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Abstract 

The word frequency effect is stronger in second language (L2) processing than in first 

language (L1) processing. According to the lexical entrenchment hypothesis, this difference is 

not due to a qualitative difference in word processing between L1 and L2, but can be 

explained by differences in exposure to the target language: People with less exposure to a 

language show a steeper frequency curve for that language. Exposure differences can be 

measured with a vocabulary test. The present study tested whether the lexical entrenchment 

hypothesis provides an adequate explanation for differences in lexical decision times. To this 

end, we compared the performance of 56 Dutch-English bilinguals to that of 1011 English L1 

speakers on 420 English six-letter words. In line with previous research, the differences in the 

word frequency effect between word processing in L1 and in L2 became vanishingly small 

once vocabulary size was entered as a predictor. Only in a diffusion model analysis did we 

find some evidence that the information build-up may be slower in L2 than in L1, 

independent of vocabulary size. We further report effects of cognates, age-of-acquisition, and 

neighborhood size that can also be explained in terms of differences in exposure.
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Bilingualism is pervasive among people who do not belong to an economically and culturally 

dominant country (Myers-Scotton, 2006). This has encouraged scholars to investigate 

commonalities and differences between language processing in the mother tongue (L1) and 

another known, so-called second language (L2). Reviews of this research can be found in De 

Groot (2010), Altarriba & Isurin (2014), Heredia & Altarriba (2014), and Tokowicz (2014). 

We limit ourselves to studies on visual word recognition. 

 

Evidence against selective access 

For a long time, researchers started from the hypothesis that words in L1 and L2 were stored 

in separate lexicons, and tested whether participants had selective access to one or the other 

lexicon (Kroll & Stewart, 1994). The conclusion from this line of research was that selective 

access does not exist and that even the existence of distinct lexicons is unlikely (Brysbaert & 

Dijkstra, 2005; Brysbaert & Duyck, 2010; Jin, 2013; Kroll, Bobb, & Wodniecka, 2006; 

Tokowicz, 2014).  

 

Much research focused on words shared between the languages, either with the same meaning 

(called cognates) or with different meanings (interlingual homographs). With respect to 

cognates, Costa, Caramazza, and Sebastian-Galles (2000) reported that bilinguals name 

pictures with cognate names faster than matched pictures with non-cognate names. The 

cognate advantage has been obtained in many other studies involving both language 

production and comprehension (e.g., Bultena, Dijkstra, & van Hell, 2014; Duyck, Van Assche, 

Drieghe, & Hartsuiker, 2007). As for interlingual homographs, Dijkstra, Timmermans, and 

Schriefers (2000) presented Dutch-English bilinguals with lists of English and Dutch words. 

The participants were to press a button only if an English word appeared. If the presented 

word belonged to Dutch, they were instructed to wait for the next word (i.e., a go / no-go 
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paradigm). The authors were interested in the comparison between interlingual homographs 

(such as room, which means cream in Dutch) and words that only exist in English (e.g., 

home). The idea was that if participants only activated words in their English lexicon, they 

should not be influenced by whether or not the letter string formed a word with a different 

meaning in Dutch. Still, Dijkstra et al. (2000) obtained a reliable homograph effect: 

Participants needed more time to decide that a homograph was an English word than that a 

non-homograph was an English word, even though the English reading of the homograph was 

much more frequent than the Dutch reading and even though all test words were readily 

recognized as valid English words. Interestingly, Dijkstra et al. further showed that 

performance was affected by the other language not only when the response was required in 

L2, but also when the response was required for words in L1 (with homographs in L2). 

Participants took longer to accept a letter string as an existing Dutch word when it was an 

English homograph (room) than when it was not (e.g., nis [niche]). 

 

Commonalities in L1 and L2 processing 

Research on bilingual language processing has traditionally focused on differences between 

L1 and L2 processing. For instance, Van Heuven, Dijkstra, and Grainger (1998) examined 

how the recognition of L2 target words is influenced by similar words in L1 and L2. Dutch-

English bilinguals and English native speakers were asked to decide whether strings of letters 

formed English words or nonwords (English lexical decision task). For the English native 

speakers, word identification time depended on the number of English orthographic neighbors 

(i.e., words of the same length that differ by one letter). Participants took longer to decide that 

a letter string was a word when it had few neighbors (e.g., deny, with the neighbors defy and 

dent) than when it had many (e.g., dish, with the neighbors fish, wish, dash, dosh, disc, disk). 

In contrast, the Dutch-English bilinguals were more influenced by the number of Dutch 
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neighbors than by the numbers of English neighbors. Furthermore, the Dutch neighborhood 

effect was different from the English neighborhood effect: Dutch-English bilinguals took 

longer to accept an English L2 word with many Dutch L1 neighbors (e.g., poor, with the 

Dutch neighbors boor, door, goor, hoor, koor, moor, noor, voor, pook, pool, poos, poot) than 

an English word with few Dutch neighbors (e.g., bath with no reasonably well-known Dutch 

words as neighbor). This was interpreted as evidence for strong inhibitory cross-language 

interactions in word identification. 

 

To chart the differences between L1 and L2 word recognition more systematically, Lemhöfer, 

Dijkstra, Schriefer, Baayen, Grainger, and Zwitserlood (2008) set up a large-scale study 

comparing English word recognition in native speakers, Dutch-English bilinguals, French-

English bilinguals, and German-English bilinguals. Participants were given a word 

identification task (progressive demasking) with 1,025 monosyllabic English words (3-5 

letters). Against their own expectations based on van Heuven et al. (1998), the authors found 

many more commonalities between the groups than differences. They observed a substantial 

overlap of reaction time patterns across the various groups of participants, indicating that the 

word recognition data obtained for one group generalized to the other groups. Furthermore, 

among the set of significant predictors, all but one reflected characteristics of the target 

language, English. There were virtually no influences of the bilinguals’ mother tongue on 

their responses to English words. As a result, Lemhöfer et al. concluded that to understand 

English L2 word processing, it is more important to study the properties of the English 

language itself than possible interactions between English and the participants’ mother tongue. 

The only robust differences Lemhöfer et al. (2008) observed between native speakers and 

bilinguals were related to the cognate status of the words and the word frequency effect. As 

for the latter, L2 speakers needed relatively more time to process low-frequency words than 
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L1 speakers. The larger frequency effect in bilinguals has also been reported by de Groot, 

Borgwaldt, Bos, & van den Eijnden (2002),  Van Wijnendaele & Brysbaert (2002), Duyck, 

Vanderelst, Desmet, and Hartsuiker (2008), Whitford and Titone (2012), and Cop, Keuleers, 

Drieghe, and Duyck (2015). 

 

The lexical entrenchment account 

Diependaele, Lemhöfer, and Brysbaert (2013) examined whether the larger frequency effect 

in bilinguals was due to a qualitative distinction between L1 and L2 processing. A qualitative 

difference meant that an extra variable had to be postulated for L2 processing, that the weight 

of a variable differed fundamentally between L2 and L1, or that knowledge of more than one 

language significantly interfered with the processing of each of the languages. In contrast, if 

the larger frequency effect in L2 could be understood on the basis of the same mechanisms as 

differences in the frequency effect among L1 speakers, then this would be evidence for a 

system that processes L1 and L2 words in very much the same way. For instance, in L1 word 

recognition it has been reported that people with a small vocabulary size have a larger 

frequency effect than people with a large vocabulary size (Yap, Balota, Sibley, & Ratcliff, 

2012). Could the difference in the frequency effect between bilinguals and native speakers 

also be explained by the fact that people have a smaller vocabulary size in L2 than in L1? 

 

All participants in the Lemhöfer et al. (2008) study completed a vocabulary test and, therefore, 

Diependaele et al. (2013) could enter this variable as a covariate in their analysis. Once 

vocabulary size was taken into account, all differences between bilinguals and native speakers 

disappeared. Bilingual participants showed a larger frequency effect, not because they were 

processing words in L2, but because on average they had a smaller English vocabulary size. 

L2 speakers and L1 speakers with matched vocabulary sizes showed similar word frequency 
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effects. Diependaele et al. (2013) named their finding the lexical entrenchment hypothesis: 

“lexical representations are weaker in low-proficiency individuals and require more energy to 

be processed; this is particularly true for low-frequency words”. 

 

Kuperman and Van Dyke (2013) offered an explanation why a reduced vocabulary size 

correlates with an increased word frequency effect. They showed that limited exposure to 

language hurts the exposure to low-frequency words in particular. Large corpora yield higher 

frequencies of rare words than small corpora. So, people with limited exposure to a language 

are likely to have encountered low-frequency words considerably less than people with 

extensive exposure. High frequency words are encountered in large numbers by both groups 

and are less affected by additional exposures. The latter is a direct consequence of the fact that 

learning curves are concave with more impact of additional learning trials in the early stages 

of learning. To Kuperman and Van Dyke’s (2013) interpretation, one could add that people 

with a limited exposure to language are also likely to opt for easier materials (i.e., with fewer 

low-frequency words). For instance, it is well documented that written materials (books, 

newspapers, magazines) contain a richer choice of words than spoken conversations or 

television programs (Cunningham & Stanovich, 2001). 

 

Importantly, the lexical entrenchment hypothesis entails that there is no qualitative difference 

between L1 and L2 word processing, and that any processing differences can be explained by 

variations in exposure. Exposure is also the driving force behind the word frequency effect 

and the age of acquisition (AoA) effect (early-acquired words are easier to process than late-

acquired words), and arguably exposure is also involved in the cognate effect (as cognates are 

part of both languages). This suggests that variations in exposure to the words of a language is 

the main variable determining word processing times for that language, both in L1 and L2. 
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Following Diependaele et al. (2013) and Kuperman and Van Dyke (2013), we believe that a 

good vocabulary test is the best measure of language exposure we currently have (see also 

Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991, for a link between language exposure 

and vocabulary knowledge in young children). Participants exposed to less language have a 

smaller vocabulary. 

 

Lexical decision and a diffusion model analysis 

A limitation of the Lemhöfer et al. (2008) and the Diependaele et al. (2013) studies is that 

they were based on word identification in the progressive demasking paradigm. In this 

paradigm a word is presented between masks for increasing durations until the participant is 

able to identify the word. Although this task is known to correlate with other word processing 

times (e.g., Carreiras, Perea, & Grainger, 1997; Ferrand, Brysbaert, Keuleers, New, Bonin, 

Meot, Augustinova, & Pallier, 2011; Ploetz & Yates, in press), it is not the most common task 

in word recognition research. Many more studies are based on the lexical decision task, which 

shows a very clear word frequency effect (Balota et al., 2007; Ferrand, New, Brysbaert, 

Keuleers, Bonin, Meot, Augstinova, & Pallier, 2010; Keuleers, Diependaele, & Brysbaert, 

2010; Keuleers, Lacey, Rastle, & Brysbaert, 2012). So, a test of the effect of the lexical 

entrenchment hypothesis on lexical decision times is needed. 

 

A challenge for a between-groups design is to test enough participants to make sure that the 

participants form a representative group and that intermediate effect sizes can be detected. 

Lemhöfer et al. (2008) compared four groups of 21 participants (university undergraduates) 

each. This is good, but still provides a rather limited picture. In particular, one would like to 

have a larger group of L1 speakers, so that the performance of L2 speakers can be compared 

to the full range of L1 performances. Such a study was recently published by Adelman et al. 
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(2014), who tested 1011 native English speakers from 14 different universities on 420 six-

letter words. By running an additional sample of Dutch-English bilingual participants, we can 

get a detailed picture of the position of L2 speakers relative to L1 speakers. 

 

The large number of observations per participants and the large number of participants also 

allowed us to do more in-depth analyses than a simple comparison of mean reaction times 

(RTs). A model increasingly used to understand performance in binary forced choice RT tasks 

is Ratcliff’s (1978) diffusion model (Dutilh, Vandekerckhove, Forstmann, Keuleers, 

Brysbaert, & Wagenmakers, 2012; Gomez & Perea, 2014; Ratcliff, Gomez, & McKoon, 

2004). The advantage of using such a model is that it takes into account the full distribution of 

RTs both for correct and incorrect responses, words and nonwords, and that it captures 

differences between conditions with a small set of parameters, which can be linked to 

processing aspects. The model will be explained in more detail in the Results section, when 

we report the outcome of the analysis. 

 

Method 

Participants. Participants were 56 psychology undergraduates from Ghent University, 

Belgium. They had normal or corrected-to-normal vision and knew that the experiment 

involved English word recognition. All participants were native Dutch speakers and saw 

themselves as reasonably proficient in English. Because Adelman et al. (2014) used 28 

counterbalanced lists of stimuli (see below), two participants were tested per list. To be 

included in the data analysis, participants had to obtain accuracy scores above 75% in the 

lexical decision task. A similar criterion was used in Adelman et al., as that study’s focus was 

on the orthographic priming effect of 28 different types of stimuli expressed in milliseconds. 

Because 16 students did not reach the 75% criterion, they were replaced (using the same 
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stimulus list). Ghent University students also have reasonable knowledge of French (taught in 

the last two years of primary school and in all years of secondary education) and sometimes 

of a fourth language (German, Spanish, Turkish, Hebrew, …), but this knowledge is not 

expected to affect the results in a way that invalidates the conclusions. 

 

Stimuli. The 420 words and 420 nonwords from Adelman et al. (2014) were used. They were 

all 6 letters long. As in the Adelman et al. study, targets were preceded by a briefly presented, 

masked non-word prime that had various letters in common with the target word. There were 

28 types of primes varying from primes that had all letters in common with the target word 

(i.e., identity priming) to primes that had no letters in common (unrelated primes), as shown 

in Table 2 below. The primes were included to test various theories of orthographic 

processing (the original aim of the Adelman et al. study) and were not visible to the 

participants. Adelman et al. used a Latin-square design to obtain data from all prime-target 

combinations in a group of participants who saw the target list only once. Consequently, 28 

different stimulus lists were composed with 15 target words in each priming condition. As 

orthographic priming is expected to take place at the very first, prelexical stages of word 

processing, we did not expect differences in orthographic priming between our L2 participants 

and the L1 participants tested by Adelman et al., also because Dutch and English have very 

similar orthographies. Targets were presented in uppercase letters, primes in lowercase letters. 

 

Design. The design followed the Adelman et al. (2014) study as closely as possible.1 

Participants started with the lexical decision experiment. They then proceeded with a word 

spelling test (not reported here) and a vocabulary test. The latter was based on Shipley (1940) 

                                                           
1
 The authors thank Colin Davis and Sam McCormick who kindly helped them with this. 
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and consisted of 40 words of increasing difficulty with four alternatives to choose from. 

Participants had to select the correct alternative. 

 

Results 

The full dataset, containing all information of the lexical decision task at the trial level, is 

available on the website of the Open Science Framework (https://osf.io/wsdxm/). This is also 

the case for the mixed-effects models we report, so that the analyses we report can be 

replicated. Our discussion involves various parts, starting with the vocabulary test. As the 

lexical entrenchment hypothesis makes predictions about RTs we focus on this variable (see 

the diffusion model below for an analysis incorporating accuracy data). Following common 

practice, RTs were calculated on correct trials only. Outliers were detected and removed per 

participant using the adjusted boxplot criterion by Hubert & Vandervieren (2008), which 

takes into account the positive skewness of RT distributions. Because it became clear that the 

vocabulary sizes of our participants were at the low end of the L1 range, we included all L1 

participants available in the Adelman et al. (2014) database, so that we had a full overlap of 

the range of vocabulary sizes in both groups. This gave a total of 1,011 participants rather 

than the 924 analyzed by Adelman et al. (2014). Table 1 shows the number of participants per 

university. 

 

Vocabulary test.  Our participants scored on average 59.3% (SD = 9.1%) on the Shipley 

vocabulary test. Table 1 illustrates how this compares to the universities tested in Adelman et 

al. (2014). As can be seen, the average score of the L2 participants was below that of the L1 

participants, although it came close to the least scoring universities. As could be expected, the 

vocabulary scores correlated with the accuracy data on the lexical decision task (r = .91, N = 

15). Surprisingly, they did not correlate with the response times (r = .13, N = 15).  
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 1 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Masked priming. Before we analyze the lexical decision data, it is important to check 

whether the orthographic priming effects are similar in L1 and L2, as expected. Table 2 shows 

the priming effects for the 28 different types of primes. As can be seen, the effects are pretty 

similar (correlation between the L1 and L2 effects = 0.84, N = 27, p < .0001). A mixed-effects 

analysis2 on the lexical decision times confirmed that there were main effects of language (L1 

vs. L2, �(�)
�   = 17.21, p < .001), vocabulary size (�(�)

�  = 19.83, p < .001), and type of prime 

(�(��)
�  = 1503.6, p < .001). Participants responded faster when English was their first language, 

when they had a large vocabulary size, and when the orthographic overlap between prime and 

target increased (Table 2). Importantly, there were no interactions between prime type and 

language (�(��)
�  = 23.34, p = .66) or between prime time and vocabulary size ( �(��)

�  = 37.92, p 

= .08) 

 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 2 about here 

                                                           
2
 Linear mixed-effects models were estimated using the lme4 package in R. We followed a bottom-up model 

building strategy. In the first step the model included the fixed effects we wanted to test and random 

intercepts for items and participants. If a fixed (main) effect was significant, we added the corresponding 

random slopes and used a likelihood ratio test to assess whether this improved the model. Random effects 

were only added for measures that were repeated, as there was no variability otherwise. Word frequency, for 

instance, only has a random slope per participant (each participant sees items of different frequencies) but not 

per item (each item only has one frequency). Similarly, a random slope of vocab size was only added per item: 

an item is seen by participants with different vocab sizes, but a participant has only one vocab size. Applied to 

the analysis of the priming data, likelihood ratio tests showed that the model needed random slopes of 

language and vocab size per item (respectively �(�)
�   = 448, p  < .001 and �(�)

�   = 918, p < .001) and a random 

slope of prime condition per item (�(��)
�   = 80.66, p < .001) but not per participant (�(��)

�   = 25.49, p = 0.60).  
To keep the computation feasible we estimated only the variances and not the covariances of the random 

effect of prime type. 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Lexical decision performance. As can be seen in Table 1, average performance of the L2 

participants was in line with that of the L1 participants, although the RT was at the high end 

of the universities tested and the accuracy rate was at the low end. To further investigate the 

similarities/differences between the groups, we correlated the RTs of the groups across the 

420 target words. The correlations are shown in the upper right half of Table 3. This table also 

includes an estimate of the reliabilities of the estimates per university placed on the diagonal 

(based on the Intraclass Correlation Coefficient). The reliabilities differ because the number 

of students tested per university varied from 28 to 217 (Table 1). Correlations can be 

corrected for the lack of reliability with the equation: corrected correlation = (correlation / 

sqrt(reliability test1 * reliability test2). The corrected correlations are given in the lower left half 

of Table 3. They clearly show the high correlation between L2 and L1 processing times 

(around r = .8), but the still higher correlations between the L1 data collected at the various 

universities (around r = .9). As was found by Lemhöfer et al. (2008), the commonalities of L1 

and L2 processing outweigh the differences, but there is room for a few discrepancies, which 

will be outlined in the remainder of the text. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 3 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

The frequency effect and the lexical entrenchment hypothesis. The lexical entrenchment 

hypothesis makes two predictions: (1) participants with a small vocabulary size will show a 

stronger word frequency effect than participants with a large vocabulary size, and (2) once 
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vocabulary size is taken into account, no more difference in frequency effect is expected 

between L1 speakers and L2 speakers. 

 

To test the frequency effect, we made use of the SUBTLEX-UK word frequency estimates3, 

expressed as Zipf-values (Van Heuven, Mandera, Keuleers, & Brysbaert, 2014). The Zipf 

values are a standardized measure of word frequency, equal to log10(frequency per billion 

words),  and have the following interpretation: A Zipf value of 2 equals 1 occurrence per 10 

million words, Zipf 3 = 1 occurrence per million words, Zipf 4 = 10 occurrences per million 

words, and Zipf 5 = 100 occurrences per million words. As a rule of thumb, Zipf-values of 3 

and lower can be considered as low-frequency words (equal to or lower than 1 occurrence per 

million words) and values of 4 and higher as high frequency words (equal to or higher than 10 

occurrences per million words). 

 

The usual finding related to the frequency effect is that the frequency effect is strong in the 

middle part of the continuum but levels off at the low and the high end (Keuleers et al., 2010, 

2012). The leveling-off at the high end is most likely due to a floor effect in RTs. The 

levelling-off at the low end seems to be related to the fact that many low frequency words are 

not well known.4 The consequence is that the RTs are based on smaller numbers of 

observations, which in addition come from the few people who know the word (and arguably 

have processed it more often). Keuleers, Stevens, Mandera, and Brysbaert (2015) showed that 

the percentage of people who know a word (a variable called ‘word prevalence’) is more 

informative for low-frequency words than frequency itself. 

 

                                                           
3
 Given that most data were collected in universities using British English. 

4
 For empirical evidence, see the frequency effect as a function of vocabulary size in Figure 3. 
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The shape of the frequency effect outlined above is also present in the current dataset (Figure 

1), although the leveling off at the low end starts at much higher word frequencies than seen 

in other megastudies (possibly because the participants of the word megastudies had larger 

vocabulary sizes). We tried out various ways to best capture the nonlinear nature of the 

frequency effect, but the most easily understandable (without loss of accuracy) is the one 

suggested by Harrell (2001) and depicted in Figure 1. In this approach the frequency effect is 

estimated via linear regression in three ranges: Low end, middle, high end. In line with 

Harrell’s (2001) recommendation, the inflection knots were placed at the frequency 

percentiles 20 and 80 (i.e., the lower end included the 20% words with the lowest frequencies 

and the higher end included the 20% words with the highest frequencies). For the present 

stimulus set, these knots coincided with the Zipf values 3.047 and 4.302. 

 

Based on a mixed-effects model with frequency as a fixed effect, a random intercept per item 

and participant and random slopes of the frequency effect per participant, frequency is highly 

significant in the middle part (β=-60.88, z=-15.14, �(�)
�   = 229.315, p < 0.001) but not in the 

low part (β=-11.29, z=-1.01, �(�)
�   = 1.022  , p=0.31) or the high part (β=-10.12, z=-1.53, �(�)

�   

= 2.346, p=0.13). As will become clear below, the middle range is the part where the 

individual differences were situated. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 1 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

To check whether the L2 speakers had a stronger word frequency effect than the L1 speakers, 

as previously reported, we added language group and the interaction between language group 
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and frequency to the above model (together with a random effect of language per item). In 

this analysis, the interaction between language group and frequency was significant for the 

middle part, but not for the lower and the higher end (see Table 4). In addition, there was a 

strong main effect of language group, because the L2 speakers were on average 88 ms slower 

(740 ms) than the L1 speakers (652 ms). Figure 2 shows the frequency effects for the L1 and 

L2 group. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 4 and Figure 2 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

The specific prediction of the lexical entrenchment hypothesis is that the difference in the 

word frequency effect between L1 and L2 speakers disappears once vocabulary size is taken 

into account. To test this prediction, we added vocabulary size, its random slope per item and 

its interaction with frequency to the model. This analysis (Table 5) showed a strong main 

effect of vocabulary size: The participants with the lowest vocabulary sizes (estimated as 2SD 

below the mean) were 64 ms slower than the participants with the highest vocabulary sizes 

(estimated as 2SD above the mean), with RTs of 685 ms and 621 ms respectively. More 

importantly, there was a strong interaction between vocabulary size and word frequency in the 

middle range of the frequency, but not at the lower end or the higher end, as shown in Figure 

3. The word frequency effect was larger for participants with a small vocabulary than for 

participants with a large vocabulary. Furthermore, after adding vocabulary size, the 

interaction between frequency and language was not significant any more, either for the 

middle, lower, or higher part of the frequency range. The main effect of language remained 

significant. 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 5 and Figure 3 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

A diffusion model analysis. In the previous analyses we saw clear evidence for a modulation 

of the frequency effect by vocabulary size, combined with overall slower reaction times for 

the Dutch-English bilinguals (even though the RTs of our bilinguals were not much longer 

than those of the students from the University of Arizona and Colby College; Table 1). 

Another way to investigate the origins of these effects is to make use of a model of the 

underlying processes. A model increasingly used to understand performance in binary forced 

choice RT tasks is Ratcliff’s (1978) diffusion model (Dutilh et al., 2012; Gomez & Perea, 

2014; Ratcliff et al., 2004). The advantages of the model are that it takes into account the full 

distribution of RTs both for correct and incorrect responses, words and nonwords, and that it 

captures differences between conditions with a small set of parameters. Figure 4 shows the 

model as it applies to a lexical decision situation. The model assumes that the information for 

a word or a nonword response accumulates over time, beginning from a start position until a 

threshold value is exceeded. The starting value, the speed with which information increases, 

and the position of the threshold values are parameters of the model. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 4 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

The standard version of the diffusion model makes use of seven parameters: 
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1. Mean drift rate (v): This is the speed with which information accumulates. It depends on 

task difficulty and participant ability. Word frequency typically affects this parameter, 

with higher drift rates for high-frequency words than for low-frequency words (Dutilh et 

al., 2012; Gomez & Perea, 2014; Ratcliff et al., 2004). We expect vocabulary size to have 

a strong effect on this parameter. The lexical entrenchment hypothesis predicts that there 

will be no additional effect of L2 vs L1 once vocabulary size is taken into account. There 

are separate drift rates for word and nonwords. 

2. Across–trial variability in drift rate (η). This parameter reflects the fact that drift rate may 

fluctuate from one trial to the next. As people with a large vocabulary size are more 

practiced, it seems sensible to expect that η decreases with vocabulary size. 

3. Boundary separation (a). This variable indicates how far the boundaries are separated 

from each other. It quantifies response caution and modulates the speed–accuracy tradeoff. 

Given that bilinguals took longer to respond but made more errors, it is not clear what to 

expect for this parameter. 

4. Mean starting point (z): This variable reflects the bias participants have towards word or 

nonwords responses. It might be hypothesized, for instance, that participants with a small 

vocabulary size show a stronger bias towards nonwords responses, as they know fewer 

words. 

5. Across–trial variability in starting point (sz). This parameter reflects the fact that the 

starting point may fluctuate from one trial to the next. Given that participants with a large 

vocabulary have more practice with words, a likely expectation is that variability will 

decrease with vocabulary size. 

6. The non–decision component of processing (Ter). This parameter represents the time 

needed to encode the stimulus and execute the response, irrespective of information 

accumulation and decision. Finding a difference between L2 and L1 speakers on this 
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parameter would suggest that the main effect of language group has little to do with word 

processing. On the other hand, both Dutilh et al. (2012) and Gomez and Perea (2014) 

found a clear effect of word frequency on Ter. So, the interpretation of this variable is less 

clear for word processing than originally assumed. 

7. Across–trial variability in the non–decision component of processing (sT). As for the 

previous variability parameters, the explanation would be most straightforward if the 

variability decreased as a function of vocabulary size. 

 

By fitting the model to the data of each participant, we can enter the resulting parameter 

estimates in multiple regression analyses with language group (L1, L2) and vocabulary size as 

predictors. To estimate the parameters of the diffusion model, we made use of the fast-dm 

algorithm written by Voss & Voss (2007). 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 6 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Table 6 shows the estimates of the various parameters, together with the z-values for the 

effects of language group and vocabulary size. Language group has a significant effect on the 

drift rate for words and on the non-decision time. Vocabulary size had a significant effect on 

nearly all parameters.  

 

Starting with the most interesting parameter, we see that the drift rate v differs as a function of 

vocabulary size, as expected: Participants with a large vocabulary size have a higher drift rate 

than participants with a low vocabulary size. At the same time, L2 speakers have a lower drift 
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rate than L1 speakers for words. Figure 5 shows both effects. The variability in drift rate (η) 

was smaller for participants with a high vocabulary size, in line with the assumption that 

processing went more smoothly for them. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 5 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

There were no clear effects on boundary separation (parameter a) when we corrected for 

multiple comparisons. If a more lenient criterion is used, L2 speakers had their boundaries 

slightly lower than L1 speakers, meaning that they based their decisions on less information. 

This explains their higher error rates. Interestingly, the boundaries were not influenced by 

vocabulary size. Figure 6 shows how the a-parameter changes as a function of language group 

and vocabulary size. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 6 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

All participants had a bias towards words (i.e., the starting point was closer to the word 

boundary than to the nonword boundary, as shown in Figure 7). Against expectation, 

participants with a large vocabulary had a less strong word bias than participants with a small 

vocabulary.  

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Insert Figure 7 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

There was a 70 ms difference in Ter between L2 and L1 speakers, indicating that the main 

effect of language group on RT was largely due to factors outside the word recognition and 

decision processes. At the same time, there was no difference between people with a small 

and a large vocabulary. These findings agree with the observation that a considerable 

variability was observed in the mean RTs between the English-speaking universities as well, 

without corresponding differences in vocabulary size (Table 1). 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 8 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Finally, the variabilites of Ter and z had opposite effects as a function of vocabulary size. 

Whereas the variability in Ter decreased for participants with a large vocabulary, as expected, 

the variability in z (the starting point) increased. It is not clear how to interpret the latter 

finding. Maybe good participants are more flexible in their starting point and make it shift 

more as a function of the stimulus sequence just processed (e.g., a streak of words or 

nonwords; Dufau, Grainger, & Ziegler, 2012)? 

 

Cognates, age-of-acquisition, and neighbors. Given the richness of the dataset, it is 

worthwhile to further test three variables that have been claimed to affect L2 word recognition 

differently than L1 word recognition. This allows us not only to further chart the differences 

between L1 and L2 processing, but also to test the quality of the dataset. If none of these 
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effects could be found, we would have to conclude that the dataset is less interesting than we 

had hoped for. The three variables claimed to have different effects in L1 and L2 are cognates, 

age-of-acquisition (AoA), and neighbors in L1 and L2. Importantly for bilingualism 

researchers, AoA refers to the age at which English words are acquired in English L1 

speakers, not the age at which an L2 is learned. These variables were added simultaneously to 

the model of Table 5 (see Table 7). 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Table 7 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

As indicated in the Introduction, cognate words are expected to be easier for bilinguals than 

non-cognate words. Based on the Dutch-English cognate list compiled by Schepens, Dijkstra, 

and Grootjen (2012), 126 of the 420 target words were Dutch-English cognates. As predicted, 

bilinguals were 26 ms faster on cognates than on noncognates (z=-4.81, p < 0.001). This was 

significantly larger than the difference seen in L1 speakers (z=-3.56, p<0.001; Figure 9), even 

though the L1 speakers also responded 11 ms faster to the cognates than the noncognates (z=-

3.20, p<0.001), indicating that researchers must be very careful when they investigate the 

cognate effect, as the effect could be due to other variables if it is not contrasted against an L1 

group. Also reassuring is that the cognate effect did not depend on vocabulary size, as the 

cognate effect is thought to be present in all bilinguals. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 9 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Izura and Ellis (2002) reported that the AoA effect in L2 depends on the order of acquisition 

of the L2 words and not on the order of acquisition of the L1 words. Given that most of our 

bilingual participants started to learn English at the age of 12-14 years, the words they first 

acquired were different from the words an English toddler is learning. So, if Izura and Ellis 

(2002) are right, we ought to find a stronger AoA effect, based on English L1 AoA estimates, 

for L1 speakers than for L2 speakers. The AoA measures were taken from Kuperman, 

Stadthagen-Gonzalez, and Brysbaert (2013). As Figure 10 and Table 7 show, there was 

indeed a significant interaction between AoA and language group in the predicted direction. 

We found an AoA effect for L1 speakers (β=3.61, z=5.34, p < 0.001), but not quite for L2 

speakers (β=1.58, z=1.41, p=0.156), although there was a trend in the right direction. AoA 

did not interact with vocabulary size, as was expected given that the AoA effect is assumed to 

be present for all L1 speakers. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 10 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

As described in the introduction, van Heuven et al. (1998) reported that intra-language 

neighbors had a facilitation effect on English lexical decision times, but that inter-language 

neighbors had an inhibition effect for bilinguals. We could test this pattern of results in our 

data as well.5 Because the length of the stimuli was longer in the present dataset (6 letters) 

than in Van Heuven et al. (3-5 letter words), the number of neighbors is considerably less. 

However, this is likely to be an advantage, because the effect of word neighbors is particularly 

                                                           
5
 The authors thank Nicolas Dirix for pointing them to this possibility.   
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robust between 0 and 1 neighbor (Davis, 2010). As it happens, 221 out of the 420 words did 

not have an English neighbor, and only 74/420 words had at least one Dutch neighbor.6 

 

As can be seen in Figure 11, the effect of English neighborhood size was facilitatory, both for 

the L1 and the L2 speakers. The effect was best captured with the log(neighborhood size + 1) 

transformation as predictor. This transformation takes into account that the effect of word 

neighborhood size is particularly strong for differences between small sizes. The effect of 

English neighborhood was larger for participants (both L1 and L2) with a small vocabulary 

size.  

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 11 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

The Dutch neighborhood size had no effect, also not for the L2 speakers separately. There 

was a hint of an interaction with vocabulary size, as the effect tended to be facilitatory for 

participants with a small vocabulary but inhibitory for participants with a large vocabulary 

size. However, this interaction was present to the same extent for L1 and L2 speakers and, 

hence, is unlikely to be specific to knowledge of the Dutch language. 

 

Discussion 

Bilinguals show a stronger frequency effect in L2 than in L1 (Cop et al., 2015; de Groot et al. 

2002; Duyck et al., 2008; Lemhöfer et al., 2008; Van Wijnendaele & Brysbaert, 2002; 

Whitford & Titone, 2012). According to the lexical entrenchment hypothesis (Diependaele et 
                                                           
6
 Neighbors were calculated on the basis of Celex (Baayen, Piepenbrock, & Gulikers, 1995) and had to have a 

frequency of at least 2 per million in that database. The same criteria were used in Van Heuven et al. (1998). 

The authors thank Walter van Heuven for providing them with the neighborhood sizes. 
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al., 2013), this difference can be explained on the basis of a more limited exposure to L2 than 

to L1, and requires no further explanation. A good proxy of language exposure is vocabulary 

size (see also Kuperman & Van Dyke, 2013). Once a person’s vocabulary size is taken into 

account, there are no further differences between L2 and L1 processing. 

 

The present study tests the lexical entrenchment hypothesis with lexical decision data. We 

made use of a database in which lexical decision times for 420 six-letter English words had 

been collected from 1011 native speakers at 14 different universities. To this database, we 

added the records of 56 Dutch-English bilinguals with overlapping vocabulary sizes. In line 

with previous findings, there was a clear interaction between language group and word 

frequency: The frequency effect was stronger for the L2 speakers than for the L1 speakers 

(Table 4 and Figure 2). More importantly, when vocabulary size was introduced as a covariate, 

the interaction largely disappeared (Table 5), as reported by Diependaele et al. (2013). 

Bilinguals show a stronger word frequency effect in L2, not because a second language is 

harder to process, but because participants have had less exposure to this language than the 

average native speaker. Once the degree of exposure (estimated via vocabulary size) is taken 

into account, the frequency effects in L1 and L2 become equivalent. 

 

Further evidence that L2 word processing is better explained in terms of exposure to L2 than 

in terms of interactions with L1 can be seen in the effects of cognates, AoA, and word 

neighbors. Each of these effects can be explained in terms of exposure. Because cognates 

exist in both languages and have the same meaning, bilingual participants have been exposed 

to them more often and, hence, show a cognate advantage (Figure 9). Interestingly, the 

English L1 speakers also showed a (smaller) cognate effect. This has been reported before 

(Mulder, Dijkstra, Schreuder, & Baayen, 2014) and related to the fact that cognates tend to be 
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the same in many languages. As a result, they are the words that English speaking students 

may pick up most easily when they are abroad or have some shallow knowledge of another 

language. 

 

The age-of-acquisition effect is attributed to the order of acquisition and to the fact that a 

learning network loses plasticity the more stimuli of a particular kind it already knows 

(Monaghan & Ellis, 2010). Interestingly, the AoA effect in L2 is related to the order of word 

acquisition in L2 and not to the order of acquisition in L1 (Izura & Ellis, 2002). As a result, 

English AoA estimates should be better predictors of L1 processing times than of L2 

processing times, as we indeed observed (Figure 10). The fact that the AoA effect is not 

completely absent for L2 speakers is in line with the hypothesis that the AoA effect is not 

entirely situated in the connections between the representations but also has an effect on the 

organization of the semantic system, with the meaning of early-acquired words being more 

accessible than the meaning of late-acquired words (Brysbaert & Ellis, in press; Brysbaert, 

Van Wijnendaele, & De Deyne, 2000). Importantly for the present discussion, the most 

straightforward interpretation of the difference in AoA effect between L1 and L2 word 

processing refers to differences in (the order of) exposure to the English words. 

 

Finally, we observed that reaction times to English words were influenced by the number of 

English orthographic neighbors, but not by the number of Dutch orthographic neighbors. The 

former is in line with van Heuven et al. (1998). The effect is present to a similar extent in the 

English Lexicon Project (as checked on the basis of Balota et al., 2007) and, therefore, is not 

something peculiar to the present experiment (e.g., due to the fact that the target words were 

preceded by orthographic primes). The absence of an effect due to Dutch neighbors contrasts 

with van Heuven et al. (1998), who found an inhibitory effect of Dutch neighbors for Dutch-
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English bilinguals. As indicated in the introduction, the pattern of results reported by van 

Heuven et al. (1998) did not agree with the later findings of Lemhöfer et al. (2008) or 

Diependaele et al. (2013). Our findings are further evidence that this aspect of the van Heuven 

et al. (1998) data may be less solid than assumed thus far. On the other hand, it should be 

taken into account that our study was not well suited to measure the effects of cross-language, 

Dutch neighbors. Less than 20% of the words had Dutch neighbors and no attempts were 

made to make the Dutch neighborhood size orthogonal to the English neighborhood size. So, 

the null-effect has to be treated very cautiously. 

 

The facilitation effect of within-language English neighbors was stronger for participants with 

a small vocabulary size than for participants with a large vocabulary size (Figure 11). This is 

in line with the hypothesis that the neighborhood size effect on lexical decision times is the 

result of a balance between (a) facilitation due to the fact that a word looks more wordlike 

when it has neighbors, and (b) inhibition because it is more difficult to distinguish two 

visually similar words (Andrews, 1997; Grainger & Jacobs, 1996). Because a lexical decision 

can often be made on the basis of an overall familiarity feeling rather than the identification of 

the exact word presented, word neighborhood facilitation effects are often observed in lexical 

decision experiments (Andrews, 1997). This is particularly true for participants with lower 

English proficiency levels (Andrews & Hersch, 2010). Important for the present discussion is 

that the effect of orthographic neighbors depends on the English vocabulary size of the 

participants and not on whether English was their L2 or L1 (Figure 11).  

 

So far, the analyses are all in line with the lexical entrenchment hypothesis: Differences 

between L1 and L2 processing can be explained in terms of differences in exposure to the 

target language, which can be measured with a good vocabulary test, and do not need the 
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inclusion of further mechanisms. A slightly more complicated picture emerges, however, 

when we analyze the data with the diffusion model (Ratcliff, 1978). Then we see that the 

similar RTs in L1 and L2, once vocabulary size is filtered out, are not achieved in exactly the 

same way. In particular, there is some evidence that lexical information builds up more slowly 

in L2 than in L1, and that this is compensated by a stronger word bias and more risky decision 

boundaries in L2 speakers (Figures 5-7). This would suggest that L2 word processing is 

genuinely harder than L1 word processing (e.g., because of extra competition from the L1 

words). A complicating factor for this explanation is that the slower information build-up is 

not observed for non-words, making it hard to decide whether there is a genuine difference 

between L1 and L2 processing in terms of the diffusion model parameters, or whether the 

differences observed are due to some overfitting of the model or because the vocabulary test 

we used failed to pick up all differences between L1 and L2 speakers. Given that the effects 

of language on the parameters of the diffusion model are rather modest and not entirely 

convergent, for the time being we prefer to treat them as an observation, to be kept in mind 

when analyzing new data but not strong enough to refute the lexical entrenchment hypothesis. 

A further interesting research question may be to investigate whether similar effects would be 

found in L1 processing between bilinguals and monolinguals, to find out whether knowledge 

of another language has an impact on the processing of the native language. Such research 

would require a considerable investment, however, as the participant samples must be large 

enough to have good power to disentangle the effect of language status from the effect due to 

differences in vocabulary size. 

 

All in all, our findings largely agree with the conclusions of Lemhöfer et al. (2008) and 

Diependaele et al. (2013) that in order to understand L2 word processing, it is much more 

important to study the characteristics of the L2 words, rather than possible ways in which L1 
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and L2 words interfere with each other. All the differences between L1 and L2 word 

processing we obtained could be understood on the basis of discrepancies in the exposure to 

the English language, which can be estimated by means of an objective vocabulary test.7 

 

Although it may be tempting to interpret the absence of an interaction between Dutch and 

English words as evidence for separate lexicons (in which the English L2 words are insulated 

from the Dutch L1 words), we do not think such a conclusion is warranted. As indicated in the 

Introduction, there is quite a lot of evidence that the bilingual lexicon is unitary (Brysbaert & 

Dijkstra, 2005; Brysbaert & Duyck, 2010; Jin, 2013; Kroll, Bobb, & Wodniecka, 2006; 

Tokowicz, 2014). In addition, interpreting a lack of interaction between Dutch and English 

words as evidence for distinct lexicons only makes sense in the presence of clear interactions 

between the English words themselves. Such interactions should have taken the form of an 

inhibition effect between English orthographic neighbors. The fact that we found a facilitation 

effect can only be explained by assuming that the lexical decision times were partly based on 

the overall “English” activity in the mental lexicon (Andrews, 1997; Grainger & Jacobs, 

1996). Such overall activity can as well be present in a bilingual Dutch-English lexicon as in a 

full English lexicon. Apparently, RTs from a lexical decision task are not well suited to 

expose the competition process between orthographically similar entries in the mental lexicon, 

contrary to what the data of van Heuven et al. (1998) originally suggested.8 Ferrand et al. 

(2011) reported a similar lack of orthographic competition effect on response times in the 

progressive demasking task. The most likely reason for the insensitivity of both tasks to 

                                                           
7
 Therefore, we strongly recommend all language researchers to use such tests (whether studying L1 or L2), so 

that the findings from various studies can be related to each other. Two tests in English are Shipley (1940) and 

LexTALE (Lemhöfer & Broersma, 2012). The LexTALE test was also administered to the participants of our test 

and correlated r = .74 with the Shipley scores (N = 56, p < .01). 
8
 The ideal paradigm to reveal inhibition effects makes use of masked priming with high frequency orthographic 

neighbors preceding low frequency target words (Davis & Lupker, 2006; De Moor, Verguts, & Brysbaert, 2005; 

Segui & Grainger, 1990). Measures other than RT may also be indicated. For instance, Massol, Grainger, Dufau, 

& Holcomb (2010) and Laszlo & Federmeier (2011) reported stronger effects on ERP signals. 
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orthographic competition is that the size of the effect is considerably smaller than the 

exposure-based effects reported here and in Diependaele et al. (2013). This, in our view, is the 

reason why the lexical entrenchment hypothesis is such a good account for the RTs obtained 

in progressive demasking and lexical decision.   
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Table 1: Comparison between the universities tested (in increasing order of vocabulary size). 
Notice that at all universities, except for Ghent University, English was the native language of 
the participants. N students = the number of participants tested at each university present in the 
database. Vocab = the score on the Shipley vocabulary test. Accuracy LDT = the accuracy in 
the lexical decision task. RT unrelated pseudoword prime = the average reaction time to the target 
words preceded by unrelated pseudoword primes (see Table 2 to learn how the RTs differed 
as a function of the type of orthographic prime). 
 
 
------------------------------------------------------------------------------------------------------------- 
 
Site N students Vocab Vocab sd Vocab 

min 
Vocab 
max   

Accuracy 
LDT  

RT 
unrelated
pseudo 
word 
prime 

Ghent   56  59.3   9.1  40.0  82.5   78.8  742 
Arizona   28  64.6   9.8  42.5  85.0   87.7  727 
Nebraska   29  66.8  12.5  35.0  87.5   90.2  3389 
UWO   60  68.4  11.2  32.5  92.5   88.9  668 
Warwick  119  71.1   8.3  52.5  95.0   91.2  686 
Macquarie   65  72.7  12.8  27.5  90.0   89.8  624 
Plymouth   28  72.9  10.6  52.5  92.5   92.2  703 
RHUL  217  72.9   9.9  40.0  97.5   91.2  624 
Melbourne   66  73.1   9.9  47.5  92.5   90.7  698 
Bristol   59  73.6   9.4  45.0  100.0   90.0  690 
MARCS   31  75.2  11.7  42.5  97.5   90.1  644 
Singapore   28  76.1   7.9  52.5  90.0   92.2  687 
Skidmore  197  76.1   9.3  40.0  95.0   93.6  709 
Colby   28  80.2   7.5  65.0  92.5   94.5  726 
WUSTL   56  81.6   9.0  55.0  95.0   94.1  667 
 
 

                                                           
9
 This value is the one obtained from the dataset. In all likelihood, it is caused by a different starting point of 

the timer, as the RTs correlate as well with the other data as can be expected on the basis of the reliability of 

the data. Importantly, all analyses we report can handle a constant subtraction (e.g., due to inclusion of an 

intercept difference between participants or to the inclusion of Ter in the diffusion model). So, the conclusions 

we draw are not influenced by this measurement error.  
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Table 2: Orthographic priming effects for 28 different types of primes, expressed in 
milliseconds relative to the unrelated pseudoword condition. The L1 data correspond to the 
values reported by Adelman et al. (2014) but based on 1011 participants; the L2 data are the 
average values of the 56 Dutch-English bilinguals. 
 
------------------------------------------------------------------------------------------------------------- 
Prime    Example   L1 priming L2 priming 

Target = DESIGN 
 

Identity                    design      31.2   43.9 
Initial transposition      edsign      21.5   22.5 
Medial transposition       desgin      22.2   16.3 
Final transposition        desing      22.9   33.9 
2-apart transposition      degisn      13.2   22.9 
3-apart transposition      dgsien        4.4   12.5 
Medial deletion            dsign       20.8   25.0 
Final deletion              desig       24.2   33.8 
Central double deletion    degn        17.6   15.8 
All-transposed             edisng      11.3   18.3 
Transposed halves          igndes        5.3   13.8 
Half                        des          18.2   25.1 
Reversed halves            sedngi        6.0     5.9 
Interleaved halves         idgens        1.5    11.6 
Reversed (except initial)  dngise       -2.2       3.7 
Initial substitution        pesign      20.3     34.5 
Medial substitution        desihn      14.3   18.2 
Final substitution         desigj      20.0   22.9 
Neighbor once removed      dslign      13.3   14.5 
Central double substitution  dewvgn        9.0      5.4 
Central insertion          desrign     20.3   24.5 
Central double insertion   desaxign    12.4   28.4 
As above, repeated letter  deshhign    17.6   20.4 
Central quadruple subst.   dzbtkn       -3.6   11.5 
Prefix                      mdesign     18.3   24.3 
Suffix                      designl     24.1   32.7 
Unrelated pseudoword       voctal        -0.0    -0.0 
Unrelated arbitrary        cbhaux       -5.8      4.2 
------------------------------------------------------------------------------------------------------------- 
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Table 3: Correlations between the reaction times of the various universities (based on the 420 
word targets). Values on the diagonal represent the reliability of the RT estimates for each 
university (measured by means of the intraclass correlation coefficient; Shrout & Fleiss, 1979). 
Values above the diagonal show the raw correlations; values below the diagonal show the 
correlations corrected for the reliability of the variables. The lighter the cell, the higher the 
correlation. 
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Table 4: Fixed effects in the mixed-effects model comprising frequency and language. The 

residual standard deviation of the model was 143.1 ms. 

              Chisq df     p 

language     32.029  1 0.000 
low end frequency    1.174   1 0.279 
medium frequency  222.906   1 0.000 
high end frequency   2.024  1 0.155 
low end frequency : language    0.796  1 0.372 
medium frequency : language    13.223  1 0.000 
high end frequency : language    2.673  1 0.102 
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Table 5: Fixed effects in the mixed-effects model comprising frequency, language, and 

vocabulary size. The residual standard deviation of the model was 142.9 ms. 

                      Chisq  df     p 

language      17.515  1 0.000 
vocabulary         19.730  1 0.000 
low end frequency    1.115  1 0.291 
medium frequency  225.406  1 0.000 
high end frequency    1.996  1 0.158 
low end frequency : language    0.206  1 0.650 
medium frequency : language     1.386  1 0.239 
high end frequency : language    1.744  1 0.187 
low end frequency : vocabulary         2.379  1 0.123 
medium frequency : vocabulary        96.622  1 0.000 
high end frequency : vocabulary       1.653  1 0.199 
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Table 6: Values of the estimates of the diffusion parameters for the L1 and L2 speakers, and 
the corresponding z-values for the effects of language group and vocabulary size. The 
significance tests took into account the fact that multiple post-hoc comparisons were made 
using Dunn-Sidak correction. Given the fact that we were looking at 7 separate analyses, the 
critical absolute z-values corresponding to p-values of 0.05, 0.01 and 0.001 were 2.69, 3.19 
and 3.81. The estimates of Ter and sT  are in milliseconds. 
 
------------------------------------------------------------------------------------------------------------- 

vwords vnonwrds  η a z sz Ter sT 

L1   2.59 -3.27  1.12 1.34 0.62 0.16 470 160 

L2   1.86 -3.35  1.22 1.24 0.64 0.12 540 180 

Language group  6.53** 0.75   1.78 -2.58  2.53 -2.45 6.68**  2.14 

Vocab size  19.2** -12.22** -3.85** 1.33 -5.56**  4.30** -0.23 -6.61** 

------------------------------------------------------------------------------------------------------------- 
** p < .001 
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Table 7: Fixed effects in the mixed-effects model comprising frequency, language, vocabulary 

size, cognates, AoA, and neighbors in L1 and L2. The marginal R2 was 4.49%, the conditional 

R2 was 43.11%. Adding the item predictors to the model significantly increased the fit relative 

to the previous model (�(��)
� =101701, p < 0.001). The residual standard deviation of the model 

was 142.8 ms. 

                Chisq df     p 

language       20.463  1 0.000 
vocabulary        20.677  1 0.000 
low end frequency            1.293  1 0.255 
medium frequency 129.017  1 0.000 
high end frequency   0.122  1 0.727 
aoa            28.542  1 0.000 
cognates        10.256  1 0.001 
English neighbors    3.089  1 0.079 
Dutch neighbors    0.099  1 0.753 
low end frequency : language     1.019  1 0.313 
medium frequency : language     3.352  1 0.067 
high end frequency : language     1.575  1 0.209 
aoa : language     4.943  1 0.026 
cognates : language    12.639  1 0.000 
English neighbors : language     0.074  1 0.785 
Dutch neighbors : language     0.064  1 0.801 
low end frequency : vocabulary         2.572  1 0.109 
medium frequency : vocabulary        70.763  1 0.000 
high end frequency : vocabulary        0.437  1 0.508 
aoa : vocabulary         1.235  1 0.266 
cognates : vocabulary         3.815  1 0.051 
English neighbors : vocabulary         10.989  1 0.001 
Dutch neighbors: vocabulary          5.536  1 0.019 
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Figure 1: The mean frequency effect for all participants, based on the model with frequency 
as the only fixed effect. This shows that the frequency effect was particularly strong for the 
middle part of the frequency range (see the text for the factors causing this pattern and for the 
break points used to distinguish between low frequency, medium frequency, and high 
frequency words). The short vertical lines on the abscissa show the distribution of the 
stimulus words. The marginal R2 (fixed effects only) of the model was 2.81%, the conditional 
R2 (fixed and random effects) was 42.01%. See Johnson (2014) for a discussion of R2 for 
mixed-effects models. The grey area indicates the 95% confidence interval. 
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Figure 2: Frequency effect split up by language group, based on the model with frequency and 
language as fixed effects. The marginal R2 was 3.66%, the conditional R2 was 42.11%. 
Adding the effect(s) of language to the model significantly increased the fit relative to the 
frequency-only model (�(	)

� =414, p < 0.001). See the digital version for a colored graph. 
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Figure 3: Interaction between vocabulary size (Cvocab) and word frequency, based on the 
model with frequency, language and vocabulary size as fixed effects. The lowest line 
represents the RTs of the participants with the highest vocabulary size (2 standard deviations 
above the mean); the highest line represents the RTs of the participants with the lowest 
vocabulary size (2 standard deviations below the mean). The marginal R2 was 4.29%, the 
conditional R2 was 42.21%. Adding the effect(s) of vocabulary size to the model significantly 
increased the fit relative to the frequency plus language model (�(�)

� =500, p < 0.001). See the 
digital version for a colored graph. 
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Figure 4: A diffusion model analysis of the lexical decision task. When a stimulus is 
presented, noisy evidence accumulates either towards the word (top) or the nonword decision 
boundary (bottom). In the figure the accumulation of two different stimuli is shown, one 
which results in a word decision and one that results in a nonword decision. The reaction time 
distributions (represented by the bar charts at the top and the bottom of the figure) and the 
errors are used to estimate the best fitting parameters of the model. 
(Source: Dutilh et al., 2012) 
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Figure 5: Drift rates (v) as a function of vocabulary size (centered with 0 equal to the median 

value), language group, and word (top half) vs. nonwords (bottom half). This figure shows 

that the drift rate is steeper for participants with a large vocabulary size than for participants 

with a small vocabulary size. In addition, it shows that for words, but not for nonwords, there 

is an additional difference between L1 and L2 speakers. In order to show all the data, the 

points are slightly jittered around the obtained vocabulary values. See the digital version for a 

colored graph. 
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Figure 6: Boundary (a) as a function of vocabulary size (centered with 0 equal to the median 

value) and language group. This figure shows that the boundaries were slightly further apart 

for the L1 speakers than for the L2 speakers. There was no effect of vocabulary size. See the 

digital version for a colored graph. 
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Figure 7: Bias (z) as a function of vocabulary size and language group. All participants 
showed a bias towards words (positive z-values). The bias decreased as vocabulary size 
increased, and tended to be stronger for L2 speakers. See the digital version for a colored graph. 
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Figure 8: Non-decision time (Ter) as a function of vocabulary size and language group. L2 

participants had Ter values 70 ms longer than L1 speakers. There was no effect of vocabulary 

size. See the digital version for a colored graph. 
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Figure 9: The cognate effect for bilinguals and monolinguals. The cognate advantage is 
present in both groups but significantly stronger for the L2 group. See the digital version for a 
colored graph. 
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Figure 10: The AoA effect for bilinguals and monolinguals. AoA refers to the age (in years) at 
which words are thought to be acquired in English, based on the ratings collected by 
Kuperman et al. (2012). The effect is present for the L1 group. See the digital version for a 
colored graph. 
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Figure 11: Effect of English neighborhood N on RTs. N stands for the number of English 
words that are orthographic neighbors of the target words. The effect was facilitatory, in 
particular for participants with a small vocabulary. There was no difference between L1 and 
L2 speakers. See the digital version for a colored graph. 
 
 

 


