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SUMMARY

A novel surrogate-based constrained multi-objective optimization algorithm for simulation-driven
optimization is proposed. The evolutionary algorithms usually applied in antenna design optimization
typically require a large number of objective function evaluations to converge. The Efficient Constrained
Multi-objective Optimization (ECMO) algorithm described in this paper identifies Pareto-optimal solutions
satisfying the required constraints using very few function evaluations. This leads to substantial savings
in time and drastically reduces the time-to-market for expensive antenna design optimization problems.
The efficiency of the approach is demonstrated on the design of an L1-band GPS antenna. The algorithm
automatically optimizes the antenna geometry, parametrized by five design variables with performance
constraints on three objectives. The results are compared with well-established multi-objective optimization
evolutionary algorithms. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Engineering optimization problems, such as the design of electronic filters and antennae, involve
computationally expensive electromagnetic field simulations. Using Multi-Objective Evolutionary
Algorithms (MOEAs) and genetic algorithms [1, 2, 3, 4, 5, 6] is not desirable, since they typically
require a large number of objective function evaluations during the optimization process.

Surrogate-assisted algorithms have gained popularity in recent years for the problem of
optimizing antennas. The approaches proposed in [7, 8, 9] use low-fidelity simulations to
supplement (and minimize the number of) high fidelity simulations required during the optimization
process. The approaches involve training a Kriging surrogate model by performing carefully chosen
simulations according to a sampling algorithm. The Kriging model is then optimized using a MOEA.
Since the Kriging model is substantially cheaper to evaluate than the computationally expensive
objective function, the optimization process is expedited. The techniques of frequency scaling
and additive response correction are applied in [10] to iteratively refine a surrogate model trained
using coarse simulations. All the surrogate-assisted techniques described above involve training a
surrogate model by carefully performing simulations at well-chosen points. The surrogate model is
optimized in turn using an evolutionary algorithm. This scenario is termed as surrogate modeling.

Surrogate-Based Optimization (SBO) is distinct from surrogate modeling. It is a popular choice
to expedite complex optimization problems [11, 12, 13] involving expensive simulations. SBO
involves generating surrogate models of the underlying system (e.g., a simulation model) on the fly.
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These models are trained by samples selected using a sampling algorithm. The sampling algorithm
is designed with the objective of seeking the optima, or driving the search towards optimal regions
in the design space. Statistical criteria such as probability of improvement (PoI), probability of
feasibility (PoF) and expected improvement (EI) [14] utilize the mean and variance of prediction
from the surrogate model, and are often used to solve single-objective optimization problems on a
budget. Multi-objective formulations of PoI and EI [15] have been proposed, which can solve multi-
objective optimization problems involving up-to 7 objectives. An advantage of SBO approaches is
that they can economize on the number of objective function evaluations needed, as compared to
surrogate modeling and evolutionary approaches. It is found that optimizing the objective functions
directly requires less number of evaluations than would be needed to chart the entire optimization
surface. This letter demonstrates how SBO can speed-up the overall design optimization of an
antenna significantly and compares it with existing methods. The algorithm uses multiobjective
formulations of the PoI and PoF criteria for expediting the constrained multi-objective design
optimization. The details of the algorithm and its specific advantages in the efficient optimization of
antennas are elucidated in Section 2. Section 3 then demonstrates the usefulness of the approach on
a representative antenna design. Details about the applied algorithm are given in Section 5, whereas
the outcome of the optimization process and pertinent conclusions are discussed in Sections 5 and
6, respectively.

2. EFFICIENT CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION (ECMO)

The EMO algorithm [15] very efficiently solves multi-objective optimization problems up to 7
objectives. The ECMO algorithm [16] extends the EMO algorithm with the ability to handle
computationally expensive constrained multi-objective optimization problems. The sampling
scheme in the original formulation of ECMO selects only one new sample per iteration. In this letter,
the ECMO algorithm in [16] is extended such that multiple new candidate samples are selected per
iteration, and an ensemble of heterogeneous surrogate models is utilized to aid the sample selection
process.
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Figure 1. Flowchart of the ECMO algorithm.

The flowchart of the ECMO algorithm is shown in Fig. 1. The algorithm begins with a small set of
samples known as the initial design, for which the objective functions are evaluated. The resulting
training set is used to build a surrogate model. A cycle that selects new samples, evaluates them
and subsequently re-trains the surrogate based on the updated training set continues until a specified
stopping criterion (e.g., simulation budget, computation time, etc.) is met. The goal of sampling
algorithms is to rapidly drive the search towards the optima. The ECMO algorithm employs two
sampling criteria to quickly and efficiently identify a Pareto-optimal set of solutions that satisfy
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the specified constraints. The following subsections explain the hypervolume based Probability of
Improvement and Probability of Feasibility used as sampling criteria in the ECMO algorithm.

Hypervolume-based Probability of Improvement (PoI) The expected improvement and
probability of improvement are popular sampling criteria for single-objective optimization
problems. For multi-objective optimization problems, the optimal solutions are represented by
a Pareto set of trade-offs between the objectives. One way to measure improvement over an
intermediate Pareto set is to use the hypervolume-based PoI, which has been shown to be fast and
reliable [15]. The hypervolume-based PoI is defined as

Phv[I(x)] = Hcontr(x)× P [I(x)], (1)

where Hcontr(x) is the contributing hypervolume measuring the improvement of a new sample x
over the Pareto set and P [I(x)] is the multi-objective PoI defined as

P [I(x)] =

∫
y∈A

m∏
j=1

φj(yj)dyj , (2)

with A the non-dominated region of the objective space and m the number of objective functions.
The function φj is the probability density function associated to the surrogate model (e.g., Kriging,
Radial Basis Function (RBF), Support Vector Regression (SVR)) for the jth objective denoted as

φj(yj) , φj [yj ; ŷj(x), s
2
j (x)]. (3)

Probability of Feasibility (PoF) The PoF criterion measures the probability of a sample satisfying
the constraints. Assuming k constraint functions, each modelled by a surrogate model, the
probability of the prediction being greater than a specified constraint limit is computed in a manner
similar to the probability of improvement. Let ĝi(x) be the prediction and s2i (x) the variance of the
surrogate model for the ith constraint. The probability of feasibility can then be defined as

P [Fi(x) > gimin] =
1

s
√
2π

∫ ∞

0

e
−(Fi(x)− ˆ

gi(x))2

2s2 dGi(x), (4)

with gimin being the limiting constraint value, Fi(x) = Gi(x)− gimin the measure of feasibility and
Gi(x) a random variable for the ith constraint. The combined probability of feasibility of satisfying
k constraints then becomes

Pc(x) =

k∏
i=1

P [Fi(x) > gimin]. (5)

The final criterion γ applied in this work is obtained by multiplying the hypervolume-based PoI
with the PoF as

γ(x) = Phv[I(x)]× Pc(x). (6)

Optimizing this criterion results in selecting points that improve the Pareto set satisfying all
constraints, while also improving the accuracy of the surrogate models. γ is optimized using a
hybrid Monte-Carlo-based approach for experiments performed in this work.

Ensemble model construction and selection For many applications, the most appropriate
surrogate model type is not known beforehand. As the evaluation of the objectives by
electromagnetic field simulations is much more expensive than the computational cost of training
models, an ensemble-based approach is needed to reduce the burden of evaluating the best model
type using repeated runs. Therefore, an ensemble of multiple surrogates (e.g., Kriging, SVR, RBF)
is trained in each iteration of the ECMO algorithm. A cross-validation step determines the most
accurate surrogate, which is then used in conjunction with the sampling criteria.
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Figure 2. Representative textile microstrip probe-fed GPS patch antenna.

3. OPTIMIZATION OF A GPS ANTENNA

Consider a textile microstrip probe-fed compressible GPS patch antenna [17], as shown in Fig. 2.
This antenna consists of a square patch with two truncated corners glued on a flexible closed-cell
expanded rubber protective foam substrate. The patch is fed in the top right corner by a coaxial
probe, exciting a right hand circular polarization. The nominal characteristics of the substrate are
relative permittivity εr equal to 1.56, loss tangent tanδ equal to 0.012 and thickness h equal to 3.94
mm.

The optimization of the design of such a GPS antenna is a nontrivial task, as multiple constraints
have to be satisfied. First, the antenna has to comply with the requirements of the GPS-L1 standard.
Therefore, its return loss |S11| has to be lower than -10 dB and its axial ratio AR (defined as the ratio
between the amplitudes of the orthogonal components composing the circularly polarized field) has
to be smaller than 3 dB in the [1.56342,1.58742] GHz frequency band. Second, the fulfilment of
these criteria has to be achieved without sacrificing the directive gain of the antenna, which is of
paramount importance for its correct operation. Moreover, since the antenna is simulated by means
of the Keysight’s ADS Momentum 2012-08 full-wave solver, the whole process is expected to be
very time consuming. As a result, the optimization of the design of the antenna may largely benefit
from the advocated algorithm.

Therefore, the ECMO algorithm is applied to optimize the considered design with respect to
its |S11|, boresight AR and boresight Gain in the GPS-L1 frequency band. More specifically, the
objectives of the optimization are minimizing |S11|max and ARmax, and maximizing Gain. The
constraints are:

AR = ARmax −ARlim (7)

|S11| = |S11|max − |S11|lim (8)

where the limits ARlim and |S11|lim are dictated by the GPS-L1 standard, being 3dB and -10dB,
respectively. ARmax, |S11|max and Gainmin are the maximum and the minimum values, respectively, at
operating frequencies 1.56342 GHz, 1.57542 GHz and 1.58742 GHz. All the geometric parameters
of the antenna are considered in the optimization process, their variation ranges being:
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72.6mm < Lpatch < 75.2mm,
69.2mm < Wpatch < 71.5mm,
6.5mm < xf < 9.7mm,
13.8mm < yf < 16.4mm, and

3mm < c < 6mm.

4. NUMERICAL SETTINGS

All experiments were performed using the SUMO Toolbox [11] for MATLAB R©, which is freely
available for non-commercial use. The initial design is a Latin Hypercube of 100 points, in addition
to the 32 corner points. An ensemble of Kriging, RBF and SVR models is trained using the ECMO
algorithm. The ECMO algorithm selects 5 new points in each iteration, until the simulation budget
of 250 points is exhausted. Each simulation takes approximately one minute on an Intel Core i5
machine with 4 GB RAM.
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Figure 3. GPS Antenna: Pareto set of solutions satisfying constraints, obtained using the ECMO algorithm.

Each point is a 5-dimensional vector x = {L,W, c,xf ,yf} corresponding to a realization of
the GPS antenna under study, which is then simulated in Keysight’s ADS Momentum 2012-08 to
evaluate the objectives and constraints (Eqs. 7, 8).

5. RESULTS AND DISCUSSION

The results of the surrogate-based optimization are plotted in Fig. 3. They are compared against
the NSGA-II [18] and SMS-EMOA [19] multi-objective evolutionary algorithms (MOEAs) on the
hypervolume metric (Fig. 4). Online convergence detection [20] was enabled for SMS-EMOA.
Support for constraints was enabled for all algorithms. The hypervolume of the intermediate Pareto
sets obtained using ECMO are consistently better than from NSGA-II and SMS-EMOA. This
translates into solutions that are diverse and present a wider choice for the practitioner. A Pareto
set of 33 solutions was obtained using the ECMO algorithm. All of them satisfy the constraints
specified by the GPS-L1 standard. A possible way to choose between Pareto-optimal solutions
is to consider the AR values, which is the most crucial parameter in the design of the GPS-L1
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Figure 4. GPS Antenna: Evolution of the hypervolume metric for NSGA-II, SMS-EMOA and ECMO.

compatible antenna. The chosen solution, therefore, is {74.1250, 69.7676, 3.2995, 7.9560, 16.4306}
having |S11|, Gain and AR values {−15.8593,−4.8162, 2.8317} respectively.

Although the ensemble-based model construction scheme adds some computational overhead, it
is small compared to the overall cost of performing a simulation. The advantage of the algorithm
is the ability to solve constrained multi-objective optimization problems using very few objective
function evaluations. The total time taken by the ECMO algorithm for the optimization process was
≈ 5 hours, as opposed to ≈ 30 to 40 hours for the MOEAs.

6. CONCLUSION

The Efficient Constrained Multi-objective Optimization (ECMO) algorithm was proposed to
solve constrained multi-objective antenna design optimization problems involving expensive
electromagnetic field simulations. The algorithm combines surrogate models such as Kriging,
Radial Basis Functions and Support Vector Regression along with hypervolume Probability of
Improvement (PoI) and Probability of Feasibility (PoF) sampling criteria to efficiently drive the
search towards optimal solutions. The algorithm is applied to optimize an L1-band GPS antenna.
Results show that ECMO outperforms state-of-the-art Multi-Objective Evolutionary Algorithms
(MOEAs) such as NSGA-II and SMS-EMOA, and offers substantial savings in time.
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