

FACULTY OF ENGINEERING AND ARCHITECTURE

PRODUCT DISTRIBUTIONS FROM FAST PYROLYSIS OF 10 ECUADORIAN AGRICULTURAL RESIDUAL BIOMASS SAMPLES

Diana C. Vargas ^{a,b}, SriBala Gorugantu^a, Hans-Heinrich Carstensen ^a, Daniela Almeida Streitwieser ^b, Guy B. Marin ^a, Kevin M. Van Geem^{a*}

^a Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Gent, Belgium

http://www.lct.UGent.be

^b Laboratorio de Desarrollo de Energías Alternativas Departamento de Ingeniería Química, Universidad San Francisco de Quito,

Casilla Postal: 17-12-841, Quito, Ecuador

*E-mail: Kevin.VanGeem@UGent.be

- ue		
2 2	Ibarra	
Santo Domingo	& Quito	5

Ecuador's economy is based on the production and export of agricultural products.

Tandem Micro-pyrolyzer setup

Detailed features

Analytics section

and

Micro-pyrolyzer

GC Oven

First worldwide producer and exporter of bananas

Main crops produced in Ecuador and residues

Сгор	Acreage cultivated [ha]	Residues [ton/yr]	Types of residues		
African palm	240,333	6,872,469.27	Rachis, fiber and nut shells		
Сосоа	507,721	2,015,352	Hulls, pulp, leaves and wood		
Coffee	113,029	104,048.31	Hulls, pulp, leaves and wood		
Banana	221,775	4,926,095	Raquis, shells, fibers		
Rice	411,459	2,106,695	Husk		
Sugar cane	106,926	793,283.38	Bagasse, straw		
Implanted Forest	148,415	319,000	Straws, roots, bark		

Purpose:

- comprehensive analysis of product distribution of fast pyrolysis reactions of polymers including biomass
 - close mass and elementary balances
- determine intrinsic rate coefficients for solid to gas transition • avoid transport limitations
- study gas-phase reactions of valuable solid model substances • small sample sizes

-	
× GC - FID/TOF-MS Simultaneous identification and quantification	 Two stage reactor Solid, liquid or gas samples Isothermal, linear and stepwise
Stomized Trace GC 1310 A Detectors TCD-1 Water, formaldehyde TCD-2 and PDD permanent gases incl. H ₂ C2- components	 Large T-range: 40 - 900 °C Multi-shot sample introduction Cryo-trap for fast injection Stainless steel tube (deactivated with quartz) Stainless steel tube (deactivated with quartz) ** Reactor fumace 1** Interface
<section-header></section-header>	Interface needle 2 nd Reactor fumace Catalyst Catalyst reaction tube (quartz) 2 nd Interface Split gas OUT Separation column
Cohema II 2,00 2,00 eceter and 10	MicroJet Cyro-Trap

Motivation of the study

- Agricultural residues are wasted and no alternative treatment other than landfill is considered.
- Residues can be used as feedstock for thermochemical processes.

Pyrolysis

Biomass characterization

•All biomass samples were characterized to determine: •Heating value •Elemental analysis •Composition of cellulose, hemicellulose and lignin Ash content

Sample	C [%]	H [%]	N [%]	0 [%]	Ash [%]	Lignin [%]	Cellulose [%]	Hemicellulose [%]
Forestry residue	38.99	3.81	0.30	29.37	24.93	61.77	14.07	4.24
Palm rachis	43.21	5.71	2.32	43.99	3.46	25.9	30.00	5.17
Palm fiber	44.82	5.27	2.52	43.55	3.46	23.7	16.41	14.73
Palm kernel shells	55.89	5.80	0.60	35.75	1.20	40.75	24.79	9.46
Fresh cocoa kernel	50.04	5.47	1.09	41.44	1.16	26.51	17.25	4.32
Rotten cocoa kernel	53.47	5.81	2.41	35.41	2.62	45.06	15.42	6.95
Coffee husks	48.09	5.80	2.36	41.78	1.20	25.09	14.05	16.12
Banana stem	45.47	5.16	1.81	45.11	1.43	16.36	21.68	15.52
Rice husk	33.68	4.81	1.27	19.41	28.24	40.12	34.45	11.80
Sugar cane bagasse	48.48	5.62	1.42	40.64	3.49	32.04	22.41	13.96

Various biomass are selected based on the amount of residue generated by the harvesting of the crop

Rice husk

Palm kernel shells

Coffee husk

Dry biomass

Experimental details

cup size

Exporimonto	Fast pyrolysis conditions						
Experiments	1st reactor: 500° C 550° C 600° C						
require very	- 1° Teactor. 500 C, 550 C, 600 C						

require very - No 2nd reactor small amounts

- Carrier flow rate: 210 mL/min of substance - Cryo-trap: 8 min @ -70^oC

Calibration methodology

- **RGA-TCD¹ and -PDD**: All permanent gases are calibrated absolutely.
 - by injecting a standard mixture of \underline{C}_{2} gases.
 - <u>CO and CO₂ are calibrated separately, through</u> CaC_2O_4 decomposition.
- 2. RGA-TCD² : Methanol is used as absolute calibration component. Water and other light oxygenates (LO) are quantified relative to methanol.

aromatic hydrocarbons and oxygenates.

3. G<u>CxGC-FID</u>

Calibration curves

Product distribution

• CH_4 and methanol data from RGA are used to quantify light hydrocarbons and oxygenates detected on FID.

• Furan, furfural, methyl furfural, toluene and guaiacol are chosen as absolute calibration components for furans,

•Calcium Oxalate Calibration: $CaC_2O_4 \rightarrow CaCO_3 + CO$; $CaCO_3 \rightarrow CaO + CO_2$

Conclusions

Product distribution of biomass samples were obtained. \checkmark Different variations in the elemental composition corresponds to different yields in the pyrolysis product distribution.

Future work

Quantification of fast pyrolysis data obtained for 12 biomass types using the calibration factors obtained using the methodology explained

> Validation of Ranzi's model for fast pyrolysis with the experimental data

Acknowledgements

This research has been supported by the Belgian Development Cooperation through VLIR-UOS. VLIR-UOS supports partnerships between universities and university colleges in Flanders (Belgium) and the South looking for innovative responses to global and local challenges. Visit www.vliruos.be for more information. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 290793. The SBO proposal "Bioleum" supported by the Institute for promotion of Innovation through Science and Technology in Flanders (IWT) is acknowledged.

10th International Conference on Chemical Kinetics (ICCK 2017), 21-25 May 2017