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Physical-Statistical Modeling of Dynamic

Indoor Power Delay Profiles

Evgenii Vinogradov, Aliou Bamba, Wout Joseph, Claude Oestges

Abstract

This paper presents a physical-statistical radio channel power delay profiles model for room-to-

room communication systems combining the Room Electromagnetic Theory for modeling deterministic

channel components with a geometry based stochastic channel model with time-variant statistics for

modeling stochastic components. The deterministic channel component, i.e., mean power delay spectrum,

is comprised of specularly reflected paths plus diffuse components due to scattering and diffraction. The

specular components are modeled with a set dirac function whereas the diffuse components modeling

approach is a room electromagnetic theory-based model. Dynamic indoor communication channels are

characterized by a non-stationary time- and delay fading process due to changes in the environment. We

analyze and model the time-delay variability of channels using K-factor for small-scale variations and

the t-location scale distribution parameters for large-scale variations. It turns out that these parameters

cannot be assumed to be constant in time and delay. After modeling of time-delay variations of the first

order statistics, we generate channel realizations with appropriate second order statistics. As the result,

the presented model enables to describe the evolution of the power delay profile in the time domain.

Index Terms

E. Vinogradov is with KU Leuven, Department of Electrical Engineering - ESAT, Leuven Belgium.

C. Oestges is with the Electrical Engineering Department, Institute for Information and Communication Technologies,
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Indoor propagation, Fading channels, Multipath channels, Propagation measurements, Time-varying

channels, Room Electromagnetic theory.

I. INTRODUCTION

Predicting the parameters of indoor wireless channels is important for the testing and the

eventual rollout of mobile-to-mobile communication systems. The a-priori knowledge of the

power - or energy - density of the propagating electromagnetic fields (EMF) throughout a

given environment is required for coverage prediction. Besides, the dispersiveness of the radio

channel determines the maximum achievable transmission free of inter-symbol interference (ISI).

The received power and dispersiveness of the multipath in a wireless channel can be typically

predicted from the power delay profile (PDP).

Deterministic approaches such as ray tracing methods [1], [2], [3], [4], [5], [6] have been used

to predict the characteristics of radio channels. Although excellent agreement can be obtained

with such numerical approaches, high computational cost might make them less attractive.

Furthermore, the cost increases as well when the room dimensions and/or frequency increase.

Indoor wireless channel modeling has been empirically addressed in [7], [8], [9]. These studies

investigated indoor path loss and/or fading models around 1.8 and 5.2 GHz. Empirical path loss

models for in-room, room-to-corridor, and room-to-room scenarios have also been investigated

[10]. The one-slope log-distance, dual-slope log-distance and attenuation factor model are used

to estimate the path loss in in-room, room-to-corridor, and room-to-room scenarios, respectively.

Most previous works e.g., [11], [12] have modeled indoor channels for static scenarios or

so-called nomadic scenarios (fixed nodes, moving obstacles). In [11] the large-scale fading, K-

factor, and delay spread are found to be correlated lognormal variables, whereas in [12] fading

is found to be SOSF (Second Order Scattering Fading [13]) distributed.

Dynamic models of indoor wireless channels were proposed in [14], [15], [16], where the

motion of communication nodes and obstacles (such as people) is taken into account. Whereas

models in [12], [15], [16] are narrowband, [14] predicts the time-varying PDP as a weighted

sum of cluster functions.

It was shown in [17] that non-stationarity is an important issue for indoor channels. Hence,

the effects brought by nodes’ mobility must be considered in the channel modeling. Non-

stationary channel statistics for wireless vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
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(V2I) communications were investigated in [18], where a bi-modal Gaussian mixture distribution

was used to model the statistics of time-frequency variant K-factor.

Indoor channels do not experience interactions with highly mobile objects, however even a

slow motion can cause significant change of the environment and, consequently, changes of

the channel statistics. Since deterministic approaches are computationally expensive, a statistic

approach to model room-to-room wideband channels with time- and delay-variant statistics under

mobile conditions is missing.

In this paper, we propose a physical-statistical technique combining the Room Electromagnetic

(REM) Theory for modeling deterministic channel components with a geometry based stochastic

channel model with time-variant statistics for modeling stochastic channel components. The

method enables the reconstruction of the PDP in a room-to-room dynamic scenario, including

effects introduced by the mobility of the communication nodes. The main contributions are as

follows:

• The prediction of the specular reflections is improved as the motion of the transceivers is

accounted for.

• We analyze and model the time-delay variations of indoor channels statistics based on

measurements. The combination of extracted first- and second-order statistics enables to

implement a channel impulse response (CIR) generator.

• To model the sudden changes of fading statistics, we use a three-step approach: (i) for

reflecting the sudden changes of the statistics, we use a hidden Markov model [19] pa-

rameterized from measurements, (ii) the impacts of the line-of-sight (LOS) term and the

Rayleigh component are modeled according to a Extreme Value distribution, fitting the

measurements, (iii) fading realizations are generated [20].

• A model for large scale variations of the CIR is proposed.

The paper is organized as follows: Section II presents the measurement setup, including the

scenario, sounding equipment and antennas. It also outlines the data post- processing approach

and the channel representation. Section III presents the modeling of deterministic channel com-

ponents, while Section IV describes analyzed experimental results as well as the modeling of

time-variant components. The global model is validated in Section V. Finally, conclusions are

drawn in Section VI.
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TABLE I

DISTANCE BETWEEN THE NODES

Node Rx1 Rx2 Rx3 Rx4 Rx5

Tx1 4.9 m 6.5 m 4.6 m 5.6 m 7.4 m

Node Rx6 Rx7 Rx8 Rx9 Rx10

Tx1 9.7 m 12 m 12.1 m 9.2 m 7.6 m

II. MEASUREMENTS AND METHODOLOGY

A. Environment

This paper is based on channel measurements carried out at the Université catholique de

Louvain (UCL), Louvain-la-Neuve, Belgium, in fall 2014. The investigated environment was

located on the second floor of an office building, and consisted of two adjacent typical office

rooms separated by a brick wall, as illustrated in Fig. 1. Circles indicate mobile receivers Rx1

to Rx10 (moving in random directions over a small area within a square of 1 m2 at walking

speed, v ≈ 1 m/s), whereas the square indicates the static transmitter (Tx). The separations

between all nodes are listed in the Table I.
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Fig. 1. Floor-plan of measurements
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TABLE II

MEASUREMENT PARAMETERS

Parameter Value

Center frequency, fc 3.8 GHz

Transmit power, Ptx 23 dBm

Measurement bandwidth, B 200 MHz

Recorded delay chips, C 2048

Recorded time samples, Ns 6000

Measurement duration, T 60 s

Code length, l 20.47 µs

B. Equipment

The measurements were carried out with UCL/ULB Elektrobit PROPSound™ Channel Sounder

(CS) at a carrier frequency of fc = 3.8 GHz. The nodes were connected with the channel sounder

using long low-loss RF cables of equal length. These cables had excellent RF stability, even when

they were slightly bent or moved during the measurements. At the nodes, we used custom-made

dipole antennas with a gain of G = 1.75 dB, an omnidirectional radiation pattern in the horizontal

plane and 3 dB beamwidth of 80◦ in the vertical plane (see [16]). The channel sounder used long

pseudo-noise (PN) sequences to estimate the impulse response of the radio channels between Tx

and Rx nodes. The measurement parameters are summarized in Table II. The recorded channel

impulse response is denoted by hj(t, τ), where t denotes the time, τ denotes the delay, and j

denotes the link index (a link joining one transmit node to one receive node).

C. Channel representation

The methodology proposed here is based on i) the prediction of the deterministic PDP (in

static scenario), and ii) the prediction of the (stochastic) large- and small-scale fading statistics.

The small-scale fading statistics [15], [16] describe the variations - around the average power

level - caused by random motions of the transceivers. The general methodology to reconstruct

the PDP is illustrated in Fig. 2.

Indoor channel measurements have shown that the PDP averaged over time consists of two parts:

a primary part and a reverberant part [21], [22], [23]. The complete PDP is the superposition of
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the primary and reverberant components, the large-scale fading which affects only the primary

component, and the small-scale fading.

PDP(t, τ) = (S(t) · PDPpri(τ) + PDPrev(τ)) · |G(t, τ)|2, (1)

where PDPpri, PDPrev, S and G are the (deterministic) primary component, (deterministic)

reverberant component, the temporal large-scale fading (in power) and small-scale fading (in

amplitude), respectively. All components in (1) are expressed in a natural scale, i.e not logarith-

mic.

III. DETERMINISTIC PDP COMPONENTS

Step A of Fig. 2 is explained in this section. Assume a transceiver located at a given position

in an indoor environment. If a signal pulse is transmitted in the room, the receiver records first

the line-of-sight (LOS) component if present. Afterwards, few specular paths due to reflections

off the walls, ceiling, or floor arrive at the receiver. For a given position of the transceiver, the

specular paths - LOS included - arrive at the receiver side with incident angles characterized by

an elevation angle θ and an azimuth ϕ, which are dependent on the transceiver’s position, the

room layout’s, the furniture, and so on. Therefore, the arrival angles of specular multipath are

deterministic, and do not contribute to the establishment of the diffuse fields. During this transient

or primary state, the energy of the EMF is not uniform in the room as the contributions of the

specular paths differ from one direction to another one [24]. Besides the specular reflections, there

are also propagation phenomena such as scattering, and/or diffraction that establish the diffuse

fields. The transient and the reverberant state are shown in Fig. 3 and the corresponding powers
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Fig. 2. Schematic of the methodology. The different steps are further explained.
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Fig. 3. Modeling of the PDP in a reverberant environment. τ0 is the arrival delay of the first or strongest component and τl is

the end (resp. beginning) of the primary (resp. reverberant) component

are denoted as primary and reverberant components, respectively. The power delay spectrum (or

the deterministic components) is the superposition of both the primary and reverberant component

and is expressed as follows:

PDP = PDPpri + PDPrev (2)

In dB-scale, the reverberant part is characterized by the slope in the tail of the PDP (Fig. 3), and is

independent on the transceivers location. However, the primary part does depend on the location

of the transceiver. For instance, for a short (resp. long) Tx-Rx separation, the transient state will

last longer (resp. shorter) than if the Tx-Rx distance was longer (resp. shorter). Moreover, the

transceiver’s location will influence the power level of the primary components, which consists

of the LOS if present and a number of specular reflections.

A. Modeling of the Primary Components (Step A1)

The existence of primary components in indoor environments is well acknowledged in the

literature [21], [22], [23], [25]. However, the primary components is usually modeled as a delta

function, i.e., one specular component:

PDPpri(τ) = P0(τ0)nδ(τ − τ0) (3)
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where P0(τ0) is the power of the primary or strongest component arriving with a delay τ0, and n is

the path loss exponent. Parameter n is determined by fitting the experimental path gain obtained

at different Tx-Rx distances.

The modeling of the primary components with one delta function fits better for longer Tx-Rx

separation, than for shorter ones. This is confirmed by several experimental measurements in

indoor environments, e.g., [26], [27], [25] and simulations [28] where the contribution of the

primary component in the total power becomes negligible for larger Tx-Rx separation. The

modeling of the primary components is improved with a set of delta functions:

PDPpri(τ) =
M∑
m=0

P0(c0τ0 +mc0τc)
nδ(τ − τ0 −mτc), (4)

where M is the reflection order and τc is the characteristic time-delay that is required before a

given ray makes one reflection in the room [29]. It has been shown that a ray undergoing m

reflection(s) off the surfaces before arriving at the receiver has an arrival delay of τ = mτc,

where τc depends only on the dimensions of the room and is expressed as [29]:

τc =
8V

c0S
(5)

where V , S, c0 are the room volume, the total surface area of the room, and the speed of light

in free space.

In the model we consider reflections up to the second order, i.e., the primary component consists

of the LOS component, the first and second order reflected paths. The average power of a ray

bouncing m time(s) (m ∈ {0, 1, 2}) is approximated by the free-space gain equation:

P0(d0 +mc0τc)
n = N

αm

(d0 +mc0τc)n
(6)

where N is a constant depending on antenna properties, frequency, and transmitted power, and

α is the average reflection coefficient of the wall surfaces.

B. Modeling of the Reverberant Component (Step A2)

The modeling of the reverberant component is straightforward and is based on the Room

Electromagnetic theory [23]. The reverberation time of the considered room, and the power

corresponding to the beginning of the reverberant components (Pm in Fig. 3) are the required

parameters to model the reverberant component. An empirical formula to determine the rever-

beration time as a function of the frequency is derived in [30] and can be used to assess the
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reverberation time without resorting to measurements. However, in this study, we consider a

room-to-room scenario as illustrated in Fig. 1. The expressions of the reverberation time for

in-room and room-to-room communications are derived in [27].

The power level Pm shown in Fig. 3 is the same as the primary component at τ = τl:

Pm = PDPpri(τl). (7)

If we include the time-delay dependency in the model, the reverberant component is given by

[21], [22], [23]:

PDPrev(τ) = Pme
− (τ−τl)

τr if τ ≥ τl, (8)

= 0 otherwise

where τr is the reverberation time of the environment. The reverberation time is the decay rate of

the diffuse energy and has been experimentally and numerically investigated in various studies

[22], [28], [27], [23]. The reverberation time for an in-room scenario can be determined via the

following formula [30]:

τr(f) =
V

2πfA

(
0.473f 3 − 24.9f 2 + 321f − 254

)
, (9)

=
4V

c0Aη(f)
(10)

where τr and 2 < f < 10 are the reverberation time (ns) and the frequency (GHz), respectively;

η(f) is the average fraction of the energy absorbed by the surfaces in the room at the frequency

f and A is the wall’s surface. Once the reverberation time for in-room scenario is determined,

its value for the adjacent room scenario (room-to-room) is determined by [27]:

τr,a =
τr

1− c0τrA12

4V

, (11)

where τr,a, τr, and A12 are the reverberation time in adjacent room (i.e., the Tx and the Rx are

in adjacent rooms), the reverberation time when the transceivers are in the same room (in-room

scenario), and the surface of the wall separating the adjacent rooms, respectively. The average

fraction of absorbed energy (hence the average reflection coefficient, i.e., α = 1− η) is further

determined from (10).
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IV. TIME-DELAY VARIANT CHANNEL COMPONENTS

The modeling approach for the stochastic channel components (step B of Fig. 2) is explained

in this section. As mentioned above, the stochastic channel components can be expressed as

the product (when expressed in natural scale) of the temporal large-scale variations S(t) and

time-delay variant small-scale variations G(t, τ):

• Temporal large-scale variations S(t) are introduced by mobility of scatterers and slow

changes of the environment. Only primary components (see Fig. 3) are affected.

• Time-delay small-scale variations G(t, τ) (in natural scale) caused by multipath interference

resulting from the small-scale motions of the stations and/or the environment. Both primary

and reverberant components are influenced by these variations

Gj(t, τ) =
hj(t, τ)√

PDPav,j(τ) · Sj(t)
, (12)

where PDPav,j(τ) is a PDP for channel j averaged over the whole measurement duration, the

small-scale fading amplitude is then simply defined as g = |G|. Analogous to the terminology

used for narrowband channels, for channel j, let us denote Sj(t) and Gj(t, τ) as large- and

small-scale fading, respectively.

Figs. 4 a, b, c show measured changes of the received power, measured PDP that is constant

over time for a given link and time evolution of large- and small-scale variations for a fixed

delay, respectively.

A. Large-Scale Fading Characterization and Modeling (Step B1)

To extract non-deterministic components of the channel, first, the measured PDPav has to be

subtracted from the considered channel Pj(t, τ) = 10 log |hj(t, τ)|2|dB − PDPav,j(τ)|dB. Next,

to estimate large-scale fading, we average out the small-scale fading by using a moving window

spanning Tav = 1.5 s (see Fig 4 c), so that the time-variant average power can be written at

discrete time t as

Sj[t] =
1

Tav · τl

t+Tav/2∑
t′=t−Tav/2

τl∑
τ ′=0

Pj(t
′, τ ′). (13)

The choice of Tav is such that the small-scale fading is averaged out, while still following the

slow variations induced by the motion of the nodes and/or people. Different sizes of the window

have been checked and the window span has been chosen to be equivalent to 20 wavelengths.

This size of the sliding window was also used in [31], [32].
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(a) Time evolution of relative power
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Fig. 4. Channel components, Tx-Rx2

When the static PDPav,j is removed and time-delay small-scale fading is averaged out, the

remaining variations are due to large-scale fading, as detailed earlier. Note, that further modeling
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and analysis for the large-scale fading S is done in dB. It turns out that the large-scale fading

in the investigated measurement setup is described by a t-location scale distribution

p (x | ν, µ, σs̃) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
σs̃
√
πν

(
1 +

1

ν

(
x− µ
σs̃

)2
)− ν+1

2

(14)

with zero-mean (µ = 0) by definition, ν = 8 degrees of freedom and a scale parameter σs̃ = 2.4.

This distribution has been used previously to describe large-scale fading in [16] and results

from compounding a normal distribution with mean µ and unknown variance, with an inverse

gamma distribution placed over the variance with parameters αΓ = ν/2 and βΓ = νσ2
s̃/2. In

other words, the dynamic large-scale fading is assumed to have a Gaussian distribution with

an unknown variance distributed as inverse gamma, and then the variance is integrated out as

shown in [33].

The dynamic large-scale fading autocorrelation function (ACF) is well approximated by a

decreasing exponential process, whose decay time τs̃ = 8.4 s. Hence, an autoregressive process

can be used to generate autocorrelated dynamic large-scale fading values:

S[t]|dB = e−Mt/τSS[t− 1] +
√

1− e−2Mt/τSxS[t], (15)

where xS is a t-location scale distributed variable generated independently for each discrete time

instant t [33] and M t is the sampling rate which equals 1.5 s.

No correlation between dynamic large-scale fading and the small-scale fading states has been

found, so that we can combine independently simulated dynamic large-scale fading and small-

scale fading realizations.

B. Small-Scale Fading Modeling (Step B2)

First, the Generalized Local Scattering Function (GLSF) [34] was obtained using the estimator

presented in [35]. The window lengths in time and frequency were chosen to be Nw,t = Nw,f =

32. In the GLSF estimation, the windows were created by a discrete prolate spheroidal sequence,

the number of windows was set to I = J = 3 as proposed in [36]. Next, the collinearity was

calculated and the threshold cth = 0.9 was used to estimate stationarity regions as shown in [37].

It turns out that the maximum stationarity bandwidth is 100 MHz. Since the experimental delay

resolution is 5 ns, we can say that the amplitudes of two realizations in neighboring delays are

correlated.
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TABLE III

PROBABILITIES OF THE SUBSETS AND TRANSITION PROBABILITIES

Subset Probability
Transitions

Rician Rayleigh

Rician 0.65 0.84 0.16

Rayleigh 0.35 0.85 0.15

To extract first-order statistics of time-delay fading, the whole delay range is first partitioned

into bins of τb = 10 ns (2 delay chips) each. It turns out that complex channel impulse responses

fade out to the noise level for delays larger than 250 ns (50 delay chips), so that we can use

only first 25 delay bins. This leads to a total number of B = 25 bins per time instant and link.

Next, 40 × 25 blocks of 150 × 2 realizations (corresponding to T
Tav

, where Tav = 1.5 s or 20

wavelength and T = 60 s) can be used to extract statistics (using Least Squares Fitting).

Note that we can normalize fading so that E{g2} = 1, the expectation being taken over time

and delay.

1) First-Order Fading Statistics: As shown in [16], we can expect small-scale fading within

a bin to be Rician or Rayleigh distributed for single mobile scenarios. The time-delay varying

K-factor can be estimated from experimental time-delay fading realizations gj(t, τ) by fitting

the Rice probability density function. 40 × 25 realization blocks have been used. Extracted

probabilities of the subsets (Rician and Rayleigh) and transition probabilities are shown in

Table III.

Temporal transitions between different fading states can be modeled by means of a hidden

Markov model (HMM) [19]. Usually, the system being modeled by a HMM is assumed to be

a Markov process with unobserved (hidden) states. Since only two distributions of small-scale

fading are observed, we model the transitions between the subsets using a simple two-state

HMM: (i) Rican fading and (ii) Rayleigh fading. Consequently, the HMM is parameterized from

the measurements.

To simplify the usage of first- and second- order statistics derived in [16], let us denote:

ω0 =

√
K

1 +K
, (16)

ω1 =

√
1− K

1 +K
, (17)
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Fig. 5. Distribution of the Rician K-factor

where K is the estimated K-factor (in dB); ω0 and ω1 describe the impact of the LOS term and

Rayleigh component respectively.

The distribution of the K-factor for the Rician subset can be modeled by Extreme Value

distribution,

pev(x|µ, σ) = σ−1e(
x−µ
σ )e

(
−e(

x−µ
σ )

)
(18)

when the K-factor expressed in decibels (see Fig 5). The temporal autocorrelations of the

measured K-factor is a decreasing exponential function . Hence, the model presented in [16]

(i.e. an autoregressive process) can be used to generate autocorrelated values of the K-factor

over time samples (t = [1, · · · , T ]):

K[t]|dB = e−Mt/τKK[t− 1]|dB +
√

1− e−2Mt/τKxK [t], (19)

where xK is a time series of length T , whose values are drawn independently from the appropriate

distribution. The parameter τK = 2.5[s] is extracted from measurements.

It turns out that the first order statistics are not correlated over delay bins, consequently,

time-variant fading within a bin can be modeled independently from neighboring bins.

2) Second-Order Fading Statistics: The room to room environment can be approximated by

a double-ring representation [38] as shown in [16]. The correlation functions of the fading can
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TABLE IV

MEASURED PARAMETERS

Parameter Value

ωDB
2ω1

3

ωSBT = ωSBR
ω1

6

R 3 m

fm 13.8 MHz

be expressed as [16]

RGiGi(τ) = RGqGq(τ) = RGG(τ) =

= E[Gq(t)Gq(t+ τ)]

= ω2
0 cos (2πτ (fm cos Θ))

+
(
ω2
DB + ω2

SBR

)
· J0

(
2πfmτ

)
+ ω2

SBT · J0

(R2

D2
πfmτ

)
(20)

RGiGq(τ) = −RGqGi(τ) = 0 (21)

where fm, Θ, R and D denote the Doppler frequency caused by motion of the mobile node, the

angle of the motion, radius of the ring which is formed by scatterers located around the static

node and the distance between Tx and Rx, respectively.

Small-scale fading realizations used to extract the parameters ω0 and ω1 were analyzed to

estimate the parameters of second order statistics. First, the Doppler Spectrum was calculated.

Next, the Doppler frequency was estimated so that we could calculate the radii using measured

Doppler spectrum and the theoretical one. Finally, estimated parameters (R, fm and the com-

ponents weights) were averaged over all channels and samples and bins. The summary of the

analysis is listed in Table IV.

C. Time-Series Modeling

Summarizing, we propose to model channels with time-variant statistics and a static PDP as

shown in Fig. 6. We start with a random initial state of the HMM. Next, using the corresponding
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Fig. 6. Flow diagram of the complete model (Steps A+B)

distribution, we draw the weights (ω0, ω1). Using a weighted combination of correlated small-

scale fading realizations generated by the model1 described in [20], we obtain a pre-defined

number of correlated complex fading realizations G(t). Next, the PDP (τ) corresponding to

the considered delay and the dynamic large-scale fading are added to the small-scale fading

realizations. Next, the state of the HMM is updated. If the state is unchanged, we use the

autoregressive model described by (19) to generate a new value of ω0 for the Rician subset or

we keep the constant values of the parameters for the Rayleigh subset. If the state is modified,

depending on the subset, we generate the weights ω0 and ω1 using the corresponding distribution

or we set fixed values (for Rayleigh). For the next delay bin the algorithm should be repeated.

Note that the duration of one state equals 1.5 s.

1Filter coefficients used in the model are specified by appropriate first- and second-order statistics derived in [16].
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V. SIMULATION RESULTS AND VALIDATION

A. Reconstructed Power Delay Profiles

The deterministic modeled PDP do not vary with time. For a given position, the variation

in the measured PDP is due to the small-scale fading. The deterministic models are presented

in Figs. 7 a, b. Measured time-variant PDPs are shown in Figs. 7 c, d. The complete model is

the aggregate of the large- and small-scale fading levels and the deterministic model for the

considered nodes (Rx1,7). Example of the total PDP models in the dynamic scenario are shown

in Figs. 7 e, f .

Given the room dimensions in Fig. 1, and by applying (9), we obtain a reverberation time of

about τr,a = 20.8 ns for the in-room scenario. In this study, Tx and Rx are located in adjacent

rooms (see Fig. 1). Therefore, we apply (11) and obtain a theoretical reverberation time of about

τr,a = 24.8 ns for the adjacent room scenario.

TABLE V

EXPERIMENTAL VALUES OF THE REVERBERATION TIME FOR THE DIFFERENT NODES IN THE ADJACENT ROOM SCENARIO

Node Rx1 Rx2 Rx3 Rx4 Rx5

τr,a (ns) 21.85 21.45 25.10 28.20 22.80

Node Rx6 Rx7 Rx8 Rx9 Rx10

τr,a (ns) 19.90 20.55 20.75 20.55 22.10

Experimental values of the reverberation time at different nodes are shown in Table V. On

average, an experimental reverberation time of τr,a = 22.3 ns and a standard deviation σ = 2.5 ns

are obtained. The relative difference between the experimental and theoretical reverberation time

is about 11.20%, indicating good agreement between the predicted and measured reverberation

time [30]. The formula overestimates the reverberation time value because of the presence of

furniture in the room. Only walls, floor and ceiling are indeed considered; hence, this will lower

the experimental reverberation time value compared to the predicted one.

B. Validation

The validation is an important step in any model development. To validate the model, we use

a two-step approach: i) we check if the model reproduces correctly the measured statistics of

Eugene
Highlight
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Highlight

Eugene
Highlight

Eugene
Highlight
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(a) Deterministic PDP, node Rx1 (b) Deterministic PDP, node Rx7

(c) Measured time-variant PDP, node Rx1 (d) Measured time-variant PDP, node Rx7

(e) Simulated time-variant PDP, node Rx1 (f) Simulated time-variant PDP, node Rx7

Fig. 7. Deterministic, small-scale fading level, and the total reconstructed PDP.
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the time-delay variant components, ii) we show that parameters derived from the model (but

not directly used to parameterize it) agree well with the equivalent measured parameters of the

channel.

1) Statistics of Time-Delay Variant Components: Fig. 8 compares the statistics of measured

channels and generated channels using the model described in Section IV. To verify the model

for different distances, we simulated links between nodes separated by the same distances as we

had for measured channels. Next, we compared the cumulative distribution function (CDF) of the

generated combination of large- and small-scale fading with the CDF of the same components

of the measured set of channels. It is obvious that statistics of simulated channels are in good

agreement with the simulated ones.

2) Instantaneous Delay Spread: We define here the instantaneous root-mean-square (rms)

delay spread as

τrms (t) =

√∫∞
0

(τ − τ̄(t))2 · |h(t, τ)|2dτ∫∞
0
|h(t, τ)|2dτ

, (22)

where τ̄(t) is the mean delay of the instantaneous channel h(t, τ). The objective of defining

the instantaneous rms delay spread is to produce cumulative distribution functions (CDF) of the

rms delay values obtained in the dynamic scenario (time domain) for both the measured and

predicted PDPs. The comparison of the mean rms values from the measurements and model is

listed in Table VI. Parameter ∆τrms is the difference between the mean predicted and measured

rms delay spread values. Relative errors ∆τrms = 100 · (τ exprms − τmeasrms ) /min (τ exprms, τ
meas
rms ) are

also listed in the table. Averaged value of ∆τrms for all the nodes equals 0.24 ns (or 1.04 %).

This asymptotic value of the error ∆τavgrms is achieved after 20 simulation trials.

The CDFs of rms delay spread values of two nodes are shown in Figs.9 a and b. Two cases

are demonstrated: Figs.9 a shows CDFs with the largest error ∆τrms, whereas Figs.9 b shows

CDFs with ∆τrms = 0.24 ns, which equals the asymptotic value of the error ∆τavgrms.

On the one hand, we observe that the rms delay spread value approaches the theoretical

reverberation time for the room-to-room scenario, i.e., τ = 24.80 ns, for increasing Tx-Rx

distances (e.g. Rx7,8). This shows that the influence of the primary components decreases when

the Tx-Rx distance increases and the diffuse fields become prominent. Therefore, the shape of

the PDP approaches an exponential decay (τ0 −→ τl). For node Rx4, we observe the largest

error (see Table VI). The possible explanation is that this channel is highly affected by two large

metallic cupboards (Fig. 1).
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Fig. 8. CDFs of measured and simulated stochastic components (Small-scale fading (top) and Large-scale fading (bottom)

On the other hand, when we compare the cumulative distribution function of the experimental

and modeled rms delay spread, we can conclude that the proposed methodology estimates well

the PDP in room-to-room scenarios. Measured and simulated CDFs do not agree completely but

a reasonably good match in terms of sample mean and sample variance is achieved for all the

nodes (except node 4, see Fig. 9 a) with the asymptotic error ∆τavgrms = 0.24 ns. As mentioned

above, this large error for node 4 is due to the proximity of this node to large metallic cupboards

(see Fig. 1).
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TABLE VI

EXPERIMENTAL AND PREDICTED AVERAGE VALUES OF THE RMS DELAY SPREAD FOR THE DIFFERENT NODES

Node Rx1 Rx2 Rx3 Rx4 Rx5

Distance (m) 4.9 6.5 4.6 5.6 7.4

τexp.rms (ns) 20.67 23.11 19.82 23.12 22.63

τmod.
rms (ns) 20.43 22.7 20.01 22.57 22.61

∆τrms (ns) 0.24 0.41 0.19 0.55 0.02

∆τrms (%) 1.17 1.81 0.96 2.4 0.09

Node Rx6 Rx7 Rx8 Rx9 Rx10

Distance (m) 9.7 12 12.1 9.2 7.6

τexp.rms (ns) 24.12 24.14 24.07 23.51 21.63

τmod.
rms (ns) 24 24.04 24.01 23.87 22

∆τrms (ns) 0.12 0.11 0.06 0.36 0.37

∆τrms (%) 0.5 0.46 0.25 1.56 1.71

VI. CONCLUSIONS

We have designed a methodology for the prediction of power delay profiles in room-to-room

dynamic scenarios. The success of the method is guaranteed by the predominance of the diffuse

scattered fields in the considered environment. Basically, the deterministic part of the method

is based on the reverberation time of the environment, which fully describes the diffuse fields

and predict the average power level. Moreover, we have proposed models for time-delay large-

and small-scale fading. A Hidden Markov model has been used to describe the evolution of the

small scale fading statistics and then time-delay fading realizations have been generated using

the Young’s model [20].

This model enables to describe of the evolution (or change) of the power delay profile in

the time domain. The method has been validated against the measurements and good agreement

is obtained. Note that the model can be easily extended to double mobility cases by using the

five-state HMM described in [16]. Moreover, it has been showed that the distribution of Rician
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Fig. 9. Cumulative distribution function of τrms: measurement versus model

K-factor can be modeled by Extreme Value Distribution as it was done previously in [16].
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