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1.  Introduction 

Hierarchical or multilevel data structures can occur in many areas of agricultural 
research – for instance in on-farm trials, where there can be information at the village, 
farm and plot or animal level.  Experiments in animal breeding are often concerned 
with attributing variation in traits of offspring, such as their growth, to the sires and 
dams from which they were bred.  Researchers in this discipline are therefore familiar 
with the idea that livestock data often have some hierarchical structure with different 
levels of variation. 

Analysis of variance – except in balanced or nested designs – has been difficult to 
apply to data with a multilevel structure.  Mixed modelling is becoming a standard 
approach for analysing these types of data, particularly since it can deal with 
complicated or "messy" structures.   The mixed model facilities are now available in 
some of the more powerful statistical packages such as Genstat and SAS. 

There seems to be some "mystique" surrounding these methods, and our claim is that 
there should not be.  The purpose of this guide is to review the general concepts of 
mixed models.  We illustrate by example how to recognise the structure in the data 
and how to fit and interpret a mixed model analysis.  The reader is expected to be 
familiar with simple analysis of variance methods. 

Genstat is used to illustrate the methodology and its interpretation.  The facilities in 
SAS are similar, though details of using the software and the presentation of output 
are different.  Our aim here is to discuss the methodology rather than software, and so 
we have chosen to use only one package to illustrate the analysis and its interpretation. 
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2.  Examples 

We use three examples.  Example 1 is a fairly traditional agricultural experiment, and 
is included to show how mixed modelling links to more traditional analyses.  Example 
2 is an on-farm trial with a slightly "messy" hierarchical structure.  We use it to show 
how the ideas of example 1 can be extended to other situations, and to demonstrate the 
benefits of mixed modelling.  Example 3 is a more specialised example of a breeding 
trial; with it we discuss the implications of formulating models in different ways. 

Example 1:  Fodder Production Trial 

In the Central Kenya Highlands, where maize is the most important staple, the 
availability of fodder is a major constraint on livestock production.  It has been 
suggested that maize thinnings be used as animal fodder.  A randomised complete 
block experiment, with six blocks of three main plots of equal size, was carried out at 
a research station near Nairobi to investigate different planting densities and thinning 
methods.  The objective was to identify a practice that would increase forage 
production without compromising the harvest grain yield for human consumption 
(Methu et al., 2001). 

Maize was planted using densities of two, three or four seeds per hole, and planting 
density was randomised to the plots such that there was one plot of each planting 
density per block.  Spacing between holes was the same for all plots.  

Thinning was carried out on plots planted with more than two seeds per hole – at 8 
and 14 weeks for the plots with four seeds per hole, and at 14 weeks for the plots with 
three seeds per hole – so that from 14 weeks onwards all plots had two seeds per hole.  
There were also two thinning practices: the removal of the smallest plant from the 
hole, and the removal of the second largest plant from the hole.  To incorporate this 
into the experiment, the three- and four-seed plots were subdivided into two and these 
two sub-plots were randomly allocated to one of the different thinning practices.  The 
two-seed plot was not subdivided. 

At weeks 8 and 14 the amount of green forage (kg/ha of Dry Matter) was recorded for 
the plots which were thinned.  At the end of the study, at week 28, grain yield (also in 
kg DM/ha) was determined for all plots. 

Example 2:  Concentrate Feeding Trial 

Dairy production is an important source of income for many smallholder households 
in the highlands of East Africa.  The large majority of farmers feed a low, flat rate of 
concentrate to their cows throughout lactation.  This is primarily because of cash flow 
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problems and not being able to pay for concentrates ahead of having milk to sell.  The 
data used in this example are from a pilot study of small-holder farmers in Kiambu 
district in Central Kenya.  The aim was to test the feasibility of changing farmers’ 
concentrate allocation practice by shifting the concentrates to early lactation.  This 
was to be achieved by arranging for their farm cooperative to allow them extra credit 
at the beginning of a cow’s lactation (Romney et al., 2000).  The data comprised 
weekly records of milk yields and concentrates offered for the first 12 weeks of 
lactation, and approximately fortnightly thereafter.  Data were collected between 
March 1999 and March 2000, and complete datasets were achieved for 65 cows 
belonging to 53 households and calving between March and September 1999. 

The objective of the analysis described here is to determine (a) the influence of 
household (farm) and cow factors on milk yield, and (b) the relationships between 
milk yield and concentrate fed at different phases of lactation.  Five six-week 
sampling periods up to 30 weeks of lactation were defined, and average daily milk 
yield (kg/day) in these six-week intervals was estimated for each animal from fitted 
lactation curves. 

Example 3:  Sheep Breeding Trial 

Helminths constitute one of the most important constraints to livestock production in 
the tropics.  Breeding for disease resistance may be one solution.  The data used in this 
example are from a study on the Kenya coast between 1991 and 1997 (Baker, 1998).  
The purpose of the experiment was to compare the genetic resistance to helminthiasis 
of two indigenous breeds of sheep – Dorper and Red Maasai – and to use this 
information alongside survival rate to compare the overall productive performance of 
each breed. 

Throughout the six years, Dorper (D), Red Maasai (R) and R×D ewes were mated to 
Red Maasai and Dorper rams to produce a number of different lambs genotypes.  For 
the purposes of this example, however, only the following four offspring genotypes 
are considered: D×D, D×R, R×D and R×R.  These comprised 882 lambs born to 74 
sires and 367 ewes.  Thus, each ewe gave birth on average to more than two lambs, 
each in a different year. 

Data on aspects of growth and survival were collected on the lambs.  Here, for the 
purpose of demonstration, we consider just the body weight (kg) at weaning of 700 
lambs that survived to weaning with the objective of determining the differences in 
growth between breeds to this time. 
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3.  Mixed Models and Data Structure 

Mixed model methodology1 takes its name from the fact that the elements of the 
model underlying the analysis can be a mixture of what are called fixed and random 
effects.  Below we explain these different components of a mixed model, and show 
how mixed modelling can deal with the analysis of data from multilevel structures. 

3.1  Fixed and Random Effects 

In describing variation in data, an effect is some characteristic or trait which is known 
– or thought – to have some impact on the measured result, such as weaning weight of 
lambs. 

Experimental treatments are often – though not always – fixed effects.  The different 
planting densities of example 1 would be one such example.  The three planting 
densities were specifically chosen for investigation in order to quantifying the 
differences, if any, amongst them.  Fixed effects are summarised by means and 
standard errors. 

Another example of a fixed effect would be the sex of the offspring lambs in the 
breeding experiment.  Whilst it is not an effect which can be specifically designed into 
the study, we should nevertheless want to quantify the difference in growth between 
males and females. 

In contrast, the influence of the ram on the growth of its offspring in a breeding 
experiment is usually a random effect, since the researcher is interested in quantifying 
how much variability in the growth is due to the sire of the lamb, as opposed to 
comparing individual rams within the experiment itself.  Random effects are 
summarised by variances. 

By defining an effect as random, we are visualising the set of units under investigation 
as a representative sample from a wider population.  Thus, in the breeding example, 
the rams whose offspring are under investigation are regarded as randomly selected 
members of all rams belonging to a particular breed. 

                                              
1 Also known as REML analysis, where REML stands for residual, or restricted, maximum 
likelihood. 
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3.2  Multilevel Structure 

In multilevel data structures there are different types of investigational units2 at 
different layers – e.g. plots within farms, or animals within herds – and attributes 
associated with these different units whose effects we wish to assess – e.g. planting 
density, thinning practice, breed or sex of the animal. 

The response of interest, such as crop yield or weaning weight, is usually measured at 
the lowest layer, but the variation in these responses is due to variability at the 
different layers.  For example variation in crop yields collected in an on-farm trial is 
partly due to farm-to-farm variability and partly to plot-to-plot variability.  To 
incorporate these different levels of variability into our mixed model for hierarchical 
data, we specify the units in the layers as random effects. 

The attributes of the units (e.g. planting density) are usually fixed effects.  By 
correctly identifying which attributes occur at each layer, the mixed model can extract 
the residual, unexplained, variation within the layers, which is necessary for 
determining the precision of the comparisons of the attributes.  This idea is similar to 
the split-plot ANOVA which has two parts, a main plot part and a sub-plot part, each 
with its own residual variance, and where the main plot and sub-plot treatment factors 
are tested at their relevant level. 

By specifying the units in a layer as random, we assume that, within a layer, the units 
are "independent" of one another.  This means that, in the fodder production trial for 
instance, after allowing for differences amongst the blocks, there is no correlation 
between the yields in different plots within a block. 

Correctly identifying the layers in the data, and the different characteristics or 
attributes associated with them, is crucial to successful modelling of multilevel data.  
To help recognise the structure in data we use what we describe as a "mixed model 
tree" to develop the different layers pictorially.  We hope this tool will help 
researchers identify the hierarchical structures of their data and consequently 
formulate and interpret a mixed model analysis. 

                                              
2  We refer to "investigational units" or "units" throughout the guide in order to generalise our mixed 
model concepts to the analysis of data from experiments, surveys and observational studies, where 
such terms as experimental, sampling and observational units might be found. 
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4.  Example 1: Fodder Production Trial 

4.1  Recognising the Structure 

The figure below depicts the full mixed model tree for this first example.  To the left 
we describe the layers, and to the right the characteristics of the experimental material 
which can be attributed to the different layers.  Since the layout is the same within 
each block, detailed layering is shown for only one block in the tree. 

The six blocks describe the way the experiment was laid out – they thus represent the 
top layer.  Each block was divided into three main plots, represented by the small 
boxes within the larger box.  This is the second layer, the one at which the three 
planting density treatments are randomised, as shown on the right of the diagram. 
 

 
 

Two of the main plots (with 3 and 4 seeds per hole), but not the one with 2 seeds per 
hole, are subdivided into two sub-plots, so the sub-plots constitute the third layer of 
investigational units.  Method of thinning is randomised to these sub-plots, and so the 
actual treatments applied to the sub-plots are combinations of planting density and 
thinning practice.  Method of thinning is, therefore, an effect at this lower level, as is 
the density × thinning interaction. 

The above diagram represents the structure of the data on grain yield collected at the 
end of the experiment when the crop was harvested.  As the tree shows, yield data are 
collected from one main plot (2 seeds per hole) and from four sub-plots (3 and 4 seeds 
per hole). 

For the green forage yield data collected at 14 weeks, however, there are only two 
main plots per block, since no thinning is carried out on the plots planted with 2 seeds 
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per hole.  Plots planted with 3 or 4 seeds per hole are thinned at 14 weeks - yield data 
are all from the four subplots in a block, and so the mixed model tree becomes: 
 

 
 

The above multilevel data structure at 14 weeks is that of a balanced split-plot 
experiment – there are yield data for each of the two sub-plots from each of the two 
main plots per block.  These data would normally be analysed by a simple split-plot 
analysis of variance.  However, they can also be analysed as a mixed model, as we 
shall see later. 

The green forage yield data collected at 8 weeks are only collected for the main plots 
with 4 seeds per hole, and so the mixed model tree simplifies even further.  There are 
now only two layers in these data – blocks and sub-plots to which thinning treatments 
are randomised.  With only one main plot per block, the main plot effect cannot be 
distinguished from the block effect.  This is just a randomised block structure, with 
two units per block.  We will not consider these data further. 

4.2  Analysis 

The Genstat output for the mixed model analysis of the 14-week green forage yields is 
presented in Figures 1(a) to 1(c) below.  Since this data set is a balanced split-plot 
experiment it would normally be analysed by analysis of variance3; and so, for 
interest, and so that the reader can see the transition from analysis of variance to 
mixed modelling, this approach is also presented in the Appendix. 

 

 
 

                                              
3 Further information on the analysis of a split-plot experiment may be found in textbooks such as 
Statistical Methods in Agriculture and Experimental Biology by Mead, Curnow and Hasted. 
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Figure 1(a) 

 
 
 
 
 
***** REML Variance Components Analysis ***** 
 
Response Variate : Forage14 
 
Fixed model      : Constant+density+thinning+density.thinning 
Random model     : block+block.mainplot+block.mainplot.subplot 
 
Number of units  : 24  
 
 
 
 
 
 
 

Figure 1(b) 

 
*** Estimated Variance Components *** 
 
Random term               Component        S.e. 
 
block                        17860.      42962. 
block.mainplot               39912.      51098. 
block.mainplot.subplot       73238.      32753. 
 
 
*** Approximate stratum variances *** 
 
                                               Effective d.f. 
block                               224501.          5.00 
block.mainplot                      153062.          5.00 
block.mainplot.subplot               73238.         10.00 
 
 
*** Wald tests for fixed effects *** 
 
   Fixed term              Wald statistic      d.f. 
 
   density                         0.1            1 
   thinning                       15.7            1 
   density.thinning                0.0            1 
 
* All Wald statistics are calculated ignoring terms fitted later in the model 
 
 

Figure 1(a) summarises the mixed model specification in Genstat, with a brief 
explanation of the Genstat syntax.  Block, main plots within blocks and sub-plots 
within main plots  are declared to be random effects – thus setting up the hierarchical 
structure - whilst planting density, thinning and the density × thinning interaction are 
all fixed effects. The important point to note is that the different layers in the data 
must be specified in the "random model" correctly.  The software is then able to work 
out from this and the layout of the data in the data file how to attach each attribute in 

Genstat syntax for fixed model: 

Main effects of density and thinning, 
and the density × thinning interaction. 

Genstat syntax for random model: 

Blocks, main plots within blocks, and 
sub-plots within the main plots. 
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the "fixed model" to the different layers, so that the user does not have to be so 
concerned about this.  The results of the analysis are shown in Figure 1(b).  

The first point to notice from Figure 1(b) is that, although the degrees of freedom for 
each of the fixed effects of planting density, thinning and density × thinning are as one 
would expect, the significance tests provided by Genstat for these effects are now 
Wald4 tests, and not the F-tests we are used to with analysis of variance. 

The Wald tests in the mixed model framework investigate the same hypotheses as the 
F-tests in the split-plot analysis of variance – i.e. null hypothesis of no effect - but 
unlike the F-statistics, which follow an exact F-distribution, the Wald test statistics 
follow a Chi-squared ( 2χ ) distribution, but only approximately.  The main points to 
be aware of are that (a) the validity of the Wald testing depends on the sample size 
being large enough (the sample size is quite small in this example), and (b) the tests 
are more liberal than the F-tests, with the significance levels of the two becoming 
more similar with increasing sample size. 

In our example, the significance level for the comparison of methods of thinning is 
p=0.003 in the split-plot ANOVA.  This compares with p<0.001 for the Wald value of 
15.7 found by a 2χ  test with 1 degree of freedom.  Both methods give similar 
conclusions: there is no effect of planting density on the 14-week green forage yield 
regardless of which plant is thinned (Wald statistic of 0.1), but the yields differ 
significantly as a result of different thinning practices. 

The second point to notice is that the stratum variances, and their associated degrees 
of freedom, in the mixed model output are the same as the residual mean squares in 
the three strata in the analysis of variance output.  These stratum (or layer) variances 
are estimates of the variation among blocks, among main plots within the blocks and 
between sub-plots within the main plots.  Just like the residual mean squares in the 
ANOVA table, they are concerned with the variability in the yield data summarised at 
each layer. 

The mixed model analysis also gives estimated variance components.  In traditional 
designed experiments these are usually of little interest, and so tend not to be presented 
as part of the ANOVA output.  There are instances, however, when these components 
are of interest in their own right, and we return to this idea in the third example. 

                                              
4 SAS users may like to note that the SAS system also gives approximate F-tests in its mixed models 
procedure.  In terms of model development, both are equally useful. 
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Finally the mixed model gives us estimates of treatment means – referred to in Figure 
1(c) as 'predicted means' – and standard errors of differences.  These are identical to 
the corresponding values in the split-plot analysis of variance shown in the Appendix. 
 

Figure 1(c) 

 
*** Table of predicted means for density *** 
 
     density            3            4 
                     1455         1397 
 
Standard error of differences:       159.7 
 
 
*** Table of predicted means for thinning *** 
 
    thinning            L            S 
                     1645         1207 
 
Standard error of differences:       110.5 
 
 
*** Table of predicted means for density.thinning *** 
 
     thinning            L            S 
      density 
         3.00         1663         1248 
         4.00         1627         1167 
 
Standard error of differences for same level of factor: 
 
                density    thinning   
Average           156.2       194.2 
 
Maximum           156.2       194.2 
Minimum           156.2       194.2 
 
 

As stated before, data from a balanced split-plot experiment are usually analysed 
using a split-plot analysis of variance.  Above we have shown that this approach is just 
a simple example of a mixed model.  Therefore either method could be used.  Many 
multilevel structures though are not balanced – as is often the case in on-farm trials – 
and there is then no analysis of variance equivalent to the split-plot ANOVA; in such 
cases researchers are advised to move to mixed modelling. 

The aim of this trial was to see whether there could be increased forage yield for 
livestock without affecting grain yield at harvest for human consumption.  Below we 
consider the analysis of the grain yield, but only selected parts of the output are 
presented in Figure 1(d); the Genstat commands to request the analysis are the same as 
before and are not given. 

The data structure is no longer balanced in the sense that, since thinning took place on 
only two of the three planting density plots, grain yields are available for one main 



© SSC 2001 – Mixed Models in Agriculture 15 

plot and for four sub-plots per block.  The mixed model successfully takes this into 
account, as can be seen from the degrees of freedom for the fixed effects.  As before, 
there are 2 degrees of freedom for the planting density main effect (since it is possible 
to compare all three densities at the main plot level) and 1 degree of freedom for the 
thinning main effect.  For the density × thinning interaction, though, there is only 1 
degree of freedom, since we now compare the difference between the two thinning 
practices for only two planting densities. 

The unbalanced structure is also responsible for the degrees of freedom for the stratum 
variances now being "effective" values of 9.79 and 10.21 (instead of 10 and 10). 
 

Figure 1(d) 

 
*** Approximate stratum variances *** 
 
                                               Effective d.f. 
block                               566532.         5.00 
block.mainplot                      206946.         9.79 
block.mainplot.subplot               94098.        10.21 
 
*** Wald tests for fixed effects *** 
 
   Fixed term              Wald statistic      d.f. 
 
   density                         1.0            2 
   thinning                        3.1            1 
   density.thinning                3.1            1 
 
* All Wald statistics are calculated ignoring terms fitted later in the model 
 
*** Table of predicted means for density.thinning *** 
 
     thinning           0             S            L 
      density 
            2         2126            *            * 
            3            *         2494         2054 
            4            *         2338         2338 
 
Standard error of differences:     Average            222.4 
                                   Maximum            233.7 
                                   Minimum            177.1 
 
Average variance of differences:                     49958. 
 
Standard error of differences for same level of factor: 
 
                density    thinning 
Average           177.1       233.7 
Maximum           177.1       233.7 
Minimum           177.1       233.7 
 
 

The analysis demonstrates no effect of density of planting (with subsequent removal of 
one or two plants) on harvested grain yield.  Furthermore, removal of the second largest 
rather than the smallest plant did not appear to significantly reduce grain yield (the 
Wald 2χ  statistic needs to exceed 3.84 to represent a significant effect at the 5% level). 
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5.  Example 2: Concentrate Feeding Trial 

5.1  Recognising the Structure 

The objective here was to look at the effects of various factors on milk yield collected 
over different sampling periods from cows at several farms.  Exploratory analysis of 
the data indicated that farm income, cow size (as determined by measurement of its 
heart girth) and season of lactation could be important explanatory variables.  Milk 
yield was also thought to vary with phase of lactation and to be linearly related to the 
level of concentrate fed. 

There are three layers of investigational units in our mixed model tree, namely farm, 
cow within farm, and sampling period within cow.  Sampling periods are more 
difficult to visualise as a random effect than farm or cow in view of their serial nature.  
They do, however, represent a layer of within cow variation, and need to be taken into 
account in the hierarchical structure of the data.  We assume here the usual 
assumption of independence amongst the sampling periods.  This is an example of 
repeated measurement data, to which we will return at the end of this section. 

Almost all farms had either one or two cows, and each cow provided milk yield for no 
more than the five sampling periods.  To illustrate this we have shown the layering at 
two farms, one with two cows and one with only one; and layering for two cows, one 
with 5 sampling periods and one with 4 periods. 
 

 
 

Farm income is clearly an attribute of the farm, and heart girth an attribute of the cow.  
The sampling periods can be characterised by the season when sampling occurs and 
the phase of lactation.  The level of concentrate fed varied in the different sampling 
periods, and is therefore an effect at the sampling period layer, as is the phase × 
concentrate interaction. 
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5.2  Analysis  

The Genstat model specification is given in Figure 2(a).  Fixed effects are farm 
income (classified into 6 categories), heart girth and average concentrate fed, as co-
variates, and phase of lactation and season of lactation, each with 5 levels, as factors.  
The interaction between phase of lactation and concentrate fed is also included.  
Random effects are farm, cow within farm and sampling period within cow. 
 

Figure 2(a) 

 
***** REML Variance Components Analysis ***** 
 
Response Variate : milk 
 
Fixed model      : Constant+income+girth+phase+season+avconc+phase.avconc 
Random model     : farm+farm.cow+farm.cow.sampling 
 
 
Number of units  : 289 
 
 
*** Estimated Variance Components *** 
 
Random term               Component        S.e. 
 
farm                          5.649       3.815 
farm.cow                      8.092       3.413 
farm.cow.sampling             2.575       0.251 
 
 
*** Approximate stratum variances *** 
 
                                               Effective d.f. 
farm                                 64.676        48.97 
farm.cow                             36.362        13.02 
farm.cow.sampling                     2.575       211.01 
 
 
*** Wald tests for fixed effects *** 
 
 
   Fixed term              Wald statistic      d.f. 
 
   income                          7.9            1 
   girth                          28.0            1 
   phase                         267.2            4 
   season                         13.8            4 
   avconc                          3.7            1 
   phase.avconc                   18.2            4 
 
* All Wald statistics are calculated ignoring terms fitted later in the model 
 
 

From the analysis in Figure 2(a), each of the Wald statistics shows some degree of 
significance, except perhaps the term for average concentrate.  (As mentioned earlier, 
Wald statistics follow approximately a Chi-square distribution with 2

1χ  and 2
4χ  = 3.84 

and 9.49 respectively, at the 5% significance level).  But one must be careful.  The 
data structure here is quite clearly unbalanced.  There are different numbers of cows 
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within the farms and different numbers of sampling periods for the different cows.  
When data are unbalanced5 the order in which fixed effects are included and tested is 
important. 

Figure 2(b) 

 
*** Table of effects for income *** 
 
                    0.7689 : standard error      0.4904 
 
 
*** Table of effects for girth *** 
 
                    0.2635 : standard error     0.05479 
 
 
*** Table of effects for avconc *** 
 
                   -0.2142 : standard error      0.1426 
 
 
*** Table of effects for phase.avconc *** 
 
        phase 
          1-6       0.0000 
         7-12       0.6148 
        13-18       0.5637 
        19-24       0.3339 
        25-30       0.6792 
 
Standard error of differences:     Average           0.1913 
                                   Maximum           0.2269 
                                   Minimum           0.1614 
 
 
*** Table of predicted means for phase *** 
  
       phase         1-6        7-12      13-18      19-24      25-30 
                    14.49      14.56      13.05      11.24       9.92 
 
Standard error of differences:     Average           0.3732 
                                   Maximum           0.4531 
                                   Minimum           0.3049 
 
 
*** Table of predicted means for season *** 
  
      season         M-M        J-J        A-O        N-D        J-M 
                    13.10      11.84      12.09      12.81      13.42 
 
Standard error of differences:     Average           0.4338 
                                   Maximum           0.5632 
                                   Minimum           0.3209 
 
 

                                              
5 Each Wald statistic is calculated adjusting for those effects already included in the model, but 
ignoring those to follow.  For a full analysis of these data, one would want to fit several models with 
the fixed effects specified in different orders. 



© SSC 2001 – Mixed Models in Agriculture 19 

A second point to note also relates to the "messy" structure of data.  Most farms (42) 
in the study only had one cow, 10 farms had 2 cows and one farm had 3 cows.  The 
experimental design of example 1 was completely balanced in a way that allowed the 
information on each attribute to be retrieved exclusively from the layer at which it was 
defined.  In this example here, because of the large amount of confounding between 
farm and cow, the information on the effect of heart girth comes both from the cow 
layer and the farm layer, (i.e. farms where there is only one cow).  In these situations 
mixed model analysis combines all the relevant information from different levels to 
produce estimates of effects and standard errors.  This ability to extract and combine 
information from different levels, and attach a correct measure of precision to the 
estimates, is what makes mixed modelling so useful.  A consequence, however, is that 
exact significance tests of hypotheses are no longer possible, and we depend more on 
the large sample properties needed for the Wald tests.  

The analysis shows that level of milk yield was positively related to the size of the 
cow (heart girth), though, because of the confounding between cow and farm, this 
may be more a characteristic of farm management than the cow itself.  Milk yield 
varied with season and was reduced between June and October (the second two 
seasonal periods, J-J and A-O).  It also decreased from an average of 14.5 kg/d during 
the first 12 weeks of lactation to 9.9 kg/d between 25 and 30 weeks.  The effect of 
concentrate on milk yield within cow was positive only during phases 2 to 5 of 
lactation.  This is reflected in the significant phase x concentrate interaction. 

We return briefly to the issue of repeated measurements.  Earlier we introduced the 
idea that the units within a layer were "independent" of one another.  With repeated 
measurements – as in our sampling periods – this may not be true.  When 
measurements are collected successively within an individual unit, they are often 
correlated – with higher correlation between measurements that are close together in 
time and lower correlation between measurements that are further apart.   There are 
further facilities within mixed modelling to handle repeated measurement structures, 
but they are beyond the scope of this guide. 
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6.  Example 3: Sheep Breeding Trial 

6.1  Recognising the Structure 

In this example we compare the performance of lambs of Dorper and Red Maasai 
breeds and their crosses in terms of just one trait – weaning weight.  Preliminary 
analysis of the data indicated that the lamb's sex and its age at weaning were likely to 
influence weaning weight, as were the breed of the ram and the ewe.  The age of the 
ewe was also thought to influence the growth of a ewe's offspring. 

Both rams and ewes were each selected at 'random' from two breeds, and mated to 
produce their offspring.  Since the selections of ram and ewe were made in parallel, 
both can be represented as investigational units at a top layer.  Breeds for each sex are 
attributes at these two top layers, while age of ewe is also an attribute at the ewe layer. 

In the mixed model tree below we have attempted to show that there were more ewes 
than rams, that each ram mated with several ewes, and that there was only one 
offspring for any one mating. 
 

 

The offspring lambs are the investigational units at the next layer down.  Their 
attributes include year of birth, sex and age at weaning.  Since rams and ewes are 
mated both within and across breeds to produce their offspring, the interaction of ram 
breed and ewe breed is also at this level, and we have also included, for later 
comparative purposes, the interaction term of ram breed × year. 

6.2  Analysis 

The effects of individual rams and ewes on offspring growth are defined as random 
effects – the remaining effects are fixed.  Preliminary analysis suggested that the 
effect of the age of a ewe on the weaning weight of its offspring was curvilinear and 
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could be represented by a quadratic function.  Weaning age was linearly related to 
weaning weight.  The Genstat specification of these fixed and random effects is given 
below in Figure 3(a). 
 

Figure 3(a) 

 
***** REML Variance Components Analysis ***** 
 
Response Variate : weanwt 
 
Fixed model      : Constant+year+dam_ageL+dam_ageQ+wean_age+sex+ram_brd+ewe_brd+ 
                   ram_brd.ewe_brd+year.ram_brd 
Random model     : ram+ewe/lamb 
 
Number of units  : 700 
 
 

Figure 3(b) 

 
*** Estimated Variance Components *** 
 
Random term               Component        S.e. 
 
ram                           0.059       0.089 
ewe                           1.473       0.286 
lamb                          3.430       0.268 
 
 
*** Approximate stratum variances *** 
 
                                               Effective d.f. 
ram                                   4.654        56.07 
ewe                                   6.505       297.43 
lamb                                  3.430       328.49 
 
 
*** Wald tests for fixed effects *** 
 
   Fixed term              Wald statistic      d.f. 
 
   year                          231.4            5 
   dam_ageL                       31.0            1 
   dam_ageQ                       85.2            1 
   wean_age                       59.7            1 
   sex                             6.2            1 
   ram_brd                         6.8            1 
   ewe_brd                         2.9            1 
   ram_brd.ewe_brd                 0.5            1 
   year.ram_brd                    4.5            5 
 
* All Wald statistics are calculated ignoring terms fitted later in the model 
 
 

The Wald statistics in Figure 3 (b) demonstrate the highly significant fixed effects of 
year of birth, age of dam (described by linear and quadratic terms dam_ageL and 
dam_ageQ, respectively), age at weaning and, to a lesser extent, sex on weaning 
weight.  As in the last example, the reader should note that these data are unbalanced, 
and so each Wald statistic corrects for terms already fitted but not those that follow.  
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The breed of the ram appeared to play a more significant effect then the breed of the 
dam on weaning weight and there was no variation in the effect with year. 
 

Figure 3(c) 

 
*** Table of effects for dam_ageL *** 
 
                   2.338   : standard error      0.2345 
 
*** Table of effects for dam_ageQ *** 
 
                  -0.2893  : standard error     0.03192 
 
*** Table of effects for wean_age *** 
 
                   0.06694 : standard error    0.008690 
 
 
*** Table of predicted means for year *** 
 
        year        91        92        93        94        95        96 
                 12.64     11.06     11.55      9.65      9.44     10.19 
 
Standard error of differences:     Average           0.3280 
                                   Maximum           0.4007 
                                   Minimum           0.2591 
 
 
*** Table of predicted means for sex *** 
 
         sex            F            M 
                    10.55        10.96 
 
Standard error of differences:      0.1629 
 
 
*** Table of predicted means for ram_brd *** 
 
     ram_brd            D            R 
                    10.98        10.53 
 
Standard error of differences:      0.1830 
 
 
*** Table of predicted means for ewe_brd *** 
 
     ewe_brd            D            R 
                    10.99        10.52 
 
Standard error of differences:      0.2722 
 
 
*** Table of predicted means for ram_brd.ewe_brd *** 
 
      ewe_brd            D            R 
      ram_brd 
            D        11.08        10.88 
            R        10.89        10.17 
 
Standard error of differences:     Average           0.3163 
                                   Maximum           0.3530 
                                   Minimum           0.2578 
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*** Table of predicted means for year.ram_brd *** 
 
      ram_brd            D            R 
         year 
           91        12.96        12.31 
           92        11.62        10.50 
           93        11.67        11.44 
           94         9.62         9.67 
           95         9.75         9.12 
           96        10.24        10.14 
 
Standard error of differences:     Average           0.4510 
                                   Maximum           0.5602 
                                   Minimum           0.3423 
 

 

The table of effects (describing the regression coefficients for covariates) and means, 
in Figure 3(c), demonstrates the lower values of weaning weight in 1994, 1995 and 
1996 compared with the other years.  Male lambs had slightly higher weaning weights 
than females. Breed differences were similar for both sexes but the standard error was 
higher for ewes than rams.  

Earlier we introduced the idea that variability in individual response data – in this case 
weaning weight – comes from the different layers in a hierarchical structure.  Mixed 
modelling estimates the components coming from each layer.  These variance 
components have an important understanding to animal and plant breeders because they 
provide the basis for calculating genetic parameters such as heritability.  In this example 
the ewe variance component, shown in Figure 3(b), is much higher than the ram 
component, indicating the maternal influence on growth to weaning.  The 'genetic' 
variation in lamb weaning weight is therefore primarily associated with the lamb's dam. 

For the three examples we have used the idea of random effects solely to incorporate 
the layers into our mixed models.  Sometimes we also want to declare an attribute of 
interest, such as year of birth, as random rather than fixed.  Why should we do this, 
and what implications does it have on the analysis? 

If such an effect is defined as random, then any interaction involving it and any other 
effect, fixed or random, will also be random.  For instance when year is declared 
random, the random breed × year interaction is the random variation of the breed 
effects across the years.  Within the mixed model the average breed effects are then 
compared with these year-to-year breed differences.  Consequently the Wald statistics 
are usually smaller than in the fixed effects model, and the standard errors of the 
estimates are larger.  Inferences about the breeds are then for a population of years 
which the sample of six years represents. 
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Figure 3(d) 

 
***** REML Variance Components Analysis ***** 
 
Response Variate : weanwt 
 
Fixed model      : Constant+dam_ageL+dam_ageQ+wean_age+sex+ram_brd+ewe_brd+ 
                   ram_brd.ewe_brd 
Random model     : ram+ewe/lamb+year+year.ram_brd 
 
Number of units  : 700 
 
*** Estimated Variance Components *** 
 
Random term               Component        S.e. 
 
ram                           0.077       0.091 
ewe                           1.456       0.284 
year                          1.447       0.950 
year.ram_brd                  0.000       0.055 
lamb                          3.427       0.267 
 
*** Approximate stratum variances *** 
 
                                               Effective d.f. 
ram                                   4.841        58.07 
ewe                                   6.481       297.85 
year                                219.589         4.80 
year.ram_brd                          3.458         0.97 
lamb                                  3.427       330.31 
 
*** Wald tests for fixed effects *** 
 
   Fixed term              Wald statistic      d.f. 
 
   dam_ageL                       30.2            1 
   dam_ageQ                       84.4            1 
   wean_age                       61.2            1 
   sex                             6.1            1 
   ram_brd                         6.5            1 
   ewe_brd                         4.0            1 
   ram_brd.ewe_brd                 0.6            1 
 
* All Wald statistics are calculated ignoring terms fitted later in the model 
 
 

The analysis with year taken as random is shown below in Figure 3(d).  Since the 
breed × year interaction was negligible, similar results were obtained to those shown 
in Figure 3(c) above.  Whilst the choice of whether an effect should be fixed or 
random depends on the interpretation that the researcher wants to put on his analysis, 
it must also depend on whether or not it is sensible to visualise the effect as a random 
sample from some much larger population.  In this example, where there are only six 
years, one might want to consider whether that sample is large, or long, or random 
enough to be representative of the wider population of time. 

To summarise, the difference between declaring an effect as fixed or random depends 
on the inferences one wants to make.  When year is a fixed effect inferences about the 
performance of the breeds relates to the six years in question.  To generalise 
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conclusions about breed effects to a much wider time spectrum, then year and the year 
× breed interaction must be in the model as random effects.  The other situation where 
attributes are commonly taken as random is when an effect,  such as a blocking factor, 
e.g. herd, has many levels, and summarising it in terms of a variance seems justified.  
In such instances treating the effect as random, rather than fixed, often makes the 
model easier to fit. 

7.  And finally… 

Throughout this guide we have restricted discussion on mixed modelling in 
agriculture to the most obvious situation of messy multilevel structures.  However, the 
methodology is very powerful and can be used in a range of other situations – we have 
already mentioned repeated measurements as one example.  Here we briefly discuss 
some of the strengths and limitations of the mixed model approach.    

One strong reason for using mixed modelling is that it can deal effectively with layers 
in the data, and can give more valid, though theoretically approximate, significance 
tests and standard errors – something that conventional analysis of variance methods 
cannot do except in one or two specific circumstances. 

Secondly, it has the ability, with unbalanced structures, to combine information from 
different layers in the data.  (Readers who are familiar with the analysis of lattice 
designs will recognise that this is akin to "recovering inter-block information".)  This 
has the added advantage of improving the precision of fixed effect comparisons such 
as the experimental treatments or other covariates.   

The one slight drawback of the model is that initially it seems relatively complex 
compared to analysis of variance.  For a start, the model is more difficult to specify – 
one needs to correctly identify which effects are random and which are fixed.  The 
resulting computer output is also less familiar and less easy to use than ANOVA 
outputs.  However, researchers who are familiar with split-plot analysis of variance 
will probably have less difficulty with formulating the model, since the principles of 
identifying more that one layer of variation in the data is the same.   

In conclusion, we have introduced the idea of the mixed model tree as an aid to 
identifying hierarchical data structure.  Then, when there is such a structure, we have 
shown how to request the appropriate mixed model analysis.  It is our hope that an 
understanding of the contents of this guide may lead to a better ability on the part of 
the reader to recognise the correct analysis.  Finally, a clear awareness at the planning 
stage of the different layers in a proposed study can help to ensure that the resulting 
design has sufficient replication at each layer. 
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Appendix: Balanced Split-plot Analysis of Variance for the 
14-week forage dry matter data from the fodder production 
trial of Example 1 

The output below shows the appropriate split-plot analysis of variance for the two 
layers of the variation in the experiment and means and standard errors of differences 
between means. 
 

 
BLOCK block/mainplot/subplot 
TREATMENTS density*thinning 
 
 
***** Analysis of variance ***** 
 
Variate: Forage14 
 
Source of variation     d.f.       s.s.       m.s.    v.r.  F pr. 
 
block stratum              5   1122505.    224501.    1.47 
 
block.mainplot stratum 
density                    1     20592.     20592.    0.13  0.729 
Residual                   5    765310.    153062.    2.09 
 
block.mainplot.subplot stratum 
thinning                   1   1148000.   1148000.   15.67  0.003 
density.thinning           1      3060.      3060.    0.04  0.842 
Residual                  10    732379.     73238. 
 
Total                     23   3791847. 
 
 
***** Tables of means ***** 
 
Variate: Forage14 
 
Grand mean  1426. 
 
 density              3.       4. 
                   1455.    1397. 
  
 thinning              S        L 
                   1207.    1645. 
 
 density thinning              S        L 
      3.                    1248.    1663. 
      4.                    1167.    1627. 
 
*** Standard errors of differences of means *** 
 
Table              density    thinning     density 
                                          thinning 
rep.                    12          12           6 
s.e.d.               159.7       110.5       194.2 
d.f.                     5          10        9.81 
Except when comparing means with the same level(s) of 
 density                                     156.2 
 d.f.                                           10 
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