrival rate from α1 to α2, when the number of packet reached at the 

threshold value L1. Alternatively this mean that  the source continuing sending the packet at 

the rate equal to α1 but  the arriving packet dropped with the probability 1- α2/ α1 [2]. The 

probabilities of no packet arrival and no packet departure are represented by (1- α1) and (1- 

β) respectively. The probability, no packet arrival at the threshold value greater than or equal 

to L1 is represented by (1- α2). This is shown in figure 15 below.   

 
Figure 15: Discrete-Time Finite Queue with L1 Threshold state transition diagram 

The new analytical model is the derivation of the above model after introducing different 

mathematical functions for capturing packet loss at the threshold value  greater than or equal 

to L1 in the state transition diagram. 

5.2 New Analytical model 

In the new analytical model the probability of packet arrivals is represented by a1 and a2 

before and after the threshold value L1 respectively and d for probability of packet departure.  

The maximum buffer capacity of the system represented by L1+J with a single server. The 
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probability of no packet arrival and no packet departure is represented by (1- a1) and (1- d) 

respectively. The probability no packet arrival at the threshold value greater than or equal to 

L1 represented by (1-a2) = (1- a1(1-D)). The Markov chain state transition diagram is 

depicted as follows in figure 16 below. 

 
Figure 16: Single Threshold Analytical Model 

When the capacity of the buffer level to accommodate packets reached at the threshold value 

greater than or equal to L1 some of the packets are dropped with a probability. This packet 

dropped is captured with a mathematical function represented by D. The packet arrival rate 

from L1 up to L1+J   which is a2 in the new analytical model is represent by an expression 

equal to a1(1-D). This implies that there is a step reduction in the arrival rate from a1 to a2. 

The diagram when the packets are dropped with a probability and how the packet loss is 

capture with an expression is shown below by  figure 17. 
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Figure 17: Loss occurrences in the analytical Single Threshold Model 

5.3 Derivation of Performance Metrics  

To derive the performance metrics equations assume that the new analytical model utilised 

discrete-time queuing system which relies on the particular time unit called slot. The capacity 

of the model is finite, (L1+J) buffer space, which include packet in the service. 

In addition the arrival process i.e.(an) , assume in the model is identically independently 

distributed Bernoulli process, an Є{0,1}, 0,1,2,…., where an represent packet arrival at slot n.  

Then queuing discipline assume to be First-come First-serve (FCFS). [2, 17] 

In order to derive the  balanced equation and performance metrics measuring expression 

using virtual mathematics  from the new analytical model state transition diagram the 

following sequence of steps are used: 

I. From the new analytical model state transition diagram the following equilibrium 

probability equations are derived under the assumption a1<d (stable system): 

 

  π 0= π 0(1-a1)+ π 1(d(1-a1))                                (1)  

             π 1= π 0a1+ π 1[a1d+(1-a1)(1-d)]+ π 2(d(1-a1))                 (2) 

             In general  
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    π i= π i-1[a1(1-d)]+ π i[a1d+(1-a1)(1-d)]+ π i+1(d(1-a1))  For i=2,3,…L1-2           (3)  

     π L1-1= π L1-2[a1(1-d)]+ π L1-1[a1d+(1-a1)(1-d)]+ π L1[d(1-a1(1-D))]    (4) 

    π L1= π L1-1[a1(1-d)]+ π L1[a1(1-D)d+(1- a1(1-D))(1-d)]+ π L1+1[d(1-a1(1-D))]                 (5) 

       π L1+1= π L1[a1(1-D)(1-d)]+ π L1+1[a1(1-D)d+(1- a1(1-D))(1-d)]+ π L1+2[d(1-a1(1-D))]        (6) 

        

In general 

       π i= π i-1[a1(1-D)(1-d)]+ π i[a1(1-D)d+(1- a1(1-D))(1-d)]+ π i+1[d(1-a1(1-D))]                 (7) 

   For i=L1+2,L1+3,…,L1+J-1 

       π i= π i-1[a1(1-D)(1-d)]+ π i[a1(1-D)+(1- a1(1-D))(1-d)]            For i=L1+J                         (8) 

      Equation 2: Equilibrium Equations 

II. Solving the above equilibrium probability equations for each value of π i ,For i= 1, 2, 

3... L1+J with respect to π 0 using virtual mathematics values for π1, π2, π3, ...,π L1+J  

are  derived. 

III. Using the normalized equation ∑
+

=

JL

i

1

0
π i  =1 ,  and the results in step (ii) , we can solve the 

value for π 0  as: 
      π 0 =    (1-d)(1-γ1)( 1- γ 2)(1- a1 (1-D))/(1- a1 (1-D)) ( 1- γ

 2) (1- γ 1
L1-d(1- γ

 1))+ γ 1
L1(1- γ1)(1-a1)(1- γ 2

J+1) 

  Where      γ 1  =a1(1-d)/d(1-a1) and γ 2=a(1-D)(1-d)/d(1-a1(1-D)) 

Equation 3:  Initial coefficient (π 0)  

IV. Using probability-generating function formula for finite queue length and substituting 

results obtained in step (II), we can calculate for the value of P (Z). 

   P (Z)= ∑
+

=

JL

i

1

0
π  i Zi      for i= 1, 2, 3... L1+J. 

   Equation 4: Generating Function 

V. The first order derivative of the expression obtained in step (IV) evaluated at Z=1 

produced an expression for calculating Mean Queue Length (MQL).  

  This is given by:                   MQL=P’ (1)  

              P’ (1)= π 0(γ1+ γ1
 (L1+1)(L1-1) –L1 γ1

L1)/(1-d)(1- γ1)2   +  

              π 0 
γ
1

L1(1-a1)( γ 2+L1(1- γ 2)- γ 2 (J+1)(1+(L1+J)(1- γ 2))/(1-d)(1-a1(1-D))(1- γ 2)2 

 

                             Where γ1  =a1(1-d)/d(1-a1) and γ 2=a(1-D)(1-d)/d(1-a1(1-D)) 

Equation 5: Mean Queue Length (P’ (1)) 
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VI. Using Little’s rules [1] we can generate  formulas for mean waiting time  and 

 Throughput as follows:   

• Waiting time (W) the time interval where an arbitrary customer enters into the 

system to the time the customer leaves, including the time spent in service. 

W= P’ (1)/S 

Equation 6: Mean Waiting Time 

• Throughput(S) is the number of customer passing through the system per unit 

time.  
S= (1- π 0) d 

Equation 7: Throughput 

VII. The probabilities of packet loss, PL, the fraction of customers arrive to find no 

waiting room available to accommodate them. Of course this is true when the waiting 

room in the system is finite. 

                                          PL    =         
∑

−+

=
++ −++

11

1
11 )1(

JL

Li
JLJLi ddDD πππ

 

                 Where i=L1, L1+1,…, L1+J,  D=Functions Introduced 

Equation 8: Probability of Packet loss 

The probability of packet loss increased from zero ‘0’ to ‘(1- D)’. Where D is the dropping 

function introduce in the PL expression at the threshold L1 to capture the packet loss. 

Chapter 6: Performance Evaluation 

6.1 Typical Dropping Functions   

In the new analytical model a step reduction in packet arrival rate from a1 to a2= a1(1-D) 

made by dropping some of the packets  once the packet reached at threshold value greater 

than or equal to L1. This reduction in packet rate is achieved by introducing four different 

typical packet dropping functions represented by D   to capture the packet loss in 

performance metrics expression.  
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The functions are:  

           Functions                                         Name and Properties 

• Function One  =  log(x) a  Logarithmic function for a<0 

• Function Two  = a x   Exponent function 0<a<1 

• Function Three  = a/x       Reciprocal of x function for all real values of  a 

• Function Four  = x a  Power of a function a<0 
Equation 9: Dropping Functions 

The graphical distribution of the four typical packet dropping functions against threshold 

value L1 are shown in figure 18. 
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Figure 18: Typical Dropping Functions Vs Threshold (L1) 

 

The diagram shows that the exponential function,  ax  , capture  less packet dropping 

probability compared to the other  functions.  

6.2 Performance Metrics Analyzed Results 
 
To investigate the performance metrics equation derived above using the above four typical 

packet dropping functions an experimental analysis is carried out using MATLAB so that 

numerical and graphical results are generated. 
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The new analytical model RED parameters input values for packet arrival, a1=0.27, packet 

departure, d=0.30, system capacity, Max queue length=20 and threshold, L1=[1,2,…,Max 

queue length]   are used for measuring the performance metrics. 

The numerical and graphical results of the performance metrics are shown below by the 

tables 1- 4 and figures 19-22 for each of the four different dropping functions.  

Table 1: Probability of Packet Loss for Different Functions 

Functions Probability of Packet Loss 

F1=log(x)^-3 NaN 0.0585     0.0439    0.0346    0.0291    0.0257    0.0235    0.0219     0.0207     0.0199 

F2=0.4/x 0.0514     0.0343     0.0269    0.0231    0.0208    0.0193    0.0183    0.0175     0.0169     0.0164 

F3=(0.4)^x 0.0514     0.0243     0.0142    0.0125    0.0122    0.0122    0.0122 0.0122 0.0122     0.0122 

F4=x^-3 0.0609 0.0195     0.0138    0.0128    0.0125    0.0123    0.0123    0.0122     0.0122     0.0122    
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                                               Figure 19: Probability of Packet loss Vs Threshold 

 

The numerical values in the table-1 and figure 18 shows that the probabilities of packet loss 

for each of the function decrease as the threshold value L1 increases.  Lower packet loss can 

be achieved by setting higher threshold value L1 and this is consistent to the normal system. 
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Table 2: Throughput for different functions 

Functions Throughput 

F1=log(x)^-3 NaN     0.9447     0.9510    0.9552    0.9577    0.9593    0.9604    0.9613     0.9619     0.9623 

F2=0.4/x 0.9478     0.9553     0.9587    0.9606    0.9618    0.9626    0.9632    0.9636     0.9640     0.9642 

F3=(0.4)^x 0.9478     0.9600 0.9655    0.9665    0.9667    0.9667    0.9667    0.9667     0.9667     0.9667 

F4=x^-3 0.9437     0.9625     0.9657    0.9664    0.9665    0.9666    0.9667    0.9667     0.9667     0.9667 
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Figure 20: Throughput Vs Threshold 

Table 3: Mean Queue Length for different functions 

Functions Mean Queue Length 

F1=log(x)^-3 NaN     0.5336     0.9613    1.3654    1.7755    2.1044    2.4121    2.7046     2.9821     3.2440 

F2=0.4/x 0.1869     0.4861     0.8302    1.2098    1.6100 1.9782    2.3304    2.6675     2.9888     3.2933 

F3=(0.4)^x 0.1869     0.4411     0.7025    1.0363    1.4110    1.8028    2.1983    2.5884     2.9673     3.3305 

F4=x^-3 0.1688     0.4160     0.6974    1.0410    1.4166    1.8068    2.2005    2.5895     2.9676     3.3304 
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Figure 21: Mean Queue Length Vs Threshold 

 

Table 4: Delay for different functions 

Functions Delay 

F1=log(x)^-3 NaN    0.5648     1.0108    1.4295    1.8540    2.1936    2.5114    2.8136     3.1003     3.3709 

F2=0.4/x 0.1972     0.5088     0.8660    1.2593    1.6740    2.0550    2.4194    2.7682     3.1005     3.4154 

F3=(0.4)^x 0.1972     0.4595     0.7277    1.0722    1.4597    1.8649    2.2740    2.6776     3.0694     3.4452 

F4=x^-3 0.1789     0.4322     0.7222    1.0772    1.4657    1.8691    2.2764    2.6788     3.0699     3.4451 
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Figure 22: Mean Queue Delay Vs Threshold 
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Tables 2-4 and figures 20-22 above depict that with the threshold values increasing the 

throughput, mean queue length and mean delay for each function are increasing as expected.  

On the other hand as the dropping area size is decreasing the effort done by the router to 

avoid congestion are less and less the three performance metrics values increased reasonably.  

The above numerical and graphical results clearly show that out of the four different 

functions the exponential function,  ax , the power of a function, xa,  exhibit lower  

probability of packet  loss, higher throughput and lower delay  compared with the other two 

functions. 

To identify the optimum function from the exponential function,  ax , the power of a function, 

xa, a  similar experimental analysis as above are conducted the following numerical  and 

graphical results  shown by the tables 5-8 and figures 23-26  generated. 

Table 5: Probability of packet loss for exponential and power functions 

Functions Probability of Packet Loss 

F3=(0.4)^x 0.0514    0.0243    0.0142    0.0125    0.0122    0.0122    0.0122 0.0122 0.0122    0.0122 

F4=x^-3 0.0609 0.0195    0.0138    0.0128    0.0125    0.0123    0.0123    0.0122    0.0122    0.0122    
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Figure 23: Probability of Packet loss Vs Threshold 
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Again similar to the above results table 5 and figure 23 shows that when the threshold values 

increases probability of packet loss decreases as expected. 

Table 6: Throughput for exponential and power functions 

Functions Throughput 

F3=(0.4)^x 0.9478     0.9600   0.9655    0.9665    0.9667    0.9667    0.9667    0.9667    0.9667    0.9667 

F4=x^-3 0.9437    0.9625    0.9657    0.9664    0.9665    0.9666    0.9667    0.9667    0.9667    0.9667 
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Figure 24: Throughput Vs Threshold 

 

Table 7: Mean Queue Length for exponential and power functions 

Functions Mean Queue Length 

F3=(0.4)^x 0.1869    0.4411    0.7025    1.0363    1.4110    1.8028    2.1983    2.5884    2.9673    3.3305 

F4=x^-3 0.1688    0.4160    0.6974    1.0410    1.4166    1.8068    2.2005    2.5895    2.9676    3.3304 
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Figure 25: Mean Queue Length Vs Threshold 

Table 8: Delay for exponential and power functions 

Functions Delay

F3=(0.4)^x 0.1972     0.4595     0.7277     1.0722     1.4597     1.8649     2.2740     2.6776     3.0694     3.4452

F4=x^‐3  0.1789     0.4322     0.7222     1.0772     1.4657     1.8691     2.2764     2.6788     3.0699     3.4451
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                                                                Figure 26: Mean Queue Delay Vs Threshold 
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Tables 6-8 and figures 24-26 above show that with the threshold values increasing the 

throughput, mean queue length and mean delay for the two functions are increasing. This is 

consistent with the normal system.   

The above numerical and graphical results clearly show that out of the two functions  

exponential function,  ax , achieved lower  probability of packet  loss, higher throughput and 

lower delay  compared with the  power of a function, xa. 

Finally in order to draw a general conclusion about the exponential function, ax ,  at  different 

parameter values of  a,  experimental analysis is  carried out  and numerical and graphical 

results are shown by tables 9-12 and  figures 27-30  are drawn. 

Table 9: Probability of packet loss for different values of exponential functions 

Functions Probability of Packet Loss 

F1 =(0.01)^x 0.0142    0.0122     0.0122    0.0122    0.0122    0.0122    0.0122    0.0122     0.0122     0.0122    

F2=(0.20)^x 0.0409    0.0138     0.0122    0.0122    0.0122    0.0122    0.0122    0.0122     0.0122     0.0122    

F3=(0.40)^x 0.0514    0.0243     0.0142    0.0125    0.0122    0.0122    0.0122    0.0122     0.0122     0.0122    

F4= (0.60)^x 0.0562    0.0422     0.0266    0.0177    0.0142    0.0129    0.0124    0.0123     0.0122     0.0122    
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                                                    Figure 27: Probability of Packet loss Vs Threshold 
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Table 10: Throughput for different values of exponential functions 

Functions Throughput 

F1 =(0.01)^x 0.9655     0.9667    0.9667    0.9667    0.9667    0.9667    0.9667    0.9667     0.9667     0.9667    

F2=(0.20)^x 0.9523     0.9657    0.9667    0.9667    0.9667    0.9667    0.9667    0.9667     0.9667     0.9667    

F3=(0.40)^x 0.9478     0.9600    0.9655    0.9665    0.9667    0.9667    0.9667    0.9667     0.9667     0.9667    

F4= (0.60)^x 0.9457     0.9518    0.9589    0.9635    0.9655    0.9663    0.9666    0.9667     0.9667     0.9667    
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Figure 28: Throughput Vs Threshold 

Table 11: Mean Queue Length for different values of exponential functions 

Functions Mean Queue Length 

F1 =(0.01)^x 0.1412    0.3729    0.6786    1.0303    1.4097    1.8026    2.1982    2.5884    2.9673    3.3305 

F2=(0.20)^x 0.1824    0.3831    0.6793    1.0303    1.4097    1.8026    2.1982    2.5884    2.9673    3.3305 

F3=(0.40)^x 0.1869    0.4411    0.7025    1.0363    1.4110    1.8028    2.1983    2.5884    2.9673    3.3305 

F4= (0.60)^x 0.1826    0.5149    0.8270    1.1261    1.4597    1.8224    2.2048    2.5902    2.9675    3.3305 

 

 



45 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

L1: Threshold

M
ea

n 
Q

ue
ue

 L
en

gt
h 

L1, (F1) 

L1, (F2)
L1, (F3)

L1, (F4)

Mean Queue Length Vs Threshold

 

 

F1=(0.01)x

F2=(0.20)x

F3=(0.40)x

F4=(0.60)x

 

Figure 29: Mean Queue Length Vs Threshold 

Table 12: Delay for different values of exponential functions 

Functions Delay 

F1 =(0.01)^x 0.1463     0.3857     0.7019    1.0657    1.4582    1.8647    2.2739    2.6776     3.0694     3.4452 

F2=(0.20)^x 0.1915     0.3966     0.7028    1.0658    1.4582    1.8647    2.2739    2.6776     3.0694     3.4452 

F3=(0.40)^x 0.1972     0.4595     0.7277 1.0722    1.4597    1.8649    2.2740    2.6776     3.0694     3.4452 

F4= (0.60)^x 0.1931     0.5410     0.8625    1.1688    1.5119    1.8861    2.2811    2.6796     3.0694     3.4452 
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Figure 30:  Mean Queue Delay Vs Threshold 
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Tables 9-12 and figures 27-30 clearly show that when the values of the parameter a 

approaches 0.01 the exponential function achieved lower packets loss probabilities, higher 

throughput and lower delay as the values of the threshold increased. These settings of the 

parameters can be used for data service application. While the value of the parameter a 

approaches to 1, the settings can be used for real time applications that required lower delay. 

Therefore the above results are consistent with the normal system, and the exponential 

function based on the above input values and parameter setting is considered to be an 

attractive function for AQM method and hence, this is a contribution to the research on 

performance modelling. 

Chapter 7: Conclusion and Future Works 

7.1 Conclusions 

In this project, new analytical modelling based on the previous model to investigate optimum 

packet dropping function using virtual mathematical techniques in performance modelling 

has been conducted. 

The new analytical modelling approaches are based on RED techniques of AQM methods 

with a single threshold; discrete-time queuing system, identically independently distributed 

packets arrivals and departures based on Bernoulli process and maintain Markov chain state 

transition process. 

Performance metrics such as probability of packet loss, average queue length, throughput, 

and average queuing delay are derived for different functions and investigated the accuracy 

of the model through extensive experiments. To compare the parameters at the steady state, 

fixed input value for packet arrival and departure while changing the thresholds values are 

used. 
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The results showed that exponential function is an optimum function which achieved lower 

probability of packet loss, higher throughput and lower delay compared with others functions 

when the values of the thresholds are increasing.   

7.2 Future Work 

The extension of this project work will be: 

• The new analytical model is implemented based on a single threshold value 

and achieved the above results. Two thresholds values implementation is 

required since RED is implemented by two thresholds values in the Previous 

model.  

 

• All packet dropping functions are not examined on these paper. Much better 

packet dropping function could be investigated. 
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Appendix A –MATLAB Codes 
 

% $$$$$$$$$$$$$$$$$$$ Declaring Variables Main Method $$$$$$$$$$$$$$$$$$$$$ 
clear all; 
  
MaxQueueLength=20; 
V=1; 
  
 for  x=(1:2:20);              
     
%****************Part I: General Function Behaviour************************ 
%                     L3=log(x)^-3; 
%                     L4=0.4/x ; 
%                     L5=(0.4)^x; 
%                     L6=x^-3;  
%****************Part II: Specific Function Behaviour********************** 
  
%                   L3=(0.4)^x; 
%                   L4=x^-3; 
%                                      
%******************PartIII: Exponential Functions Behaviour**************** 
  
                 L3=(0.01)^x; 
                 L4=(0.20)^x;       
                 L5=(0.40)^x;       
                 L6=(0.60)^x; 
%                    
% ********************************Mean Queue Length************************ 
         [mql1] = MQL2(L3,V); 
         [mql2] = MQL2(L4,V); 
         [mql3] = MQL2(L5,V); 
         [mql4] = MQL2(L6,V); 
  
          
            MQLF1(V) = mql1; 
            MQLF2(V) = mql2; 
            MQLF3(V) = mql3; 
            MQLF4(V) = mql4; 
  
%****************************Probability of Packet Loss********************        
         [pkl1] = PKL(L3,V); 
         [pkl2] = PKL(L4,V); 
         [pkl3] = PKL(L5,V); 
         [pkl4] = PKL(L6,V); 
  
  
                PKL1(V) = pkl1; 
                PKL2(V) = pkl2; 
                PKL3(V) = pkl3; 
                PKL4(V) = pkl4; 
  
%********************************Throughput******************************** 
         [thrp1] = THRP(L3,V); 
         [thrp2] = THRP(L4,V); 
         [thrp3] = THRP(L5,V); 
         [thrp4] = THRP(L6,V); 



51 

  
          
                 THRP1(V) = thrp1; 
                 THRP2(V) = thrp2; 
                 THRP3(V) = thrp3; 
                 THRP4(V) = thrp4; 
  
%********************************Mean Queue Delay**************************         
         [dly1] = DELY(L3,V); 
         [dly2] = DELY(L4,V); 
         [dly3] = DELY(L5,V); 
         [dly4] = DELY(L6,V); 
  
            DELY1(V)= dly1; 
            DELY2(V)= dly2; 
            DELY3(V)= dly3; 
            DELY4(V) =dly4; 
         
        V =V+1; 
 end  
%     fn = (1:2:20) ; 
    L1=1:2:MaxQueueLength; 
     
 %*************************Mean Queue Length******************************* 
                MQLA=MQLF1 
                MQLB=MQLF2 
                MQLC=MQLF3 
                MQLD=MQLF4 
     
%**********************Probability of Packet Loss************************** 
                PKLA=PKL1 
                PKLB=PKL2 
                PKLC=PKL3 
                PKLD=PKL4 
%    *************************Throughput*********************************** 
                THRPA=THRP1 
                THRPB=THRP2 
                THRPC=THRP3 
                THRPD=THRP4 
         
% %***********************Mean Queue Delay********************************* 
                DELYA=DELY1 
                DELYB=DELY2 
                DELYC=DELY3 
                DELYD=DELY4 
      
%***********************Plot for Mean Queue Length************************* 
  
%  plot(L1,MQLA,':k>',L1,MQLB,'-g*',L1,MQLC,'-bo',L1,MQLD,'-rs'... 
%  ,'LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% plot(L1,MQLA,':ro',L1,MQLB,'-
g*','LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% xlabel('L1: Threshold') 
% ylabel('Mean Queue Length ') 
% gtext('L1, (F1) ') 
% gtext('L1, (F2)') 
% gtext('L1, (F3)') 
% gtext('L1, (F4)') 
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%*******************Plot for Probability of Packet Loss******************* 
  
 plot(L1,PKLA,':k>',L1,PKLB,'-g*',L1,PKLC,'-bo',L1,PKLD,'-rs'... 
     ,'LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
%  plot(L1,PKLA,':ro',L1,PKLB,'-
g*','LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
xlabel('L1: Threshold') 
ylabel('Packet Dropping Probability') 
gtext('L1, (F1) ') 
gtext('L1, (F2)') 
gtext('L1, (F3)') 
gtext('L1, (F4)') 
  
% %***********************Plot for Throughput************************** 
  
%  plot(L1,THRPA,':k>',L1,THRPB,'-g*',L1,THRPC,'-bo',L1,THRPD,'-rs'... 
% ,'LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% plot(L1,THRPA,':ro',L1,THRPB,'-
g*','LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% xlabel('L1: Threshold') 
% ylabel('Throughput') 
% gtext('L1, (F1) ') 
% gtext('L1, (F2)') 
% gtext('L1, (F3)') 
% gtext('L1, (F4)') 
  
%***********************Plot for Mean Queue Delay************************** 
  
%  plot(L1,DELYA,':k>',L1,DELYB,'-g*',L1,DELYC,'-bo',L1,DELYD,'-rs'... 
% ,'LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% plot(L1,DELYA,':ro',L1,DELYB,'-
g*','LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
% xlabel('L1: Threshold') 
% ylabel('Mean Queue Delay ') 
% gtext('L1, (F1) ') 
% gtext('L1, (F2)') 
% gtext('L1, (F3)') 
% gtext('L1, (F4)') 
 
 

 

function [mql1]=MQL2(L3,L1) 
  
% $$$$$$$$$$$$$$$$$$$ Declaring Variables For Function MQL2 Method $$$$$$$$ 
a1=0.27;         %a=Arrival_one Value 
D=0.30;          %D=Departure Value 
 Q=5 ;           %Value for the threshold 
N2=15 ; 
if L1<=5 
  J=0; 
else 
       J=L1-5; 
       L1=5; 
  end 
  
AwnD1=a1*(1-D); % AwnD1=AwnD_one=Arrival_one*(1-Departure) 
Dwna1=D*(1-a1); % Dwna1=Dwna_one=Departure*(1-Arrival_one) 
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a=[[[a1^4]*[1-D]^3]/[[D^4]*[1-a1]^4]]; % coefficient of Pai4 = PL1-1 
b=[[[a1^3]*[1-D]^2]/[[D^3]*[1-a1]^3]]; % coefficient of Pai3 = PL1-2 
c=[[a1+D]-[2*a1*D]] ; 
d=[a1-[a1*D]]; 
e=[D-[a1*D]]; 
g=[[D-[a1*D]+[a1*D]*L3]] ;              
h=[[[[a1+D]-[2*a1*D]]-[a1*L3]]+[2*a1*D*L3]]; 
i=[[[a1-[a1*D]]-[a1*L3]]-[a1*D*L3]]; 
  
%$$$$$$$$$$$$$$$$$ Get the coefficients of the States $$$$$$$$$$$$$$$ 
  
p0=1  ;                %Coefficient of P0 
p1=[[a1]/[D*[1-a1]]];  %Coefficient of P1 
  
for r=2:Q-1 
p2to(r)=[[[a1^r]*[[1-D]^[r-1]]]/[[D^r]*[1-a1]^r]];%coefficient of p2topL1-1 
end 
  
pL1=[a*d]/g ;              % Coefficient at L1 
pL1plus1=[[a*i*d]/g]/g;    % Coefficient at L1+1 
pL1plus2=[pL1plus1*i]/g;   % Coefficient at L1+2 
pL1plus3=[pL1plus2*i]/g;   % Coefficient at L1+3 
pL1plus4=[pL1plus3*i]/g ;  % Coefficient at L1+4 
pL1plus5=[pL1plus4*i]/g ;  % Coefficient at L1+5 
pL1plus6=[pL1plus5*i]/g ;  % Coefficient at L1+6 
pL1plus7=[pL1plus6*i]/g ;  % Coefficient at L1+7 
pL1plus8=[pL1plus7*i]/g;   % Coefficient at L1+8 
pL1plus9=[pL1plus8*i]/g ;  % Coefficient at L1+9 
pL1plus10=[pL1plus9*i]/g;  % Coefficient at L1+10 
  
%$$$$$$$$$$$$$$$$$$$$$$$ Get Pai0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
part1=[p0+p1]+[sum(p2to)]; 
part2=[pL1+pL1plus1+pL1plus2+pL1plus3+pL1plus4]; 
part3=[pL1plus5+pL1plus6+pL1plus7+pL1plus8+pL1plus9+pL1plus10]; 
bottom=[part1+part2+part3]; 
  
Pai0=[[1]/[bottom]]; 
  
% $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ MQL $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
Part1=[Pai0*[[d/e]+[[d/e]^[L1+1]*[L1-1]]-[L1*[d/e]^L1]]]/[[1-D]*[[1-
[d/e]]^2]]; 
Part2=[Pai0*[[[d/e]^L1]*[1-a1]*[[i/g]+[L1*[1-[i/g]]]]]]/[[1-D]*[1-
a1+[a1*L3]]*[[1-[i/g]]^2]]; 
Part3=[Pai0*[[d/e]^L1]*[1-a1]*[[i/g]^[J+1]]*[1+[[L1+J]*[1-[i/g]]]]]/[[1-
D]*[1-a1+[a1*L3]]*[[1-[i/g]]^2]]; 
Part4=[Part2-Part3]; 
  
               mql1=[Part1+Part4]                 
 
 

 

function [dly1]=DELY(L3,L1) 
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% $$$$$$$$$$$$$$$$$$$ Declaring Variables $$$$$$$$$$$$$$$$$$$$$$$$$$$ 
a1=0.27;         %a=Arrival_one 
D=0.30;          %D=Departure 
Q=5 ;            %Value for the threshold 
L2=15 ;          %Value for second threshold 
if L1<=5 
  J=0; 
else 
     J=L1-5; 
       L1=5; 
end 
  
AwnD1=a1*(1-D); % AwnD1=AwnD_one=Arrival_one*(1-Departure) 
Dwna1=D*(1-a1); % Dwna1=Dwna_one=Departure*(1-Arrival_one) 
  
a=[[[a1^4]*[1-D]^3]/[[D^4]*[1-a1]^4]]; % coefficient of Pai4 = PL1-1 
b=[[[a1^3]*[1-D]^2]/[[D^3]*[1-a1]^3]]; % coefficient of Pai3 = PL1-2 
c=[[a1+D]-[2*a1*D]] ; 
d=[a1-[a1*D]]; 
e=[D-[a1*D]]; 
g=[[D-[a1*D]+[a1*D]*L3]] ;                   
h=[[[[a1+D]-[2*a1*D]]-[a1*L3]]+[2*a1*D*L3]]; 
i=[[[a1-[a1*D]]-[a1*L3]]-[a1*D*L3]]; 
  
%$$$$$$$$$$$$$$$$$ Get the coefficients of the States $$$$$$$$$$$$$$$ 
  
p0=1 ;                  %Coefficient of P0 
p1=[[a1]/[D*[1-a1]]] ;  %Coefficient of P1 
  
for r=2:Q-1 
    p2to(r)=[[[a1^r]*[[1-D]^[r-1]]]/[[D^r]*[1-a1]^r]]; %Summing coefficient 
of p2 to pL1-1 
end 
  
pL1=[a*d]/g   ;           % Coefficient at L1 
pL1plus1=[[a*i*d]/g]/g  ; % Coefficient at L1+1 
pL1plus2=[pL1plus1*i]/g ; % Coefficient at L1+2 
pL1plus3=[pL1plus2*i]/g ; % Coefficient at L1+3 
pL1plus4=[pL1plus3*i]/g ; % Coefficient at L1+4 
pL1plus5=[pL1plus4*i]/g ; % Coefficient at L1+5 
pL1plus6=[pL1plus5*i]/g ; % Coefficient at L1+6 
pL1plus7=[pL1plus6*i]/g ; % Coefficient at L1+7 
pL1plus8=[pL1plus7*i]/g ; % Coefficient at L1+8 
pL1plus9=[pL1plus8*i]/g ; % Coefficient at L1+9 
pL1plus10=[pL1plus9*i]/g ;% Coefficient at L1+10 
  
  
%$$$$$$$$$$$$$$$$$$$$$$$ Get Pai0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
part1=[p0+p1]+[sum(p2to)]; 
part2=[pL1+pL1plus1+pL1plus2+pL1plus3+pL1plus4]; 
part3=[pL1plus5+pL1plus6+pL1plus7+pL1plus8+pL1plus9+pL1plus10]; 
bottom=[part1+part2+part3]; 
  
Pai0=[[1]/[bottom]]; 
  
% $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ MQL $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
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Part1=[Pai0*[[d/e]+[[d/e]^[L1+1]*[L1-1]]-[L1*[d/e]^L1]]]/[[1-D]*[[1-
[d/e]]^2]] 
Part2=[Pai0*[[[d/e]^L1]*[1-a1]*[[i/g]+[L1*[1-[i/g]]]]]]/[[1-D]*[1-
a1+[a1*L3]]*[[1-[i/g]]^2]] 
Part3=[Pai0*[[d/e]^L1]*[1-a1]*[[i/g]^[J+1]]*[1+[[L1+J]*[1-[i/g]]]]]/[[1-
D]*[1-a1+[a1*L3]]*[[1-[i/g]]^2]] 
Part4=[Part2-Part3] 
  
               mql1=[Part1+Part4]; 
  
   %$$$$$$$$$$$$$$$$$$$$$$$ Throughput $$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
                 thrp1=[1-[Pai0*D]]; 
  
%$$$$$$$$$$$$$$$$$$$$$$$$$$$  Delay $$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
               dly1=[mql1/thrp1]; 
 

 

function [pkl1]=PKL(L3,L1) 
  
% $$$$$$$$$$$$$$$$$$$ Declaring Variables For Function MQL2 Method 
$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
a1=0.27;        %a=Arrival_one 
D=0.30;         %D=Departure 
Q=5 ;           %Value for the threshold 
if L1<=5 
  J=0; 
else 
     J=L1-5; 
       L1=5; 
end 
  
AwnD1=a1*(1-D); % AwnD1=AwnD_one=Arrival_one*(1-Departure) 
Dwna1=D*(1-a1); % Dwna1=Dwna_one=Departure*(1-Arrival_one) 
  
a=[[[a1^4]*[1-D]^3]/[[D^4]*[1-a1]^4]]; % coefficient of Pai4 = PL1-1 
b=[[[a1^3]*[1-D]^2]/[[D^3]*[1-a1]^3]]; % coefficient of Pai3 = PL1-2 
c=[[a1+D]-[2*a1*D]] ; 
d=[a1-[a1*D]]; 
e=[D-[a1*D]]; 
g=[[D-[a1*D]+[a1*D]*L3]];                    
h=[[[[a1+D]-[2*a1*D]]-[a1*L3]]+[2*a1*D*L3]]; 
i=[[[a1-[a1*D]]-[a1*L3]]-[a1*D*L3]]; 
  
%$$$$$$$$$$$$$$$$$ Get the coefficients of the States $$$$$$$$$$$$$$$ 
  
p0=1         ;         %Coefficient of P0 
p1=[[a1]/[D*[1-a1]]] ; %Coefficient of P1 
  
for r=2:Q-1 
    p2to(r)=[[[a1^r]*[[1-D]^[r-1]]]/[[D^r]*[1-a1]^r]]; %Summing coefficient 
of p2 to pL1-1 
end 
  
pL1=[a*d]/g;              % Coefficient at L1 
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pL1plus1=[[a*i*d]/g]/g ;  % Coefficient at L1+1 
pL1plus2=[pL1plus1*i]/g ; % Coefficient at L1+2 
pL1plus3=[pL1plus2*i]/g ; % Coefficient at L1+3 
pL1plus4=[pL1plus3*i]/g;  % Coefficient at L1+4 
pL1plus5=[pL1plus4*i]/g;  % Coefficient at L1+5 
pL1plus6=[pL1plus5*i]/g;  % Coefficient at L1+6 
pL1plus7=[pL1plus6*i]/g;  % Coefficient at L1+7 
pL1plus8=[pL1plus7*i]/g;  % Coefficient at L1+8 
pL1plus9=[pL1plus8*i]/g;  % Coefficient at L1+9 
pL1plus10=[pL1plus9*i]/g; % Coefficient at L1+10 
  
%$$$$$$$$$$$$$$$$$$$$$$$ Get Pai0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
part1=[p0+p1]+[sum(p2to)]; 
part2=[pL1+pL1plus1+pL1plus2+pL1plus3+pL1plus4]; 
part3=[pL1plus5+pL1plus6+pL1plus7+pL1plus8+pL1plus9+pL1plus10]; 
bottom=[part1+part2+part3]; 
  
    Pai0=[[1]/[bottom]]; 
  
         
%$$$$$$$$$$$$$$$$$$$$$$ Probability of Packet Loss $$$$$$$$$$$$$$$$$$$$$$$$ 
  
Section1=[L3*pL1]+[L3*pL1plus1]+[L3*pL1plus2]+[L3*pL1plus3]; 
Section2=[L3*pL1plus4]+[L3*pL1plus5]+[L3*pL1plus6]; 
Section3=[L3*pL1plus7]+[L3*pL1plus8]+[L3*pL1plus9]; 
Section4=[Section1+Section2+Section3]; 
Section5=[[[L3*pL1plus10]*D]+[pL1plus10*[1-D]]]; 
  
       pkl1= Pai0*[Section4+Section5] 
 

 

function [thrp1]=THRP(L3,L1) 
  
% $$$$$$$$$$$$$$$$$$$ Declaring Variables $$$$$$$$$$$$$$$$$$$$$$$$$$$ 
a1=0.27 ;         %a=Arrival_one 
D=0.30;           %D=Departure 
Q=5 ;             %Value for the threshold 
L2=15;            %Value for second threshold 
if L1<=5 
  J=0; 
else 
     J=L1-5; 
       L1=5; 
end 
  
AwnD1=a1*(1-D); % AwnD1=AwnD_one=Arrival_one*(1-Departure) 
Dwna1=D*(1-a1); % Dwna1=Dwna_one=Departure*(1-Arrival_one) 
  
a=[[[a1^4]*[1-D]^3]/[[D^4]*[1-a1]^4]]; % coefficient of Pai4 = PL1-1 
b=[[[a1^3]*[1-D]^2]/[[D^3]*[1-a1]^3]]; % coefficient of Pai3 = PL1-2 
c=[[a1+D]-[2*a1*D]] ; 
d=[a1-[a1*D]]; 
e=[D-[a1*D]]; 
g=[[D-[a1*D]+[a1*D]*L3]];                 
h=[[[[a1+D]-[2*a1*D]]-[a1*L3]]+[2*a1*D*L3]]; 
i=[[[a1-[a1*D]]-[a1*L3]]-[a1*D*L3]]; 
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%$$$$$$$$$$$$$$$$$ Get the coefficients of the States $$$$$$$$$$$$$$ 
  
p0=1  ;                 %Coefficient of P0 
p1=[[a1]/[D*[1-a1]]] ;  %Coefficient of P1 
  
for r=2:Q-1 
    p2to(r)=[[[a1^r]*[[1-D]^[r-1]]]/[[D^r]*[1-a1]^r]]; %Summing coefficient 
of p2 to pL1-1 
end 
  
pL1=[a*d]/g    ;          % Coefficient at L1 
pL1plus1=[[a*i*d]/g]/g  ; % Coefficient at L1+1 
pL1plus2=[pL1plus1*i]/g ; % Coefficient at L1+2 
pL1plus3=[pL1plus2*i]/g  ;% Coefficient at L1+3 
pL1plus4=[pL1plus3*i]/g ; % Coefficient at L1+4 
pL1plus5=[pL1plus4*i]/g ; % Coefficient at L1+5 
pL1plus6=[pL1plus5*i]/g ; % Coefficient at L1+6 
pL1plus7=[pL1plus6*i]/g  ;% Coefficient at L1+7 
pL1plus8=[pL1plus7*i]/g ; % Coefficient at L1+8 
pL1plus9=[pL1plus8*i]/g ; % Coefficient at L1+9 
pL1plus10=[pL1plus9*i]/g ;% Coefficient at L1+10 
  
  
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Get Pai0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
part1=[p0+p1]+[sum(p2to)]; 
part2=[pL1+pL1plus1+pL1plus2+pL1plus3+pL1plus4]; 
part3=[pL1plus5+pL1plus6+pL1plus7+pL1plus8+pL1plus9+pL1plus10]; 
bottom=[part1+part2+part3]; 
  
        Pai0=[[1]/[bottom]]; 
  
% $$$$$$$$$$$$$$$$$$$$$$$ Throughput $$$$$$$$$$$$$$$$$$$$$$$$$$ 
  
                 thrp1=[1-[Pai0*D]]; 
                
 

%**************General Dropping Functions******** 
x=1:2:20 
L3=log(x).^-3 
L4=0.4./x  
L5=(0.4).^x 
L6=x.^-3  
plot(x,L3,':k>',x,L4,'-g*',x,L5,'-bo',x,L6,'-rs'... 
,'LineWidth',1,'MarkerSize',6,'MarkerFaceColor',[0 0 0]) 
xlabel('X-Axis: Threshold') 
ylabel('Y-Axis: Value ') 
gtext('L1, F1') 
gtext('L1, F2') 
gtext('L1, F3') 
gtext('L1, F4') 


