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Preface 

Since its re-emergence, highly pathogenic avian influenza (HPAI) H5N1 has attracted considerable 

public and media attention because the viruses involved have been shown to be capable of 

producing fatal disease in humans. While there is fear that the virus may mutate into a strain 

capable of sustained human-to-human transmission, the greatest impact to date has been on the 

highly diverse poultry industries in affected countries. In response to this, HPAI control measures 

have so far focused on implementing prevention and eradication measures in poultry populations, 

with more than 175 million birds culled in Southeast Asia alone. 

Until now, significantly less emphasis has been placed on assessing the efficacy of risk reduction 

measures, including their effects on the livelihoods of smallholder farmers and their families. In 

order to improve local and global capacity for evidence-based decision making on the control of 

HPAI (and other diseases with epidemic potential), which inevitably has major social and economic 

impacts, the United Kingdom (UK) Department for International Development (DFID) has agreed to 

fund a collaborative, multidisciplinary HPAI research project for Southeast Asia and Africa. 

The specific purpose of the project is to aid decision makers in developing evidence-based, pro-poor 

HPAI control measures at national and international levels. These control measures should not only 

be cost-effective and efficient in reducing disease risk, but also protect and enhance livelihoods, 

particularly those of smallholder producers in developing countries, who are and will remain the 

majority of livestock producers in these countries for some time to come. 
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Executive Summary 

Background 

Highly pathogenic avian influenza (HPAI) H5N1 is endemic in Indonesia, where it is an important 

cause of disease in commercial, semi-commercial and backyard poultry flocks. It is likely that small-

scale broiler farms, which typically have poor biosecurity practices together with large populations 

of susceptible birds, play an important role in the spread of the disease in the country. 

This report describes a quantitative risk assessment that was conducted to describe the risk of 

transmission of the HPAI virus (HPAIV):  

a) between small-scale broiler farms, and 

b) between small-scale broiler farms and backyard poultry flocks. 

For this study we focus in particular on the District and Municipality of Bogor, West Java, Indonesia. 

Approach 

The risk assessment considers two general risk pathways: those arising from environmental 

contamination, and therefore indirect contact, and those arising from direct bird-to-bird contact. 

The model begins by simulating an outbreak of HPAI H5N1 on a small-scale broiler farm. The release 

and exposure assessment are then composed of 3 sections considering 1) mechanical transmission 

via fomites, 2) water-borne transmission, and 3) bird-bird transmission. For the risks associated with 

environmental contamination, we specifically consider the probability of virus contamination (Pc), 

the probability of virus survival (Ps) and the probability of infection given exposure to defined virus 

dose (Pi).  

Where possible, this risk assessment has used a stochastic second-order modelling approach, 

whereby the variability and uncertainty in probabilistic model parameters are disaggregated and the 

model structured around the variability, with uncertainty overlaid. The probability distributions of 

variables used in the model were derived from survey data, estimated from available literature or 

developed based on expert opinion.  

Results 

2.1.1 Mechanical transmission  

Collectors 

Poultry collectors may play an important role in the spread of HPAIV H5N1 between small-scale 

broiler flocks in Indonesia. We estimated that, on average, the probability of transmission from an 

infected to a susceptible flock via collectors was between 3.2x10-2 and 1.3x10-1, or, on 3 to 13 out of 

every 100 occasions in which a broiler farm is visited by collectors who have first visited a farm on 

which an outbreak is occurring, on average we would expect that at least one bird in the flock will 

become infected. This estimate relates to the first susceptible farm visited by collectors following the 
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visit to the infected farm; subsequent visits would be associated with lower risks as the quantity of 

contaminating virus decreases. 

The impacts of risk mitigation on the likelihood of disease transmission via this route were 

estimated. We predict that a mandatory delay period of 24 hours between farm visits can reduce the 

probability of transmission to very low levels (9.5 × 10-4 to 4.5 × 10-3) and to almost negligible levels 

after 48 hours (7.7 × 10-6 to 9.1 × 10-5). Moreover, effective biosecurity and sanitation practices with 

a 2 to 3 log reduction in the amount of virus contaminating collectors and their equipment would be 

expected to result in a reduction of risk to very low levels (9.5 × 10-4 and 9.6 × 10-5, respectively). 

We assessed the impact of incentives for early disease reporting, for example through 

compensation, and estimate that the situation in which all farms report disease at the first suspicion 

was associated with a reduction in the average probability of onward transmission via collectors to 

between 2.8 × 10-3 and 1.6 × 10-2. Some risk of onward transmission exists even in the presence of 

immediate reporting and movement bans as HPAI H5N1 can circulate undetected on an infected 

broiler farm for a short period. 

Animal health workers 

The risk associated with handling poultry with HPAIV H5N1 contaminated hands was assessed, 

considering the specific example of animal health workers who may handle infected poultry in the 

course of disease investigation on an infected farm and subsequently handle birds on a susceptible 

farm. We predict that birds handled in such a scenario have an average probability of becoming 

infected of between 2.9 × 10-2 to 9.5 × 10-2. Effective hand sanitation, for example thorough washing 

with soap and water and a subsequent 2 to 3 log reduction in virus titre, resulted in a reduction in 

the average risk to very low levels (6.9 × 10-4 to 9.9 × 10-4 and 4.9 × 10-5 to 2.0 × 10-4, respectively). 

In a separate module, the risks associated with the transfer of infected material from contaminated 

animal health worker’s shoes into the litter of a susceptible broiler house were assessed and the 

average probability of transmission was estimated to be between 3.9 × 10-2 to 1.5 × 10-1. We 

demonstrate that a mandatory delay period of 24 hours between farm visits is likely to reduce this 

risk to very low levels (6.4 × 10-4 to 3.4 × 10-3). 

2.1.2 Water-borne transmission  

The risks of HPAI transmission via water were assessed by considering the specific scenario in which 

a proportion of HPAIV H5N1 contaminated carcasses from a farm undergoing a disease outbreak is 

discarded into a river. We predict that the average probability that at least one bird within a random 

small-scale broiler flock in Bogor District or Municipality becomes infected following exposure to 

untreated river water is between 1.2 × 10-1 to 3.1 × 10-1 when the source river is ‘small’, 7.6 × 10-3 to 

3.3 × 10-2 when the source river is ‘medium’-sized, and 7.8 × 10-4 to 3.7 × 10-3 when the source river 

is ‘large’. The majority of broiler producers in Bogor District chlorinate drinking water, and provided 

chlorine concentrations are sufficient to ensure a greater than 4 to 5 log reduction in virus titres, we 

expect that the risk of infection in a broiler flock from contaminated river water can be reduced to 

low levels. 

The average probability that at least one bird within a household flock becomes infected following 

consumption of HPAIV H5N1 contaminated river water was estimated to be 4.6 × 10-4 to 2.3 × 10-3 
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when the source river is small, 1.8 × 10-5 to 9.5 × 10-5 for water from medium-sized rivers and 1.7 × 

10-6 to 9.1 × 10-6 for water from large rivers. Whilst individual household estimates are very low, if all 

backyard poultry within a desa [village] are exposed to contaminated river water we predict that the 

average probability that at least one bird within the desa becomes infected is between 1.3 × 10-1 to 

3.3 × 10-1 following desa-wide consumption of H5N1 contaminated water from small rivers, 1.1 × 10-

2 to 4.4 × 10-2 from medium sized rivers and 1.3 × 10-3 to 5.8 × 10-3 from large rivers. 

2.1.3 Direct flock-to-flock transmission 

We considered the specific risks associated with contact between free-ranging poultry flocks and a 

broiler farm on which an outbreak is occurring. Based on the spatial distribution of small-scale 

broiler farms in Bogor District and their proximity to surrounding households, the average contact 

rate was estimated to be 2.3 flocks entering the boundary of the broiler farm per day, with a 5th 

percentile of 0 and a 95th percentile of 7 free-ranging poultry flocks. By incorporating a range of 

possible values for the probability of disease transmission given contact, estimates of the number of 

backyard flocks that might be expected to become infected given an outbreak on a small-scale 

broiler farm were estimated. 

Summary 

This quantitative risk assessment has used current knowledge in order to predict the risk of spread 

of HPAIV H5N1 to domestic poultry along a variety of potential transmission routes from an initial 

outbreak on a small-scale broiler farm. The development of the model has allowed potential risk 

mitigation strategies to be tested.  

The model output indicates that the environmental transmission route may play an important role in 

the spread of HPAIV H5N1 between broiler farms in the District and Municipality of Bogor, and in 

Indonesia more generally. Hence, relatively simple disease prevention strategies, such as sanitation 

and disinfection of visitors and their equipment, or the adequate treatment of drinking water for 

poultry, can potentially impact on the degree to which HPAIV H5N1 is able to spread from an 

infected small-scale broiler farm to the susceptible farms around it. Policy measures, such as the 

provision of incentives for producers to report HPAI H5N1 outbreaks in their flocks or changes in the 

behaviour and practices of poultry collectors would also be expected to impact on this risk.  

It is necessary that the outputs from this study are interpreted in the light of several key areas data 

deficiency and uncertainty and therefore the need to make several large assumptions. However by 

demonstrating some of the routes by which HPAIV H5N1 can be spread between farms, and the 

degree to which the risk of spread can be minimized, the outputs can assist in risk communication to 

those people working in the poultry sector as well as contributing evidence to policy decisions. 
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1 Introduction 

1.1 Background 

Highly pathogenic avian influenza (HPAI) H5N1 was first officially reported in Indonesia in January 

2004, but by that time the disease had spread throughout the country and caused the death of 

several thousand domestic poultry (Perry et al. 2009). The response to the epidemic involved a 

synchronized campaign of mass vaccination and the culling of infected and in-contact premises 

(Sumiarto and Arifin 2008). Despite these efforts, which involved a reported 131,846,470 birds 

vaccinated and 7,269,582 birds culled, it was reported that there were some 4,591,880 cases of HPAI 

H5N1 in Indonesia in 2004 alone (OIE [World Organization for Animal Health] 2004). The epidemic 

continued throughout 2005, spreading to 23 provinces, involving 151 districts or cities (Perry et al. 

2009), and was officially reported to be endemic in the Indonesian poultry population in 2006 

(WAHID [World Animal Health Information Database] 2006). By June 2009, 31 of the country’s 33 

provinces had had a least one outbreak of HPAI H5N1 in poultry, with the majority of these occurring 

on the Islands of Java, Sumatra, Sulawesi and Bali (Perry et al. 2009). As well as untold losses to the 

poultry industry, by the end of December 2009 HPAI virus (HPAIV) H5N1 had been the cause of at 

least 161 human cases in Indonesia, of which 134 were fatal (WHO [World Health Organization] 

2009).  

The seriousness of avian influenza in Indonesia is a reflection not only of its zoonotic potential, but 

also of the economic and social importance of the country’s poultry industry. The sector is highly 

diverse, and incorporates backyard poultry producers rearing birds as a hobby or for subsistence in 

close proximity to semi-commercial producers rearing several hundred or thousand broiler or layer 

chickens (and more rarely ducks). In addition, Indonesia has a substantial commercial sector, 

characterized by farms rearing tens of thousands of birds. The poultry population is estimated at 

1.522 billion birds of which 70.7% are broiler chickens, 19.1% are village chickens, 7.7% are layers 

and 2.4% are ducks (Perry et al. 2009).  

1.1.1 The spread of avian influenza 

The poultry sector in many Southeast Asian countries, including Indonesia, can be classified into 

sector 1, 2, 3 and 4 farms (Table 1). Sector 4 poultry have often been implicated as contributing to 

the maintenance of transmission of HPAIV H5N1 in affected areas (Tiensin et al. 2005; Koch and 

Elbers 2006; Songserm et al. 2006b), and indeed this is the sector that has been worst affected in 

Indonesia. Small-scale outbreaks and sustained spread between sector 4 farms may act as a source 

of infection for rarer outbreaks in sector 3, 2, and 1 farms (Iqbal 2009). Despite a probable role for 

backyard flocks in the maintenance of the disease, sector 3 farms are also increasingly being 

implicated. These small-scale commercial farms typically lack adequate biosecurity practices and the 

potential for introduction of HPAIV H5N1, and other infectious agents, is potentially high. The same 

inadequate biosecurity measures that allow HPAIV H5N1 to enter a flock are also likely to impact on 

the containment of the virus in the event of an outbreak. Hence, an outbreak in a semi-commercial 

flock, which may contain several thousand birds within a single shed, may present a substantial risk 

of onward spread to those poultry flocks that are in direct or indirect contact. Moreover, and given 

that the majority of the outputs from small-scale broiler production enter the live-bird marketing 
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system, there is also a potentially large public health concern as a result of HPAI H5N1 outbreaks in 

sector 3 farms.  

Table 1: The Food and Agriculture Organization of the United Nation (FAO) poultry sector 

classification system 

Source: FAO (2007) 

Semi-commercial farms, and in particular small-scale broiler producers, have recently become the 

focus of much disease prevention activity in Indonesia, for example the Community Based Avian 

Influenza Control Project funded by the United States Agency for International Development (USAID) 

and the ‘Cost-effective biosecurity for non-industrial commercial poultry operations in Indonesia’ 

project funded by the Australian Centre for International Agricultural Research (ACIAR). 

1.1.2 Risk assessment  

Risk can be formally defined as the likelihood and magnitude of the occurrence of an adverse event 

(Ahl et al. 1993). The aim of a risk assessment is therefore to estimate, in a systematic manner, both 

these elements so as to provide inputs to an underlying decision problem (Stärk and Salman 2001). 

The methodology used will depend on the question being addressed, but methods can generally be 

grouped into four broad steps: hazard identification, release assessment, exposure assessment and 

consequence assessment (Covello and Merkhofer 1993). Such steps are considered appropriate for 

the development of risk assessments for animal diseases (Wooldridge 1996).  

1.1.3 Risk assessment for HPAI 

In the context of HPAIV H5N1, the majority of risk assessments conducted to date have considered 

the risk of disease introduction into the poultry production sector of a disease free country, for 

example the United Kingdom (Sabirovic et al. 2007) or Spain (Martínez et al. 2007). Quantitative 

microbial risk assessments have also been conducted to assess the risk posed to people as a result of 

exposure to contaminated poultry products or water (Pharo 2003; Schijven et al. 2005b; Greiner et 

al. 2007). However, there are relatively few published studies in which a formal risk assessment 

approach has been applied to predict the risk of spread of HPAIV H5N1 between farms, i.e. the 

transmission of the virus from one farm to another within an affected region. Recently, and as part 

of the Pro-Poor HPAI Risk Reduction project, this approach has been applied more widely to predict 

the risk of spread of HPAIV H5N1 within affected countries, for example Thailand (Kasemsuwan et al. 

Sector 1 Industrial integrated system with high-level biosecurity and birds/products marketed 

commercially (e.g. farms that are part of an integrated broiler production enterprise with clearly 

defined and implemented standard operating procedures for biosecurity). 

Sector 2 Commercial poultry production system with moderate to high biosecurity and birds/products 

usually marketed commercially (e.g. farms with birds kept indoors continuously; strictly 

preventing contact with other poultry or wildlife). 

Sector 3 Commercial poultry production system with low to minimal biosecurity and birds/products 

entering live-bird markets (e.g. a caged layer farm with birds in open sheds; a farm with poultry 

spending time outside the shed; a farm producing chickens and waterfowl). 

Sector 4 Village or backyard production with minimal biosecurity and birds/products consumed locally. 
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2009) and Indonesia (Idris et al. 2010). Here, the risk has been assessed in a qualitative manner, 

providing a summary of the literature and expert opinion in order to describe the risk of spread in 

descriptive terms (i.e. high, medium, low or negligible risk), with a qualitative estimate of the 

associated uncertainty. Such activities can form the basis for the development of quantitative risk 

assessments, where quantitative inputs are used to derive a mathematical statement to describe the 

probability of an adverse outcome from exposure to a hazard at a defined level (Covello and 

Merkhofer 1993).  

1.2 A quantitative risk assessment for the spread of HPAI in Indonesia 

1.2.1 Scope 

In the context of HPAIV H5N1 transmission between poultry in Indonesia, a meeting of stakeholders 

held in Bogor, Indonesia in November 2008 agreed that a priority for a greater understanding of the 

risks of onward spread following outbreaks on small-scale broiler farms was a research priority. This 

led to the identification of a range of risk pathways for the transmission of HPAI between sector 3 

broiler farms and the development of a qualitative risk assessment to address this specific risk 

question (Idris et al. 2010). 

This report describes an extension of the work by Idris et al. (2010), and is intended to meet the 

following objectives: 

1. Development of a quantitative risk assessment (QRA) model to describe the risk of 

transmission of HPAIV H5N1:  

a) between small-scale broiler farms(sector 3), and 

b) between small-scale broiler farms and household flocks (sector 4). 

2. Identification of key areas of data deficiency to target future research. 

3. Presentation of practical control policies and estimation of the possible reductions in risk 

achieved through the implementation of these policies. 

This risk assessment focuses on the District and Municipality of Bogor. This region was chosen as 

being representative of an area of high broiler density in Indonesia, and also an area in which the 

poultry industry is relatively well characterized (Centre for Tropical Veterinary Studies [CENTRAS] 

2008; FAO 2008b). Whilst region-specific data have been used for the development of the majority 

of the risk pathways, it is hoped that the outputs from this risk assessment can be considered 

relevant in describing some of the risks associated with onward transmission of HPAIV H5N1 from 

infected small-scale broiler farms throughout the major poultry producing areas of Indonesia.  

1.2.2 Approach 

The risk assessment model used is broadly structured around that described by Covello and 

Merkhofer (1993), and considers the risks of release of HPAIV H5N1 (the ‘hazard’) from an infected 

small-scale broiler farm and an assessment of the likelihood of infection on an exposed small-scale 

broiler farm, or in an exposed backyard poultry flock. We focus on the specific microbiological 

hazard, and therefore attempt to provide an estimate of the actual quantity of virus that may move 
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along a range of transmission pathways. The probability of infection given exposure to virus at these 

concentrations allows an estimation of the risk of transmission along the pathway. Such a 

quantitative microbial risk assessment approach has been very widely applied in the assessment of 

the risks of transmission of infection to people, particularly from food or water-borne contaminants 

(for full review, see Haas et al. [1999]), but more rarely in the veterinary context (French et al. 2002; 

Schijven et al. 2005a). 

1.2.3 Data 

A review of the large body of published literature on avian influenza viruses (AIV) was used in the 

development of the risk assessment model, and to parameterize many of the pathways involved. 

Where possible, we used data specific to HPAIV, and H5N1 in particular, however in some cases it 

was necessary to draw on evidence from studies involving low pathogenic avian influenza virus 

(LPAIV) strains.  

There is a large amount of grey literature regarding HPAI H5N1 and poultry production in Indonesia. 

Much of this includes the results of questionnaire based surveys, and some of these have been 

incorporated into the model where possible. In addition, data were made available by the 

Directorate General for Livestock Services (DGLS), Ministry of Agriculture, Indonesia on surveillance 

activities conducted in Bogor District and Municipality. Where data or literature based estimates 

were not available, we have relied on expert opinion (EO). Consultation with a variety of experts 

from government, academia, industry and non-governmental organizations was conducted. These 

consultations were generally informal, although in some cases specific parameter estimates were 

requested using a formal expert elicitation approach. The range of experts consulted is listed in the 

acknowledgments section. 

1.2.4 Dealing with uncertainty and variability 

This quantitative risk assessment has used a stochastic approach, whereby input parameters are 

described by probability distributions. Probability distributions can be considered to describe either 

the variability in true value that a parameter can take, or the uncertainty in the true value of a 

parameter. The former is the inherent randomness in the system, and is irreducible by further study, 

whilst the latter is the level of ignorance regarding the parameter, and can be reduced through 

additional investigation. In addition, and in the absence of sufficient data, we may be uncertain 

about the extent of the variability in a parameter. 

Where possible, we have attempted to disaggregate input parameters into variable and uncertain 

distributions. In these cases, the model was then structured around the variability, with uncertainty 

associated with the model parameters overlaid. This method is based upon that described by Vose 

(2008) and uses a two-dimensional Monte Carlo simulation where the range and distribution of risks 

for the population constitutes an ‘inner loop’, to which an ‘outer loop’ is added by running the 

simulation (i.e. the inner loop) over a number simulations, using randomly selected values of the 

uncertain parameters each time. The probability distributions of variables in the model were derived 

from survey data, expert opinion or estimated from available literature. 
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All risk modelling was conducted in Microsoft Excel using either the @Risk 5.5 extension (Palisade 

Corporation 2009) or Visual Basic for Applications (VBA, Microsoft Corp.). Presentation of some 

elements of the model structure in Microsoft Excel is given in the appendix. 

1.2.5 Hazard identification 

Highly pathogenic avian influenza virus subtype H5N1  

Influenza A belongs to the Orthomyxoviridae family, a large group of negative strand RNA viruses. 

Virtually all influenza A subtypes have been isolated from birds, in which they tend towards a so-

called low-pathogenic phenotype (LPAI), typically causing relatively mild disease in both wild and 

domestic bird species (Osterhaus et al. 2008). However, following introduction into domestic poultry 

species, some subtypes (namely H5 and H7) have undergone mutation into a highly pathogenic form 

(HPAIV), in which mortality may be as high as 100%. The HPAIV strain that is currently of greatest 

concern is H5N1, which has been the cause of serious outbreaks in both domestic and wild bird 

species throughout much the world. Since this strain first appeared in Hong Kong in 1997, outbreaks 

in poultry have been reported throughout Asia, including the Republic of Korea, Viet Nam, Japan, 

Thailand, Cambodia, Lao PDR, Indonesia, China, Malaysia, Myanmar, Bangladesh, Bhutan, Nepal, 

India, and Pakistan. Moreover, HPAI H5N1 has been reported in poultry in both Africa and Europe 

(OIE 2010). 

Transmission of avian influenza 

Transmission of AIV can occur along a variety of pathways, involving either direct bird-to-bird 

contact or indirect contact as a result of environmental contamination. The range of risk pathways 

for the onward spread of HPAIV from small-scale broiler farms to other sector 3 and 4 farms in the 

District of Bogor has been described by Idris et al. (2010). For that study, risk pathways were 

identified in consultation with a wide variety of stakeholders and experts involved with HPAI control 

or poultry production in Indonesia. The generalized pathways described by Idris et al. (2010) are 

presented in Error! Reference source not found.1 and 2.  

Whilst contact between live birds undoubtedly plays a significant role in the spread of HPAIV H5N1 

in Indonesia (Smith et al. 2006), the majority of pathways identified are associated with the 

contamination of the environment and the subsequent movement of fomites (i.e. contaminated 

people or equipment), animals, water or air between farms. The probable relevance of these 

transmission routes is also reflected in reports from the literature (Table 2). 
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Figure 1: Simplified transmission pathway for the spread of HPAIV H5N1 from an infected small-

scale broiler farm to a non-infected small-scale broiler farm in the District and Municipality of 

Bogor, Indonesia. 

 

 

Figure 2: Simplified transmission pathway for the spread of HPAIV H5N1 from an infected small-

scale broiler farm to a non-infected backyard poultry flock in the District and Municipality of 

Bogor, Indonesia. 
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Table 2: Potential transmission routes for the spread of HPAIV between holdings in Indonesia 

(including evidence from other countries, and evidence from LPAI and HPAIV virus strains) 

Transmission route Reference 

Retail marketing of live poultry (Panigrahy et al. 2002; Bulaga et al. 2003; Kung et al. 

2003; Mullaney 2003; Wang et al. 2006; Sims et al. 

2005; Cardona et al. 2009) 

Movement of live birds between farms (Kaoud 2007)  

Shared equipment (Halvorson et al. 1980; Capua and Marangon 2000; 

Thomas et al. 2005; Wee et al. 2006; Capua and 

Alexander 2007; Nishiguchi et al. 2007) 

Transport vehicles  (Capua and Marangon 2000; McQuiston et al. 2005) 

Human contacts (Halvorson et al. 1980; Capua and Marangon 2000; 

McQuiston et al. 2005; Thomas et al. 2005; Capua and 

Alexander 2007; Nishiguchi et al. 2007; Henning et al. 

2009; Vieira et al. 2009) 

Air currents (Brugh and Johnson 2003; Power 2008; Sedlmaier et al. 

2009)  

Water-borne (Markwell and Shortridge 1982; Halvorson et al. 1985; 

Sivanandan et al. 1991; Laudert et al. 1993; Leung et al. 

2007) 

Wild birds, rodents, pets, insects (Butler 2006; Kuiken et al. 2006; Sawabe et al. 2006; 

Sievert et al. 2006; Barbazan et al. 2008; Henning et al. 

2009) 

Scavenging poultry  (Henning et al. 2009) 

Manure (Kandun et al. 2010)* 

*Reference refers to transmission to people. 

 

1.3 General model framework 

This risk assessment will consider the following specific release and exposure risk questions: 

1.3.1 Release assessment 

‘What is the probability of viable HPAIV H5N1 spreading from an infected small-scale broiler farm to 

a non-infected small-scale broiler farm or non-infected backyard flock in the District and 

Municipality of Bogor, Indonesia, under current conditions and via high risk transmission pathways?’ 
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The release assessment considers the transmission of HPAIV in the course of a single broiler chicken 

production cycle: in Indonesia this is typically 4 to 6 weeks. 

1.3.2 Exposure assessment 

‘Given the spread of virus to a non-infected broiler farm, what is the probability that infection, 

transmission and establishment of the infection will occur on the farm.’ 

The risk assessment model will consider two general risk pathways; those arising from 

environmental contamination, and therefore indirect contact, and those arising from direct bird-to-

bird contact. The risk assessment begins by modelling an outbreak of HPAI H5N1 on a small-scale 

broiler farm. The release and exposure assessments are then composed of 3 sections considering: 1) 

mechanical transmission via fomites; 2) water-borne transmission; 3) bird-to-bird transmission. For 

the risks associated with environmental contamination, we consider the probability of virus 

contamination (Pc), the probability of virus survival (Ps) and the probability of infection (Pi) (Zwieterin 

and van Gerwen 2000). The general model framework is presented in Error! Reference source not 

found.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Risk assessment model framework. 
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2 Modelling an HPAIV H5N1 outbreak on a small-scale broiler 

farm 

The degree to which HPAIV H5N1 spreads within a flock of broilers, and the number of birds infected 

over time, will influence the risk of onward transmission: as more birds become infected on an index 

farm, the probability of onward spread increases. Hence, between farm transmission will be 

influenced by the on-farm disease transmission dynamics (Stärk et al. 2000). 

2.1 Estimating the within-flock prevalence  

We considered an outbreak of HPAI H5N1 on an index farm and modelled the dynamics of infection 

using a simple susceptible-infected-infectious-removed (SEIR) model (Anderson et al. 1992). This 

forms the basis for the release assessment since it allows prediction of the number of birds that are 

infected within the index flock at any point in time (i.e. the within-flock prevalence, wfp), and 

therefore contributes to predictions of the probability of transmission given direct or indirect 

contact with the flock at that time. 

The general structure of the model is shown in Figure 4, and describes the changes in the proportion 

of birds in each of the four compartments (susceptible, infected, infectious, and removed) with time 

(t) following the introduction of the virus into the flock. The movement of birds between these 

transition states is described by three parameters; the force of infection (λ), the disease rate (f) and 

the removal rate (r). The force of infection (λ) reflects the rate at which an infectious agent is 

transmitted in a population of randomly mixing individuals based on the number of ‘effective’ 

contacts individuals make. ‘Effective’ contacts will allow the virus to be transmitted from an 

infectious bird to a susceptible bird at a rate of ßIt, where the transmission rate parameter ß can be 

defined as the average number of secondary cases caused by one infectious bird per time unit in a 

susceptible population (Diekmann and Heesterbeek 2000). The disease rate (f) describes the rate at 

which infected individuals become infectious, whilst the removal rate (r) describes the rate at which 

infectious individuals die or become immune. 

 

 

 

 

 

 

Figure 4: Structure of the SEIR model used to predict the within-flock prevalence. 

The SEIR model adopted makes the important assumption that there is homogenous mixing within a 

flock of broilers (A1)1. Preston & Murphy (1989) demonstrated that birds within a flock of 18,200 

broilers were highly mobile and were not confined in movement to areas occupied by a stable set of 

                                                           

1. A1 indicates that this is the first assumption made. A full list of model assumptions is provided in the 

appendix 
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birds, suggesting that a population of ground-dwelling broiler chickens are relatively well mixed and 

that this assumption may be reasonable (Van Gerwen et al. 2005). The model also makes the 

assumption that each bird makes a fixed number of contacts per unit of time regardless of 

population size (A2). Such a frequency dependent assumption is thought to be appropriate when 

modelling disease in livestock populations with fixed stocking density (Bouma et al. 1995), and was 

used by Bouma et al. (2009) to model HPAI H5N1 outbreaks in a population of ground-dwelling 

birds. In support of this, Bos et al. (2009) showed poultry flock size did not influence the within-flock 

transmission rate for HPAIV H7N7.  

2.2 Transmission model parameters  

The SEIR model adopted was stochastic and model parameters were incorporated as probability 

distributions. Hence, each model iteration employed a randomly selected value for each parameter 

in order to define virus transmission dynamics.  

Rate at which individuals become infectious (f) and rate at which they die (r) 

Based on knowledge of the latent period for HPAIV H5N1 (i.e. time from infection to disease onset, 

) it is possible to estimate the rate at which infected individuals become infectious (f) as 1/ . 

Similarly, the average infectious period, γ, can be used to inform the rate at which infectious 

individuals recover or die (r), as 1/γ. 

There are relatively few data on the duration of either the latent period or infectious period for 

HPAIV H5N1 in infected chickens. As is shown in Table 3, chickens infected with HPAIV H5N1 will 

generally die as a result of infection, and this death will typically occur within 48 to 72 hours. 

Shedding from the cloaca and trachea has been detected 24 hours (Tumpey et al. 2002) and 28 

hours post infection (Bublot et al. 2007a), and this is supported by evidence from other HPAIV 

strains (e.g. H5N2: van der Goot et al. 2003; Swayne and Beck 2005; H7N7: van der Goot et al. 2005).  

Table 3: Mortality rates and mean time to death (MDT) for HPAIV H5N1 strains 

Virus Dose Mortality MDT
1 

Source 

A/Environment/HongKong/437/99 10
6.0 

100% (8/8) 5.5 (Cauthen et al. 2000) 

A/chicken/Hong Kong 10
6.0

 100% 2.1 (Shortridge et al. 1998) 

A/chicken/HongKong/156/97  10
6.9

 94% (15/16) 3–5 (Suarez et al. 1998) 

A/chicken/HongKong/220/97 10
8.1

 100% (16/16) 2 (Suarez et al. 1998) 

A/chicken/Hong Kong/220/97 10
5.8

 –10
6.2

 100% (16/16) 1.5 (Perkins and Swayne 2001) 

A/duck/Anyang/AVL-1/01 10
8.0

 100% (8/8) 2.9 (Tumpey et al. 2002) 

A/goose/Vietnam/113/01  10 
6.0

 100% (8/8) 2.6 (Nguyen et al. 2005) 

A/goose/Vietnam/324/01  10 
6.0

 100% (8/8) 2.4 (Nguyen et al. 2005) 

A/chicken/Korea/ES/03 10
5.9

 100% (8/8) 2 (Lee et al. 2005) 

1
MDT: Mean time to death (days) 
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Bouma et al. (2009), using experimental data, predicted a relatively short latent period of 0.24 days 

(s.d. 0.043) and an infectious period of 2.1 days (s.d. 0.33). In the absence of additional data, we use 

these single study estimates in order to predict f and r, assuming that both latent period and 

infectious period are log-normally distributed (A3).  

Force of infection (λ) 

The force of infection within a flock can be derived based on the average number of secondary 

infectious cases resulting from the introduction of a primary infectious case into a totally susceptible 

population (i.e. the basic reproduction number, R0). Estimates of R0 can be used to define β, and 

therefore λ, as: 

     β =    and  λ = β  

 

where n is the susceptible population size and γ is the average duration of infection (i.e. the 

infectious period).  

The stocking density for small-scale broiler production in Bogor is typically between 8 to 10 birds per 

m2, with an average of 3,400 birds in a single shed (FAO 2008b). Caeco-oral transmission is 

considered to be the most important mechanism for spread of HPAIV H5N1 between chickens 

(Shortridge et al. 1998), hence as well as direct bird-to-bird contact, the contamination of feed and 

water sources is likely to play an important role in virus spread within a broiler house.  

Given the high density of birds, together with the potential for indirect transmission, we expect the 

number of secondary cases resulting from the introduction of virus and the infection of at least one 

bird to be high. Modelling an outbreak of HPAIV in a flock of unvaccinated floor reared birds, Savill et 

al. (2006) estimated R0 to be in the order of 66, whilst Truscott et al. (2007) used a value of 40. 

Bouma et al. (2009), using a limited number of birds in experimental transmission studies, projected 

an average R0 for HPAIV H5N1 of only 1.6 (95% C.I. 0.9–2.5) whilst Poetri et al. (2009) estimated an 

R0 of 12 (95% C.I. 4.7–28.7) following the experimental introduction of HPAIV H5N1 

(A/chicken/Legok/2003) into a group of 20 chickens. Whilst these estimates are considerably lower 

than those used by Savill et al. (2006) and Truscott et al. (2007), it is difficult to extrapolate the 

observed findings to the field situation given that the experiments involved relatively small numbers 

of birds in low density situations. There remains considerable uncertainty around an estimate of R0, 

and this parameter was incorporated into the transmission model as a uniform distribution between 

20 and 40. The potential impact of values of R0 outside this range on the risks of onward farm to 

farm spread of HPAIV H5N1 will be discussed in the exposure assessment.  

Modelling an outbreak 

The parameters and the probability distributions used for the transmission model are shown in Table 

4. As farm size estimates are available for all broiler flocks in the District and Municipality of Bogor, 

an empirical distribution was constructed to describe the variability in flock size (n). It was decided at 

the initial project meeting (November 2008) that a ‘small-scale’ broiler farm could be defined as any 

commercial or semi-commercial farm with a capacity of 5000 broilers or less, hence the cut off for 

inclusion in this distribution was set at 5000. The resulting range was flock sizes between 400 and 

5000 birds, with a mean of just over 3000 birds. It is generally held that there is little economic 
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incentive for small-scale broiler farmers to vaccinate their flocks against HPAI H5N1, and this is 

currently not Government policy; hence, we assumed that no small-scale broiler flock in Bogor was 

vaccinated and that each was equally susceptible to HPAIV H5N1 (A4). 

 

Table 4. Parameters and probability distributions used for the modelling of bird-to-bird 

transmission of HPAIV H5N1 within a broiler house 

Parameter Distribution/fixed value Source 

Flock size (n) Empirical distribution 

(Histogram) 

FAO profiling study 

(FAO, 2008b) 

Basic reproduction number (Ro) Uniform(20,40) Estimated 

Latent period ( ) (days) Lognormal (0.24, 0.043) (Bouma et al. 2009) 

Infectious period (γ) (days) Lognormal (2.1, 0.33) (Bouma et al. 2009) 

 

The model was run over 5000 iterations, with random values drawn from the distributions 

representing n, , Ro, and γ at each iteration. Hence, the output was a variability distribution for the 

within-flock prevalence at any time, t.  

2.3 Additional model considerations 

The transmission model described allows estimation of the rate and the degree to which HPAIV 

H5N1 spreads within a susceptible flock of small-scale broiler. However, the likelihood of virus 

‘release’ from an infected small scale-broiler farm will be influenced by a variety of other factors, 

including the stage at which the virus is introduced, the likelihood of detection and the actions of 

broiler producers in the event of detection. These additional sources of variability are summarized in 

5, and the impact of each factor is discussed below. 

2.3.1 Number of birds initially infected (Ninf) 

For the baseline scenario, the initiation of infection within the flock results from the introduction of 

a single source of infection, and the subsequent infection of a single bird. This is a model 

simplification rather than a comment on the epidemiology of the disease. The presence of 

contaminated feed, water or litter might be expected to result in very widespread exposure and 

therefore the appearance of a large number of infected birds at or around the same time. The 

impact of this potentially important source of variability will be discussed in the exposure 

assessment. 

2.3.2 Time of HPAIV H5N1 introduction (Tinf) 

The stage at which the outbreak is initiated (i.e. infection of the primary case) will impact on the 

dynamics of infection. Clearly, infection in the early stages of production may allow a more sustained 

outbreak when compared to infection around the time of broiler depopulation. The risk of onward 

transmission may therefore also vary according to the time at which the outbreak is initiated. 
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Figure 5. Risk pathway and sources of variability for the release of HPAIV H5N1 via fomites 

The most common grow-out period for broilers in Bogor is 35 days, and in the majority of cases all 

birds will be removed from the broiler house by the 40th day of production. The variability in the 

time of virus introduction (Tinf) is characterized as a uniform distribution ranging from 0 to 40 days. 

There is some anecdotal evidence that HPAI H5N1 is rare in commercial and semi-commercial broiler 

flocks before the 2nd week of production, as is commonly reported for campylobacteriosis (Jacobs-

Reitsma et al. 1994; Evans and Sayers 2000). The impact of time of virus introduction will be 

discussed in the exposure assessment. 

2.3.3 Probability of disease detection (Pd) 

Whilst clinical HPAI H5N1 may be associated with a wide variety of clinical signs (Swayne 2007), it is 

common that the only sign observed in chickens is sudden death (Nakatani et al. 2005; Tsukamoto et 

al. 2007); Nakamura et al. 2008). Hence, HPAI H5N1 reporting typically relies on producer 

recognition of increased mortality within a flock (Elbers et al. 2007). Given that the disease is 

endemic in Indonesia, together with extensive government and non-governmental organization 

education campaigns, it is assumed that broiler producers in Indonesia will include HPAI H5N1 as a 

differential diagnosis if the mortality level in their flock increases beyond the background level (A5). 

There is, however, likely to be a degree of variability in the stage at which the disease is detected, 

which may depend on a producer’s age and experience, and previous HPAI H5N1 history, although 

the true extent of this variability is uncertain in the absence of survey data. 

In highly industrialized production systems, for example in the UK and USA, typical mortality levels in 

‘normal’ broiler flocks are around 0.05 to 0.1% per day, although this may vary by stage of 

production (McMullin 2006; Vieira et al. 2009). Whilst largely unknown in Indonesia, background 

mortality rates would generally be expected to be higher, particularly in small-scale flocks, given 
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higher endemic disease pressures together with relatively poorer control over the broiler house 

environment. On the island of Bali, Simmons (2006) reported that the total mortality rate of broilers 

under normal conditions (i.e. without AI) at the finisher stage varied from 0 to 20%, averaging 5%. If 

we can assume the finisher stage lasts for around 12 days (Mohlapo et al. 2009), this would equate 

to an average daily mortality rate of approximately 0.4%. For the purposes of this study we use a 

relatively high detection threshold of between 1 and 2% daily mortality in the flock (ε); government 

veterinary services in Indonesia typically use 1% as the threshold for investigation of disease 

outbreaks in an unvaccinated semi-commercial poultry flock. It is assumed that all small-scale broiler 

producers in Indonesia will include avian influenza as a differential diagnosis if the mortality level in 

their flock increases beyond this fixed threshold (A5). The expected variability in the estimate of ε 

was incorporated into the model as a uniform distribution between 1 and 2%. 

By running the baseline transmission model with time of introduction randomly selected from the 

variability distribution representing time of virus introduction (Tinf), we estimated the mortality rate 

at the end of each 24 hour period from the start of the outbreak. The probability of detection for 

each day of the outbreak was then estimated as the proportion of the stochastic model iterations 

that resulted in mortality above the defined detection threshold (ε), which was also selected 

randomly from its variability distribution. By multiplying this value by the probability that the disease 

remains undetected for each of the preceding days, we estimated the probability that an outbreak 

would be first detected for each day since its initiation. The simulation results are presented in Error! 

Reference source not found., and indicate that for over 84% of the model iterations (i.e. 5000 

simulated outbreaks, each with random values of n, , Ro,γ, Tinf and ε), we would expect that the 

disease will be detected at the end of the second day (i.e. 48 hours from the initiation of the 

outbreak) but that that there is a 14% probability of detection at the end of the first day and 2% 

probability of detection on the 3rd day. Based on the ranges of model parameters used, we would 

expect that all outbreaks would be detected by the 4th day.  

 

 
Figure 6. Predicted daily mortality due to HPAIV H5N1 as the proportion of all birds that die during 

the course of the day. The mean estimate (black solid line) and 5th and 95th percentiles (dashed 

lines) are shown. The probability that the HPAI H5N1 outbreak is first detected for each day of the 

outbreak is also shown (red line). Based on 5000 model iterations. 
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The impacts of different values of R0 on the probability of detection are presented in Figure 7. The 

impact is relatively small for values of R0 between 20 and 40. Unsurprisingly, at a higher 

reproduction number of 40, the mortality rate increases more rapidly (than an R0 of 30 and 20) and 

therefore more outbreaks are detected at the end of the first day (37%, compared with 14% and 1%, 

respectively). At lower values of R0 (i.e. less than those within the modelled range, but of the order 

predicted by Bouma et al. 2009 and Poetri et al. 2009), the day at which an outbreak is most likely to 

be detected decreases from day 3 (68% of iterations) for a R0 of 10, to day 4 (40% of iterations) for 

an R0 of 5 and day 11 (18% of iterations) for an R0 of 2 (Figure 8). The time until the outbreak is 

detected could be expected to affect the probability of onward transmission and will be discussed in 

the exposure assessment. 

 

 

Figure 7. Predicted daily mortality rates (dashed line) due to HPAI H5N1 and probability of 

detection at a range of fixed R0 values, with all other model values (n, , γ, Tinf) drawn at random 

from their respective variability distributions. Based on 5000 model iterations 

 

 

R0 
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Figure 8. Predicted daily mortality rates (dashed line) due to HPAI H5N1 and probability of 

detection at a range of fixed R0 values, with all other model values (n,  , γ, Tinf) drawn at random 

from their respective variability distributions. Based on 5000 model iterations 

 

2.3.4 Response to an outbreak 

With some exceptions, districts and provinces in Indonesia do not offer compensation for birds that 

are culled as part of disease control activities, and this is typically the case for commercial poultry 

producers in Bogor. Hence, there may not be substantial incentives for producers to report suspicion 

of HPAI in their flocks. 

We assumed that all broiler producers will modify their behaviour in response to a suspected 

outbreak of HPAI H5N1 in their flocks (A6), and simplified this behaviour into two general responses: 

1) Producers report suspicion to government services which investigate within a defined period 

and initiate disease control activities on the farm if HPAI H5N1 is confirmed. 

2) Producers continue with the production cycle, selling any remaining live chickens at the first 

possible opportunity. 

Out of 14 broiler farmers with flock sizes ranging from 1000 to 100,000, three producers, when 

interviewed, suggested that they would report an HPAI-like disease in their flock to a government 

office (CENTRAS 2008). Whilst there may be considerable response bias in these estimates, by 

extrapolating from this extremely small sample size we could approximate that around 21% of 

producers in Bogor might report a high mortality event in their flock. However, in the absence of 

compensation, it is anecdotally reported that the majority of producers will sell live birds in the face 

of an outbreak. Such an approach will minimize economic losses in the absence of compensation, 

but will clearly also present a potential risk to public health, and provide numerous occasions for the 

onward transmission of HPAIV H5N1. 

The focus of this risk assessment will be on the onward transmission of virus from those producers 

who do not inform government services if they suspect disease in their flocks, but the risks 

associated with this practice will be compared with the presumed lower risk strategy of disease 

reporting. 
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3 Release assessment: Transfer of HPAIV H5N1 via fomites 

There are three main sources of environmental contamination that may present a risk for the 

onward spread of HPAIV H5N1 from an infected broiler flock: faeces, respiratory secretions, and 

contaminated carcasses.  

Fomites can be defined as any object, animate or in-animate, that can become contaminated with 

an infectious organism and allow the mechanical transfer of that organism to a susceptible individual 

or flock.  

HPAIV H5N1 contamination of fomites 

Fomites can become contaminated through direct contact with infected birds, or indirectly through 

contact with litter or faecal material that has previously been contaminated by respiratory or faecal 

secretions from infected birds. Hence, the likelihood that a fomite becomes contaminated with 

infectious virus depends on the quantity of virus shed by infectious birds (V), the prevalence of 

infection birds within the flock (wfp), and the extent to which the virus is able to survive in the 

broiler house (k) (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Contamination of fomites with HPAIV H5N1 

 

3.1 Probability of contamination: contact with contaminated litter 

Any person who enters a broiler house during the course of an HPAI outbreak can expect to come 

into contact with litter that has been contaminated by virus shed by infected birds. 
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3.1.1 Quantifying HPAIV H5N1 shedding by infected birds  

The main routes of shedding of HPAIV H5N1 by infected chickens are in respiratory secretions via the 

oropharynx and gastrointestinal excretions via the cloaca (Subbarao et al. 2003; Lee et al. 2005; 

Swayne and Beck 2005; Das et al. 2008;). 

There have been a number of studies that are able to provide an estimate of the amount of virus 

shed in respiratory or faecal secretions (Table 5). Typically, the experimental population involved has 

been small and, in the majority of cases, an estimate of the average virus production is provided 

without any indication of the range of values detected. In the light of these limitations, estimates 

were combined in order to determine the mean value for faecal and respiratory virus shedding. It 

was assumed that each of the individual estimates were Poisson distributed (Haas et al. 1999) (A8), 

and we used a parametric bootstrap to generate uncertainty about the true mean number of virus 

particles per gram or millilitre of faecal and respiratory secretion from an infected bird. The resulting 

output had a mean faecal titre ( ) of 4.92 log10 EID50 (embryo infectious dose 50) (s.d. 0.56) and a 

mean respiratory titre ( ) of 5.57 log10 EID50 (s.d. 0.63). 

3.1.2 Amount of HPAIV H5N1 shed per infected bird 

Faeces 

There are relatively few data on the faecal output of broiler chickens, but the United States 

Environment Protection Agency (EPA) (EPA 2001) estimate that a 25,000 bird broiler unit may 

produce up to 1 tonne of droppings every day. Hence, a typical small-scale broiler farm with around 

5000 birds might be expected to produce 200 kg per day, or 40 g of faeces per bird per day. We 

attempted to incorporate the potential (although uncertain) range of values around this estimate of 

faecal production per bird per day as a Betapert distribution with a minimum value of 20 g, a 

maximum of 50 g and most likely value of 40 g for a bird of 1250 g.  

If it is assumed that an average day old chick is 20 g, reaches a weight of 1000 g by 25 days and a 

weight of 1250 g by 45 days (i.e. generalized production targets for broilers in Indonesia) (A7), a 

polynomial equation can be fit to predict the weight of birds at each stage of production. Given this 

predicted daily weight, the individual bird daily faecal output was estimated by sampling from the 

variability distribution describing faecal output per gram of broiler weight (i.e. Betapert (30,40,50)/ 

1250), Fday). Combining these estimates with the distribution describing mean virus faecal titre ( ) 

per gram and multiplying by the number of birds in the infectious compartment of the SEIR model, 

allows an estimation of the amount of virus entering the house at time t through faecal excretion. 

Respiratory secretions 

Respiratory output per day (Rday) was modelled as a Betapert distribution with a minimum of 0 ml, a 

maximum of 20 ml and most likely value of 5 ml per day for a bird of 1250 g, based on the authors’ 

opinion. Whilst respiratory secretions are known to increase as a result of HPAIV H5N1 infection 

(Swayne, 2007), it has not been possible to derive quantitative estimates of secretion, hence there 

remains uncertainty about the true range of these estimates. 

 

We assume that both respiratory and faecal excretions find their way to the ground litter. Here, we 

make the additional simplifying assumption that the movement of birds within the broiler house will 
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result in complete mixing of virus within the litter, so that the virus per gram of faeces contained 

within litter in the house can be described by a Poisson process (A9).  

 

 

 

Table 5. Shedding of HPAIV H5N1 from the cloaca and oropharynx 

 

Virus 

Dose 
(log10 
EID50) Route 

Sample 
time 
(hrs) 

No. 
chicken 

Age 
(wks) 

Cloaca 
(log10 

EID50/ml) 

Oropharynx 
(log10 

EID50/ml) Reference 

A/chicken/ South 
Korea/ES/03 

5.9 i.n. 72 4 4 6.0
1
 5.8

1
 (Lee et al. 2005) 

A/chicken/ South 
Korea/ES/03 

5.9 i.n. 72 4 4 6.1
1
 6.7

1
 (Lee et al. 2005) 

A/chicken/HK/ 491/97 6.0 i.n. 72 8 4 4.6 4.6 (Subbarao et al. 2003) 
         
A/chicken/ 

Yamaguchi/7/04 
4.0 i.n. 48 1 12 <3.8 <3.5 (Imai et al. 2007) 

A/chicken/ 
Yamaguchi/7/04 

4.0 i.n. 48 1 12 5.5 <4.2 (Imai et al. 2007) 

A/chicken/ 
Yamaguchi/7/04 

4.0 i.n. 48 1 12 >5.8 >5.8 (Imai et al. 2007) 

A/chicken/ 
Yamaguchi/7/04 

4.0 i.n. 48 1 12 5.2 4.2 (Imai et al. 2007) 

A/Goose/ 
Guangdong/1/96 

6.0 i.n. 72 10 6 3.2 ± 0.9 4.4 ± 1.6 (Li et al. 2008) 

A/Goose/ Qinghai/3/ 05 6.0 i.n. 72 10 6 4.2 ± 0.2 5.2 ± 0.3 (Li et al. 2008) 

A/chicken/ Fujian/1/07 6.0 i.n. 72 10 6 3.5 ± 0.5 4.7 ± 0.6 (Li et al. 2008) 

A/chicken/ South 
Korea/ES/03 

3.5 i.n. 48 10 3 3.4 ± 2.4
1
 5.0 ± 2.0 (Bublot et al. 2007b) 

A/chicken/ South 
Korea/ES/03 

5.0 i.n. 48 10 3 5.3 ± 1.2
1
 6.2 ± 1.5

1
 (Bublot et al. 2007b) 

A/chicken/ South 
Korea/ES/03 

6.5 i.n. 48 10 3 5.7 ± 0.6
1
 6.9 ± 0.5 

1
 (Bublot et al. 2007b) 

A/chicken/ South 
Korea/ES/03 

8.0 i.n. 48 10 3 5.65 ± 0.4
1
 6.9 ± 0.4 

1
 (Bublot et al. 2007b) 

A/chicken/ Vietnam/8/04 4.5 i.n. 48 5 3 5.7 ± 0.5 – (Bublot et al. 2007b) 

A/chicken/ 
Supranburi/2/04 

6.0 i.n. 28 20 7 3.9 5.5 (Bublot et al. 2007a) 

A/chicken/ 
Supranburi/2/04 

– DC 48 10 7 5.0 5.7 (Bublot et al. 2007a) 

A/chicken/ 
Indonesia/7/03 

6.0 i.n. 48 10 6 5.82 6.16 (Swayne, 2006) 

A/duck/ Anyang/ 

AVL-1/01 

6.0 i.n 24 – 72 8 4 1.1 – 3.1 4.4 – 4.8 (Tumpey et al. 2002) 

A/chicken/ 

Yamaguchi/7/04 

7.0
2
 i.n/DC    2.0 – 5.0 3.5 – 5.0 (Tsukamoto et al. 

2007) 

i.n. = intra-nasal. DC = direct contact, 
1 

Estimated from figures (i.e. actual numbers not provided in the text), 
2 

Experiment 
describes shedding following intranasal infection and shedding by birds in direct contact with inoculated birds; the 
inoculating dose is only known for i.n. infected birds 
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3.1.3 Estimating HPAIV H5N1 survival in the broiler house  

In order to estimate the maximum likelihood term for the average HPAIV H5N1 titre per gram of 

litter ( ) at time t, it is necessary to consider the survival of virus excreted by infected birds in the 

proceeding time steps (t0), and therefore the cumulative titre of virus in the litter.  

Predictions of HPAIV H5N1 survival in faeces 

The survival of avian influenza viruses in the environment is influenced by environmental 

temperature. Investigating survival of LPAIV H5N2, Beard et al. (1984) found that virus in dried 

faeces could be recovered for 35 days when stored at 4°C, but for only 7 days when stored at 20°C. 

Similarly, Lu et al. (2003) found that the infectivity of H7N2 was abolished after 24 hours at 30–37°C 

but persisted for 2 days at 15–20°C. In Thailand, Chumpolbanchorn et al. (2006) demonstrated that 

HPAIV H5N1 in chicken manure lost its infectivity after 24 hours at temperatures of 25°C, but after 

only 15 minutes when the temperatures were 40°C. High environmental temperatures would 

therefore appear to militate against HPAIV H5N1 survival in faeces.  

 

Humidity may also impact on virus survival. It is generally agreed that high relative or absolute 

humidity results in a more rapid decline of airborne influenza A virus (Lowen et al. 2007; Shaman 

and Kohn 2009). In contrast, Songserm et al. (2006a) demonstrated that AIV contained in a substrate 

with higher moisture content (i.e. fresh faeces) persisted for longer than virus in dried faeces at 

equivalent temperatures. Similarly, Shortridge et al. (1998) found that virus within dry faeces at 

room temperature (25 °C) had undetectable levels by day 1, whilst infectious virus was still 

detectable in wet faeces held at 25 °C after 4 days. Fresh faecal droppings have a moisture content 

of at least 60 % (Chumpolbanchorn et al. 2006), and it seems likely that higher humidity would allow 

the moisture content of faeces to remain higher for longer, permitting prolonged survival. This effect 

was further demonstrated in a study conducted by the United States EPA (EPA 2009), where HPAIV 

H5N1 mixed with faeces and stored at between 22 and 23°C in an environment with a relative 

humidity of 40 %, was detectable at only very low levels after one day and zero infectious virus could 

be recovered after 2 days. The same experiment, but with a higher relative humidity of around 80 %, 

allowed the recovery of 7.7 × 104 EID50 of virus after 1 day and 3.2 × 103 after 2 days.  

 

In contrast to these estimates, Kandun et al. (2010), in Indonesia, were able to identify HPAIV H5N1 

through RT-PCR in a bag of chicken manure that was at least 2 weeks old. The authors did not 

conduct infectivity trials, therefore it is not clear if the identified viral material remained infectious 

after this period, however they suggest that the manure was the most likely source of infection for a 

human case of HPAI H5N1.  

The broiler house environment: temperature and humidity 

The majority of small-scale broiler farms in Bogor, and indeed throughout Indonesia, use traditional 

open houses, typically with poor insulation. Few, if any, producers in this sector make use of 

mechanical ventilation. In naturally ventilated houses and particularly those that are open and 

without roof insulation, the internal environment (i.e. temperature and relative humidity) is typically 

close to external conditions (Chepete and Tsheko 2006; Czarick and Fairchild 2008). The internal 

broiler environment can therefore be predicted based on external conditions. 
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The average daily temperatures and relative humidity were downloaded from the closest weather 

station to Bogor District (Curug/Budiarto, around 35 km from Bogor Municipality) for 2009 (Weather 

Underground 2009). These data revealed an average temperature of 27.5 °C (± 1.2 °C), with some 

small, but significant, differences between mean daily temperature by month (F=6.91, p=<0.01) 

(Table 6). The average relative humidity for 2009 was around 77 % (s.d. 7.74), with relatively small, 

but significant, differences between daily humidity on a monthly basis (F=15.47, p=<0.01).  

 

Table 6. Estimated monthly temperature and humidity information for Bogor District for 2009  

Month Mean 

temperature 

(°C) 

Std. Dev. Mean 

relative 

humidity (%) 

Std. Dev. 

January 26.58 1.18 81.74 6.87 

February 26.56 1.09 82.46 5.78 

March 27.71 0.86 78.03 7.09 

April 27.70 0.79 79.87 4.56 

May 27.63 1.07 78.67 6.71 

June 27.67 0.71 79.13 4.85 

July 27.48 1.12 70.87 6.71 

August 27.68 0.94 71.19 4.50 

September 28.43 1.10 67.83 7.12 

October 28.06 1.21 75.77 8.09 

November 27.50 1.46 79.27 7.73 

December 27.42 1.34 79.06 6.17 

Total 27.54 1.19 76.95 7.74 

Source: Weather Underground (2009) 

 

3.1.4 Estimating the virus transformation ratio 

The duration that an infectious organism can persist in the environment can be described as the 

product of the rate of transformation (k) as: 
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Where V is the quantity of virus and k is the decay constant. Hence, the quantity of virus surviving at 

time t (Vt), is:    

    Vt =  

 

Despite the relative importance of this parameter, only two virus survival studies provide data of 

sufficient quality and quantity to adequately predict the survival of HPAIV H5N1 in faeces at the 

range of temperatures and humidity that could be expected within a broiler house in Bogor (i.e. 

based on Figure 100 and 11). These are the EPA (2009) study, describing the survival of HPAIV H5N1 

(A/Vietnam/1203/04) at a temperature of 22 to 23 °C and a relative humidity of 89 % and the 

Shortridge et al. (1998) study, where survival of A/Hong Kong/156/97 H5N1 was assessed at a 

temperature of 35 °C and unknown humidity, although this was presumed to be high given that 

faeces were described as ’wet’. For these two environmental conditions, the best fitting value for k 

was determined using a one-phase exponential decay model in GraphPad Prism 5 (GraphPad 

Software, San Diego California USA, www.graphpad.com). Given the small number of studies used 

for this estimation, these values are inevitably associated with uncertainty in the true range of 

values of k. Moreover, the environmental conditions described are fixed, whilst the environmental 

conditions within the broiler house are not and rates of decay may therefore vary according to both 

time of day or year. Although several studies have been conducted in Southeast Asia investigating 

virus survival (Chumpolbanchorn et al. 2006; Songserm et al. 2006a), additional work is urgently 

required to fully characterize the survival of HPAIV H5N1 at the range of environmental conditions 

observed in these regions, and, critically, estimates of virus titre should be made at more regular 

intervals in order that the virus decay curve can be fully parameterized.  

 

 

Figure 10. Predicted mean, maximum and minimum temperatures for the District of Bogor in 2009. 

Source: Weather Underground (2009) 
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Figure 11. Predicted mean, maximum and minimum daily relative humidity for the District of 

Bogor in 2009. 

Source: Weather Underground (2009) 

 

The best fitting value for k based on the EPA (2009) study was 0.1739 (95% C.I. 0.1604 to 0.1875), 

with a half life of 4 hours (95% C.I. 3.70 – 4.32). The value for k at the higher temperature of the 35°C 

in the Shortridge et al. (1998) study was 0.1919 (95% C.I. 0.1866 to 0.1972) with a shorter half life of 

3.17 hours (95% C.I. 3.52 – 3.72). It should be noted that the reliability of this estimate is somewhat 

questionable, given that it is not clear how faeces were maintained in a ‘wet’ state.  

In order to incorporate the uncertainty around the estimate of k, we characterized the decay 

constant as a uniform distribution, defined by the uniform range of values between to the lower 

2.5th percentile from the EPA (2009) study and the upper 97.5th percentile of the Shortridge et al. 

(1998) study.  

3.1.5 Estimating HPAIV H5N1 concentration in litter  

The cumulative viral output from respiratory and faecal excretion from all infected birds throughout 

the course of the outbreak was adjusted based on the effect of this virus decay constant (i.e. ) 

and divided by the cumulative faecal output by all birds in the flock. Based on 5000 iterations, an 

estimate of the cumulative virus titre produced in the broiler house per day of the outbreak was 

derived and, from this, the mean HPAIV H5N1 concentration per gram of faeces ( ) calculated. The 

resulting estimates are presented in Figure 12. 

3.1.6 Contamination of footwear 

Any person who enters a broiler house can expect to receive a typically large amount of faecal 

contamination on their footwear. Estimates of  at the time the visitor enters the broiler house can 

be combined with an estimate of the faecal contamination of footwear (Cshoes) in order to predict the 

amount of virus that may be present on the shoes of visitors following contact with contaminated 

litter. 

We assumed that possible values of Cshoes could range from a minimum contamination of 30 g to a 

maximum of 100 g (for both shoes), and the variability around these estimates was modelled as a 

uniform distribution. 

           Jan     Feb     Mar     Apr    May     Jun    Jul    Aug    Sep     Oct     Nov     Dec 
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Figure 12. Estimates of  per day (blue line) and mean cumulative HPAIV H5N1 production through 

respiratory and faecal excretion per day (red line). The 5th and 95th percentiles for each estimate 

are shown as dashed lines. 

3.2 Probability of contamination: direct contact with infected birds 

3.2.1 Contamination of hands 

Any person handling broilers could be expected to receive faecal contamination on their hands, 

either directly from faeces produced by the handled bird or from general contamination of the bird’s 

body. In order to estimate the faecal contamination remaining once gross contamination is removed 

(Hf), we use the data provided by Finley et al. (1994), who showed that adherence of soil to skin can 

be modelled as a lognormal distribution with an arithmetic mean of 0.52 (s.d. 0.9) mg/cm2 of in-

contact skin. This was combined with a fixed estimate of hand surface area (Lee et al. 2007) to 

predict residual faecal contamination resulting from handling chickens. For this, we make the 

untested assumption that faecal adherence is equivalent to soil adherence, and that an estimate of 

virus concentration within the remaining faeces is an adequate estimate of viral contamination of 

hands following handling (A10). Moreover, for the baseline scenario, we assume that any person 

handling a single infected broiler chicken will be subject to the same degree of faecal adherence, and 

therefore virus concentration, as someone handling a number of infected broilers (i.e. faecal 

adherence to hands, amounting to between 0.017 to 0.8 g per hand, would be the same regardless 

of the number of birds handled) (A11). 

3.3 Probability of virus survival on fomites  

Environmental persistence is a key parameter in microbial risk assessments, since it can place strict 

limits on the impact of a transmission pathway (Haas et al. 1999). Despite its probable relevance, the 

issue of environmental persistence on fomites and its impact on the transmission of avian influenza, 

and particularly HPAIV H5N1, has remained a relatively neglected topic (Weber and Stilianakis 2008). 

Those estimates that are available tend to be highly variable in the way in which abiotic factors such 

as temperature, humidity, pH and solar UV are controlled. Hence, variability in survival estimates 

may be a reflection of the different experimental methods used rather than a reflection of true 

variability in the population. 
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3.3.1 Duration of virus survival on fomites  

Virus survival on fomites is influenced by a variety of intrinsic factors, which include fomite 

properties or virus characteristics, and extrinsic factors, including environmental temperature and 

humidity (Boone and Gerba 2005; Kramer et al. 2006). It has been shown that influenza A and B 

viruses can survive on metallic surfaces for 72 hours (Bean et al. 1982), and contact with similar 

surfaces was expected to be responsible for the transmission of influenza infection to people (Barker 

et al. 2001; Morens and Rash 1995). Virus decay has been shown to be more rapid on plastic 

surfaces, with a maximum survival of 48 hours and a T90 (i.e. 90 % reduction in infectivity) of 4 hours. 

Influenza A on porous surfaces such as clothes had the fastest rate of inactivation, with detectable 

virus surviving for only 24 hours and a T90 of 3 hours (Bean et al. 1982).  

In the most extensive study of AIV survival on fomites, Tiwari et al. (2006) applied H13N7 to a variety 

of porous and non-porous fomites and measured survival over time. We fitted a one-phase 

exponential model to a selection of results from this study (Table 7). The resultant rate of decay was 

considerably slower than those already discussed for faecal material: only in the case of virus decay 

on plastic do confidence intervals overlap with those for virus decay in faeces exposed to a similar 

temperature (i.e. from the EPA [2009] study). This is unexpected, particularly given that virus 

contained within a protective organic substrate, such as faeces, would be expected to survive for 

longer than a solution of virus spread onto a fomite. The differences may be explained to some 

extent by variation between strains (Songserm et al. 2006a; Terregino et al. 2009), however these 

results further highlight the need for more extensive studies investigating the survival of AIV in the 

environment. 

Table 7. Survival of AIV (H13N7) on a selection of fomites 

Titre of virus recovered (TCID50/ml) after indicated time of storage* k 

Fomite  0 hr 24 hr 48 hr 72 hr   (95% C.I) 

Steel 8.7 × 10 3 1.9 × 10 3 0.8 × 102 0.9 × 102  0.0661 (0.045 – 0.087) 

Gumboot 3.4 × 10 3 3.1 × 10 3 2.5 × 102 2.5 × 102  0.02628 (0 – 0.089) 

Cotton fabric 8.9 × 101 5.0 × 101 – –  0.02403 

Plastic 2.0 × 103 7.8 × 101 5.0 × 101 1.4 × 101  0.1331 (0.058 – 0.209) 

 

*Initial virus titre of 6.3 × 10
6
 TCID50/ml 

Source: Tiwari et al. (2006) 

 

Given that the most likely material contaminating fomites is faeces, we assume that the rate of virus 

decay on fomites is the same as that in the broiler house, and use the previously defined uncertainty 

distribution for k (A12). 
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3.3.2 Estimating travelling time between farms 

In order to predict the probability that infectious virus can spread between small-scale broiler farms, 

it was necessary to estimate the time (t) taken for the contaminated fomite to move between farms, 

and therefore the time over which virus might undergo decay. 

In order to estimate the average travelling time between broiler farms (tf), the location of all small-

scale broiler farms in Bogor was obtained (FAO 2008b) and plotted using ArcMap 9.3 (ESRI, 

Redlands) (Figure 13). The Hawth’s tool for ArcGIS extension (Beyer, 2004) was used to estimate the 

distance of each individual broiler farm from all other farms in the District and Municipality of Bogor, 

accounting for duplication. A continuous non-parametric empirical distribution was then fitted to 

the distance matrix derived. These data were used to determine the average journey time between 

farms by assuming that visitors using a vehicle may travel between farms at a rate between 10 to 50 

km/hr, with the variability modelled as a uniform distribution. The resulting distribution had an 

average travelling time between farms, (tf), of 56 minutes (5th percentile: 5, 95th percentile: 149). 

 

 
 

Figure 13: Distribution of small-scale broiler farms in the District and Municipality of Bogor. 

In the absence of detailed road data for Bogor, all distances were measured as Euclidean distances 

between points which is likely to underestimate the resulting distances. Moreover, the estimate 

does not consider stop-overs and therefore predicts the range of travelling times from farm to farm, 

without stops in between. The impact of altering travelling time between farms is discussed in the 

exposure assessment. 

 

3.4 Transfer of HPAIV H5N1 via fomites: specific release pathways 

There are a very large number of potential fomites that may act as transmitters of infection between 

small-scale broiler farms. For the purposes of this risk assessment, we focus on the specific risks 
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associated with visits to an infected broiler farm by poultry collectors and animal health workers. 

These pathways were highlighted as being particularly important in the transmission of HPAIV H5N1 

between farms in Indonesia by Idris et al. (2010).  

3.4.1 Collectors 

The majority of small-scale broiler producers in Bogor make use of poultry collectors at the end of 

the grow-out period. In most cases, collected birds from small-scale broiler farms are initially housed 

at a collecting facility, which may be linked directly to a slaughter point or birds may be sold live in 

markets (CENTRAS 2008). Given that poultry collectors may move between a large number of farms, 

and can come into direct contact with birds on each of these, they have been implicated in the 

transmission of a variety of poultry diseases between farms (Ramabu et al. 2004; Allen et al. 2008). 

In Bogor, collectors typically operate using either a pick-up truck with a capacity of around 200 birds 

or a dedicated collection truck with a maximum capacity of around 1250 birds. Hence, at 

depopulation, even a moderately sized broiler flock would be expected to receive numerous visits 

from collectors. Collecting yard holding facilities have a limited capacity, typically between 1000 to 

2000 birds (CENTRAS 2008), and therefore broiler producers may use a number of different 

collectors in the course of depopulation. 

Flock depopulation typically occurs over the course of two to three days, depending on the prices 

available at market, which can be highly variable, even on a day to day basis. The average harvest 

point is around 35 days in Indonesia, and it is unusual that birds would remain on farm beyond 40 

days. Whilst collectors generally aim to fill their trucks in a single visit, it is not uncommon for 

vehicles to visit numerous farms before capacity is met. This is particularly the case at the end of 

depopulation, when the remaining birds in a house are ‘mopped-up’. Moreover, partial 

depopulation, in which a small proportion of the early market-weight attaining broilers are sold at an 

age of 25 to 30 days, followed by complete depopulation one week later, is also common practice in 

Bogor, and indeed in many broiler producing areas of the world (Allen et al. 2008; Hald et al. 2000; 

Russa et al. 2005). 

Such staggered depopulation, either intentionally to meet a specific market demand or 

unintentionally through limited vehicle capacity, may allow HPAIV H5N1 to be introduced to a 

susceptible farm, and result in an outbreak, before the shed is entirely depopulated. Indeed, it is 

widely held that multiple depopulations increase the risk of bacterial infections such as 

Campylobacter in poultry flocks when compared to those flocks with single depopulations 

(Berndtson et al. 1996; Hald et al. 2000; Jacobs-Reitsma et al. 1994; Wedderkopp et al. 2000).  

Probability collector visits in the event of an outbreak  

As described previously, in broiler flocks in which an HPAI outbreak has been detected but not 

reported, we assume that the producer will seek the services of collectors at the earliest opportunity 

following disease detection. In Indonesia, there is a market for relatively small broilers of around 1 

kg. This weight is typically achieved at around 25 days, and this will be assumed to be the earliest 

marketable age and therefore the earliest point at which collectors will visit the farm. Hence, if a 

producer suspects HPAI H5N1 before the 25th day of production, we make the assumption that 

collectors will visit the farm on the 25th day (A13). On those farms on which an outbreak is detected 

on or beyond the 25th day, we assume collectors will visit the farm 24 hours after detection, but that 
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production will cease by the 40th day (A14), and therefore that all collectors will have visited by this 

point.  

Collectors may also visit the farm before the disease has been detected. For example, virus may be 

introduced into the flock on the 30th day of production, and collectors visit on the 31st day, before 

the mortality rate in the flock has increased to sufficient levels that an outbreak is detected. Hence, 

we used a Betapert distribution to describe collector visiting practice, where the most likely visiting 

day was assumed to be the 35th, with a minimum of 25 and a maximum of 40. Collectors then visited 

the simulated farm on a day drawn at random from this distribution, if the day chosen was earlier 

than the day of disease detection. 

By running the stochastic transmission model over 5000 model iterations, where for each iteration a 

random value was drawn from the distribution representing each of the transmission model 

parameters, we estimated that the probability a collector will visit the farm in the course of an 

outbreak was 0.63 (i.e. the collector visited the farm on 63% of the 5000 simulated outbreaks). 

Hence, for 37% of outbreaks we would expect there to be insufficient birds for collection after the 

25th day; the minimum value for the number of birds remaining on the farm to warrant a visit by 

collectors was assumed to be between 30 and 50 birds, and was incorporated into the model as a 

uniform distribution. The probability that a collector will visit the farm before the disease had been 

detected was 0.096 (9.6% of outbreaks), and 15.2% of all collector visitations were made before the 

disease had been detected.  

Contamination of collectors and their equipment 

In order to incorporate the impact of travelling time on virus concentration, we make the simplifying 

assumption that all collectors visiting the farm will travel to collecting yards in Bogor before moving 

to the next farm (A15). The empirical distribution describing travel times between farms in the 

District and Municipality of Bogor (tf), was therefore updated to incorporate the Euclidean distance 

between each individual farm and the City of Bogor (tb). By combining the distance to Bogor City for 

each individual farm with the distance to Bogor City for every other small-scale broiler farm, an 

empirical distribution describing total travel distance between farms, via Bogor city, was produced 

(tcy). It is assumed that collectors will stop-over in Bogor for between 0.5 and 2 hours, and the 

variability in this estimate (tstop) was modelled as a uniform distribution. Hence, by combining a 

randomly drawn value from the empirical distribution representing travel distance, travel speed, and 

stop over duration, the length of time between farm visits (tcollector) was estimated (Figure 144). The 

mean travelling time for collectors, incorporating a stop-over in Bogor, was 2.87 hours (5th 

percentile: 1.56, 95th percentile: 4.86). 
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Figure 14: Variability distribution representing travel time between small-scale broiler farms, via 

Bogor city and incorporating a stop-over (tcollector). 

Contamination of footwear  

In order to predict the amount of virus present in faecal material contaminating the shoes of 

collectors upon arrival to a susceptible farm, we randomly selected values from the distribution 

representing Cshoes (i.e. viral contamination of shoes), and the empirical distribution representing tcy 

and combined these with a fixed value drawn from the uncertainty distribution representing the rate 

of virus decay (k).  

Faecal contamination of carry crates  

The stress associated with transport may increase faecal production in poultry, and reduce the 

consistency of faeces (Mulder 1995). These factors make it highly likely that both birds and transport 

crates will receive potentially large amounts of faecal contamination en-route to the collecting yard 

(Buhr et al. 2000; Corry et al. 2002; Slader et al. 2002; Ramesh et al. 2003). This contamination, and 

the associated microbial risk, has been implicated in the infection of birds transported in crates 

previously contaminated by Campylobacter infected birds (Berrang et al. 2003; Hansson et al. 2005). 

Carrying crates bought onto a farm may also allow the transfer of infectious material, particularly if 

these are insufficiently cleaned and disinfected before entry (Ramabu et al. 2004).  

Virus contamination of carry crates 

We assume that each carry crate leaving an infected farm may contains up to 25 birds (A16). Crates 

are loaded onto a truck in 7 rows and 7 columns (hence a maximum of 49 crates, or 1225 birds), 

whilst a pick-up truck can contain 2 rows, each with 4 crates (hence a maximum of 8 crates, or 200 

birds). The degree of viral contamination each crate receives will be determined by the number of 

infectious birds it contains, and on its relative position in the truck (Hartnett 2001). Given that 

collection crates are slatted, allowing the majority of faecal material to move away from birds, the 

crate on the bottom layer of a truck may be contaminated by faeces, and potentially virus, from 

birds in each of the 6 carriers above it.  

The expected number of infected birds within each crate was determined using a simple binomial 

process in which we assumed the probability that each of the 25 birds entering the crate was 

infected was equal to the wfp at the time of collection. This was modelled as a set of separate 

scenarios, corresponding to the number of crates on the truck or pick-up truck (i.e. 49 or 8 separate 

crate contamination scenarios, respectively). In order to estimate the amount of faeces produced 

per crate, we combined an estimate of journey time to collecting yards in Bogor (tb) with the 
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expected faecal output per unit time. Given that faecal output increases as a result of the stress of 

transport, we doubled the estimate of faecal output per day (Fday). We made the assumption that 

between 1 and 5% of the faecal material produced by chickens within a crate will remain in the 

crate, and this was modelled as a separate uniform distribution for each crate contamination 

scenario. The expected concentration of virus per crate was predicted by sampling from the 

distribution representing mean virus titre per gram ( ) and the faecal output per infected bird per 

crate. We allowed faeces and virus from the crates in the layers above to mix with the faecal 

material produced within each crate, hence a specific crate did not necessarily have to have 

infectious birds in it in order for it to receive viral contamination.  

Hence, over 5000 iterations, random samples were drawn from the distributions representing faecal 

output per bird (Fday), travelling time to Bogor (tb), the proportion of faecal output remaining in the 

crate, the number of birds that are infected (i.e. variable wfp from the stochastic transmission 

model), and the faecal titre per gram ( ). In order to account for the decay of virus as a result of 

travelling time, the resultant estimate of total virus contamination per crate was combined with an 

estimate of k (the virus transformation constant) and the travelling time between farms, via Bogor 

(tcy). This was repeated over 50 simulations, where for each simulation a fixed value was selected 

from the uncertainty distribution for k. The full model is presented in the appendix. 

Northcutt and Jones (2004), in the US, found that only 28.4% of the survey respondents washed and 

sanitized transportation cages and trucks between each use. The extent to which collectors in Bogor 

perform such activities is unknown, although virtually all collecting yards (94.9%) surveyed in the DKI 

Jakarta Province reported cleaning collecting crates on a routine basis (CIVAS 2007), although the 

nature of this routine, or the extent of the disinfection, is not clear. Hence, for the baseline scenario 

we will assume that cages are not washed between farm visits. The potential impact of collecting 

crate sanitization will be discussed in the exposure assessment. 

Contamination of hands 

Whilst collectors can expect to receive substantial amounts of faecal, and potentially viral, 

contamination of their hands as a result of handling birds, we do not consider the specific risks 

associated with contamination of collectors hands. Birds that are handled by collectors with 

contaminated hands will, as a matter of course, be removed from the farm on which they are 

handled. Hence, although the handling of susceptible a bird by collectors with contaminated hands 

may result in infection of that bird, its removal from the farm means such a transmission route is 

beyond the scope of this risk assessment. 

3.4.2 Animal health providers  

Poultry producers in Bogor make use of a variety of external service providers in the course of a 

single production cycle, some of which may enter the broiler house and therefore act as a potential 

route for the onward transmission of HPAIV H5N1. 

In the event of an HPAI outbreak, and once mortality within the flock has increased beyond the 

presumed threshold level (ε), animal health providers, such as veterinarians or pharmaceutical 

technical officers, may be called to the farm in order to investigate the high mortality. Any person 

who enters the broiler house may receive contamination of their footwear, and potentially hands if 

birds are handled in the course of the investigation. Whilst such workers are undoubtedly aware of 
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the importance of sanitation and disinfection between farm visits, it is anecdotally reported that 

these measures are infrequently applied. In such circumstances, contamination of animal health 

workers investigating the early stages of an HPAI outbreak may constitute a route for the onward 

transmission of HPAIV H5N1.  

Contamination of shoes  

An estimate of the amount of virus expected to contaminate shoes was derived using the same 

approach as that for collectors, however, for each iteration of the simulated model, we assumed 

animal health workers would visit the farm 6 hours following detection (i.e. mid-way through the 

day following detection) (A17).  

Contamination of hands 

Those persons handling infected broilers may present a risk for the onward transmission of the virus 

if susceptible birds are subsequently handled on a non-infected farm. We combined the 

distributional estimates for Hf with estimates of  to predict the total viral contamination of animal 

health workers hands at the point of leaving the farm on which the outbreak is occurring. Although 

the within-flock prevalence could be considered to influence the likelihood that a bird handled by a 

visitor is infected, we assume that any birds handled by animal health providers are those exhibiting 

clinical signs, and are therefore very likely to be infected on a farm on which an HPAI outbreak is 

occurring. Hence, the within-flock prevalence was not included in the assessment of hand 

contamination. 

Considering both viral contamination of shoes and hands, we used values of tf (travelling time 

between farms), rather than tcollector (travelling time between farms, via Bogor and incorporating a 

stop-over) to determine the impact of virus decay (k) on the eventual virus concentration on shoes 

and hands arriving on a susceptible farm. Hence the output is a second-order distribution for the 

concentration of virus present on shoes ( ) and per cm2 of contaminated hands ( ). 

Release via fomites: summary 

There is a very large number of potential fomites that may allow HPAIV H5N1 to be mechanically 

transmitted from infected to susceptible birds, or from an infected farm to a susceptible farm. This 

risk assessment considers two specific examples, namely the contamination of the shoes and 

equipment of collectors, and the contamination of shoes and hands of animal health workers. The 

probability of infection given exposure to the virus released via these pathways is considered in part 

B, the exposure assessment. 
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4 Release assessment: Transfer of HPAIV H5N1 via water 

Water-borne transmission is likely to play an important part in the maintenance of avian influenza 

viruses (AIV) in free-living waterfowl populations (Breban et al. 2009; Roche et al. 2009; Rohani et al. 

2009). The water-borne route has also been identified as a source of infection during LPAI outbreaks 

in domestic ducks (Halvorson et al. 1985; Markwell and Shortridge 1982) and turkeys (Halvorson et 

al. 1985; Sivanandan et al. 1991; Laudert et al. 1993). In each case, it is likely that the virus originated 

from faecal contamination of water sources by wild birds. However, and as well as contamination of 

water by wild birds, there is a risk that waste products from poultry farms may spread to water 

bodies via surface run-off or enter groundwater through inadequate disposal of waste products on 

poultry farms (WHO 2006). The potential routes for contamination of rivers (or other surface water 

bodies) and ground water are presented in Figure 1515.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Pathways for the transmission of H5N1 to water. 

In a survey conducted in the 9 districts surrounding Jakarta, 4.9% of broiler producers reported 

throwing dead birds directly into a river (FAO 2008b). Given that around 4% of households in 

Indonesia rely on rivers as their main water supply (RandCorporation 2007), direct deposition of 

contaminated material into surface water may constitute a serious risk to poultry flocks 

downstream, as well as being of public health concern (de Jong et al. 2005). 

The potential for virus movement through the soil profile and subsequent groundwater 

contamination with HPAIV H5N1 is, to our knowledge, entirely unknown. Historically, groundwater 

contamination has been responsible for the majority of waterborne diseases in people, including 

viral infections (Beller et al. 1997; Brassard et al. 2005; de Roda Husman and Bartram 2007) and the 

use of untreated groundwater for domestic poultry may therefore constitute a potential route for 

the transmission of HPAIV H5N1 between flocks. The movement of infectious organisms through the 
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soil profile depends on a variety of physical factors, including rainfall, temperature, soil structure, 

and pH (Sobsey et al. 1986). Moreover, virus specific factors, such as capsid diameter and isoelectric 

point, may have a large influence (Dowd et al. 1998).  

In order to assess the risks posed by transmission via water, we considered the specific scenario of 

direct deposition of poultry carcasses contaminated by HPAIV H5N1 into a water course. Given the 

current lack of information, the potential for groundwater contamination will not be considered 

further in this risk assessment.  

4.1 Virus contamination of river water following deposition of carcasses 

Titres of HPAIV H5N1 in chicken thigh and breast meat have been reported to be in the range 106.8–

108.0 and 105.5–107.9EID/g, respectively (Swayne and Beck 2005; Swayne et al. 2006). Based on these 

estimates, a 1 kg poultry carcass might be expected to contain up to 108.3 to 1010.3 EID50 of HPAIV 

H5N1 in skeletal muscle alone. Infection of chickens with AIV results in invasion of the blood, brain, 

bone marrow, heart, spleen, and lungs, as well as skeletal muscle (Lee et al. 2005), hence 

contaminated carcasses can potentially contain even greater quantities of virus. However, the 

degree to which virus particles are able to detach from a carcass when in river water is unknown. It 

is reasonable to assume that the minimum amount of virus leaching from a contaminated carcasses 

will be equivalent to the amount present within the cloaca and respiratory tract at the time of the 

bird’s death, although it may be considerably more. Hence, we assumed that the amount of faecal 

and respiratory secretions available for contamination of a river was equivalent to one day’s faecal 

and respiratory output per bird, and assumed that this is leached over the course of a single day 

(A18). Hence, those distributions representing faecal and respiratory output per day (Fday, Rday) were 

combined with estimates of virus titre per gram of faeces ( ) and per millilitre of respiratory 

secretion ( ). In order to account for the expected delay between a bird’s death from HPAI H5N1 

and it entering the river, we combined these estimates with fixed values from the uncertainty 

distribution representing virus decay in faeces (i.e. the distribution for k; we assumed that the rate 

of virus decay in carcasses is equivalent to decay in faeces (A19), where time between death and 

entering the river was modelled as uniform distribution between 1 and 12 hours. Hence, the output 

was a second-order distribution for the amount of virus that would be expected to leach per carcass 

entering the river, μc.  

4.1.1 Inactivation of HPAIV H5N1 in water  

Webster (1978) showed that AIV were able to survive for over 32 days in river water at 4°C, but were 

undetectable after 7 days at 22°C. The impact of temperature on virus survival in river water has 

been further demonstrated by a variety of authors, and is summarized in Table 8. 
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Table 8. Inactivation rates of AIV in water at different temperatures. HPAIV H5N1 are highlighted 

in bold 

Avian Influenza Virus 

Experimental 

conditions 

Temp. 

(°C) 

Inactivation 

rate, μ  

(per day) 

Estimated 

persistence 

(days) Reference 

AIV H6N2 (Chicken) Reverse osmosis 

water (pH 8.2) 

 

4 0.02  184 – 696  

(Graiver et al. 

2009) 
 21 0.05  78–136 

 37 0.10 43 – 56 

MN/98 H5N2 (Mallard) Distilled water 

(pH 7.4) 

 

17 0.014 429 

(Brown et al. 

2009) 

MN/00 H5N3 (Mallard)  0.019 316 

NJ/01 H5N7 (Turnstone)  0.026 231 

NJ/01 H5N8 (Turnstone)  0.021 286 

MN/98 H7N3 (Mallard)  0.028 214 

TX/02 H7N4 (Teal)  0.034 176 

DE/00 H7N3 (Gull)  0.009 667 

DE/02 H7N3 (Turnstone)  0.031 194 

Mongolia/05 H5N1 

(Swan) 

 0.038 158 

Anyang/01 H5N1 (Duck)  0.064 94 

MN/98 H5N2 (Mallard) Distilled water 

(pH 7.4) 

 

28 0.051 118 

MN/00 H5N3 (Mallard)  0.071 85 

NJ/01 H5N7 (Turnstone)  0.114 53 

NJ/01 H5N8 (Turnstone)  0.167 36 

MN/98 H7N3 (Mallard)  0.086 74 

TX/02 H7N4 (Teal)  0.100 60 

DE/00 H7N3 (Gull)  0.090 67 

DE/02 H7N3 (Turnstone)  0.252 24 

Mongolia/05 H5N1 

(Swan) 

 0.228 26 
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Anyang/01 H5N1 (Duck)  0.203 30 

H6N2 (Mottled Duck) Distilled water 

(pH 7.2) 

17 0.11 54 (Stallknecht et 

al. 1990a)   28 0.13 46 

H3N8 (Gadwall) Distilled water 

(pH 7.3) 

 

17 0.031 194 

(Stallknecht et 

al. 1990b) 

H4N6 (Teal)  0.028 214 

H6N2 (Mottled duck)  0.028 214 

H12N5 (Teal)  0.048 125 

H10N7 (Teal)  0.41 15 

H3N8 (Gadwall) Distilled water 

(pH 7.3) 

 

 

28 0.092 65 

H4N6 (Teal)  0.075 80 

H6N2 (Mottled duck)  0.065 92 

H12N5 (Teal)  0.197 30 

 

In order to estimate the temperature and pH of rivers in Bogor District, we extracted historical data 

for these parameters for a variety of rivers within 150 kilometres of Kabupaten Bogor from the 

Gemstat database (http://www.gemstat.org/queryrgn.aspx) (Table 9). The inactivation rate constant 

in water, π, based on all virus strains in which the experiment was conducted at 28°C (Table 8) was 

found to be approximately log-normally distributed, with best fitting parameters of γ = 0.043, β = 

0.064.  

Brown et al. (2009) demonstrated that factors such as pH and salinity may also impact on virus 

stability, with AI viruses being most stable at low temperatures (<17°C) combined with a slightly 

basic pH (7.4–8.2), and fresh to brackish salinities (0–20,000 ppm) and had a much shorter 

persistence in warmer temperatures (>32°C) combined with acidic conditions (pH<6.6, >32°C and 

high salinity (>25,000 ppm). These findings were supported by earlier work by Slemon et al. (1978) 

who showed that AIV from ducks survived longest at 17°C, with low levels of salinity and a pH of 8.2 

as well as the potential impacts of abiotic factors, Table 8 demonstrates that there may be quite 

substantial variability in survival between AIV strains. 

 

4.1.2 Dilution of virus in river water 

The approach used by Schijven et al. (2005a; 2005b) was used to simulate three generalized dilution 

scenarios for infectious particles in river water, considering a ‘small’, ‘medium’ and ‘large’ sized river 

(Table 10). 
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Table 9: Water temperature and pH for a selection of rivers within 150 km of Kab. Bogor 

River 

Date of 

sampling 

Mean pH 

(s.d.) 

Mean temp. 

°C (s.d.) 

Distance from Kab. 

Bogor (km)* 

Sunter  1985 – 

1994 

7.04 (0.30) 28.81 (1.25) 43 

Ciliwung  1979 – 

1981 

7.30 (0.36) 28.16 (1.13) 33 

Citarum - at Tanjungpura 1979 – 

1981 

7.63 (0.34) 27.76 (1.15) 60 

Citarum - at Nanjung 1985 – 

1994 

7.31 (0.41) 25.42 (1.30) 100 

Cimanuk 1979 – 

1981 

8.00 (0.35) 27.19 (1.48) 149 

*
Measured from recording station to the approximate centre of Kab. Bogor (6°30'32.34"S, 106°48'34.72"E) 

Source: Gemstat (2010) 

 

Table 10: Dimensions of rivers employed in the dilution scenarios 

Size  Fr (m
3/day)† Width (m) Depth (m) Lr(m)‡ 

Small 8.6 × 104 10 1.5 5.8 × 103 

Medium 2.2 × 106 50 2.6 1.7 × 104 

Large 2.3 × 107 125 3.8 4.8 × 104 

†
Flow rate 

‡
Characteristic length (1 day flow) of a river 

Source: Schijven et al. (2005a, 2005b) 

 

We assume that there is complete mixing of leached faecal and respiratory secretions, and complete 

detachment of virus allowing a relatively homogeneous suspension of virus contaminated river 

water (A20) (Schijven et al. 2005a).  

We considered a single contamination scenario, in which a number of carcasses representing 

between 1 and 2% of the total flock size (i.e. the detection threshold for infection within a flock of 

broilers, ε) were discarded into either a ‘small’, ‘medium’ or ‘large’ sized river. Hence, estimation of 

the concentration of virus in surface water (Cr) was estimated as: 

   Cr =  
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Where n is an estimate drawn at random from the empirical distribution describing small-scale 

broiler flock size in Bogor and  is the flow rate for each of the three dilution scenarios (table 10). 

We considered the risk over a single day, hence  was fixed at 1. 

Estimates for the rate of virus decay in water (π) were considered to be uncertain. Hence, second-

order estimates of the range of possible values of Cr were derived by running 5000 iterations where 

random values were drawn from the distributions representing the number of carcasses entering 

the river ( ) and amount of virus expected to leach per carcass, μc. This was repeated over 50 

simulations, each simulation using a random value selected from the distributions representing π 

(and k). The resultant summarized distributional estimates of Cr are presented in Table 11: the 

estimates are presented as ranges given the uncertainty in both k and π. 

Table 11: Estimates for concentration of virus particles (EID50) per litre of river water based on 

three dilution scenarios 

 Mean concentration 

(Cr) (virus/litre) 

5th percentile 50th percentile 95th Percentile 

Small 1.1x101–1.7x101 2.5x10–2–3.6x10–2 2.7x10–1–3.5x10–1 4.0x101– 5.2x101 

Medium 4.2x10–2–6.8x10–2 9.7x10–4–1.4x10–3 1.1x10–2–1.4x10–2 1.6x10–1–2.0x10–1 

Large 4.0x10–3–6.5x10–3 9.3x10–5–1.3x10–4 1.0x10–3–1.3x10–3 1.5x10–2–2.0x10–2 

Source: Schijven et al. (2005a) 

The probability of infection in poultry given exposure to the predicted virus concentrations in river 

water is discussed in the exposure assessment. 
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5 Release assessment: Transfer of HPAIV H5N1 via live poultry  

Typically, the only live birds that are brought onto a broiler farm are day old chicks direct from a 

breeder farm or via a middle-man supplier. Hence, the movement of infected broilers between 

farms is considered to be a negligible route for the transmission of HPAIV H5N1 in Bogor District and 

Municipality (Idris et al. 2010). The movement of free-ranging poultry between broiler farms, or 

between small-scale broiler and backyard producers, may, however, provide a potential route for 

the transmission of the virus. Based on the Indonesian Family Life survey (RandCorporation 2007), 

47.7% of Indonesian households owned at least one poultry species as part of a sector 4 production 

system (i.e. a backyard flock). DGLS surveillance data reveal a wider range of estimates by desa 

[village]; in 25.8% of desas in Bogor District and Municipality, less than 25% of households own 

poultry, whilst in 51% of desas there is between 26 and 75% household poultry ownership, and in 

23.5% of desa, more than 75% of households keep backyard poultry. In addition to poultry 

ownership being common, the majority of households are expected to allow their poultry to roam 

freely. Data from the Regency of Yogyakarta (approx. 400 km from Bogor) revealed that around 

58.9% of households keeping poultry did not confine birds during the day (95% C.I. 57.4–63.3) 

(International Food Policy Research Institute [IFPRI] 2009).  

 

5.1 Predicting contact between free-ranging poultry and broilers 

The likelihood that a flock of free-ranging poultry will come into direct contact with broiler chickens, 

or, more likely, with their environment (i.e. foraging around the broiler house), will depend on the 

proximity of the flock to a broiler farm.  

 

Whilst there would appear to be few data regarding the ranging behaviour of unconfined domestic 

poultry, Collias and Collias (1996) investigated the behaviour of groups of free-ranging red jungle 

fowl (Gallus gallus), the progenitor of the Indonesian Kampong chicken, in San Diego Zoo. The study 

revealed that these birds were confined to relatively small home ranges, ranging from approximately 

5000 m2 to 12,000 m2. In the absence of quantitative data from domestic poultry species, the extent 

of the home ranges from Collias and Collias (1996) was used to predict the number of households 

from which free-ranging chickens might enter the boundary of small-scale broiler farms in Bogor.  

Estimating contact rates per day 

We used Google Earth (Google Inc., Mountain View, CA) to estimate the number and geographic 

location of all households within a distance of approximately 120 metres from a random selection of 

50 small-scale broiler farms in Bogor District. This distance was chosen to represent the maximum 

diameter of the home ranges of free-ranging red jungle fowl from the Collias and Collias (1996) 

study. The Euclidean distance of each of the identified households to its respective broiler farm was 

estimated using the Spatial Analyst extension for ArcMap 9.3 (ESRI, Redlands, CA), and the output 

exported into @Risk for risk modelling. Here, distances were converted to a linear scale between 0 

and 1 using the maximum score procedure, so that: 
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Where  represents the Euclidean distance of each household from its nearest broiler farm, and 

 was fixed at 120 metres, the maximum presumed ranging distance of backyard poultry. In 

order to account for the variability in the predicted ranging behaviour of poultry, the maximum 

score procedure was repeated for each household using an  of 40 metres, the minimum 

diameter of home ranges from the Collias and Collias (1996) study. 

We considered that a uniform distribution, defined by the upper and lower estimates from the 

maximum score procedure, represented the variability in the probability that a flock of chickens 

owned by a household would enter the environment of the broiler farm in the course of a single day 

( ) (A21). Based on this assumption, those households that were closest to the broiler farm had the 

highest probability of entering the farm, decreasing linearly to a probability of 0 at a distance of 120 

metres. 

Only a proportion of households within the 120 metre buffer of each broiler farm could be expected 

to own poultry. This proportion, , was modelled using a Betapert distribution, with the most likely 

value taken as the proportion of households with poultry from the Indonesian Family Life survey (i.e. 

48%) (RandCorporation 2007). We allowed this distribution to range from 1 to 100%, as indicated by 

the wide variation in DGLS estimates. The proportion of households that allowed their poultry to 

range freely during the day ( ) was estimated based on empirical data from the IFPRI survey in 

Yogyakarta (2009). This survey involved questioning between 2 and 69 people from 72 desas from 

the Yogyakarta Regency on a variety of poultry related issues. We characterized the uncertainty 

around estimates of the proportion of households allowing poultry to range freely from each of the 

72 desa using a Beta distribution, and used a parametric bootstrap to generate the uncertainty 

about the true value of . 

By running a simple Binomial process with 300 iterations, we estimated the number of flocks in the 

buffer surrounding each of the 50 randomly selected broiler farms that would be expected to enter 

the farm boundary in the course of a single day. For each iteration, entry onto the broiler farm for 

each household was defined as 1 or 0 by the sum of separate Bernoulli processes where the 

probability of success for each process was defined by , and . By totalling the number of 

‘successes’ for each iteration, the output over all iterations was thus an estimate of the range of 

possible values for the number of household flocks that could be expected to enter the environment 

of a broiler farm in the course of a single day, Nhh.  

This estimation was run as a second-order model, where for each of the 300 iterations, a random 

value was drawn from the variability distribution for  and fixed values selected from the 

uncertainty distributions for and . This process was repeated over 1000 simulations for each of 

the 50 randomly selected broiler farms in Bogor District.  

Model output 

The range of values of Nhh for each of the 50 randomly selected farms is shown in Figure 16, and the 

range of predicted values from the second-order model is presented in Table 12.  
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Table 12: Estimates of the number of free-ranging household flocks that are expected to enter the 

environment of a broiler farm in the course of a single day 

 Mean 5th Percentile 50th Percentile 95th Percentile 

Nhh 0.017 – 6.83 0 – 1 0 – 6 0 – 14 

 

 

 

Figure 16: Density distribution for the predicted number of free-ranging chicken flocks that may 

enter the environment of 50 randomly selcted broiler farms per day. The red line representes the 

average for all 50 farms. 

 

The mean value for all simulations is 2.3 flocks entering the broiler farm per day, with a 5th percentile 

for all simulations of 0, a 95th percentile of 7 and a median value of 2. It should be noted that the 

model structure is based around the very large assumption that Kampong chickens will show similar 

ranging behaviour to semi-domesticated jungle fowl (A22). Moreover, we assume that free-ranging 

poultry do not show specific territorial behaviour, i.e. that the ranges of birds from different 

households may overlap and therefore birds from more than one household may include a broiler 

farm within their home-range (A23). Whilst this assumption would seem reasonable given the high 

density of free-range birds in this part of Indonesia, territoriality in domestic fowl has been 

demonstrated in some studies (McBride and Foenander 1962; Craig and Guhl 1969), but not others 

(Hughes et al. 1974; Preston and Murphy 1989). The estimate is based on the additional assumption 

that there are not fences surrounding the perimeter of the broiler farm that would be adequate to 

prevent the entry of free-ranging chickens (A24). This is reportedly common in Bogor, but additional 
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survey based studies are required to fully assess the degree to which free-ranging poultry can enter 

the boundary of a broiler farm. 

Release via live poultry: summary 

Having estimated Nhh, the predicted contact rate can be combined with predictions of the 

probability of infection given contact in order to estimate the number of backyard flocks that might 

be expected to become infected through direct contact during an HPAI H5N1 outbreak on a small-

scale broiler farm. 
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6 Exposure assessment: Dose-response models 

Dose-response modelling involves the development of a mathematical relationship between an 

exposure (i.e. the dose) and a measure of effect (i.e. the response), and is a key component in 

quantitative microbial risk assessments (Haas et al. 1999).  

Estimation of the dose-response relationship relies on the results of experiments in which animals 

are inoculated with a defined dose of infectious agent and a response, such as death, recorded as 

evidence of infection at that dose. By applying such experiments to samples of animals, the 

probability of becoming infected as a result of exposure to a particular dose can be ascertained. To 

our knowledge, a dose-response relationship has not yet been determined for HPAIV H5N1 in 

chickens, although several authors report a presumed ‘minimum’ infectious dose (as a BID50, i.e. the 

dose that results in infection of 50% of birds) (Table 13). Such estimates rely on the traditionally held 

assumption that a ‘threshold’ of infectious particles is required in order for infection to occur, and 

therefore that exposure to doses below this threshold will not result in infection. The use of this 

hard classification has been challenged by other authors, who suggest that ‘single-hit’ models 

provide a better explanation of the data (Sutmoller and Vose 1997; Buchanan et al. 2000; French et 

al. 2002; Teunis et al. 2004). Single hit models describe a scenario in which each infectious particle 

has an explicit probability of causing infection. Two non-threshold models, the exponential and beta-

Poisson, are considered to be particularly suitable for dose-response modelling of infectious agents 

(Haas et al. 1999). The exponential dose-response equation is derived by assuming the dose is 

Poisson distributed and that the probability of each organism actually ingested causing 

illness/infection is binomial. It is given by the equation: 

 

 

 

where r is the probability of infection by a single virus and D is dose, so that Pi is the probability of 

infection of an individual that was exposed to the average dose D. 

The beta-Poisson model is approximated by: 

 

Where N50 is the median dose to give the response and α is the exponential fitting parameter. 
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Table 13: Estimated minimum infectious doses (BID50) for a variety of HPAIV H5N1 viruses 

 

6.1 Identification of data for dose-response modelling 

In general, susceptibility, infectivity, and transmissibility data for poultry are minimal for most of the 

HPAIV (Swayne and Slemons 2008). Several studies have investigated the response of birds to a fixed 

dose of HPAIV H5N1 in order to develop vaccines or to study pathology in infected birds (Swayne 

and Beck 2005, Swayne and Slemons 2008). Relatively few of these studies have investigated the 

effect of variable doses on the likelihood of disease in inoculated birds, and of those that have the 

majority only report the minimum infectious dose (e.g. Table 13). 

 

In order to be suitable for dose-response modelling, data should demonstrate a general monotonic 

relationship (i.e. increasing response with increasing dose) and give a response other than 0 and 

100% at intermediate dose groups (Haas et al. 1999). Based on these criteria, two studies involving 

chickens were identified (Brown et al. 2007; Bublot et al. 2007b) (Table 14).  

 

 

Virus Host BID50 

(EID50 log10) 

Source 

A/chicken/Scotland/1959 H5N1  Chicken 2.6 (Swayne and Slemons 2008) 

A/turkey/England/50–92/1991 H5N1 Chicken 3.9 (Swayne and Slemons 2008) 

A/chicken/Korea/ES/2003 H5N1    Chicken 2.5 – 3.1 (Swayne and Beck 2005) 

A/chicken/Yamaguchi/7/2004 H5N1  Chicken 2.5 (Tsukamoto et al. 2007) 

A/Whooper Swan/Mongolia/7/2005 H5N1  Chicken 2.8 (Brown et al. 2007) 

A/chicken/Miyazaki/K11/2007 H5N1 Chicken 2.5  ((Yamaguch, 2007) cited in 

Swayne and Slemons 2008) 

A/Hong Kong/486/1997 H5N1  Chicken 2.4 (Swayne and Slemons 2008) 

A/Whooper Swan/Mongolia/7/2005 H5N1 Wood duck 0.95 (Brown et al. 2007) 
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Table 14. Data used to parameterize the dose-response model (Both studies involved chickens 

inoculated intra-nasally with HPAIV H5N1). 

Study Strain 

Dose 

(log10 

EID50) 

Number 

tested 

Number 

died 

Bublot et al. 2007b A/chicken/SouthKorea/ES/03 0.5 10 0 

  2.0 10 0 

  3.5 10 8 

  5.0 10 10 

  6.5 10 10 

  8.0 10 10 

Brown et al. 2007 A/WhooperSwan/Mongolia/244/05 1.0 5 0 

  3.0 5 3 

  5.0 5 5 

 

6.2 Fitting the dose-response model  

The data from Brown et al. (2007) and Bublot et al. (2007b) were fit with the one-parameter 

exponential model and two-parameter Beta-Poisson model using the open-source statistical 

package, R. The dose-response model parameters were estimated using a maximum likelihood 

estimation (MLE) procedure, with the BFGS algorithm used for nonlinear minimization (Bartrand et 

al. 2008). Models were considered to exhibit adequate fit if the minimized deviance was less than 

the 95% confidence value for the χ2 distribution with degrees of freedom equal to the number of 

doses tested minus the number of parameters (Haas et al. 1999) (Table 15). 

 

Table 15. Dose-response parameter estimations and model fit 

Source Model Parameters 
Minimized 

Deviance 

Model fit (p-

value) 

Brown et al. 2007 Exponential r = 0.0009 0.09 0.96 

 Beta- Poisson α = 72.6, N50 = 767.2 0.092 0.76 

Bublot et al. 2007b Exponential r = 0.0005 1.01 0.96 

 Beta- Poisson α = 663, N50 = 1470.9 1.011 0.91 
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In both cases, the exponential model gave the best fit. In order to determine whether the two data 

sets could be pooled, the summed minimized deviances from the two individual models were 

compared with those from the pooled model. Pooling was considered acceptable since the 

difference between the models was less than the 95% confidence value for the χ2 distribution at 

degrees of freedom equal to the sum of the number of parameters used in fitting individual data 

sets minus the number of parameters used in fitting the pooled data set (Table 16) (Haas et al. 

1999).  

 

Table 16. Best fit model for pooled data 

Source Model Parameters 
Minimized 

Deviance 

Model fit (p-

value) 

Pooled (Brown et 

al. 2007; Bublot 

et al. 2007b) 

Exponential r = 0.00051 0.23 0.63 

 

6.3 Estimating uncertainty around dose-response estimate 

Confidence intervals for the best fitting model were determined using the bootstrapping method 

described by Haas et al. (1999). For this, bootstrap replicates were generated by random sampling 

from a binomial distribution at each dose within the pooled dose response data set. The exponential 

model was then fitted to every re-sampled set to generate a distribution of maximum likelihood 

parameters. The 2.5th and 97.5th percentiles were extracted from the resultant distribution following 

5000 model iterations. The resultant dose response curve is shown in Figure 177. 

 

 

Figure 17: Dose response curve for the pooled data of Brown et al. (2007) and Bublot et al. 

(2007b). 
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7 Exposure assessment: Exposure following contact with fomites 

Clearly, infectious virus particles must detach from a contaminated fomite in order to pose a 

transmission risk. An estimation of the amount of virus transferred from contaminated fomites 

arriving on a susceptible farm, and the resultant ‘dose’ in exposed birds, can be combined with the 

estimate of r from the dose-response model to predict the probability of infection following 

exposure. 

The rate of virus transfer depends on the adherence properties of the organism, and on 

environmental conditions (Haas et al. 1999). Estimates of transfer rates for viruses in general are 

somewhat lacking (Rheinbaben et al. 2000), and, to our knowledge, are not available for AIV. 

Moreover, those estimates that are available for other viruses relate to transfer from fomite to 

hand, hand to fomite, or more rarely, fomite to fomite. It is therefore necessary to extrapolate from 

such studies to estimate a ‘fomite to chicken’ transfer rate for HPAIV H5N1. Examples of the 

expected efficiency of transfer for a variety of viruses are presented in Table 17. The range of 

transfer rates is wide and there appears to be substantial differences between viruses, although 

some of this variability may be associated with differences in experimental conditions. It is 

anticipated that the effectiveness of virus transfer will be highly variable, however, and in the 

absence of specific data on the efficiency of transfer of AIV, the true extent of this variability is 

uncertain. In an attempt to incorporate the range of possible values for virus transfer, and in 

particular to model the transfer of HPAIV H5N1 from contaminated hands, we assume transmission 

efficiencies may range anywhere between 0 and 22% (i.e. the maximum from the Ansari et al. (1988) 

study, and model transfer efficiency (TE) as a uniform distribution.  

 

Table 17: Efficiency of transfer of virus from fomites 

Virus Experimental 

conditions1 

Transfer Proportion 

recovered (s.d.) 

n Source 

Rhinovirus Wet mucous Hand  Hand  9.73  (± 9.2) 6 (Pancic et al. 1980) 

  Hand  Surface  Hand  5.6  (± 3.3) 8 

Parainfluenza 

virus 3 

Dry mucous Hand  Surface  0.92  (± 0.3) 3 (Ansari et al. 1991) 

Surface  Hand  0.67  (± 0.1) 3 

Hand  Hand  0.71  (± 0.2) 3 

Rotavirus Air dried 

inoculum 

Hand  Surface  16.1  (± 5.4) 5 (Ansari et al. 1988) 

 Surface  Hand  16.8  (± 5.2) 5 

 Hand  Hand  6.6  (± 2.1) 5 

Calicivirus Air dried 

inoculum 

Hand  Surface   13.0  (± 3.6)  (Bidawid et al. 

2004) 

1 
Describing the state of the contaminating virus on the fomite 
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7.1 Risks associated with contaminated hands 

Hands that have been contaminated with HPAIV H5N1 may transfer the virus to the feathers of 

poultry when these are handled. Broilers of a wide range of ages have been observed to spend 

approximately 10% of their day engaged in preening (Kubikova et al. 2001; Weeks et al. 2000). Such 

behaviour is intended to maintain feather condition, and to remove contaminating material. Indeed, 

Caldwell et al. (2001) showed that day old chicks sprayed with a fluroscein dye ingested between 

0.005 and 0.022% of the applied fluroscein dye after only 1 minute preening activity, with chicks 

preening themselves between 1 and 15 times during that time. Hence, if virus is transferred to 

feathers, it is very likely that birds may ingest a proportion of the contaminating virus through 

preening. 

The average surface area of a 1 kg bird is 1000 cm2 (Mitchell 1930; Leighton et al. 1966). The average 

palm surface area, and therefore the area that may come into contact with a broiler, is estimated to 

be 224 cm2 (Lee et al. 2007). Hence, a person handling a 1 kg bird may contact at least 450 cm2, or 

around 45% of the bird’s surface during the handling process. Persons handling birds by the legs (e.g. 

collectors) will contact a considerably smaller surface area. 

7.1.1 Probability of infection following handling 

In order to predict the probability of infection following HPAIV H5N1 contamination, we developed a 

simple stochastic model of exposure. The model describes the situation in which an individual bird is 

handled by a animal health worker who had previously handled infected birds on a broiler farm on 

which an outbreak is occurring, received viral contamination on their hands and travelled to the 

susceptible farm without performing sanitary measures. We assume that handling the susceptible 

bird results in contamination over a fixed area of 450 cm2 of the bird’s 1000 cm2 area, with the 

degree of contamination of each cm2 defined by a random value drawn from the second-order 

distribution describing viral contamination of hands ( ) and TE (i.e. the distribution representing 

the efficiency of transfer). For this, we modelled the surface area of a chicken as a matrix of 1000 

cells, 45% of which receive variable levels of virus contamination (i.e. combining random values of 

 and TE), and 65% receive zero contamination. This process is repeated over 3000 matrices, the 

result being a variability distribution describing 3000 contamination scenarios, representing 3000 

contaminated ‘birds’ following handling.  

Virus exposure was modelled by simulating intermittent preening activities for each of the 3000 

contamination scenarios. We assumed that a bird may preen itself at least once every 10 minutes 

(A25), and incorporated the variability in the interval between preening as a uniform distribution 

between 0 and 10 minutes. For each preening ‘event’, the simulated bird preens over a randomly 

selected 1 cm2 area, and may ingest between 0 and 100% of any virus present, with the proportion 

ingested (Pi) defined by a random value selected from a uniform distribution for each preening 

event. The virus remaining in the specific cell of the matrix that has been ‘preened’ is therefore (1 - 

Pi). This process is repeated over multiple iterations for each of the 3000 contamination scenarios. 

In order to account for the decay of virus on the surface of the bird (and therefore decreasing risk 

over time), the concentration of virus remaining within each cell of the matrix following each 

preening event (Vt) is defined as: 
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    =  

where the value of t is defined by the time between preening, and k is a fixed value of virus decay 

derived from the uncertainty distribution.  

We consider each ‘preening’ exposure as independent, and the probability of infection per exposure 

as:  

 

Where a fixed value for r is drawn from its uncertainty distribution and D relates to the dose the bird 

ingests for each random preening event. The simulation is run over multiple iterations, and the 

probability of infection for each contamination scenario after each step is given as: 

 

Each simulation was run until the mean probability of infection for all scenarios stabilized (i.e. at the 

point at which contaminating virus on the surface of the chicken had been entirely diminished 

through the combined effects of consumption and virus decay; this was typically after 2 simulated 

days). 

The process was repeated over 25 simulations, with a random value derived from the uncertainty 

distributions representing virus transformation (k), and the dose response parameter (r) at the start 

of each simulation and incorporated into each iteration as a fixed value for each of the 3000 

contamination scenarios. 

The model was implemented using Visual Basic for Applications (VBA, Microsoft Corp.) in Microsoft 

Excel. A summary of the parameters used in the model is presented in Table 18 and the model 

structure is presented in the appendix (Figure 1A). 
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Table 18: Summary of model parameters used to predict the risk of infection for a broiler chicken 

handled by someone with HPAIV contaminated hands 

Parameter Description Distribution/value Classification1 

 Virus contamination per cm2 hand 
Second-order 

distribution (see text) 
V + U  

Parea Palm surface area (cm2) 224 F 

Carea Chicken surface area (cm2) 1000 F 

TE Transfer efficiency through handling Uniform(0,0.22) V(+U) 

t Time between preening ‘events’ Uniform(0, 10) V 

Pi 
Proportion of virus consumed per 

preening events 
Uniform(0, 1) V 

k Virus inactivation rate 
Uniform(0.1604, 

0.1972) 
U 

r Exponential dose response parameter 
Bootstrap replicates 

(see text) 
U 

1V = variability, U = uncertainty, F= Fixed values 

 

Model outputs 

The model predictions for a 1 kg broiler, handled by someone who has previously handled an 

infected bird on a farm on which an outbreak is occurring and who has not applied sanitary 

measures, are presented in Table 19. The cumulative second-order distribution for the probability of 

infection is presented in Figure 18 18. Given the uncertainty in both the rate of virus decay and the 

dose-response values, the summaries provided in Table 19 and presented in Figure 18 are the range 

of values derived from 25 simulations, each composed of 3000 contamination and exposure 

scenarios. 

 

 

Table 19: Probability of infection of a single chicken following handling by someone with HPAIV 

H5N1 contaminated hands 

Probability 

of infection 

Mean 5th Percentile 50th Percentile 95th Percentile 

Handling 2.9x10–2 – 9.5x10–2 2.0x10–3 – 7.6x10–3 1.5x10–2 – 5.3x10–2 1.0x10–1 – 3.4x10–1 

 

 



Pro-Poor HPAI Risk Reduction 

 

50 

 

 

Figure 18: Cumulative second-order distribution for the risk of infection of a 1 kg chicken following 

handling by someone with HPAIV H5N1 contaminated hands. 

The model output indicates that on 95 times out of 100, the probability of infection of a bird handled 

by someone with contaminated hands will be less than 10 to 34%, and that that median estimate is 

between 2 and 5%. The mean value for all 25 simulations, each comprising 3000 different 

contamination scenarios is 5%. That is, on average, 5 out of every 100 birds that are handled by 

someone who has previously handled an infected bird and travelled to a susceptible farm might be 

expected to become infected, but this probability ranges from 2.9–9.5%. It should be noted that 

these estimates relate to the first bird handled; the risks associated with handling will decrease as 

more birds are handled and the virus concentration on contaminated hands decreases. Broilers are 

highly stress sensitive, and therefore handling of these birds is typically kept to a minimum until the 

end of the production cycle. Hence, whilst the risks associated with handling are unlikely to be 

negligible, the estimates do not take into account the frequency of handling. 

Moreover, in the absence of estimates regarding viral contamination of hands, the estimation of risk 

relies on a large assumption regarding the concentration of virus that could be expected on hands as 

a result of handling infected birds. Furthermore, whilst the estimates incorporate the predicted 

range of travelling times between farms in Bogor, and the effect of travelling time on virus decay, it 

does not incorporate the impact of stop-overs between farm visits. 

7.2 Effectiveness of hand sanitation in reducing risk 

Clearly, measures that prevent the contamination of hands will remove the risk associated with the 

transfer of HPAIV H5N1 through handling. Hence, the use of disposal gloves when handling birds 

should be recommended for all visitors to broiler farms who handle birds, and these should be 

changed between farm visits.  

Where such measures are not possible, simple hand washing or hand sanitation following the 

handling of birds is likely to substantially reduce the risk of disease transmission associated with 

handling. Hand washing with soap and water alone would generally be expected to remove between 

1 to 2 logs of contaminating micro-organisms. A disinfectant hand sanitizer (i.e. a alcohol based gel 

used on hands without gross contamination), might be expected to remove between 2 and 3 logs, 

although there may substantial differences between viruses (Mbithi et al. 1993; Sattar et al. 2000; 

Lages et al. 2008). In one of the few studies to investigate hand-washing and the use of hand 
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sanitizers on Influenza A survival on hands, Grayson et al. (2009) showed that H1N1 could be 

reduced to non-detectable levels via hand-washing with soap or through the use of alcohol based 

sanitizers. 

The effect of removal of 90, 99% and 99.9% (i.e. 1, 2 and 3 log reduction) of infectious virus on hands 

on the probability of infection as a result of handling is presented in  

 

Table 20. Based on the model described previously, with 25 simulations, each with 3000 iterations, a 

1 log reduction in the virus titre per cm2 of contaminated hands would be expected to reduce the 

probability of infection following handling from 0.05 to 0.008, i.e. 8 out of every 1000 handling 

events (of the next bird handled following the handling of an infected bird) with contaminated hands 

would be expected to result in infection. More effective hand washing, particularly when combined 

with hand sanitizers and an associated 2 or 3 log reduction in contaminating virus, would be 

expected to reduce the risk to near negligible levels of 0.00084 and 0.00010 respectively (i.e. around 

8 and 1 out of every 10,000 handling occasions). 

 

Table 20: Effect of hand sanitation on the probability of infection of a single chicken with HPAIV 

H5N1 following handling  

Probability of 

infection 

Mean 5th 

Percentile 

50th 

Percentile 

95th 

Percentile 

Handling – 1 log 

reduction 

6.7x10–3–

9.7x10–3 

4.3x10–4–

6.4x10–4 

3.3x10–3–

4.8x10–3 

2.4x10–2–

3.5x10–2 

Handling – 2 log 

reduction 

6.9x10–4–

9.9x10–4 

4.3x10–5–

6.6x10–5 

3.2x10–4–

4.7x10–4 

2.5x10–3–

3.5x10–3 

Handling – 3 log 

reduction 

4.9x10–5–

2.0x10–4 

3.2x10–6 – 

1.3x10–5 

2.3x10–5–

9.6x10–5 

1.7x10–4–

7.0x10–4 
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8 Exposure assessment: Litter contamination by collectors 

Contamination of the broiler environment, and subsequent ingestion by birds through coprophagia 

or litter consumption, is an important means of spread of infectious disease within broiler flocks 

(Montrose et al. 1985). If any of the faecal contamination present on collectors’ shoes, or on 

collecting crates, is able to contaminate litter in the house of a susceptible broiler flock, there is the 

potential for infection of birds engaging in litter consumption or coprophagia. 

Consumption of litter by broilers 

Malone et al. (1983) recorded the proportion of litter consumed by broilers of different ages, and 

revealed that litter may constitute up to 6.35% of a bird’s daily intake of feed, but that this varied by 

litter type and age (Table 21). The majority of broiler producers in Bogor use rice hulls for litter, 

which are expected to be consumed at a similar rate to wood fibres; consumption of rice hulls is 

reportedly common (Anisuzzaman and Chowdhury 1996). Hence, we used a Betapert distribution to 

represent the presumed variability in the rate of litter consumption (Cl), where the most likely value 

was taken as the consumption rates of wood fibres for birds aged 22–49 days (since this is the age at 

which collectors visit), but the distribution was defined by the maximum and minimum values for all 

litter types and all ages of bird presented in Table 21 (i.e. Betapert [0, 0.0128, 0.0635]). 

Table 21. Litter consumption rates in broilers at different ages 

Litter type 1–7 days 8–21 days 22–49 days 

Wood chips 0.32% 0.14% 0 

Saw dust 2.31% 3.08% 0.95% 

Wood fibres 6.35% 4.82% 1.28% 

Newspaper 0.39% 0.49% 0.1% 

Newspaper fibres 0.15% 0.29% 0.04% 

Source: Malone et al. (1983) 

Daily feed consumption by broilers aged 25 days and older (i.e. the age at which collectors visit the 

farm) was estimated from a variety of sources. Feed consumption can be highly variable, particularly 

in tropical climates, and may be influenced by stocking density and environmental conditions (Daghir 

2008). In order to capture the likely variability in this parameter, we used the minimum and 

maximum values presented in Table 22, and assume that these represent the true range of feed 

consumption rates of broilers between 25 and 40 days. An estimate of the daily feed intake was then 

multiplied by the proportion of the intake that is litter in order to estimate the amount (in grams) of 

litter consumed by broilers in the course of a single day (CL). 

Contamination of susceptible broiler house  

Collectors entering the broiler house on a susceptible farm may contaminate litter as a result of 

transfer of virus from shoes and or from carrying crates. 
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Table 22: Estimates of broiler feed consumption per day 

Age (days) Feed consumption per 

day (g) 

Source 

25 89 

(Brake et al. 1992) 
30 107 

35 125 

40 142 

28 75 – 115 
(RCI 2002) 

35 86 – 150 

28 – 49 98 – 125 (Perry 1981) 

 

The virus concentration present on shoes and crates upon arrival to the farm was defined by the 

distributions for shoes and crates, described previously. The amount of faeces, and therefore virus, 

transferred from shoes or from crates is unknown, but theoretically could range anywhere between 

0 and 100% of the amount present. However, we use an estimate of between 1 and 10% to describe 

the amount of faeces (TEshoes) that is transferred from the amount contaminating shoes, and an 

estimate of between 0.1 and 1% to describe the amount of faecal transfer from each of the carrying 

crates brought onto the farm (TEcreates). Based on these parameters, we estimated the amount of 

virus that may be transferred into the house, Cv. 

We consider two contamination scenarios; 1) collectors using a truck, bringing a maximum of 49 

crates into the broiler house and, 2) collectors using a pick-up truck, bringing a maximum of 8 crates 

into the broiler house. 

We make the simplifying assumption that transferred faeces, and the virus within, becomes 

completely mixed with litter already present in the house through the action of broiler movements 

(A26). Hence the concentration of virus within the litter of the susceptible broiler house following 

release of faeces from shoes/crates can be described as a Poisson process.  

Estimating viral contamination of litter 

Based on consultation with poultry experts in Indonesia, an average small-scale broiler flock would 

be expected to use between 125 to 250 bags of rice hulls, each bag weighing between 20 to 30 kg. 

These variables were modelled as uniform distributions and were combined with an estimate of the 

faecal contamination present in the susceptible broiler house. For this we assumed that collectors 

would only visit the susceptible broiler flock after the 25th day. We selected random values from the 

distribution for broiler flock size (n) and defined the expected cumulative faecal weight at 25 days 

and 40 days given this flock size. A random value from a uniform distribution defined using these 

values as minimum and maximum was then used to predict the weight of faeces already present in 
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the susceptible broiler house at the time of the collector’s visit (Wfc). The overall weight of litter in 

the house (Wlitter) was then the sum of these two parameters.  

By assuming complete mixing within the broiler house, the virus concentration (per g) within the 

litter of the receiving farm was estimated as: 

           litter 

The probability that a bird within the flock will become infected was then given by the exponential 

dose-response model as: 

 

Where the dose, D, is: 

 

The probability that at least one bird within the flock will become infected is then,  

 

The parameters used in the model are summarized in Table 23 and the model structure is given in 

the appendix (Figures 3A to 7A). The model was run as a set of 50 simulations where random values 

for the rate of virus decay (k) and the dose-response parameter (r) are drawn from their respective 

uncertainty distributions, and each individual simulation was composed of 3000 iterations whereby 

random values are drawn from the variability distribution describing the amount of virus present in 

the susceptible broiler house following contamination and the exposure (i.e. dose) broiler chickens 

may receive ( ). 

8.1 Risks associated with collectors and their equipment  

The summarized outputs for the probability that at least one bird within the broiler house becomes 

infected as a result of collectors bringing HPAIV H5N1 contaminated shoes and equipment into the 

broiler house are presented in Table 24.  

 

Table 23: Summary of model parameters used to predict the risk of transmission of HPAIV H5N1 to 

a broiler flock as a result of contamination of litter by collectors and their equipment 

Parameter Description Distribution/value Classification* 

n Flock size (on susceptible 

farm) 

Empirical distribution (see 

‘Modelling an outbreak’ section) 

V 

 shoes Virus concentration on shoes 

after arrival at broiler farm  

Second-order non-parametric 

distribution (see text) 

V 

 crates Virus concentration on 

collecting crates after arrival 

Second-order non-parametric 

distribution (see text) 

V 
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at broiler farm  

TEshoes Proportion of faecal material 

(and virus) transferred from 

shoes 

Uniform(0.01, 0.1) V(+U) 

TEcrate Proportion of faecal material 

(and virus) transferred from 

crates 

Uniform(0.001, 0.01) V(+U) 

Slitter Number of sacks of litter 

used per broiler house 

Uniform(125, 250) V(+U) 

Wsack Weight of litter per sack Uniform(20, 30) V(+U) 

Wfc Weight of faeces in the 

house 

See text V(+U) 

Wlitter Weight of litter and faeces in 

the house 

(Slitter × Wsack) + Wfc V(+U) 

k Virus inactivation rate Uniform(0.1604, 0.1972) U 

r Exponential dose response 

parameter 

Bootstrap replicates U 

Cl Litter consumption Betapert(0, 0.0128, 0.0635) V(+U) 

Nc Number of collectors per 

truck 

Uniform(1,3) V 

*V = variability, U = uncertainty, F= Fixed values 

 

 

 

Table 24. Summarized results for the probability of infection on the next farm after collectors have 

visited a small-scale broiler farm on which an HPAI H5N1 outbreak is occurring 

Probability of 

infection 

Mean 5th Percentile 50th 

Percentile 

95th Percentile 

Collectors using a 

truck 

3.2 × 10–2 – 

1.3 × 10–1 

4.2 × 10–4 – 2.3 

× 10–3 

1.2 × 10–2 – 

5.9 × 10–2 

1.2 × 10–1 – 5.2 

× 10–1 

Collectors using a 

pick-up 

2.1 × 10–2 – 

8.6 × 10–2 

1.9 × 10–4 – 9.9 

× 10–4 

5.8 × 10–3 – 

2.8 × 10–2 

8.4 × 10–2 – 3.8 

× 10–1 
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Given that collectors using a truck may bring more collection crates into the broiler house than those 

collectors using a pick-up truck (i.e. 49 vs. 8), the risk of transmission for the former group is higher 

than that for the latter (Figure 9 and 20). 

 

Figure 19: Cumulative second-order distribution of the probability of infection following 

contamination by the shoes and collecting crates of collectors using a truck and who have 

previously visited a broiler farm on which an outbreak of HPAI H5N1 is occurring. 

 

 

Figure 20: Cumulative second-order distribution of the probability of infection following 

contamination by the shoes and collecting crates of collectors using a pick-up truck and who have 

previously visited a broiler farm on which an outbreak of HPAI H5N1 is occurring. 

The mean value for the probability that at least one bird will become infected in a flock of broilers 

following contamination of litter by collectors using a truck, over all simulations, is 0.0714. Hence, 

we would expect that, on average, on around 7 out of every 100 occasions on which a farm is visited 
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by collectors who have previously visited a farm on which an outbreak is occurring, at least one bird 

would become infected with HPAIV H5N1. Given the presumed high basic reproduction number (R0) 

of HPAIV H5N1 in a flock of ground-dwelling birds, the infection of a single bird is assumed to be 

equivalent to infection of the entire flock. The estimate for collectors using a pick-up truck is 0.0474. 

Each estimate is associated with an uncertainty distribution of between 0.032 to 0.129 and 0.021 to 

0.086, respectively. It should be noted that these estimates are specific to the next farm visited 

following the initial visit to the index farm (i.e. the farm on which the outbreak is occurring); 

subsequent visits would be associated with lower risks as the quantity of contaminating virus 

decreases through the actions of virus decay and transfer. 

8.2 Impact of altering model parameters 

In order to assess the impact of altering model parameters on the risk estimates derived, we 

selected those parameters in which there was considerable uncertainty in the true extent of 

variability, and used extreme values in order to represent a wider range of possible values for each 

factor (Henderson-Sellers and Henderson-Sellers 1996). The parameters selected were: 

 

 – Amount of faecal material transferred from shoes (TEshoes) 

 – Amount of faecal material transferred from crates (TEcrate) 

 

We also considered the impact of altering the transmission parameters in the stochastic 

transmission model (i.e. from the release assessment), and in particular the impact of altering R0 and 

the number of birds initially infected on the risk of onward transmission via litter contamination. 

1) Faecal transfer from shoes (TEshoes) 

The impact of altering the amount of faeces, and therefore virus that can enter the broiler house 

from shoes is presented in 
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Table 25. Clearly, as the amount of HPAIV H5N1 contaminating the litter increases, the risk to broiler 

chickens within the house increases. For example, if 50% of faecal material (and therefore virus) is 

transferred from the shoes of collectors using a truck when they enter the broiler house, the mean 

risk estimate over 50 simulations, each with 3000 iterations, increases to 0.23, or on average, 23 out 

of every 100 visits would be expected to result in infection. If all contaminating material is 

transferred, the probability is increases to 0.37 for those collectors using a truck, or 0.35 for 

collectors using a pick-up truck. Whilst the transfer of such a large amount of material seems 

unlikely, these estimates can serve as an indication of the potential risk associated with the viral 

contamination of shoes. 
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Table 25: The impact of altering the proportion of faecal material that is transferred from shoes 

(TEshoes) on the predicted probability of transmission of HPAIV H5N1 to a susceptible flock of 

broilers 

 Transfer Mean 5th percentile 50th percentile 95th percentile 

Truck 0.001 3.2 × 10–2 2.5 × 10–4 1.1 × 10–2 1.3 × 10–1 

0.01 4.1 × 10–2 4.6 × 10–4 1.6 × 10–2 1.6 × 10–1 

0.1 9.7 × 10–2 1.4 × 10–3 4.1 × 10–2 4.1 × 10–1 

0.25 1.6 × 10–1 2.4 × 10–3 7.0 × 10–2 6.7 × 10–1 

 0.5 2.3 × 10–1 3.9 × 10–3 1.1 × 10–1 8.8 × 10–1 

 1 3.7 × 10–1 6.2 × 10–3 1.9 × 10–1 9.8 × 10–1 

Pick–up 

truck 

 

0.001 6.7 × 10–3 6.0 × 10–5 2.3 × 10–3 2.6 × 10–2 

0.01 1.5 × 10–2 1.7 × 10–4 5.2 × 10–3 5.9 × 10–2 

0.1 7.4 × 10–2 7.0 × 10–4 2.3 × 10–2 3.4 × 10–1 

0.25 1.4 × 10–1 1.4 × 10–3 4.8 × 10–2 6.4 × 10–1 

0.5 2.1 × 10–1 2.4 × 10–3 8.8 × 10–2 8.7 × 10–1 

 1 3.5 × 10–1 4.1 × 10–3 1.6 × 10–1 9.8 × 10–1 

 

 

2) Faecal transfer from crates (TEcrate) 

The impact of altering the amount of faeces, and therefore virus, entering the house from collecting 

crates is presented in 
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Table 26. The baseline model uses values between 0.1 and 1%, and increasing these estimates is 

expected to result in potentially large increases in risk. For example, if 50% of all faeces predicted to 

be present on un-sanitized collection crates is transferred to the litter of the broiler house, the 

average risk for the infection of at least one bird associated with a visit by those collectors using a 

truck is 0.61 and for those collectors using a pick-up truck is 0.29. 
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Table 26: The impact of altering the proportion of faecal material that is transferred from crates 

(TEcrates) on the predicted probability of transmission of HPAIV H5N1 to a susceptible flock of 

broilers 

 Transfer Mean 5th 

percentile 

50th 

percentile 

95th 

percentile 

Truck 0.001 4.8 × 10–2 4.8 × 10–4 1.4 × 10–2 2.1 × 10–1 

0.01 9.3 × 10–2 1.5 × 10–3 4.3 × 10–2 3.7 × 10–1 

0.1 3.2 × 10–1 6.7 × 10–3 2.2 × 10–1 9.3 × 10–1 

 0.25 4.8 × 10–1 1.4 × 10–2 4.4 × 10–1 1.0 

 0.5 6.1 × 10–1 2.6 × 10–2 6.7 × 10–1 1.0 

 1 7.3 × 10–1 5.2 × 10–2 9.0 × 10–1 1.0 

Pick-up 

truck 

0.001 4.3 × 10–2 2.5 × 10–4 9.2 × 10–3 2.0 × 10–1 

0.01 5.2 × 10–2 5.9 × 10–4 1.7 × 10–2 2.2 × 10–1 

0.1 1.2 × 10–1 1.9 × 10–3 5.8 × 10–2 4.6 × 10–1 

0.25 2.0 × 10–1 3.3 × 10–3 1.1 × 10–1 7.0 × 10–1 

 0.5 2.9 × 10–1 5.4 × 10–3 1.9 × 10–1 8.9 × 10–1 

 1 4.0 × 10–1 9.5 × 10–3 3.4 × 10–1 9.9 × 10–1 

 

3) Basic reproduction number 

The impact of altering the basic reproduction number on the risk of onward transmission is 

presented in Table 27. These results suggest that reductions in the transmissibility of infection on 

the index farm are associated with reductions in the risk of onward transmission (when compared to 

the model in which R0 is allowed to range between 20 to 30), but that these reductions are relatively 

small. For example, the average risk of infection on the receiving farm when the value of Ro on the 

outbreak farm is 10 is 0.041 for collectors using a truck and 0.026 for those collectors using a pick-up 

truck (compared to the baseline results of 0.0714 and 0.0474, respectively). The average risk is 

further reduced when the R0 is 5 to 0.020 and 0.0089, respectively.  
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Table 27: The impact of altering the basic reproduction number on the index farm (i.e. the farm on 

which the outbreak is occurring) on the probability of transmission of HPAIV to a susceptible flock 

of broilers 

 Ro Mean  5th percentile 50th percentile 95th percentile 

Truck 10 4.1 × 10-2 2.0 × 10-4 1.5 × 10-2 1.7 × 10-1 

 5 2.0 × 10-2 2.5 × 10-5 5.8 × 10-3 8.3 × 10-2 

Pick-up  10 2.3 × 10-2 1.2 × 10-4 6.3 × 10-3 9.4 × 10-2 

truck 5 8.9 × 10-3 1.5 × 10-5 2.3 × 10-3 3.5 × 10-2 

 

4) Number of birds initially infected 

When the source of contamination on the index farm is contaminated feed or water, it might be 

expected that a large proportion of the flock will become infected at or around the same time. The 

impact of this effect is presented in Table 28. Compared to the baseline model, in which a single bird 

is infected, the probability of onward transmission increases as the number of birds initially infected 

within the flock on which the outbreak is occurring increases, so that an outbreak in which 1% of the 

flock are initially infected is associated with an average risk of onward transmission of 0.086 via 

collectors using trucks, whilst an outbreak on which 50% of the flock are initially infected is 

associated with an average risk of onward transmission of 0.11. 

Table 28: The impact of the number of birds initially infected on the index farm on the probability 

of infection as result of the contamination of litter on a susceptible farm by collectors. 

 Proportion of flock 

initially infected 

Mean  5th percentile 50th percentile 95th percentile 

Truck 1% 8.6 × 10-2 2.5 × 10-3 3.6 × 10-2 3.6 × 10-2 

10% 1.0 × 10-1 3.0 × 10-3 4.3 × 10-2 4.1 × 10-1 

50% 1.1 × 10-1 3.2 × 10-3 4.6 × 10-2 4.6 × 10-1 

Pick-up 

truck 

1% 6.2 × 10-2 9.7 × 10-4 1.8 × 10-2 2.9 × 10-1 

10% 7.4 × 10-2 1.1 × 10-3 2.3 × 10-2 3.4 × 10-1 

50% 8.4 × 10-2 1.2 × 10-3 2.4 × 10-2 3.9 × 10-1 

 

5) Time at which the virus is introduced into the house 

The time at which the HPAIV H5N1 was introduced into the flock was altered to reflect the anecdotal 

evidence that HPAI H5N1 outbreaks typically occur only after the second week in broiler flocks. For 

this, the uniform distribution describing time of virus introduction was altered to range only 



Africa/Indonesia Team Working Paper 

 

63 

 

between 14 and 40 days. The resulting model outputs (in which all other model parameters were 

held at their baseline, i.e. R0 between 20 and 40, introduction of a single infected bird etc) are 

presented in Table 29. These results suggest that the time of virus introduction into the flock has a 

minimal impact on the risk of onward transmission via collectors, with the average risk estimate and 

the range of values derived being roughly equivalent for the baseline and adjusted model.  

Table 29: Summarized results for the probability of infection on the next farm after collectors have 

visited a small-scale broiler farm on which an outbreak is occurring and received HPAIV H5N1 

contamination of shoes and carry crates. The model is adjusted so that HPAIV H5N1 on the 

outbreak farm is only introduced after the 14th day of production 

Probability of 

infection 

Mean 5th Percentile 50th Percentile 95th Percentile 

Truck 7.2 × 10-2 9.0 × 10-4 2.9 × 10-2 2.9 × 10-1 

Pick-up 4.8 × 10-2 4.3 × 10-4 1.4 × 10-2 2.1 × 10-1 

 

6) Mixing within the house 

For the baseline scenario we make the important assumption that any introduced virus mixes 

completely with all litter present within the house. It would be reasonable to assume, however, that 

the movement of chickens within the broiler house will result in mixing with only a proportion of 

litter, for example the top layer only. The impacts of reducing the amount of litter with which virus is 

able to mix are presented in Table 30. In the first case, we consider mixing with 50% of the litter in 

the house (i.e. the top 50% of litter), and the second scenario considers mixing with 10% of litter in 

the house. Clearly, the less mixing that takes place, the greater the concentration of virus per gram 

of litter, and the probability of infection within the receiving broiler house increases. Based on a 

model with 50 simulations, each with 3000 iterations, the mean estimate of risk based on the 50% 

mixing assumption would be 0.123 for collectors using trucks, whilst the estimate for collectors using 

a pick-up truck would be 0.082. Similarly, the estimate for 10% mixing within the litter of the broiler 

house is 0.347 for collectors using a truck and 0.241 for collectors using a pick-up truck. Clearly, 

then, this assumption is extremely important and can alter the output from the model from a low to 

medium risk (i.e. 7 out of every 100 visits resulting in infection) to a high to very high risk, i.e. 35 out 

of every 100 visits resulting in infection). Unfortunately, this uncertainty is unlikely to be resolved 

and the impact of this large assumption should therefore be considered when interpreting the risks 

associated with contamination of litter on the receiving broiler farm. 
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Table 30: Summarized results for the probability of infection associated with the movement of 

collectors and their equipment under the assumption that virus mixes with 50% or 10% of litter in 

the receiving broiler house 

Mixing 

assumption 

Probability of 

infection 

Mean 5th 

Percentile 

50th 

Percentile 

95th 

Percentile 

50% Truck 1.2 × 10-1 1.9 × 10-3 5.6 × 10-2 5.0 × 10-1 

Pick-up 8.2 × 10-2 8.5 × 10-4 2.6 × 10-2 3.7 × 10-1 

10% Truck 3.5 × 10-1 9.1 × 10-3 2.5 × 10-1 9.7 × 10-1 

 Pick-up 2.4 × 10-1 4.2 × 10-3 1.2 × 10-1 9.1 × 10-1 

Summary: risks associated with collectors and their equipment 

Although the baseline model considers the scenario in which all of the introduced virus becomes 

mixed with the very large amount of litter present within the house of the susceptible broiler farm, 

and therefore that individual birds are exposed to extremely small doses, the fact that such a large 

number of birds are exposed to HPAIV H5N1 results in a relatively high predictions of risk. Hence, the 

assumption of complete mixing of virus within the house and hence the exposure of all birds is an 

extremely important one.  

Altering model parameters such as the proportion of virus entering the house from shoes and 

collecting crates will clearly influence the risk of disease spread; as more virus is introduced, the risk 

that at least one bird becomes infected increases. 

8.3 Impact of mitigation strategies: litter contamination by collectors 

We considered the impact of a range of mitigation strategies that could be implemented to reduce 

the risk associated with transmission from collectors. These were: 

- A mandatory delay period between farm visits. 

- The prevention of collectors visiting farms on which outbreaks are occurring, either through 

incentivizing reports of HPAI H5N1 or penalization of the sale of live broilers in the event of a 

disease outbreak. 

- Sanitation of collector’s equipment between farm visits 

The impact of all interventions was evaluated using the baseline model (i.e. a single infected bird, R0 

between 20 and 40, complete mixing within the house, etc.). 

8.3.1 Mandatory 24 hr delay period between farm visits by collectors 

The establishment of regulations to ensure a delay of 24 hours between visits to farms by collectors 

is expected to result in a substantial decrease in the risk of disease spread from an infected farm to a 

susceptible farm (Table 31). Based on a model with 50 simulations, each with 3000 iterations, the 

average estimate of risk associated with transmission from collectors using a truck would be reduced 

from 0.071 to 0.0023, or approximately two occasions out of 1000 in which collectors transmit 

infection to a susceptible flock, if collectors were forced to wait for 24 hours between farm visits. 

The mean risk associated with collectors using a pick-up truck would be reduced from 0.047 to 

0.00064. Similarly, the probability of transmission of infection following a 48 hour delay is extremely 

small, with the average risk for those collectors using a truck being 0.0000349, or infection on 3 or 4 
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occasions out of every 100,000 visits to a susceptible farm following a visit to a farm on which an 

outbreak is occurring. 

Table 31: Predicted probability of infection following the establishment of a mandatory 24 hr 

delay period for movement between farms for collectors using trucks and pick-up trucks 

 Probability 

of infection 

Mean 5th Percentile 50th Percentile 95th Percentile 

24 hr 

delay 

Truck 9.5 × 10-4 – 

 4.5 × 10-3 

8.0 × 10-6 –  

5.4 × 10-5 

2.8 × 10-4 –  

1.5 × 10-3 

3.2 × 10-3 –  

1.8 × 10-2 

 Pick-up 6.4 × 10-4 – 

 3.0 × 10-3 

3.5 × 10-6 –  

2.4 × 10-5 

1.4 × 10-4 –  

7.0 × 10-4 

2.2 × 10-3 –  

1.2 × 10-2 

48 hr 

delay 

Truck 7.7 × 10-6 –  

9.1 × 10-5 

8.6 × 10-8 – 

 9.0 × 10-7 

2.6 × 10-6 –  

2.9 × 10-5 

2.7 × 10-5 –  

3.1 × 10-4 

 Pick-up 5.0 × 10-6 –  

6.2 × 10-5 

3.9 × 10-8 – 

 4.3 × 10-7 

1.2 × 10-6 – 

 1.3 × 10-5 

1.7 × 10-5 –  

2.1 × 10-4 

 

Whilst we acknowledge that mandatory delay periods between farm visits would be difficult to 

enforce, a similar impact could be achieved if collectors were encouraged to change footwear and 

carry crates between farm visits, ensuring that these items had a 24 or 48 hour rest period between 

farm visits.  

8.3.2 Prevention of collectors visiting farms on which an HPAI outbreak has been detected or is 

suspected 

The litter contamination model has considered the situation in which producers detecting disease 

attempt to sell broilers as early as possible. However, if it is possible to incentivize producers to 

report an outbreak of HPAI within their flock upon detection, and therefore to reduce the likelihood 

that they will use collectors, the risk of onward transmission via collectors is likely to be reduced, but 

not prevented, given that collectors may visit a farm on which an HPAI outbreak is occurring, but on 

which disease has not yet been detected.  

In order to estimate the probability of onward transmission associated with collectors who only visit 

a farm before an outbreak is detected, we repeated each step of the release and exposure 

assessment, but selecting only those data from the stochastic transmission model that relate to 

collector visits before the disease has been detected. The summarized outputs from 50 simulations, 

each with 3000 iterations are presented in expected to be reduced by at least one order of 

magnitude by ensuring that collectors do not visit a farm on which HPAI H5N1 is suspected. 

Table 32 and the cumulative second-order distributions for collectors using trucks and those using 

pick-up trucks are presented in Figure 21 and 22. Whilst the mean value for trucks, over all 

simulations was reduced to 0.0076, and for pick-up trucks 0.0025, the distribution of observed 

values is extremely wide. This is due to the fact that the within flock prevalence at the time the 

collector visits is highly variable, with the potential for collectors to visit when only a few birds are 

infected, to situations in which over 90% of birds within the flock are infected and shedding virus 

(e.g. at extreme values of the range of R0 together with short latent periods). However, on average, 
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the risks of onward transmission via litter contamination might be expected to be reduced by at 

least one order of magnitude by ensuring that collectors do not visit a farm on which HPAI H5N1 is 

suspected. 

Table 32: Summarized results for the probability of infection on the next farm after collectors have 

visited a small-scale broiler farm on which an HPAI outbreak is occurring but has not yet been 

detected 

Probability 

of infection 

Mean 5th Percentile 50th Percentile 95th Percentile 

Collectors 

using truck 

2.8 × 10-3-1.6 × 10-2 5.2 × 10-7-2.3 × 10-6 1.5 × 10-4-7.1 × 10-4 1.4 × 10-2-7.8 × 10-2 

Collectors 

using pick-up 

7.7 × 10-4-4.5 × 10-3 4.4 × 10-8-1.9 × 10-7 4.2 × 10-5-2.0 × 10-4 3.7 × 10-3-2.2 × 10-2 

 

 

Figure 21: Cumulative second-order distribution for the predicted probability of infection 

following the entry into the broiler house of a group of collectors using a truck who has previously 

visited a farm on which an HPAI outbreak is occurring, but has not yet been detected. 

8.3.3 Sanitation of footwear and crates 

If collectors can be encouraged to sanitize their footwear and equipment following each farm visit, it 

is likely that the risk of onward transmission will be reduced. The expected impact of cleaning or 

disinfection of shoes or carry crates, or both, on the risk of transmission associated with collectors is 

presented in Table 33. 

A 2 to 3 log reduction in virus titre on footwear is a theoretically achievable through the use of foot 

dips, however this requires very regular maintenance of chemical concentrations and is unlikely to 

be achieved in the field (Dwyer 2004). Moreover, the disinfectants of choice for broiler producers in 

Indonesia tend to be quaternary ammonium compounds, and whilst these have been shown to be 

effective against AIV (De Benedictis et al. 2007; Patnayak et al. 2008), the presence of organic 
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material (as would be expected on contaminated footwear) may severely reduce their effectiveness. 

Reduction of virus titres on footwear will reduce the risk associated with collectors somewhat (i.e. to 

a minimum average risk of 0.032 for a 3 log reduction (99.9%) in virus titre on shoes of collectors 

using a truck), but given that collectors can also contaminate the broiler house environment through 

collecting crates, the risk remains reasonably high if these remain un-sanitized. Similarly, a 2 to 3 log 

reduction in the expected H5N1 virus titre on crates will substantially reduce the risk of virus 

transmission via the crates, however the predicted probability of transmission remains at 0.04 if 

collectors do not also sanitize their footwear.  

 

 

 

Figure 22: Cumulative second-order distribution for the predicted probability of infection 

following the entry into the broiler house of a group of collectors using a pick-up truck who have 

previously visited a farm on which an HPAI outbreak is occurring, but has not yet been detect. 
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Table 33: Summarized results for the probability of infection through the entrance of collectors 

following the sanitation and 1, 2 or 3 log removal of virus contaminating shoes and/or collection 

crates 

 Log 

reduction 

Mean 5th Percentile 50th Percentile 95th Percentile 

Shoes      

Collectors 

using 

trucks 

1 3.6 × 10-2 3.5 × 10-4 1.4 × 10-2 1.5 × 10-1 

2 3.2 × 10-2 2.3 × 10-4 1.1 × 10-2 1.3 × 10-1 

3 3.2 × 10-2 2.0 × 10-4 1.0 × 10-2 1.3 × 10-1 

Collectors 

using 

pick-up  

1 1.1 × 10-2 1.2 × 10-4 3.8 × 10-3 4.3 × 10-2 

2 6.3 × 10-3 4.9 × 10-5 2.0 × 10-3 2.5 × 10-2 

3 5.8 × 10-3 3.3 × 10-5 1.7 × 10-3 2.3 × 10-2 

Crates      

Collectors 

using 

trucks 

1 4.3 × 10-2 3.6 × 10-4 1.1 × 10-2 2.0 × 10-1 

2 4.3 × 10-2 1.9 × 10-4 8.5 × 10-3 2.0 × 10-1 

3 4.2 × 10-2 1.4 × 10-4 8.2 × 10-3 2.0 × 10-1 

Collectors 

using 

pick-up 

1 4.3 × 10-2 2.1 × 10-4 8.7 × 10-3 2.0 × 10-1 

2 4.3 × 10-2 1.4 × 10-4 8.1 × 10-3 2.0 × 10-1 

3 4.2 × 10-2 1.4 × 10-4 8.1 × 10-3 2.0 × 10-1 

Shoes and Crates     

Collectors 

using 

trucks 

1 9.1 × 10-3 9.2 × 10-5 2.9 × 10-3 3.5 × 10-2 

2 9.5 × 10-4 9.3 × 10-6 2.9 × 10-4 3.5 × 10-3 

3 9.6 × 10-5 9.3 × 10-7 2.9 × 10-5 3.5 × 10-4 

Collectors 

using 

pick-up 

1 6.1 × 10-3 4.2 × 10-5 1.3 × 10-3 2.4 × 10-2 

2 6.5 × 10-4 4.3 × 10-6 1.3 × 10-4 2.4 × 10-3 

3 6.6 × 10-5 4.2 × 10-7 1.3 × 10-5 2.4 × 10-4 

 

Hence, in order to effectively reduce the risks of transmission associated with collectors through 

sanitation, the cleaning of all potentially contaminated equipment (i.e. footwear and collecting 

crates) must be conducted. If this can be achieved, a 2 to 3 log reduction in contaminating virus 

titres can be considered to result in reduction of risk of transmission to very low levels.  
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9 Exposure assessment: Litter contamination by animal health 

workers 

We applied the same litter contamination model to predict the risks associated with the 

contamination of litter as a result of transfer of faecal material to the broiler house from the shoes 

of animal health workers (i.e. veterinarians or pharmaceutical officers). Additional risks would be 

associated with the handling of the birds on the susceptible broiler farm, and these are described 

above.  

The model outputs are given in Table 34, and the cumulative second-order distribution is presented 

in Figure 223. The mean probability of onward transmission, over all simulations, is 0.087, or the 

model predicts that approximately 9 out of every 100 small-scale broiler farms would become 

infected as a result of the entry of animal health workers who have previously visited a small-scale 

broiler farm on which an outbreak is occurring, and who have not applied sanitary measures. The 

uncertainty range for this mean estimate is between 0.039 and 0.15. This assessment considers the 

specific example of animal health workers called to the farm at the first suspicion of infectious 

disease within the flock.  

Table 34:. Summarized results for the probability of infection on the next farm after veterinarians 

or animal health workers have visited a small-scale broiler farm on which an HPAI outbreak has 

just been detected 

Probability of 

infection 

Mean 
5th Percentile 50th Percentile 95th Percentile 

Veterinarian/animal 

health worker 

3.9 × 10-2-

1.5 × 10-1 

8.5 × 10-4 

-4.8 × 10-3 

1.4 × 10-2- 

7.0 × 10-2 

1.6 × 10-1- 

6.3 × 10-1 

 

 

Figure 23: Cumulative second-order distribution for the probability of infection following the entry 

of a veterinarian or animal health worker who has previously visited a farm on which an HPAI 

H5N1 outbreak has recently been detected. 
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9.1 Impact of mitigation strategies: litter contamination by animal health 

workers 

We considered the impact of two mitigation strategies that could be implemented to reduce the risk 

associated with transmission from animal health workers. These were: 

- A mandatory delay period between farm visits by animal health workers. 

- Provision of disinfectant footbaths prior to entry to the house 

9.1.1 Mandatory 24 hr delay period between farm visits by veterinarians 

As is the case with collectors, the establishment of regulations to ensure a delay of 24 hours 

between visits to farms by veterinarians and animal health workers can result in a potentially large 

decrease in the risk of spread of infection from a farm on which an outbreak is occurring to a 

susceptible farm (Table 35). Based on 50 simulations, each comprising 3000 iterations, the mean 

estimate is reduced to very low levels of 0.0016 (with an associated uncertainty range of 0.00064 - 

0.0034).  

Table 35: Predicted probability of HPAIV H5N1 infection following the establishment of a 

mandatory 24 hr delay period for movement between farms for veterinarians and animal health 

workers. 

Probability of 

infection 
Mean 5th Percentile 50th Percentile 95th Percentile 

Veterinarian/animal 

health worker: 24 

hour delay 

6.4 × 10-4- 

3.4 × 10-3 

4.1 × 10-5- 

2.1 × 10-4 

4.0 × 10-4- 

2.0 × 10-3 

2.2 × 10-3- 

1.1 × 10-2 

 

9.1.2 Impact of the provision of disinfectant footbaths prior to entry of the broiler house 

The expected impact of disinfectant foot dips on the risks associated with faecal contamination on 

the feet of veterinarians and animals health workers is presented in Table 36. Whilst difficult to 

achieve, if a 2 to 3 log reduction in virus titres on footwear can be achieved, the risk of spread via the 

footwear of such visitors could be expected to be reduced to low levels.  

Table 36: Predicted impact of disinfectant footbaths on the probability of disease spread via 

veterinarians and animal health workers following a visit to a farm on which an HPAI outbreak is 

ongoing 

Probability of 

infection 

 5th Percentile 50th Percentile 95th Percentile 

Veterinarians 

and animal 

health worker: 

foot dips 

1 log reduction 2.8 × 10-4- 

9.1 × 10-4 

2.9 × 10-3- 

9.4 × 10-3 

1.8 × 10-2- 

5.8 × 10-2 

2 log reduction 3.0 × 10-5- 

9.3 × 10-5 

2.8 × 10-4- 

9.3 × 10-4 

1.7 × 10-2- 

5.5 × 10-3 

3 log reduction 2.9 × 10-6- 

9.4 × 10-6 

2.8 × 10-5 

-9.2 × 10-5 

1.8 × 10-4- 

5.9 × 10-4 
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10 Exposure assessment: Water-borne transmission 

Based on estimates of the concentration of virus in surface water (Cr) under three dilution scenarios, 

the exposure dose (D) received by chickens consuming water from rivers contaminated by carcasses 

from birds that have died from HPAI H5N1 was estimated (Schijven et al. 2005a): 

 

Where values of Cr are defined by the second order-distribution representing the concentration of 

virus in water and Fc is the drinking rate of domestic chickens per day. We estimated Fc by defining 

the distribution of daily water consumption rates from a single study investigating water 

consumption on broiler farms at 5 sites and over 6 production cycles (Manning et al. 2007) (Table 

37). Water consumption rates were approximately normally distributed, with best fitting values of μ 

= 0.17, ς = 0.02. The distribution was truncated at 0 and 1 litre.  

Table 37: Average daily water consumption by broiler chickens (l/bird/day) at 5 sites  

 Water consumption (l/bird/day) 

Crop 1 2 3 4 5 

1 0.159 0.167 0.168 0.156 0.184 

2 0.159 0.139 0.137 0.151 0.177 

3 0.156 0.228 0.221 0.153 0.170 

4 0.155 0.172 0.177 0.158 0.175 

5 0.186 0.183 0.183 0.162 0.189 

6 0.188 0.184 0.187 0.158 0.176 

Average 0.167 0.179 0.177 0.156 0.178 

Source: Manning et al. (2007) 

 

We considered exposure over the course of a single day (i.e. t = 1); after one day, we expect that 

virus concentrations at a specific location will be diminished through the combined actions of 

dispersion and advection (A27) (Schijven et al. 2005a). 

10.1 Probability of infection in a broiler flock 

The probability that a single bird exposed to dose D will become infected can be estimated based on 

the exponential dose response model as,  

 

Given that all birds within a flock of broilers will be exposed to the same source of drinking water, 

we estimated the probability that at least one bird within the flock would become infected as: 
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Where  is the number of birds in the susceptible broiler flock. The full list of parameters used 

in both the release and exposure assessment for the transmission of HPAIV H5N1 as a result of the 

consumption of contaminated river water is given in Table 38.  

Table 38: Parameters used in the assessment of the risks of transmission associated with the 

consumption of H5N1 contaminated river water by broilers 

Parameter Description Distribution/value Classification1 

Fday Faecal output per day (g) Betapert(20, 40, 50) V (+ U) 

Rday Respiratory secretion per day (ml) Betapert(0,5,20) V (+ U) 

 Virus titre per gram faeces (EID50) Parametric bootstrap 

from observed data 

V (+ U) 

 Virus titre per ml respiratory 

secretion (EID50) 

Parametric bootstrap 

from observed data 

V (+ U) 

Tdisposal Time between death and disposal 

into river (hrs) 

Uniform (1,12) V 

k Virus inactivation co-efficient (in 

faeces)  

Uniform(0.1604, 

0.1972) 

U 

π Virus inactivation co-efficient (in 

water)  

Lognormal(0.043, 

0.064) 

U 

Fr (small) Flow rate - small river 8.6 × 104 m3/day F 

Fr (medium) Flow rate - medium river 2.2 × 106 m3/day F 

Fr (large) Flow rate - large river 2.3 × 107 m3/day F 

d Drinking rate Normal(0.172, 0.02) V (+U) 

r Exponential dose response 

parameter 

Bootstrap replicates U 

nflock Number of birds in the flock Empirical distribution  V 

ε Mortality rate (detection 

threshold) 

Uniform(0.01, 0.02) V (+U) 

1V = variability, U = uncertainty, F = fixed values 

 

The model was run as a set of 50 simulations, each comprising 5000 iterations. For each simulation, 

a random value was drawn from the uncertainty distributions representing the dose response 

parameter, r, virus inactivation co-efficient in faeces, k, and the virus inactivation co-efficient in 

water, π. The ranges of distributional outputs are presented in Table 39. The risk associated with the 
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contamination of small rivers is relatively high, with a mean risk estimate, over all simulations, of 

0.18 (and associated uncertainty distribution between 0.12 and 0.31). Hence, we would predict that 

at least one bird within a flock will become infected 18 times out of 100 when a random flock uses 

untreated water from a small river within a one-day flow from a farm on which an HPAI outbreak is 

occurring, and on which contaminated carcasses amounting to between 1 and 2% of the flock size 

are thrown into the small river.  

Table 39: Estimates of the probability of infection of at least one bird within a broiler flock (Piflock) 

following exposure to water from small, medium and large rivers contaminated by carcasses 

comprising between 1 and 2% of a broiler flock on which an outbreak is occurring 

 

Clearly, as the size of the river increases, and the value of Cr decreases through dilution, the risks to 

broiler flocks decrease. Hence, a broiler farm using water from a ‘medium’ sized river has a average 

risk of 0.014 (uncertainty range 0.0076 - 0.033), and a broiler flock using water from a ‘large’ sized 

river would be expected to have a risk of infection of 0.0016 (uncertainty range 0.00078 - 0.0037). 

The cumulative second-order distributions for each of these scenarios are presented in  

Figure 24, 25 and 26.  

Given that so many birds within a single flock are exposed to potentially infectious doses of HPAIV 

H5N1 within drinking water, the risk that at least one bird within the flock becomes infected is 

relatively high, even though the specific risk for an individual within the flock is extremely small.  

 

Dilution 

scenario 

Mean Piflock  5th percentile 50th percentile 95th percentile 

Small 1.2 × 10-1 – 

 3.1  × 10-1 

2.8 × 10-3 –  

1.4 × 10-2 

4.3 × 10-2 –  

1.9 × 10-1 

5.4 × 10-1 – 

 9.8 × 10-1 

Medium  7.6 × 10-3 – 

 3.3 × 10-2 

1.1 × 10-4 –  

5.6 × 10-4 

1.7 × 10-3 – 

 8.1 × 10-3 

3.0 × 10-2 – 

 1.5 × 10-1 

Large  7.8 × 10-4 –  

3.7 × 10-3 

1.0 × 10-5  

- 5.4 × 10-5 

1.6 × 10-4 – 

 7.8 × 10-4 

2.9 × 10-3 – 

 1.5 × 10-2 
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Figure 24: The cumulative second order distribution for the risk of HPAIV H5N1 infection of at least 

one bird in a small-scale broiler flock following consumption of untreated water from a ‘small’ 

river contaminated by carcasses. 

 

 

Figure 25: The cumulative second order distribution for the risk of HPAIV H5N1 infection of at least 

one bird in a small-scale broiler flock following consumption of untreated water from a ‘medium’ 

sized river contaminated by carcasses. 
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Figure 26: The cumulative second order distribution for the risk of HPAIV H5N1 infection of at least 

one bird in a small-scale broiler flock following consumption of untreated water from a ‘large’ 

sized river contaminated by carcasses. 

It is important to note that this model makes the large assumption that the distribution of virus 

within river water is homogeneous (i.e. that there is complete mixing) (A28). This is a model 

simplification, and it is very likely that there is additional variability in the dose with which birds are 

exposed which is not accounted for in this model, as discussed by Schijven et al. (2005a).  

Moreover, these estimates are only relevant for those broiler producers making use of river water, 

and for those broiler producers that are downstream of another broiler flock. The risks posed by 

piped or ground water have not been assessed. 

10.1.1 The impact of water treatment 

The risks posed to broiler chickens drinking contaminated river water appear to be high, particularly 

for flocks using a small river for as a water source. In reality, however, it is likely that the majority of 

broiler producers in Indonesia chlorinate water before making this available for birds; this 

precaution is typically undertaken in order to reduce the risk associated with enteric pathogens 

(such as E. coli) rather than being specifically directed against HPAIV H5N1. Although chlorination of 

water has long been expected to be effective in the elimination of AIV from drinking water, Rice et 

al. (2007) were the first to quantify the effectiveness of chlorination in the elimination of HPAIV 

H5N1 by demonstrating that the maintenance of a free chlorine residual between 0.52-1.08 mg/L 

was sufficient to inactivate the virus by >3 orders of magnitude within an exposure time of 1 minute. 

It is generally recommended that commercial poultry producers using chlorination for water sources 

maintain a free chlorine concentration of between 1 and 5 mg/L, which would be expected to rapidly 

remove, or diminish the infectivity of HPAIV H5N1, and therefore, if properly applied, reduce the 

risks associated with river water to low levels. The predicted impact of 1 to 6 log reductions in virus 

titre on the probability of infection following exposure to water from a small river are presented in 

Table 40. Whilst a 3 log reduction (Rice et al. 2007) would be expected to reduce the risks to low 

levels (0.00018 to 0.0011), if broiler producers are required to use river water due to a lack of 
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alternatives, they should be encouraged to maintain free chlorine concentrations as high as possible 

to ensure the risk of transmission to their flocks remains at very low levels (as is likely to be achieved 

at 5 to 6 log reductions in virus concentration).  

Table 40: The impact of chlorination on the probability of infection in a small-scale broiler flock 

exposed to H5N1 contaminated river water from a ‘small’ river 

Log 

reduction 

Mean 5th Percentile 50th Percentile 95th Percentile 

1 1.8 × 10-2 –  

6.6 × 10-2 

2.8 × 10-4 – 

 1.4 × 10-3 

4.2 × 10-3 –  

2.2 × 10-2 

7.3  × 10-2 – 

 2.9 × 10-1 

2 2.0 × 10-3 –  

8.5 × 10-3 

2.7 × 10-5 – 

 1.5 × 10-4 

4.2 × 10-4 –  

2.2 × 10-3 

8.1 × 10-3 –  

3.7 × 10-2 

3 1.8 × 10-4 –  

1.1 × 10-3 

2.9 × 10-6 –  

1.4 × 10-5 

4.5 × 10-5 – 

 2.1 × 10-4 

7.3 × 10-4 – 

 3.9 × 10-3 

4 2.1 × 10-5 –  

1.3 × 10-4 

2.7 × 10-7 – 

 1.3 × 10-6 

4.4 × 10-6 – 

 2.1 × 10-5 

8.5 × 10-5 – 

3.5 × 10-4 

5 1.9 × 10-6 –  

1.0 × 10-5 

3.1 × 10-8 – 

 1.3 × 10-7 

4.3 × 10-6 – 

 2.3 × 10-6 

7.2 × 10-6 – 

 3.9 × 10-5 

6 1.9 × 10-7 – 

 9.3 × 10-7 

2.8 × 10-9 – 

 1.4 × 10-8 

4.5 × 10-8 –  

2.1 × 10-7 

7.5 × 10-7 – 

 3.5 × 10-6 

 

10.2 Probability of infection in a household flock  

The exposure assessment was repeated by considering the exposure of backyard poultry within a 

single household to contaminated river water. The same variability and uncertainty distributions 

were used, but an empirical distribution for the number of poultry owned by a household replaced 

the number of broilers in the risk model. A specific estimation of the number of poultry owned per 

household was derived from DGLS surveillance data from Bogor District and Municipality. The mean 

value based on this distribution was 8, with a range between 1 and 311 birds per household. 

Given that the number of susceptible birds owned by a household is considerably smaller than the 

number present within a small-scale broiler flock, the risk of infection as a result of exposure to 

contaminated surface water is comparatively small per household (Table 41). The mean estimate for 

those households using water from a small river is 9.6 × 10-4 (with an uncertainty range of 4.60 × 10-

4-2.32 × 10-3). Hence, it might be expected that of 10,000 households using river water that has been 

contaminated by carcasses representing between 1 and 2% of a broiler flock size, on average, 

around 10 households would be expected to become infected. The average estimates for household 

flocks using surface water from a medium and large-sized river are considerably smaller at 3.1 × 10-5 

and 3.7 × 10-6.  
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Table 41: Estimates of the probability of infection of at least one bird within a household owned 

(sector 4) flock (Pihh) following exposure to water from small, medium and large rivers 

contaminated by carcasses comprising between 1 and 2% of the broiler flock on an infected farm 

Dilution 

scenario 

Mean Pihh  5th percentile 50th percentile 95th percentile 

Small 4.6 × 10-4 –  

2.3 × 10-3 

6.1 × 10-6 – 

 3.2 × 10-5 

8.6 × 10-5 – 

 4.0 × 10-4 

1.7 × 10-3 – 

 8.8 × 10-3 

Medium 1.8 × 10-5 – 

 9.5 × 10-5 

2.4 × 10-7 – 

 1.2 × 10-6 

3.3 × 10-6 –  

1.6 × 10-5 

6.6 × 10-5 – 

 3.4 × 10-4 

Large 1.7 × 10-6 – 

9.1 × 10-6 

2.3 × 10-8 – 

 1.2 × 10-7 

3.2 × 10-7 –  

1.5 × 10-6 

6.3 × 10-6 – 

 3.3 × 10-5 

 

It should be noted that these estimates are based on the assumption that domestic ducks (and other 

poultry) owned by the household are subject to the same dose-response relationship as domestic 

chickens. Given that values of r were defined based on chicken-only data, this assumption is not 

necessarily appropriate, but is applied given the absence of dose and response data for domestic 

ducks. 

10.3 Probability of infection within a desa 

The process was repeated by considering the exposure of all backyard chickens within a single desa, 

assuming that all households within the desa use river water to water their poultry. The number of 

backyard poultry within a desa was derived from DGLS surveillance data, and these were used to 

derive an empirical distribution with a mean of 5606, and a range of 15 to 23,936. These estimates 

relate to backyard poultry only. The range of uncertainty outputs from the model with 50 

simulations, each with 5000 iterations, is presented in Table 42. Given that the mean estimate of the 

number of poultry per desa is greater than the number per broiler farm, on average, the risk from 

consumption of contaminated river water would appear to be greater per desa compared to a 

broiler farm. It is also considerably less likely that backyard poultry producers would chlorinate 

water given to backyard poultry than is the case for broiler producers, and therefore these risk 

estimates may be more realistic. It is important to note, however that these estimates are based on 

the large assumption that all households in the desa make use of river water for the watering needs 

of their poultry and should therefore be interpreted in this light. Whilst this may be the case for rural 

communities in close proximity to rivers, it is likely that, in many desas, poultry in households with 

access to piped or groundwater may make use of these sources for the needs of their poultry and 

therefore the desa poultry population over represent the exposed population.  
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Table 42: Estimates of the probability of infection of at least one backyard chicken within a desa 

following exposure to water from small, medium and large rivers contaminated by carcasses 

comprising between 1 and 2% of the broiler flock 

Dilution 

scenario 

Mean Pidesa  5th percentile 50th percentile 95th percentile 

Small 1.3 × 10-1 – 

 3.3 × 10-1 

1.5 × 10-3 –  

6.8 × 10-3 

4.3 × 10-2 –  

1.9 × 10-1 

6.9 × 10-1 – 

 9.9 × 10-1 

Medium 1.1 × 10-2 – 

 4.4 × 10-2 

6.0 × 10-5 – 

 2.7 × 10-4 

1.7 × 10-3 – 

 8.4 × 10-3 

4.4 × 10-2 –  

2.2 × 10-1 

Large 1.3 × 10-3 – 

 5.8 × 10-3 

5.7 × 10-6 – 

 2.5 × 10-5 

1.7 × 10-4 – 

 8.0 × 10-4 

4.3 × 10-3 –  

2.3 × 10-2 
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11 Exposure assessment: Transmission via contact between live 

birds 

The release assessment provided the basis for estimation of the degree of contact expected 

between small-scale broiler farms and free-ranging poultry flocks in the District and Municipality of 

Bogor. The unit of ‘contact’ in this context is between a broiler farm (i.e. including contact with live 

birds or, more commonly, with the farm environment) and a backyard flock. The likelihood that a 

free-ranging flock will become infected following such contact (i.e. whether the contact is 

‘effective’), p, was estimated. We modelled a range of possible values for p from 0.01 to 1, and these 

estimates were multiplied by values drawn at random from the distribution representing the contact 

rate (i.e. cp). Values of cp were in turn multiplied by values drawn at random from an empirical 

distribution for the duration of an outbreak (d) derived from the SEIR transmission model developed 

as part of the release assessment. The output was then an estimate of the number of free-ranging 

poultry flocks that would be expected to become infected following an outbreak on a small-scale 

broiler farm and resulting from contact between the infected ‘farm’ and free-ranging flocks (i.e. 

excluding indirect routes of transmission). The model was run over 10,000 iterations, and for each 

iteration a single outbreak scenario was simulated, with the length of the outbreak (in days) 

determined by a random value from the empirical distribution for d, a fixed value for the probability 

of transmission, p, and a random value for the number of household flocks visiting the farm per day. 

The output for each iteration was then the total number of household flocks becoming infected, 

given that the number of susceptible birds decreases each time a specific household flock becomes 

infected. 

The parameters used in the model are presented in Table 43. 

Table 43: Parameters used in the model predicting the number of household flocks that would 

become infected through free-ranging following an outbreak on a small-scale broiler farm 

Parameter Description Distribution/calculation 

c 
Contact rate sector 4 flock with small-

scale broiler farms (per day) 

Empirical distribution 

(see text) 

p 
Probability of transmission to free-

range flock  
Uniform(0,1) 

cp Rate of ‘effective’ contacts c × p 

d Duration of infection on broiler flock 
Empirical distribution 

(see text) 

 

The range of predicted number of household flocks becoming infected at a variety of values of p is 

presented in Table 44. Whilst the value of p is likely to be highly variable, depending on the type of 

broiler farm and its population, the model predicts that there will be relatively little variation in the 

number of household flocks that become infected. This is perhaps unsurprising given that the mean 
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outbreak duration is 11 days (5th percentile = 2 days, 95th percentile = 24 days), hence the 

distribution of number of household flocks becoming infected largely reflects the distribution of 

flocks visiting a farm, even at relatively low values of p. 

Table 44: Distributional values for the number of backyard chicken (sector 4) flocks that are 

expected to become infected as a result of ranging into the environment of a broiler farm on 

which an H5N1 outbreak is occurring at a range of values for p, the probability of infection in a 

backyard chicken flock given contact with an infected broiler farm 

p Mean 5th Percentile 50th Percentile 95th Percentile 

0.01 0.19 0.004 0.072 0.79 

0.05 0.71 0.019 0.30 2.89 

0.1 1.09 0.032 0.51 4.25 

0.2 1.42 0.058 0.75 5.10 

0.3 1.65 0.079 0.89 5.81 

0.4 1.68 0.080 0.92 5.72 

0.5 1.81 0.087 0.97 6.03 

0.6 1.90 0.093 1.01 6.44 

0.7 1.94 0.098 1.08 6.50 

0.8 1.98 0.10 1.09 6.50 

0.9 2.05 0.10 1.10 6.90 

1 2.06 0.11 1.12 6.89 

 

This relatively simple model makes the assumption that the probability of transmission to free-

ranging flocks is the same for each day of an outbreak, which is not necessarily the case; as 

demonstrated in Figure 12, on average, the amount of virus entering the environment increases very 

rapidly until the 4th or 5th day, after which the number of infectious birds in the flock declines (as the 

number of susceptible birds declines), and hence it might be expected that the risk of transmission 

to free-ranging chicken flocks would decrease. 

11.1 Impact of mitigation strategies: reducing free-ranging during outbreaks 

In Bogor, it is generally recommended that all free-ranging poultry within a desa are confined for the 

duration of an HPAI outbreak involving either commercial, small-scale commercial or household 

flocks. However, given that an outbreak on a small-scale broiler farm can occur for up to 3 days 

before detection, there may be considerable opportunity for contact between free-ranging flocks 

and the infected broiler farm before such a policy can even begin to be implemented. Table 45 

presents the distributional estimates for the predicted number of backyard flocks that may become 

infected as a result of contact with an HPAIV H5N1 infected broiler farm before the disease has been 

detected, but in which contact ceases following detection. These results indicate that the 

enforcement of measures to prevent contact between backyard flocks and the broiler farm following 

disease detection are likely to be effective in reducing the average number of backyard flocks that 

become infected, but this effect is relatively small at high values of p (i.e. if the probability of 

infection following contact is high, then relatively few contacts are necessary for at least one flock to 

become infected). Hence, on average, contact between free-ranging household flocks and a farm on 
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which the value of p is 0.4 or greater is expected to result in infection of at least one backyard flock 

within the desa, even before the disease has been detected.  

Table 45: Distributional estimates of the number of backyard chicken (sector 4) flocks that are 

expected to become infected as a result of ranging into the environment of a broiler farm on 

which an H5N1 outbreak is occurring but has not been detected 

pa Mean 5th Percentile 95th Percentile 

0.01 0.03 0.00 0.03 

0.05 0.14 0.00 0.14 

0.1 0.28 0.00 0.28 

0.2 0.53 0.01 0.53 

0.3 0.78 0.01 0.78 

0.4 1.00 0.02 1.00 

0.5 1.26 0.02 1.26 

0.6 1.34 0.02 1.34 

0.7 1.58 0.03 1.58 

0.8 1.69 0.03 1.69 

0.9 1.90 0.03 1.90 

1 1.96 0.03 1.96 
a 

p = the probability of infection in a backyard chicken flock given contact with an infected broiler farm 

 
It is likely that the value of p will be influenced to a large extent by the cleanliness of the 

environment surrounding the broiler farm; those farms that dispose of carcasses, manure and litter 

into the environment of the farm are more likely to have higher values of p than those that dispose 

of waste products adequately (i.e. using incineration and burying). Hence, as well as recommending 

that household poultry producers continue to confine poultry upon detection of disease within the 

desa, additional recommendations to improve the cleanliness of the broiler environment (and 

therefore reduce p) can be expected to reduce the number of backyard flocks that become infected 

following an outbreak in a small-scale broiler flock. 



Africa/Indonesia Team Working Paper 

 

82 

 

12 Discussion: summary of risk mitigation approaches 

12.1 Biosecurity 

Biosecurity can be defined as any practice or system that prevents the spread of infectious agents 

from infected to susceptible animals, or that prevents the introduction of infection into a herd or 

flock (Radostits 2001). There are a variety of practical control policies that broiler producers can 

adopt to reduce the risk of disease entry, and these have been described by a number of authors 

(Otte et al. 2006; Permin and Detmer 2007; FAO 2008a). 

The specific disease prevention measures that have been addressed in this report, several of which 

are already promoted in Indonesia, include: 

a) Appropriate disinfection of shoes and equipment brought onto the farm  

The use of effective disinfectant foot dips will reduce the risk of virus introduction into a broiler 

flock. We estimate that the probability of HPAIV H5N1 spread via the footwear of collectors and 

animal health workers can be reduced to very low levels if at least 2 to 3 log reductions in the 

contaminating virus titre can be achieved. However, the effective use of foot dips relies on 

maintenance of disinfectant concentrations at the recommended levels. Moreover, the activity of 

these agents is generally reduced by the presence of organic material, such as faecal contamination 

(Dwyer 2004). Hence, poultry producers should be encouraged to make use of foot baths as much as 

possible but in order to effectively reduce the risks of HPAIV H5N1 transmission between farms, it 

may also be necessary to conduct producer education on the appropriate preparation and use of 

disinfectant foot baths. Protective equipment that is available for visitor’s use on the farm (i.e. gum 

boots, protective shoes covers etc.) is also likely to reduce the risk of disease transmission. 

Visitors who enter a broiler house may introduce virus on contaminated equipment, with collection 

crates used by collectors expected to represent a particular risk. In such circumstances, the dipping 

of feet alone cannot be expected to adequately reduce the risks of HPAIV H5N1 introduction. 

Producers and visitors should therefore be encouraged to ensure equipment is adequately cleaned 

and disinfected before it is allowed to enter the broiler house. Those items that are heavily 

contaminated with faecal material are likely to pose the greatest risk since faeces can contain large 

amounts of virus and such material can easily be dislodged into the environment of the broiler 

house. Hence, even if disinfectants are not readily available, the removal of gross faecal 

contamination (e.g. via spray washing) is likely to reduce risk of onward transmission to low levels 

and should be encouraged as a matter of course, particularly for collectors. 

b) Encourage single depopulation of broilers  

This risk assessment has suggested that the movement of poultry collectors between farms may 

represent a potential route for the spread of HPAIV H5N1 in Bogor District and Municipality. Clearly, 

the establishment of infection within a flock following the introduction of virus relies on the 

continued presence of birds within the flock. Hence, if an ‘all-out’ policy could be adopted for broiler 

flocks, and all birds removed from the farm as part of a single depopulation, the risks associated with 

virus introduction by collectors could be effectively eliminated. There is a theoretical risk that a farm 
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contaminated by collectors could remain infectious for the next batch of birds, although this is likely 

to be very small (but has not been explicitly assessed in this risk assessment).  

Single depopulation of small-scale broiler farms on a large scale would require substantial changes in 

the way in which broilers are marketed and sold.  

c) Treatment of water and/or reduced reliance on rivers as a water source for poultry 

This study has demonstrated that the risk of introduction of HPAIV H5N1 into a flock of broilers 

through consumption of untreated river water is potentially high. Chlorination is likely to be 

effective against HPAIV H5N1, and all sources of water for broilers should be treated prior to use: 

this is reportedly already common practice for broiler producers in Bogor District and Municipality. If 

it is necessary to use river water for the needs of broiler chickens, water treatment should always be 

employed and free chlorine levels should be held as high as is possible and for as long as possible. 

Although such an approach will not completely eliminate the risk associated with the use of river 

water, this risk can be reduced to very low levels.  

Whilst the risks posed to individual household flocks from contaminated river water are very low, 

the risk that at least one bird within a desa becomes infected is relatively high if all birds are exposed 

to contaminated (and untreated) water sources. Clearly, the greater the number of birds within a 

desa that are exposed, the greater the likelihood that at least one will become infected. Hence, 

although the treatment of river water could be encouraged for all backyard poultry producers, this is 

likely to be particularly important in those desa with large populations of backyard poultry in which 

river water is used for the drinking needs of a large proportion of poultry.  

d) Sanitation of hands  

Although broilers are highly stress sensitive and generally handled infrequently, the handling of birds 

with contaminated hands may result in infection of the birds following transfer of virus to feathers. 

Any person handling broilers, and particularly those that move from farm to farm, should be 

encouraged to employ simple hand washing measures with soap and water, and/or the use of a 

hand sanitizer between farms. These measures are likely to be particularly important for animal 

health workers, who may handle sick birds in the course of a disease investigation on several farms. 

e) Mandatory delays between farm visits 

Time is likely to be an effective disinfectant for HPAIV H5N1, which is readily inactivated in the 

environment. Hence, for all scenarios in which transmission occurs via the environment, measures 

that allow a delay of 24, or better still, 48, hours for the movement of people between farms are 

expected to reduce the risk of transmission to low or very low levels.  

f) Containment of free-ranging poultry  

Given the high density of both sector 4 poultry and small-scale broiler farms in the District and 

Municipality of Bogor, there is great potential for contact if backyard poultry are allowed to range 

during the day. Whilst complete confinement of birds in this sector would be the lowest risk 

strategy, such a strategy is likely to be unrealistic for such a low input system. Desa-wide actions to 

confine free-ranging poultry in the event of an outbreak on a small-scale broiler farm would be 

expected to reduce the risk of transmission between sectors. Dialogue could be encouraged 

between broiler farmers and the households that surround their farm; both parties should be aware 
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of the potential for the transmission of HPAIV H5N1 through the movement of free-ranging backyard 

flocks and the need for confinement of these in the event of an outbreak on either a broiler farm or 

in the backyard flock itself. 

12.2 Biocontainment  

Biocontainment describes the set of practices that can be adopted to reduce the risk of transmission 

between animals on a farm or from an infected to susceptible farm (Radostits 2001). Hence, whilst 

biosecurity may reduce the risks associated with HPAIV H5N1 ‘exposure’ on a susceptible small-scale 

broiler farm or in a susceptible backyard flock, bio-containment can reduce the likelihood that HPAIV 

H5N1 is ‘released’ from a farm undergoing an outbreak.  

a) Incentivising reporting  

If outbreaks of HPAI H5N1 on a broiler farm are reported at the earliest possible opportunity (i.e. 

following detection or suspicion of disease) we would expect that the risk associated with 

transmission, particularly via collectors, will be significantly reduced, although not removed entirely. 

In the model described there may still be substantial risks of onward transmission via water, the 

movement of animal health workers and contact with free-ranging poultry, even before the disease 

has been detected on the farm undergoing the outbreak. Incentivising the reporting of infectious 

disease is a complex issue, but the potential impacts on the onward transmission of virus via 

collectors are a potential benefit. 

b) Maintaining a clean environment around the broiler house 

This study has predicted that the rate of contact between free-ranging backyard flocks and small-

scale broiler farms can potentially be high. This high rate of contact may allow the infection of at 

least one free-ranging backyard flock following an outbreak on a small-scale broiler farm. Broiler 

farmers should be encouraged to maintain as clean an environment as possible around the broiler 

house, for example by burning or burying waste products and carcasses. The erection of appropriate 

fences, which completely prevent the entry of free-ranging flocks, would also be expected to reduce 

the risk of spread of disease between sector 3 and 4 farms within a desa. 

c) Adequate disposal of poultry carcasses 

The disposal of HPAIV H5N1 contaminated poultry carcasses into surface water bodies is likely to 

present a risk to those broiler chickens and backyard poultry that are within a one-day flow 

downstream. It is feasible that such practices also pose a risk to public health if untreated river 

water is consumed by people. These risks could be reduced if broiler producers are educated about 

the most appropriate ways to dispose of poultry carcasses, and the risks posed to their neighbours 

downstream could be used as a platform for this. In those areas in which broiler producers have 

been profiled, such activities can be targeted to those producers located within a certain distance of 

a river. 
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13 Conclusion 

This risk assessment has used available data and current knowledge in order to predict the risk of 

spread of HPAIV H5N1 along a variety of transmission routes. The estimates derived should not be 

considered definitive, but rather a ‘best guess’, which is as close to the true estimate of risk as it is 

possible to achieve at this time (Hartnett 2001). In order to reflect uncertainty in a number of key 

parameters, such as the rate of virus decay in the environment and the virus dose-response 

relationship, we have employed a second-order modelling approach, and the summary statistics 

derived from this process have been presented as ranges of values to reflect the uncertainty in these 

estimates. It should be noted that the risk assessment model is based on a wide variety of 

assumptions, necessitated by the lack of available data for many of the pathways. Where such 

assumptions are likely to have a large impact on the risk estimates derived or where there is 

considerable uncertainty in the assumption, we have attempted to demonstrate the potential 

impact of alterations in the basic assumption. The assumptions made in this risk assessment are 

presented in the appendix.  

This risk assessment was developed in order to assess the risks of transmission, in quantitative 

terms, along a selection of high risk pathways. The development of this model has also allowed the 

testing of a variety of potential risk mitigation strategies that could be established, or should 

continue to be promoted, in order to reduce the risk of transmission. It is intuitive that the 

mitigation strategies tested would reduce the risk of transmission, either by reducing contact 

between susceptible birds and virus in the environment or direct contact between infected and 

susceptible birds. However, through an estimation of the magnitude of the risk reduction, and 

potentially, consideration of the associated economic cost of strategy and its likely up-take, these 

outputs could assist in policy decisions.  

Clearly, additional information that would reduce the degree of variability or uncertainty present in 

distributional estimates would be of use for many of the risk pathways described in this study, 

however we would like to highlight a selection of key areas in which additional information would be 

particularly important. 

Additional work is required to fully characterize virus survival at the range of environmental 

conditions observed in Indonesia (and other areas in which HPAI H5N1 is endemic), and, critically, 

estimates of titre should be taken at more regular intervals in order to fully parameterize the virus 

decay curve. 

The movement of HPAIV H5N1 through the soil profile, and therefore the potential for viruses to 

contaminate groundwater, is unknown but may present a potential route for the transmission of 

HPAIV H5N1 (that has not been assessed in this risk assessment). Sampling from groundwater (as 

well as surface water) at sites from those areas in which outbreaks are ongoing would provide a 

useful indication of the potential importance of surface and groundwater in the epidemiology of 

HPAI H5N1. 

The ability for the H5N1 virus to detach from carcasses contaminating water bodies is unknown, but 

is a critical component of a risk assessment considering transfer from carcasses. 
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Experimental estimates of the dose-response relationship are available from a few studies in 

domestic chickens, however the sample sizes used and the range of titres tested are typically small. 

Additional work is required in order to fully characterize this vital parameter, and such studies 

should use a wider range of infectious doses for multiple virus strains, with a particular emphasis on 

the low dose estimates.  

Additional data are required on the behaviour of collectors in Indonesia, for example real-life 

estimates for travelling time between farms and collecting yards, and risk behaviour on the farm (in 

terms of the potential for contamination of the broiler house). Moreover, and given that collectors 

may play an important part in the transmission of HPAIV H5N1 between farms, additional data are 

required regarding the disease prevention strategies they adopt. 

Observational studies into the distances over which flocks of free-ranging backyard poultry may 

travel and the degree to which territories may overlap are required to fully assess the importance of 

contact between sector 3 and 4 flocks in the transmission of HPAIV H5N1. 

Out of necessity, and in the absence of adequate data describing the prevalence of infection in the 

semi-commercial broiler population in Bogor District and Municipality, this risk assessment has 

considered the risks associated with transmission from an infected farm rather than the current risks 

associated with transmission of HPAIV H5N1 for all broiler farms or backyard producers in Bogor. In 

order to consider these specific risks, an estimation of the prevalence of infection within small-scale 

broiler flocks would need to be incorporated. These estimates are currently unavailable. 
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Appendix 1 

A lack of data, or the need to simplify complex processes, means most quantitative risk assessments 

incorporate assumptions, which may have a large influence on the model outcomes. Hence, the 

assumptions made should be viewed critically when the outputs from a risk assessment model are 

interpreted. The range of general assumptions used in the model is listed below, and the 

distributional assumptions and sources of data for the parameters used in the model are presented 

in Table 1A. 

A1: A flock of ground dwelling broiler chickens undergoes random mixing. 

A2: Each bird within a flock of ground dwelling broiler chickens makes a fixed number of contacts 

per unit time, regardless of population size. 

A3: Infectious period and latent period are log-normally distributed. 

A4: Small-scale broiler farmers in the District and Municipality of Bogor do not vaccinate against 

H5N1. 

A5: Broiler farmers will include H5N1 as a differential diagnosis if the flock mortality exceeds the 

background level. 

A6: All broiler producers will alter their behaviour in the face of an HPAI H5N1 outbreak in their 

flock. 

A7: An average day old chick in Indonesia is 20 g, reaches a weight of 1000 g by 25 days and a weight 

of 1250g by 45 days. 

A8: Virus in faeces and respiratory secretions is Poisson distributed. 

A9: Faecal and respiratory HPAIV H5N1 secretions enter the litter where the virus becomes entirely 

mixed, and therefore viral concentration within the litter can be modelled as a Poisson 

distribution. 

A10: Faecal adherence is equivalent to soil adherence and the distribution described by Finley et al. 

(1994) (describing soil adherence to hands) can be used as a proxy for the amount of faecal 

contamination remaining on hands once gross contamination is removed, which, in turn, can 

be used to predict the amount of virus present. 

A11: Any person handling a single infected broiler chicken will be subject to the same degree of viral 

contamination as someone handling a number of infected broilers. 

A12: The rate of decay of HPAIV H5N1 on fomites is the same as the rate of decay of HPAIV H5N1 in 

faeces. 

A13: Poultry collectors will only visit a small-scale broiler farm after the 25th day of production. 

A14: The broiler grow-out period finishes by the 40th day of production in Bogor. 
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A15: Collectors travel between farms via collection yards, and all collection yards used by collectors 

are located in Bogor city. 

A16: All carry crates used by collectors contain up to 25 birds.  

A17: Following detection of HPAI, animal health workers visit the farm 6 hours following detection 

(i.e. mid-way through the day of detection). 

A18: The amount of faecal and respiratory secretions available for contamination of a river is 

equivalent to one day’s faecal and respiratory output per bird, and this is leached over the 

course of a single day. 

A19: The rate of HPAIV H5N1 decay in carcasses is equivalent to decay in faeces. 

A20: There is complete mixing of leached faecal and respiratory secretions, and complete 

detachment of virus allowing a relatively homogeneous suspension of virus contaminated river 

water. 

A21: The Euclidean distance between a household with a backyard poultry flock and a small-scale 

broiler farm is linearly associated with the probability that the backyard flock will enter the 

confines of the broiler farm. 

A22: Kampong chickens show similar ranging behaviour to semi-domesticated jungle fowl. 

A23: Free-ranging poultry do not show specific territorial behaviour and the ranges of birds from 

different households may overlap.  

A24: There are not fences surrounding the perimeter of small-scale broiler farms in the District and 

Municipality of Bogor that would be adequate to prevent the entry of free-ranging chickens. 

A25: A broiler chicken will undergo preening at least once every 10 minutes. 

A26: The concentration of virus within the litter of the susceptible broiler house, following release of 

faeces from shoes/crates, can be modelled as a Poisson process. 

A27: After one day, the virus concentrations at a specific location of a river will be diminished 

through the combined actions of dispersion and advection (Schijven et al. 2005a). 

A28: The distribution of virus within river water following leaching from contaminated carcasses is 

homogeneous (i.e. there is complete mixing). 
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Table 1A. Assumptions and sources of data for the parameters used in the risk assessment model 

Input Value/distribution Source Assumptions/ comments 

Transmission model 

Flock size (n) Empirical distribution (FAO, 2008b) The cut-off for a ‘small-scale’ farm was set at 5000 birds or less 

Basic reproduction number (R0) Uniform(20, 40) Assumption 

Assume transmission parameters are higher in a population of 

ground dwelling birds than predictions based on experimental 

data (Bouma et al. 2009, Poetri et al. 2009). 

Latent period ( ) 
Lognormal (0.24, 

0.043) 
(Bouma et al. 2009) Latent period is lognormally distributed 

Infectious period (γ) Lognormal (2.1, 0.33) (Bouma et al. 2009) Infectious period is lognormally distributed 

Number of birds initially infected (Ninf) 1 - Baseline scenario. Range of values tested in a sensitivity analysis. 

Within-flock prevalence Derived from transmission model 

Time of introduction (Tinf) Uniform(1,40) Assumption 

Assume virus can be introduced at any point during broiler 

production with equal probability. The impact of this assumption is 

estimated. 

Visitor contamination 

Detection threshold (mortality rate) (ε) Uniform(0.01, 0.02) Assumption Mortality within a single day.  

Mean H5N1 respiratory titre (per ml) ( ) 
Parametric (Poisson) 

bootstrap 

(Lee et al. 2005; Subbarao et 

al. 2003; Imai et al. 2007; Li 

et al. 2008; Bublot et al. 

2007a; Bublot et al. 2007b; 

Swayne et al. 2006) 

Virus titre in respiratory secretions is Poisson distributed 

Mean H5N1 faecal titre (per g) ( ) 
Parametric (Poisson) 

bootstrap 
(Lee et al. 2005; Subbarao et 

al. 2003; Imai et al. 2007; Li 
Virus titre in faeces is Poisson distributed 
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et al. 2008; Bublot et al. 

2007a; Bublot et al. 2007b; 

Swayne et al. 2006) 

Bird growth rate  

DOC =20g, 25 day bird 

= 1 kg, 45 day bird = 

1.25 kg 

Assumption 

The expected production targets for Broilers in Bogor. Based on 

these estimates, the daily bird weight was predicted using 

polynomial regression.  

Faecal production per day per gram (Fday) 
Betapert(30, 

40,50)/1250 
(EPA, 2001) 

The variability around this estimate (minimum, most likely, 

maximum) is assumed, based on available data. 

Respiratory production per day (Rday) Betapert(0, 5,20)/1250 Assumption 
The variability around this estimate (minimum, most likely and 

maximum) are assumed, based on report author’s opinion 

Virus decay constant (k) 
Uniform(0.1604, 

0.1972) 

 (EPA, 2009; Shortridge et al. 

1998) 

Virus decay on fomites is equivalent to virus decay in faeces. 

Estimates are based on studies predicting virus survival in the 

environmental conditions expected in a broiler house.  

Day collector visits  Betapert(25, 35, 40) Assumption  

If the disease is detected earlier than this estimate, collectors visit 

24 hours following disease detection, but not earlier than 25 days 

following the start of production. The last day a collector will visit 

is on the 40th day 

Faecal contamination of footwear (g) (Cshoes) Uniform(30,100) Assumption 

Considers total contamination of shoes for a single visitor entering 

the broiler house. These data are assumed, however the estimates 

could be estimated based on a simple experimental study. 

Faecal adherence to hands (mg/cm
2
) (Hf) Lognormal(0.52, 0.9)  (Finley et al. 1994) 

Assume faecal adherence is equivalent to soil adherence. This 

assumption is untested. We also assume that the concentration of 

virus in faeces adhering to hands can be predicted based on 

estimates of . 

Hand surface area (cm
2
) 448 (Lee et al. 2007) This estimate was incorporated into the model as a fixed value 
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Speed of travel (Km/hr) Uniform(10, 50) Assumption 

Estimates of speed of travel were combined with distances 

between farms and distance between farms and Bogor 

Municipality in order to estimate travelling time between farms (tf) 

and travelling time to Bogor (tb).  

Distance between small-scale broiler farms  Empirical distribution (FAO 2008b) 
Prediction based on Euclidean distance (i.e. the straight line) 

distance between farms.  

Distance between small-scale broiler farms 

and Bogor city 
Empirical distribution  (FAO 2008b) 

Prediction based on Euclidean distance only (i.e. the straight line 

distance between farms and Bogor city). Assumes that all 

collecting yards are in Bogor Municipality, and therefore that all 

broiler producers in the District and Municipality of Bogor use 

collectors that are based in the Municipality of Bogor. 

Stop-over time for collectors in collecting 

yards (hrs) 
Uniform(0.5, 2) Assumption 

These estimates are assumed; additional data collection is 

required to describe the true range of ‘stop-over’ values 

Minimum number of birds present in flock 

for collector to visit  
Uniform(30, 50) Assumption 

These estimates are assumed; additional data collection is 

required to fully describe the true range of minimum bird numbers  

Number of birds present with-in a collection 

crate 
25 Expert opinion (EO)  

Number of crates carried by truck 49 EO  

Number of crates carried by pick-up truck 8 EO  

Faecal production by birds in collection crates 

per hr 
((Fday)*2)/24 (EPA 2001) 

We assume that the stress of transport will result in doubling of 

the faecal output per bird. This is combined with travelling time to 

Bogor (tb) to predict the total faecal production per journey 

Proportion of faeces remaining in a collection 

crate 
Uniform(0.01, 0.05) Assumption 

This is a large assumption, and one that is likely to be difficult to 

test. 
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Water contamination    

Flow rate Fr (m
3
/day)

 1       
 8.6 × 10

4 

Schijven et al. 2005a; 

Schijven et al. 2005b 

Describes 3 hypothesized ‘rivers’ (small, medium and large). These 

are considered to be representative of a range of rivers, however 

these estimates do not reflect the true variability in dilution in 

surface water 

 2.2 × 10
6 

 2.3 × 10
7 

Virus inactivation rate constant in water (μ) Lognormal(0.043, 0.064) 
Brown et al. 2007; 

Stallknecht et al. 1990a; 

Stallknecht et al. 1990b 

Experimental estimates between 25 and 29°C used (reflecting 

estimated river water temperature in Bogor, derived from 

http://www.gemstat.org).  

 

Faeces leached per carcass per day  Betapert(30, 40,50) Assumption 

Based on estimates of Fday. Used to predict the contamination of 

river water by carcasses. The estimate does not include virus that 

may be present in tissues or organs of the bird, and may therefore 

be an underestimate. 

Respiratory secretions leached per carcass 

per day 
Betapert(0, 5,20) Assumption 

Based on estimates of Rday. Used to predict the contamination of 

river water by carcasses. The estimate does not include virus that 

may be present in tissues or organs of the bird, and may therefore 

be an underestimate. 

http://www.gemstat.org/
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EXPOSURE ASSESSMENT    

Dose-response parameter, (r) 

0.00051  

(95% C.I. 0.00033 - 

0.0013) 

Brown et al. 2007; 

Bublot et al. 2007b 

Derived using exponential model. Distributional estimates derived 

using bootstrapping (see text) 

Handling model    

Transfer efficiency (from handling) (TE) Uniform(0, 0.22) 

Pancic et al. 1980, Ansari 

et al. 1988, Ansari et al. 

1991, Bidawad et al. 

2004 

Estimates describing the efficiency of transfer form hands to the 

surface of a chicken as a result of handling. The range of estimates 

used is based on variety of viruses (not including AIV) 

Surface Area of 1 kg broiler chicken (cm
2
) 1000 

Mitchell 1930, Leighton 

et al. 1966 

The surface area of a broiler chicken was incorporated as a fixed 

value 

Time between successive preening activities 

in broiler chickens (mins) 
Uniform(0,10) Assumption  

Estimates based on observations from Weeks et al. (2000) and 

Kuikova et al. (2001) 

Proportion of contaminating virus consumed 

as a result of a single preening activity 
Uniform(0,1) Assumption 

There is substantial uncertainty in this estimate; therefore the full 

range of possible values was modelled. 

Litter contamination model    

Weight of litter per sack, Wsack 
Uniform(20, 30) Assumption, based on 

EO 

 

Number of sacks of litter used per broiler 

house, Slitter 

Uniform(125, 250) Assumption, based on 

EO 

 

Virus concentration contaminating shoes 

after arrival at broiler farm, shoes (EID50) 

- Second order non-

parametric distribution  

Estimates derived from the visitor contamination module, based 

on outputs from the SEIR transmission model 

Virus concentration contaminating collecting - Second order non- Estimates derived from the visitor contamination module, based 
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crates after arrival at broiler farm, crates 

(EID50) 

parametric distribution 

(see text) 

on outputs from the SEIR transmission model 

Amount of faecal material transferred from 

shoes, TEshoes 

Uniform(0.01, 0.1) Assumption This is a large assumption that has an important influence on the 

risk estimates derived. 

Amount of faecal material transferred from 

crates, TEcrate 

Uniform(0.001, 0.01) Assumption This is a large assumption that has an important influence on the 

risk estimates derived. 

Number of collectors per truck, Nc Uniform(1,3) Assumption  

Broiler feed consumption per day (g) Uniform(75, 150) Perry 1981; Brake et al. 

1992, RCI 1999,  

Feed consumption may vary depending on environmental 

conditions and bird age. 

Litter consumption per day (proportion of 

total feed consumption), Cl 

Betapert(0,0.0128, 

0.0635) 

Malone et al. 1983 Literature based estimate for a variety of litter substrates, not 

including rice hulls (the most commonly used litter in Bogor) 

Water consumption model    

Drinking rate of domestic chickens per day, 

Fc 

Normal(Normal(0.17,0.0

2) 

Manning et al. 2007 Distribution truncated at 0 and 1 

Time between bird death and carcass 

disposal into river (hrs) 

 Uniform (1,12) Assumption It is assumed that producers will check for their flocks at least once 

per day, and discard poultry carcasses at this time 

Broiler flock size (nbroiler) Empirical distribution FAO data The cut-off for a ‘small-scale’ farm was set at 5000 birds or less 

Household flock size (nhh) Empirical distribution DGLS data Includes all poultry species owned by a household 
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Number of poultry within a desa Empirical distribution DGLS data Considers only non-commercial poultry within the desa 

Direct bird-bird transmission model     

Probability of transmission to free-range 

flock, p 

Range of values (0.01 to 

1) 
Assumption 

There is a large degree of uncertainty in these estimates, which are 

likely to vary from farm to farm 

Duration of infection on broiler flock, d Derived from transmission model 

Proportion of households owning chickens Betapert(0.01, 0.477, 1) IFPRI, DGLS, FAO data 
The range of values is wide, as indicated by results from the DGLS 

surveillance data 

Proportion of households in which birds are 

free-ranging 

Parametric bootstrap 

based on observed data 
IFLS data (see text) 

 

Contact rate sector 4 flock with small-scale 

broiler farms (per day), c 
- 

Empirical distribution (see 

text) 
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Appendix 2 Transfer via handling model 

Figure 1A shows the simplified spreadsheet model that was used to estimate the probability that a 

broiler chicken will become infected following handling by someone who has previously handled an 

infected bird on a farm on which an outbreak is ongoing. 

The model considers 3000 separate contamination scenarios (cells C2 to DKM2), where the degree 

of contamination of each of the cells representing the surface area of a chicken (i.e. cells C27 to 

C1026 for the first contamination scenario, cells D27 to D1026 for second, and so on) is defined by 

the concentration of virus per cm2 of palm surface (C9 to DKM9) and the transfer rate (C11 to 

DKM11). For each contamination scenario, the parameters describing the contamination of hands 

(i.e. concentration of virus per cm of faeces, τ (cells c4 to DKM4) and faecal adherence to hands, Hf 

(cells C6 to DKM6) were drawn at random from their respective probability distributions. In order to 

incorporate the effect of travel time on virus concentration per cm2 of contaminated hand, a random 

estimate from the empirical distribution describing travel times between farms (tf) was combined 

with a fixed estimate for the virus decay co-efficient, k.  

Following the contamination of its surface area, the modelled ‘bird’ preens itself at intervals defined 

by values in cells C15 to DKM15. Each model iteration describes a distinct preening event, with the 

cm2 of bird preened defined by a random value between 1 and 1000 (cells C14 to DKM14). The bird 

is subsequently exposed to a proportion of the virus present in the randomly selected cell (if any), 

defined by values in cells C17 to DKM17. The exposure dose (cell C18 to DKM18) is combined with a 

fixed estimate from the uncertainty distribution describing the dose response parameter in order to 

define the probability of infection given exposure to that dose. 

 The concentration of virus contaminating each cm2 of bird declines over time at a rate defined by 

the virus decay co-efficient (k) and the time between preening events. Moreover, each time a cell is 

‘preened’ the proportion of virus that is ingested by the bird is removed from the amount present 

(this is automated so that the virus concentration is reduced only after the bird has ‘preened’). The 

simulation continues until the concentration of virus per cell is negligible and therefore the 

probability of infection (cells C21 to DKM21) remains constant.  

The model was repeated over 25 simulations with a randomly selected value from the uncertainty 

distributions describing k and r used to populate cells C8 to DKM8 and C19 to DKM19 (respectively) 

for each simulation. This process, and all model iterations, was automated using VBA in Microsoft 

Excel with distributions defined in @risk (Palisade Corporation 2009).  
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Figure 1A: Spreadsheet model describing the probability of infection following contamination of 

the surface of a broiler chicken through handling with contaminated hands 
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Appendix 3 Transfer via water model 

Figure 2A shows the simplified spreadsheet based model used to predict the probability of infection 

following exposure to river water contaminated through leaching from HPAIV H5N1 contaminated 

carcasses. The fixed values in the model were estimates of flow rate for a small, medium and large 

rivers (as described by Schijven et al. 2005a and Schijven et al. 2005b) (Cells C15, C16 and C17, 

respectively). The model was run over 5000 iterations, with random values drawn from the 

probability distribution describing mortality rate on the outbreak broiler farm (C3), the population at 

risk on the outbreak farm (C4), the amount of faeces and respiratory secretion expected to leach 

from the contaminated carcass (C6 and C7), virus titre per gram of faeces (C8) and respiratory 

secretion (C9), the chicken drinking rate (litres/day) (C19), the number of broilers on the susceptible 

broiler farm (C22) or the number of birds within a sector 4 flock (C23) or within a whole desa (C24). 

For each iteration, these estimates were combined with a fixed estimate drawn at random from the 

distribution describing the rate of virus decay in the carcass (k) (C10), the rate of virus inactivation in 

water (π) (C18) and the dose response parameter, r (C20) in order to predict the probability of 

infection of at least one bird within a broiler flock, a household flock, or within a desa for each of the 

dilution scenarios described. The process was repeated over 50 simulations. 

The model was run in Microsoft Excel with the @Risk extension (Palisade Corporation, 2009) 
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Figure 2A. Spreadsheet model to predict the probability of infection of at least one bird in a small-

scale broiler unit, a backyard flock, or a Desa [village] following exposure to river water 

contaminated by H5N1 contaminated carcasses. 
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Appendix 4 Transfer via contaminated litter model 

Figures 3A to 7A show the structure of the simplified spreadsheet model used to predict the 

contamination of litter in a susceptible broiler house following the transfer of HPAIV H5N1 

contaminated faecal material from shoes and collection crates. The outbreak farm characteristics in 

Figure 3A were derived from the SEIR disease transmission model. As the within flock prevalence 

(cell B13, defined by cell E5029) and the weight at the time the birds are collected (B14, defined by 

values from F5029) were highly correlated (ρ = 0.79, p=<0.01), these values were incorporated into 

the model as linked values. The estimate of bird weight at the time of collection was combined with 

the prediction of faecal output per gram per hour (B17) and the travelling time to Bogor (B20) to 

predict a single bird’s faecal output over the course of the journey (B21). Given that birds may 

increase their faecal production as a result of the stress of transport, these estimates were doubled. 

The result was multiplied by 25 to reflect the total faecal output per crate per journey (B22). In order 

to predict the average amount of HPAIV H5N1 contamination present in collecting crates, matrices 

were developed approximating the arrangement of collecting crates in a truck (Figure 4A) and pick-

up truck (Figure 5A). The number of infectious birds present in each collection crate of the truck or 

pick-up truck were estimated using separate binomial processes (J5 to P11 and K36 to N37, 

respectively) where the probability of success (i.e. infection) was defined by the within-flock 

prevalence at the time of collection (B13). In order to estimate the virus titre per gram of faeces in 

the crate for the top row of crates on a truck or pick-up truck, the total faecal virus output en route 

to Bogor was added to the total respiratory virus output and multiplied by the number of infectious 

birds in the crate (S5 to Y5 and T36 to W36). These estimates were then divided by the total faecal 

output for all birds in the crate. Hence, we made the simplifying assumption that all virus and faeces 

produced within a crate are completely mixed (and therefore that faecal output by non infected 

birds contributes to the denominator). We assumed that between 99 and 95% of faeces produced 

within a crate would exit via the slats and openings, and this was defined by a separate uniform 

distribution for each crate in the model (i.e., cells J15 to P21 and K42 to N43)). We therefore 

assumed that faecal material (and any virus contained within) produced within an upper crate could 

mix with the faecal material produced by birds within the lower crates. Hence, for example, for the 

bottom row of crates (S11 to Y11), the estimation of the virus titre per gram of faeces incorporates 

that produced in the crate itself, as well as virus production in each of the crates above it. As only 

between 1 to 5% of the faecal material that is produced in the crate (and mixed with faecal material 

from the crates above) remains, an estimation of the total virus titre per crate was derived by 

multiplying the estimate of virus concentration per gram of faeces with the amount of faeces 

remaining (AB5 to AH11 and AB36 to AE37). The average virus titre per crate was then the average 

of these estimates (AA16 and AA43). 

Cells AQ43 to AQ53 in Figure 6A describe total amount of litter and faeces present in the susceptible 

broiler house at the time of the collector’s visit. This relies on the total weight of added litter (AQ47) 

as well as an estimate of the total amount of faeces present in the house (AQ52). The value in AQ52 

is derived by defining a uniform distribution between the expected amount of faeces produced by all 

birds in the house after 25 days of production and 40 days of production, given the variability in the 

number of broilers in the house (AQ44), faecal output per gram of broiler chicken per day (AQ51) 

and fixed polynomial co-efficients describing the growth rate of broilers (AQ48 to AQ50). The second 

module in the model, predicts litter contamination as a proportion (AQ63 and AQ58) of virus 
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contamination that is present on carry crates (AQ59 and AQ60) and shoes (AQ57) given a variable 

number of collectors (AQ56) and a fixed number of crates (AQ61 and AQ62). The degree of virus 

contamination that collectors could be expected to receive on their footwear was estimated from 

the SEIR transmission model, and since this parameter was correlated with both the within flock 

prevalence and the weight of birds at the time of the collectors visit to the outbreak farm, outputs 

from the SEIR model were incorporated as linked values. Based on the ratio between the amount of 

virus that is transferred from shoes and crates and the total amount of litter in the house an 

estimate of HPAIV H5N1 in litter was derived, under the assumption of complete mixing (AS58 and 

AT58). Given an expected litter consumption rate for broilers per day, a total exposure dose per bird 

was estimated (AT63 and AT65) and introduced into the dose response model (AU70 and AU71).  
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Figure 3A. The spreadsheet model describing the parameters used to estimate the degree of viral 

contamination expected for collection crates  
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Figure 4A. Spreadsheet based model predicting the HPAIV H5N1 contamination of the 49 collecting 

crates present within a collection truck, if all crates are filled with birds. 
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Figure 5A. Spreadsheet based model predicting HPAIV H5N1 contamination of the 8 collecting 

crates present in a pick-up truck, if all are filled with birds 
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Figure 6A. Spreadsheet based model predicting contamination of the litter of a broiler house with 

HPAIV H5N1 by poultry collectors 
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Figure 7A. Spreadsheet based model predicting probability of infection of broilers given exposure 

to HPAIV H5N1 contaminated litter 


