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1 Genus Brachyspira 

Brachyspira is the sole genus in the Brachyspiraceae family and together with the 

families of Spirochaetaceae and Leptospiraceae they are assigned to the Order 

Spirochaetales, Class Spirochaetes and Phylum Spirochaetae. All Brachyspira 

species have a helical cell shape (figure 1) and two sets of opposing internal 

periplasmic flagella. The number of flagella varies from 4-14 inserted at each end. The 

Brachyspira sp. cell size varies from 5-11 µm in length and 0.2-0.4 µm in width 

[144,66,132,51,137]. They are anaerobic but, partly due to high levels of NADH 

oxidase, aerotolerant. Brachyspira sp. use soluble sugars as carbon and energy 

source [182].  

 

Figure 1: Phase contrast microscopic image of B. hyodysenteriae (from Hampson et al. [53]) 

Brachyspira sp. grow slowly in vitro and do not form colonies. Instead they show a low 

flat film of growth after 3-5 days at 37-42°C. On ovine or bovine blood containing agar 

plates, growth is surrounded by a weak or strong zone of beta-haemolysis, dependent 

on the species. B. hyodysenteriae, B. suanatina and B  hampsonii are strongly 

haemolytic, B. pilosicoli, B. intermedia, B. innocens and B. murdochii are weakly 

haemolytic and the latter are sometimes referred to as ‘weakly beta-haemolytic 

intestinal spirochetes’ (WBHIS) [34,136]. 

Nine Brachyspira species have been officially recognized: B. hyodysenteriae 

(pig, rhea) [17,77], B. pilosicoli (various mammals and birds) [201], B. intermedia (pig, 

chicken) [184], B. murdochii (pig) [184], B. innocens (pig) [186], B. hampsonii (pig) 

[132], B. suanatina (pig) [137], B. aalborgi (human) [66] and B. alvinipulli (chicken) 

[187]. Many other proposed species exist: “B. pulli” (chicken) [190], “B. canis” (dog) 

[35], “B. corvi” (corvid birds) [73], “B. rattus” (rat) [7], “B. muridarum” (mouse) [7], 

“B. muris” (mouse) [7], “B. ibaraki” (human) [191], “B. christiani” (human) [78], 

“B. hominis” (human) [209]. The majority of Brachyspira species are associated with 
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one host, some species can cause disease in several different hosts. Some 

characteristics of the pig associated Brachyspira species are given in table 1. Except 

for B. pilosicoli, the 16S rRNA sequences between Brachyspira species are highly 

conserved, which renders the sequence analysis of solely 16S rRNA insufficient to 

identify an isolate to the species level [39]. The marginal differences between the 16S 

rRNA of some Brachyspira sp. raises the question if all described species are truly 

distinct species or that perhaps some species should be regarded as biovars of another 

species instead [148]. 

Brachyspira has a circular genome of varying size, which is accompanied by a plasmid 

in some species. The G+C content is typically about 27% [147]. For most of the porcine 

related species one or more whole genome sequences are available: 21 for 

B. hyodysenteriae, 5 for B. hampsonii, 4 for B. pilosicoli, 2 for B. intermedia, 1 for 

B. murdochii and 1 for B. suanatina [49,137].   

Table 1: Pig associated Brachyspira spp., type strain, host(s) and reservoirs. 

Species Type strain Host Reservoirs 

B. hyodysenteriae B78T Pig, rhea Pig, mouse, 

rat 

B. intermedia PWS/AT Pig, chicken Pig, chicken, 

mouse, rat 

B. murdochii 51-150T Pig Pig, mouse, 

rat 

B. innocens B256T Pig Pig, mouse 

rat 

B. pilosicoli P43/6/78T Pig, birds, dogs, 

non-human 

primates, 

human 

Pig, birds, 

dogs, non-

human 

primates, 

human 

B. suanatina AN4859/03 T Pig Mallard 

B. hampsonii NSH-16T (clade I) 

NSH-24 (clade II) 

Pig Waterfowl 
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2 Porcine Brachyspira infections: introduction 

Brachyspira hyodysenteriae and B. pilosicoli are the two swine related Brachyspira 

species that are clearly pathogenic and are the causative agents of swine dysentery 

(SD) and Porcine Intestinal Spirochaetosis (PIS) respectively [193,201]. B. innocens is 

considered to be a non-pathogenic commensal [96]. For B. intermedia and 

B. murdochii the pathogenic potential is less clear-cut [80,139,20,208,100]. Two 

species, more recently recovered from swine, are B. hampsonii and B. suanatina. 

These two species can cause disease signs in pigs that are indistinguishable from 

swine dysentery [132,137,158].  

Since there are now three strongly haemolytic Brachyspira species that can cause 

dysentery-like disease, it has been suggested to change the name swine dysentery, 

since not only B. hyodysenteriae can act as the causative agent of SD. For now, 

Hampson has introduced the more general name ‘Brachyspiral colitis’ to ‘describe the 

situation where colitis, diarrhoea and/or dysentery occurs in pigs infected with one or 

more pathogenic Brachyspira species’ [48]. 

3 Porcine Brachyspira infections other than Brachyspira hyodysenteriae 

3.1 Brachyspira pilosicoli 

Brachyspira pilosicoli is the causative agent of Porcine Intestinal Spirochetosis (PIS), 

sometimes also referred to as Porcine Colonic Spirochetosis (PCS) [193,201]. PIS is 

most often seen shortly after weaning and is characterised by diarrhoea with a 

consistency of wet cement, in some cases evolving to watery or mucoid diarrhoea. It 

can be accompanied by reduction of growth and increased feed conversion.  

A pathognomonic feature of PIS is the attachment of B. pilosicoli by one cell end to the 

enterocytes in the colon, forming a so called “false brush-border” [193]. B. pilosicoli is 

the only Brachyspira sp. in which such obvious attachment to epithelium is apparent. 

Other Brachyspira sp. seem to be associated only with the mucus layer, covering the 

colonic epithelium. B. pilosicoli is also the only Brachyspira sp. which has a broad host-

range; it can cause infections in various bird species, dogs, and humans 

[35,111,200,122]. Other marked differences between B. pilosicoli and the other pig 

related Brachyspira sp. are its more slender form and its lower number of flagella. This 

might also be reflected in B. pilosicoli being the most genetically distinct species with 

regard to the other pig related Brachyspira sp. [112]. This is depicted in figure 2, a 



6 | P a r t  I  

 

 

radial tree based on the concatenated sequences of four MLST genes (est, glpK, thi, 

pgm) [129].  

 

Figure 2: Radial tree of maximum likelihood analysis portraying the clustering of 430 isolates 

representing seven Brachyspira species. Genetic relatedness determined using nucleotide differences 

among four loci  (est, glpK, thi and pgm). The scale unit represents 2 substitutions per 100 nucleotide 

positions. From Mirajkar et al. [129].  

 

3.2 Brachyspira intermedia and Brachyspira murdochii 

The pathogenic potential of B. intermedia and B. murdochii for pigs is less clear. Both 

species have been isolated from clinical cases of mild diarrhoea or catharral colitis 

[39,64,12,28,80]. However, experimental infection using field isolates of B. intermedia 

and B. murdochii does either not result in clinical signs or in very mild diarrhoea 

[20,80,81,139]. Furthermore, there is no correlation between the presence of diarrhoea 

and the presence of B. murdochii or B. intermedia in pig herds [59]. Vögely et al.  noted 

only a slight increase of diarrhoea problems on farms where B. intermedia could be 

detected, and no increase on farms where B. murdochii was detected [203].  
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Komarek et al. report an association between the prevalence of B. intermedia, 

B. murdochii and B. innocens, and chronic wasting of pigs [100]. No association with 

diarrhoea was present and it should be noted that in a number of Brachyspira positive 

herds other pathogens (Porcine circovirus 2 (PCV-2), Lawsonia intracellularis), were 

detected as well. Weissenböck et al. also suggested co-infections with PCV-2 or 

L. intracellularis as conditions enhancing the risk of abundant growth of weakly 

haemolytic Brachyspira species and concurrent development of clinical signs [208]. 

With regard to B. intermedia, there might be an additional explanation for the seemingly 

variable pathogenic potential of this species. MLST analysis of this species revealed a 

large strain diversity and indicates that this species is paraphyletic. The genetic 

distances between clusters of B. intermedia strain are so large that some clusters 

might actually be other species, not yet identified [148]. This is also demonstrated in 

figure 2: the blue dots represent clusters of B. intermedia strains and are found 

dispersed along clusters of other Brachyspira species [129]. Some of these distinct 

clusters of B. intermedia strains, might have different biological properties or different 

pathogenic potential compared to the strains that have been used to experimentally 

infect pigs.   

3.3 Brachyspira suanatina 

Brachyspira suanatina isolates were first noticed in Sweden where they were 

recovered from pigs and mallards. The pig associated isolates derived from herds 

suffering from mild to mucohaemorrhagic diarrhoea [158]. Mallard isolates came from 

a gamebird farm and from wild mallards that were sampled in a public park or in a bird 

observatory. None of the mallards showed clinical signs of disease [74]. 

The isolates were phenotypically indistinguishable from B. hyodysenteriae, showing 

strong haemolysis on agar plates supplemented with ovine blood. Remarkably, these 

isolates were PCR-negative for the tlyA gene of B. hyodysenteriae [157]. Analysis of 

the 16S rRNA and NADH oxidase (nox) genes of these atypical isolates showed that 

they formed a distinct cluster, apart from B. hyodysenteriae. These isolates were 

proposed to form a new species. DNA-DNA hybridization of B. suanatina strain 

AN4859/03 T (ATCC BAA-2592) with the seven previously recognized Brachyspira 

species confirmed that B. suanatina forms a separate species [137]. 
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Experimental infection demonstrated that the new species B. suanatina could induce 

diarrhoea or dysentery in pigs. Moreover, pigs developed diarrhoea after infection with 

an isolate recovered from a bird, demonstrating the possible risk of transmission from 

mallards to pigs [158]. To date B. suanatina infections in pigs have been exclusively 

reported in Sweden and Denmark. 

3.4 Brachyspira hampsonii 

Since the mid 2000’s the number of Brachyspira infections has increased in the USA 

and Canada. Remarkably, since the late 2000’s, over 50% of strongly haemolytic 

isolates from outbreaks of mucohemorrhagic diarrhoea, tested negative for 

B. hyodysenteriae by PCR [25,129,169]. Phylogenetic analyses of the nox and 16S 

rRNA genes of these atypical isolates, revealed such a large genetic distance between 

those isolates and all other known Brachyspira sp. that these isolates likely 

represented a novel species, for which the name Brachyspira hampsonii was proposed 

[25,132].  

B. hampsonii isolates group in two distinct clades: clade I and clade II. Within each 

clades nox sequences showed a similarity of >99%, between clades the sequence 

similarity was 96% [25]. Further genetic analyses of this species by MLST suggested 

that the B. hampsonii species rather encompassed four genetic groups, instead of two 

clades. This is depicted in figure 2 [129]. 

Rubin et al. proved that experimental infection of pigs with a B. hampsonii clade II 

isolate results in mucohaemorrhagic diarrhoea, undistinguishable from diarrhoea seen 

in a B. hyodysenteriae infection [169]. Furthermore, gross lesions and histological 

changes in the colonic tissue of pigs infected with B. hyodysenteriae or pigs infected 

with B. hampsonii were similar [213]. Costa et al. showed that these similarities in 

clinical signs and gross and microscopic lesions are also seen after experimental 

infection with B. hampsonii clade I [29].  

4 Infections with Brachyspira hyodysenteriae 

Taylor and Alexander in the UK and Harris et al. in the USA quite simultaneously 

described the isolation of a spirochete from clinical cases of swine dysentery [57,192]. 

The spirochete was named Treponema hyodysenteriae by Harris et al. and both 

groups fulfilled Koch’s postulates for this organism [57,192]. DNA-DNA hybridization 

and 16S rRNA analysis showed that the organism was not closely related to other 
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Treponema species or other spirochaetal species. Hence the organism was renamed 

into Serpula hyodysenteriae, which was later corrected into Serpulina hyodysenteriae 

[183,186]. In 1997, the genera Serpulina and Brachyspira were synonymised, leading 

to the current name Brachyspira hyodysenteriae [144]. Although B. suanatina and B. 

hampsonii are able to induce clinical symptoms similar to these typically associated 

with swine dysentery (SD) caused by B. hyodysenteriae, SD will be considered as the 

disease complex caused by B. hyodysenteriae in this introduction. 

4.1 Epidemiology 

4.1.1 Prevalence 

Swine dysentery was first reported in 1920 in the USA, and has been described 

worldwide since 1950-1960 [124,165]. In most pig producing countries, the incidence 

of SD increased during 1960-1970 due to intensification of pig production. Since the 

1980’s a general decline in SD incidence was noted in North America and Europe, 

probably due to increased attention to biosafety measures and the use of antimicrobial 

growth promoters. Since the 2000’s, an increase of SD incidence is noted, most likely 

due to the restriction of antimicrobial growth promoters in Europe [5]. Prevalence 

reported in Europe varies between countries: 18% of herds in Italy [123], 7-18% of 

herds in the UK [199,198], 2.5-14% of herds in Denmark [133,189], 32-40% of herds 

in Spain [5,24]. It is however difficult to directly compare these percentages since 

sample size and the sampled population differ between countries: some sample only 

herds which suffer from diarrhoea [24,123,198,199], some sample only healthy herds 

[189] and some sample healthy herds as well as herds with diarrhoea [133].  

Although the use of antimicrobial growth promoters is not prohibited in North America, 

a substantial increase in SD cases is seen since the late 2000’s as well. For example 

IOWA state diagnostic laboratory recovers 3 isolates from 15 cases/farms in 2005 and 

466 isolates from 3465 cases/farms in 2010 [19]. Partly, this increase can be attributed 

to the emergence of the novel species B. hampsonii. The concurrent increase of 

B. hyodysenteriae related cases of SD is not fully understood. Probably one or more 

influencing factors such as environment, management, diet, microbiota of the colon, 

and/or host susceptibility have changed [19].  
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4.1.2 Transmission 

Transmission of B. hyodysenteriae occurs mainly through direct contact. The pathogen 

is often introduced into a previously uninfected herd by the introduction of sub-clinically 

infected carrier animals [5]. Once endemic, infection remains established in a herd 

through contact with faeces or with clothes, boots or equipment contaminated with 

faecal material. B. hyodysenteriae can survive up to 78 days in soil contaminated with 

pig faeces, and up to 112 days in pure pig faeces, at 10°C [15].   

Rodents on farms have been identified as carrier animals of several Brachyspira sp, 

including B. hyodysenteriae [7,50,83]. Moreover, Joens and Kinyon were able to 

induce dysentery in experimentally infected pigs with three of four B. hyodysenteriae 

isolates recovered from wild mice (Mus musculus) [83]. Insects, in particular 

cockroaches (Blatta orientalis), have been identified as possible carriers of 

B. hyodysenteriae as well. After experimental infection, cockroaches excrete viable 

B. hyodysenteriae for up to three days [14].  

Birds have also been identified as carriers of several Brachyspira sp.. 

B. hyodysenteriae was isolated from wild and farmed mallards, sampled in Sweden 

[74]. It has not been determined if these isolates can experimentally infect pigs. Lesser 

snow geese (Chen caerulescens caerulescens) sampled in the Canadian Arctic region 

were positive (8.8% of animals) for Brachyspira sp. including B. hampsonii clade I. No 

B. hyodysenteriae could be isolated from birds sampled in this region. In an 

experimental infection the goose isolate of B. hampsonii clade I did not cause clinical 

signs in colonized pigs [170]. In Spain, B. hampsonii clade I and II were isolated from 

waterfowl. Birds were sampled in a known wintering area visited by Northern European 

waterfowl. Over 20% of geese and 50% of mallards were positive for Brachyspira sp., 

and 20% of all isolates belonged to the B. hampsonii species, while no 

B. hyodysenteriae or B. suanatina could be detected [121]. An experimental infection 

study with one of these Spanish B. hampsonii isolates recovered from migrating 

waterfowl, showed that such isolates can colonize pigs, be transmitted along pigs and 

cause clinical signs of swine dysentery in a number of animals [3]. 

B. hyodysenteriae has also been detected in farms with rheas where it caused severe 

necrotizing typhlocolitis [77,172] and from chickens from a laying flock with above 

average number of eggs with faecal staining [38]. It was hypothesised that the poultry 
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infection might be coming from a nearby swine farm. Apart from those reports, there 

has been no further mention of B. hyodysenteriae isolation from poultry or rheas.  

4.1.3 Risk factors 

Since transmission of SD mainly occurs through contact with carrier animals, contact 

with contaminated clothes or equipment or contact with vectors, it is not surprising that 

frequent purchasing of breeders or growing pigs from different sources, the presence 

of rodents and the free allowance of visitors onto a farm were identified as risk factors 

for the presence of SD [162]. Next to these management or husbandry related risks of 

being infected by B. hyodysenteriae, the outcome of infection by B. hyodysenteriae 

might be affected by several other factors as well.  

The virulence of a particular B. hyodysenteriae strain may play a role in the clinical 

outcome. Differences in virulence between strains have been described. Jensen and 

Stanton described type strain B78 (ATCC 27164) as low pathogenic, probably due to 

the large number of subculturing before the strain was deposited in the culture 

collection [76]. Achacha et al. compared virulence of B. hyodysenteriae strains 

belonging to different serotypes and found strain A1 and B234 to be avirulent [1]. 

Recently La et al. provided evidence for lack of plasmid encoded genes in these less 

virulent strains [108]. A common factor in these less virulent strains is that they colonize 

fewer animals compared to virulent strains such as B204. However, for most of these 

strains, colonization is still concurrent with the development of SD. In contrast with this, 

Lysons et al. isolated three strains of B. hyodysenteriae from herds free of SD and 

could not induce disease signs using two of these strains in an in vivo experiment, 

even when animals were colonized by the strain [120]. 

The outcome of an infection by B. hyodysenteriae can substantially be influenced by 

the diet of the pigs. Diet can influence the pH in the colon and/or cecum and can 

influence the composition of the microbiota in the colon. Some diet components can 

have direct antibacterial effects as well. Although impact of diet on the development of 

clinical SD has been extensively studied, a general consensus has not been reached.  

Several studies describe that feeding highly digestible diets based on cooked white 

rice can reduce the severity of SD symptoms in an experimental infection study 

[150,176]. Other studies describe a symptom reducing effect of a highly digestible pre-

fermented liquid diet, but fail to reproduce the effect of cooked rice [113]. Both types 
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of diet are supposed to reduce the amount of fermentable substrate that enters the 

large intestine, which would alter pH. However, alkalinity could not always be 

demonstrated for the colon and/or the cecum when administering these diets. 

Improved digestibility of diets was achieved by extrusion of seeds and the addition of 

exogenous enzymes as well. However, no reduction in SD was achieved feeding those 

diets [36]. 

Somewhat in contrast to the beneficial effect of some highly digestible feeds, the 

addition of highly fermentable carbohydrates protected pigs against development of 

SD [197]. Protective fermentable carbohydrates were derived from the addition of dried 

chicory root and sweet lupins to a barley and triticale based feed. Hansen et al.  

demonstrated that the protective aspect came from inulin in the chicory root rather than 

from lupins [56]. However, the beneficial effect of inulin could only be confirmed at high 

concentrations [55]. Recently, Wilberts et al. demonstrated that increasing the 

percentage of insoluble dietary fiber of a feed by adding distillers dried grains with 

solubles (DDGS), a common practice in the USA, led to a much faster development of 

SD in pigs after experimental infection with B. hyodysenteriae [212]. 

In conclusion it can be stated that swine dysentery is a multifactorial disease in which 

virulence properties of the B. hyodysenteriae strain, management and husbandry 

factors play an important role [5]. Nutritional factors are also described as an important 

factor but its influence is less clear-cut as demonstrated by the contradictory findings.   

4.2 Pathogenesis 

Mostly, swine dysentery is instigated by ingestion of faecal material containing 

B. hyodysenteriae. Survival of the acidic environment of the stomach is presumably 

supported by the presence of mucus in infectious faecal material [48,185], although 

this has not been demonstrated as such. After passing the stomach, B. hyodysenteriae 

reaches the large intestine and predominantly resides in the colon and sometimes in 

the cecum. Most often, no other organs are involved, although sporadically 

involvement of the stomach, ileum and rectum has been mentioned [69]. Clinical signs 

of dysentery appear after a relatively long incubation time, on average 17 days (2-31) 

after exposure in experimental infections.  

In the large intestine the number of B. hyodysenteriae gradually increases and Wilcock 

and Olander established that once the number of viable B. hyodysenteriae 

approximately reaches 105 cfu/g mucosa, lesions start to develop [215]. 
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B. hyodysenteriae can be found in faecal samples 1-4 days before the onset of SD. 

However, experimentally inoculated pigs often show no signs of dysentery or 

detectable amounts of B. hyodysenteriae in their faeces, before the sudden onset of 

SD [69]. 

B. hyodysenteriae requires the presence of other anaerobic bacteria in the large 

intestine. Several authors [125,139,211] describe the impossibility to establish a 

B. hyodysenteriae infection in gnotobiotic pigs. However if gnotobiotic pigs are 

inoculated with colonic scrapings of pigs suffering from SD [125], with a mixture of 

B. hyodysenteriae and five enteric anaerobes [126] or with a culture of 

B. hyodysenteriae and one other anaerobe (Fusobacterium necrophorum, Bacteroides 

vulgatus, Clostridium sp, Listeria denitrificans), inoculation is followed by the 

development of clinical swine dysentery [211]. 

B. hyodysenteriae is mainly localised in the crypts of the colon, specifically at the base. 

Crypts elongate and at the base mucus is depleted from the Goblet cells [215]. Ligated 

colonic loops have been used in swine to determine the order and time-frame of lesion 

development following inoculation with B. hyodysenteriae cultures or with preparations 

from minced colons of pigs with active SD [68,210]. Gross lesions started to develop 

after 72 hrs and consisted of hyperaemia of the mucosa, which is thickened and shows 

prominent rugae. The relative number of Goblet cells starts to increase and patchy 

focal necrosis of epithelial cells can be visible. Thereafter (24-48 hrs later), the mucosal 

surface starts to be covered with a layer of mucus and fibrin while the colonic mucosae 

further thickens and becomes oedematous. Due to epithelial necrosis, blood vessels 

of the underlying lamina propria are exposed and damaged, leading to blood leakage 

into the colonic lumen [69].  

Some aspects of the pathogenesis of B. hyodysenteriae are still unclear. The 

development of the diarrhoea is not completely understood and is debated to be 

caused by malabsorption and/or by active fluid secretion. The extensive mucus 

outpouring may considerably attribute to the fluid loss and loss of electrolytes, although 

it is not clear how significant this contribution is [215]. Active fluid secretion would 

suggest the involvement of enterotoxins. However, filtered culture supernatant could 

not induce fluid secretion or any lesions in colonic loops [210]. 
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Figure 3: SEM of pig in early stage of swine dysentery showing spirochetes and mucus in a crypt orifice 

(arrow). From Kennedy and Strafuss [90]. 

4.3 Virulence factors of B. hyodysenteriae 

Several virulence factors involved in the pathogenesis in B. hyodysenteriae infections 

in pigs have been investigated. Virulence factors include colonisation factors such as 

motility or chemotaxis and toxins such as haemolysins [194]. 

4.3.1 Motility and chemotaxis  

In order to occupy the mucus dominated environment in the large intestine, 

B. hyodysenteriae greatly relies on its motility and chemotactic capacity. It has been 

demonstrated that B. hyodysenteriae is chemotactic towards hog gastric mucin (1% 

(w/v)) and porcine colonic mucin (1% (w/v)) and not towards bovine submaxillary mucin 

(1% (w/v)) [128]. Moreover, the less or non-pathogenic species B. intermedia and 

B. innocens showed reduced chemo attraction compared to virulent B. hyodysenteriae 

strains. Kennedy and Yancey (1996) further demonstrated that the chemo attractive 

nature of mucus could mainly be attributed to fucose, a terminal sugar of mucins, and 

L-serine, an amino acid largely present in the protein core structure of mucins [93]. 

Other terminal sugars such as lactose, galactose and other amino acids like threonine 

and L-cysteine also act as chemoattractant. It has also been demonstrated that 



G e n e r a l  I n t r o d u c t i o n  | 15 

 

 

B. hyodysenteriae is not only chemically attracted to mucus, but that B. hyodysenteriae 

is also attracted in vitro to solutions with increasing viscosity [138]. 

B. hyodysenteriae, like all spirochetes, has a spiral morphology, ideal for moving 

through mucus [92]. Besides their morphology, spirochetes share a motility system in 

which flagellar filaments are positioned within the outer membrane sheath, as shown 

in figure 4. The periplasmic flagella are inserted at each end of the protoplasmic 

cylinder, and overlap in the middle of the protoplasmic body [26,27]. Koopman et al. 

described the protein composition of the periplasmic flagella of B. hyodysenteriae: 

three different proteins can be found in the core of the flagella (FlaB1, FlaB2, FlaB3), 

two different proteins can be found in the sheath of the flagella (FlaA1, FlaA2) [101]. 

 

Figure 4: schematic view of the position of periplasmatic flagella in Brachyspira. From Neo [140]. 

 

Although flaA1 mutants, flaB1 mutants, and flaA1 flaB1 dual mutants are still able to 

assemble periplasmatic flagella, the in vitro motility of these mutants is impaired 

[91,167]. Of mice experimentally inoculated with the flaA1 flaB1 dual mutant, only 2% 

was colonised, compared to 75% colonisation following inoculation with the wild type 

strain [168].  

4.3.2 Adhesion 

B. hyodysenteriae is mainly found in the mucus in the crypts of Lieberkühn and in the 

mucus layer lining the epithelium of the colon. Although attachment of 

B. hyodysenteriae to epithelial cell cultures has been described in vitro [46,99], direct 

attachment of B. hyodysenteriae to the colonic epithelial cells does not seem to play 

an important role in colonisation [92]. SEM images of colonic and caecal mucosal 
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surfaces of experimentally infected pigs, show that B. hyodysenteriae is almost 

exclusively associated with mucus, and that the epithelium itself is relatively free of 

spirochetes. 

4.3.3 Haemolysin 

In the first decade after the description of the ethological agent of SD, only two species 

of Brachyspira (then Treponema) were described that could be detected in the faeces 

of swine: Treponema hyodysenteriae, which is strongly haemolytic and 

enteropathogenic for swine, and Treponema innocens, which is weakly haemolytic and 

not pathogenic. Obviously this led to an interest in the haemolysin produced by 

B. hyodysenteriae.  

Several authors describe the purification and characterization of haemolysin produced 

by B. hyodysenteriae. The precipitation and filtration of haemolysin from 

B. hyodysenteriae culture supernatant led to the description of haemolysins with 

different molecular weights. Saheb et al. found a protein of 74 kDa, Knoop a protein of 

68 kDa, and Kent et al. described a protein of 19 kDa [94,98,174]. The protein of 19 

kDa was used in an ileo-colonic loop model in swine and loops injected with this 

purified protein showed extensive lesions, comparable to lesions seen in cases of SD 

[119]. 

Muir et al. constructed a B. hyodysenteriae genomic library in an Escherichia coli 

(E. coli) strain [135]. The DNA inserts of haemolytic recombinant E. coli clones were 

sequenced. This led to the description of tlyA [135], tlyB, and tlyC [195]. A tlyA- deletion 

mutant strain of B. hyodysenteriae does not provoke clinical signs of SD in 

experimentally infected mice or swine [71,196]. The recombinant E. coli clones 

harbouring the tlyB or tlyC insert were less haemolytic on blood containing agar plate 

compared to the clone with the tlyA insert. However, the supernatant of the tlyC and 

tlyA inserted clones showed an equally haemolytic activity in vitro, while the haemolytic 

activity of the tlyB inserted clone was even stronger compared to that of the tlyA 

inserted clone. Deletion mutants of tlyB and tlyC have not been constructed and their 

role in in vivo pathogenesis is not quite clear [195]. 

Hsu et al. extracted a protein from the supernatant of a B. hyodysenteriae culture and 

revealed the N-terminal amino acid sequence [67]. The gene coding for this 

haemolysin was named hlyA. Comparing the molecular weight, the hlyA gene probably 

codes for the 19kDa protein first described by Kent et al. that causes lesions in an ileo-
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colonic loop model in swine [94,119]. Unlike the tlyA gene, hlyA can be found in weakly 

haemolytic Brachyspira species as well. However, only in B. hyodysenteriae the hlyA 

gene is correctly placed between fabG, coding for an ACP-reductase, and fabF, coding 

for an ACP-synthase. The ACP-reductase and –synthase probably influence the 

chemical moiety of the lipid that is attached to the HlyA protein. This may affect the 

haemolytic activity of the HlyA protein [219]. Barth et al. confirmed that in German 

Brachyspira isolates, tlyA was exclusively detected in B. hyodysenteriae. The hlyA 

gene could be found in weakly haemolytic Brachyspira species. However, hlyA was 

then either not accompanied by fabF and fabG, or hlyA, fabF and fabG showed 

substantial sequence variation [8]. 

The mechanism of haemolysis induced by B. hyodysenteriae haemolysins is not fully 

elucidated. The 74 kDa haemolytic protein described by Saheb et al. appears to lyse 

red blood cells through colloid osmotic lysis, since lysis is associated with swelling of 

the erythrocytes [174]. However part of the haemoglobin release seems to appear 

before swelling of the erythrocytes [173]. For the tlyA encoded haemolytic protein, Muir 

et al. find no evidence for haemolysis through pore formation since the haemolysis is 

not blocked by adding sugars of different sizes [135]. Hyatt and Joens provide evidence 

that cell lysis by the tlyA encoded haemolytic protein can be blocked by sugars of 2.0 

to 2.3 nm diameter, suggesting that haemolysis by this protein is caused by pore 

formation in the erythrocyte membrane [70]. 

The whole genome sequencing of B. hyodysenteriae strain WA1 by Bellgard et al. 

revealed three other haemolysis associated genes encoding haemolysin III, 

haemolysin activation protein and haemolysin III channel protein. The exact function 

of these genes is unknown [10].  

4.3.4 Plasmid associated virulence factors 

The whole genome sequencing of B. hyodysenteriae strain WA1 by Bellgard et al. has 

revealed the presence of a 36 kilobase (kb) plasmid [10]. Six rfb genes on this plasmid 

were predicted to play a role in pathogenesis and virulence. La et al. demonstrated 

that a B. hyodysenteriae strain (WA400) lacking the 36kb plasmid colonised 

significantly less pigs after experimental challenge, and therefore caused SD in fewer 

animals compared to B. hyodysenteriae strain WA1 containing the plasmid [109].  

Microarray-based comparative genomic hybridisation (CGH) analysis of six 

B. hyodysenteriae strains reported to be virulent and eight strains defined as ‘avirulent’ 
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or at least as having reduced pathogenic potential, identified four genes that were 

absent in all ‘avirulent’ strains and present in all virulent strains. These four genes form 

an adjacent block on the 36 kb plasmid and encode a radical S-adenosylmethionine 

(SAM) protein, a glucosyltransferase, an NAD-dependent epimerase and an dTDP-4-

dehydrorhamnose 3,5 epimerase. Proteins encoded for by these four genes are 

catalytic enzymes that are probably involved in LOS biosynthesis or glycosylation 

[108].  

Although the microarray CGH analysis showed a convincing correlation between the 

absence of the depicted four plasmid genes and reduced pathogenic potential, 

B. hyodysenteriae isolates lacking some of these genes were retrieved from six 

different pig herds suffering from SD in Germany [110]. 

4.3.5 Other virulence factors 

Like for other Gram-negative bacteria, lipopolysaccharides (LPS) are present in the 

outer envelope of Brachyspira sp. [9]. LPS extracted from B. hyodysenteriae seems to 

play a role in the pathogenesis of SD, since the LPS showed biological activity 

comparable to LPS of E.coli in vitro. Furthermore, a LPS-resistant strain of mice did 

not develop lesions after experimental inoculation with B. hyodysenteriae, whereas a 

LPS-sensitive strain of mice showed obvious gross and microscopic lesions after the 

same experimental inoculation [141-143]. However, Greer and Wannemuehler found 

LPS extracted from B. hyodysenteriae less active in vitro. Endotoxin preparations of 

B hyodysenteriae, which contain LPS and lipid-A associated proteins, were more 

active but endotoxin preparations of B. hyodysenteriae and B. innocens were equally 

active in vitro, suggesting that the difference in pathogenic potential of these two 

species cannot be attributed to the biological activity of their endotoxins [47].  

The enzyme NADH oxidase is also regarded as a virulence factor of B. hyodysenteriae. 

This enzyme is active in the four electron reduction of oxygen, and its presence aids 

to the survival of B. hyodysenteriae in atmospheres containing oxygen. NADH oxidase 

negative mutants of B. hyodysenteriae are over a 100 fold more sensitive to dying due 

to oxygen exposure. In an in vivo experimental inoculation fewer pigs were colonised 

by the NADH oxidase negative mutant strain and animals that were colonised, showed 

milder, transient clinical signs compared to animals inoculated with the wild-type strain 

[188]. 
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4.4 Clinical signs 

Clinical signs are most frequently seen in pigs during growth and finishing period, 

mostly in animals of 10-16 weeks old [2,5]. The incubation period can be substantial 

and may vary considerably [145]. Ranges from 2 days to three months have been 

described, with a 10-14 day period being average [48]. Severity of disease signs may 

vary as well, ranging from mild diarrhoea with no apparent changes in general condition 

of the pig to severe haemorrhagic diarrhoea, accompanied by anorexia, depression 

and death.  

Most commonly an outbreak starts gradually, by affecting a small number of 

growers/finishers, showing minor loss of appetite and softer, discoloured faeces. The 

appearance of the faeces evolves from looking like wet cement with specs of blood 

and/or mucus, to watery deep chocolate red faeces with a large amount of blood. The 

perineum and thighs of the pigs are stained with faeces and the pigs can look severely 

debilitated by now and the loss of appetite can be more pronounced. Clinical SD can 

be accompanied by fever up to 40°C, but mostly no fever is recorded [2]. 

In endemically affected herds symptoms typically resurface every 3-4 weeks. 

Cessation of the use of antimicrobials, other infections, or environmental stressors can 

cause a re-emergence of clinical SD [5,48]. Pigs that recover from SD have a reduced 

weight gain and feed conversion can dramatically increase. 

4.5 Lesions 

4.5.1 Macroscopic lesions 

Macroscopic lesions of B. hyodysenteriae infection are initially noted in the large 

intestine as thickened mucosae with prominent rugae. In the first phase, lesions are 

most pronounced near the apex of the colon. This progresses into thickening of the 

entire colonic mucosa with marked hyperaemia and oedema. A mucoid and/or 

haemorrhagic exudate is present in the colonic lumen. Mucosal erosions can be seen 

covering large areas or can be more localized, sometimes covered with fibrino-necrotic 

material. The cecum can show comparable lesions and mesenteric lymph nodes 

appear enlarged and congested [68,69,72,145]. In experimentally infected pigs, 

hyperaemic mucosae in the fundic portion of the stomach have been described in a 

small number of animals [68]. 
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4.5.2 Microscopic lesions 

Microscopic changes during a B. hyodysenteriae infection are hallmarked by several 

changes in the colonic crypts [68,69]. During the first days of clinical signs, mucus 

glands of infected animals are dilated, followed by depletion of mucus in the Goblet 

cells at the base of the colonic crypts. In a later stage the number of Goblet cells 

increases rapidly [20,65], markedly increasing the depth of the colonic crypts as shown 

in figure 5.  

 

Figure 5: HE staining of a colonic tissue from a healthy pig (left panel) and from a pig experimentally 

infected with B. hyodysenteriae (right panel) 

At the surface epithelium of the colon, necrosis is first restricted in shallow erosions, 

evolving into larger plaques of erosion which are covered with mucus and fibrin, 

sometimes forming thick diphteric membranes [68]. Capillaries lying beneath eroded 

epithelium can be dilated or ruptured, initiating streams of free blood into the colonic 

lumen [69]. The lamina propria of the mucosa appears congested and oedematous 

and infiltrates of mononuclear leukocytes and some neutrophils can be found in the 

lamina propria and submucosa.  

B. hyodysenteriae can be visualised using a Warthin-Starry stain or Fluorescent In Situ 

Hybridisation (FISH) [16]. Although the Warthin-Starry stain is not specific for 

B. hyodysenteriae, the bacteria can be recognized due to their characteristic 

morphology (figure 6). 
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Figure 6: B. hyodysenteriae in colonic crypt of pig with SD, Warthin-Starry stain. Arrow: spirillic form of 

B. hyodysenteriae 

4.6. Host response 

Several changes in the immune system of the host are detected during a 

B. hyodysenteriae infection. Changes in the structural components of the mucus lining 

the colonic epithelium can be observed, as well as systemic and local changes in 

cellular and humoral immunity.  
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4.6.1 Colonic mucus layer 

The mucus lining the colonic epithelium forms a barrier between potential pathogens 

in the gut lumen and the tissue of the host. The proteins in the mucus layers are 

composed of mucins. Mucins are large glycoproteins that can be divided in two 

categories: cell surface mucins that are anchored in the epithelial cells of the colon, 

and secreted, gel-forming mucins [213].  

The mucins present in the porcine colon mucus layer are the cell-surface mucins mucin 

1 (MUC1) and mucin 4 (MUC4), and the gel-forming mucin 2 (MUC2) that is secreted 

by Goblet-cells. It has been demonstrated that the colon of pigs infected with 

B. hyodysenteriae shows a decrease in MUC4-expression, and an increase in MUC2 

and mucin 5ac (MUC5AC) expression [154,213]. MUC5AC is a gel-forming mucin that 

is absent in the colon mucus layer of healthy pigs but present in the small intestine and 

gastric mucus layer [95]. It should be noted that in the study describing MUC5AC in 

the small intestine antibodies directed against human and not porcine MUC5AC were 

used in the staining methods. An upregulation of MUC5AC is also seen in response to 

Shigella dysenteriae infections in a rabbit ileal-loop model and in human cell lines in 

vitro [155,156], and in mice as a response to infection with the nematode Trichuris 

muris [58]. The role of the MUC4 down-regulation or MUC2 and MUC5AC up-

regulation during a B. hyodysenteriae infection is not known.  

4.6.2 Immune response 

During a B. hyodysenteriae infection in swine several changes can be detected in the 

peripheral blood. Coinciding with the onset of clinical signs of SD, elevated levels of 

circulating monocytes and T-cells are observed. Numbers of one specific subtype of 

T-cells are elevated in particular; CD4+CD8+ T-cells [86]. This subset of T-cells are 

regarded as memory/effector T-cells in swine, and during B. hyodysenteriae infection 

this subset is found also in large clusters in the lamina propria of the colon [65]. It has 

been demonstrated that these CD4+CD8+ T-cells can proliferate or produce IFNγ in 

reaction to antigen recall [205]. By producing IFNγ, CD4+CD8+ T-cells stimulate 

macrophage phagocytosis. The CD4+CD8+ T-cells also produce IL-10 which enhances 

growth, activation and differentiation of B-cells and thus stimulates local antibody 

production [86].  

Local IgA and IgG antibodies can be detected in colonic washings and in faeces of 

experimentally infected pigs. It has been demonstrated that the IgG present in the 
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intestine is serum derived, while intestinal IgA is actively secreted locally [161,160]. 

Serum antibodies can be detected from 2-4 weeks after experimental inoculation with 

B. hyodysenteriae, which implies they generally appear after clinical symptoms have 

developed. Serum antibodies can be detected up to 8-10 weeks post infection with a 

peak at 4-7 weeks post infection [82,160]. In the serum IgG, IgM and IgA are present 

and the levels of antibodies present in the serum vary substantially between individual 

pigs. High levels of serum antibodies however, do not seem to be related to protection 

against subsequent infection. This indicates that humoral immunity, at least solely, is 

not enough to confer protection in the colon against development of SD [82,161].  

4.7 Diagnosis 

4.7.1 Clinical presentation and differential diagnosis 

In cases of acute clinical outbreaks with severe bloody and/or mucoid diarrhoea, a 

B. hyodysenteriae infection might seem obvious. In endemically affected farms less 

typical disease signs may be present, such as non-bloody diarrhoea, weight loss, and 

poor growth. When these less typical clinical signs are present differential diagnosis 

should include Lawsonia intracellularis, Brachyspira pilosicoli, Salmonella, haemolytic 

Escherichia coli, and in some regions Trichuris suis infections [48,133,198].  

4.7.2 Histopathology 

On necropsy, a diffuse or patchy mucohaemorrhagic colitis can be indicative of a 

B. hyodysenteriae infection. Spirochetes can morphologically be suspected on 

Warthin-Starry staining as described above. B. hyodysenteriae can be identified more 

definitively in situ using specific probes for FISH [79,214]. 

4.7.3. Sampling 

Colonic content, faecal samples or rectal swabs can be used for detection of 

B. hyodysenteriae. Samples for culture are preferably processed within 48 hrs after 

collection and should be held at 4°C until processing. Swabs in Amies medium were 

reported to produce good results without decrease in sensitivity for culturing up to 3 

weeks after sampling when kept at 4°C [41]. Pooling of faecal samples was reported 

to have no negative influence on sensitivity of culturing [41]. It should be noted that this 

was only demonstrated in one study, and only for samples of clinically ill animals. 
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An optimal sampling protocol to detect carrier animals has not been indisputably 

described. The within-herd prevalence of B. hyodysenteriae in clinically healthy 

animals has been demonstrated to vary substantially ranging from 0-5% [32] in a 

multiplier herd in the USA to 25% in a multiplier herd in Switzerland [115]. Due to the 

lack of a gold standard method of detection of B. hyodysenteriae in carrier animals, 

and the low number of herd investigated for within-herd prevalence, the question of 

how many animals in a herd should be sampled to obtain a reliable result remains 

difficult to answer. Since the number of B. hyodysenteriae is higher in samples of 

colonic contents compared to faecal samples, colonic sampling at the abattoir could 

increase the probability of detection to some extent [52].  

4.7.4 Culture conditions 

For culturing of B. hyodysenteriae selective media are required, in which antimicrobial 

compounds inhibit the growth of bacteria that are part of the colonic or faecal flora. 

Several selective media have been described. Jenkinson and Wingar described a 

colistin-vancomycin-spectinomycin-blood-agar (CVSBA) which consists of tryptone 

soy agar supplemented with 5% sheep blood, 25 µg/ml colistin, 25 µg/ml vancomycin, 

and 400 µg/ml spectinomycin [75]. Kunkle and Kinyon described a selective medium 

named BJ consisting of tryptone soy agar, 5% pig faeces extract, 5% bovine blood, 25 

µg/ml spiramycin, 12.5 µg/ml rifampin, 6.25 µg/ml vancomycin, 6.25 µg/ml colistin and 

200 µg/ml spectinomycin [103]. Several variations of the described media have been 

used [22]. For example the addition of flavomycin to the CVSBA medium could be 

useful in regions where a high incidence of resistance is reported for the normal 

intestinal microbiota [118]. Cultures are incubated at 37°C–42°C for 2 to 10 days under 

anaerobic conditions. If B. hyodysenteriae is present a thin smear of growth 

surrounded by haemolysis can be observed. As soon as a haemolytic pattern is 

observed the thin smear can be subcultured for purification. 
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Figure 7: weak haemolysis (left panel) and strong haemolysis (right panel) on TSA agar supplemented 

with 5% sheep blood. 

4.7.5 Phenotypic characterization 

Pure cultures of Brachyspira can be further identified up to species level by phenotypic 

characterization. Phenotypic characterization is based on the strength of haemolysis 

as shown on blood containing agar plates, indole production and the presence or 

absence of several enzymes: hippurate hydrolysis, α-galactosidase, α-glucosidase 

and β-glucosidase. Based on these phenotypic characteristics, Brachyspira isolates 

have been allocated into four biochemical groups [39,64]. The four biochemical groups 

and characteristics are given in Table 2. The biochemical classification was linked to 

species delineation, based on differences in 16S rRNA sequences [40]. 

It must be noted that the discovery of the novel strongly haemolytic Brachyspira 

species B. suanatina and B. hampsonii has hampered the species identification by 

phenotypic characterization, since both species share most phenotypic characteristics 

with B. hyodysenteriae. Numerous strains of B. murdochii and B. pilosicoli with 

exceptional phenotypic characteristics have been reported, rendering the phenotypic 

species determination far less conclusive [43,199].  
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Table 2: Original phenotypic characterization scheme of Brachyspira sp. 

Bio-

chemi-

cal 

group 

β-hemo- 

lysis 

Indole 

produc-

tion 

Hippur-

ate 

hydro-

lysis 

α-galactosi-

dase 

α-glucosi-

dase 

β-glucosi-

dase 

Proposed 

species 

I  strong +/-* - - + + B. hyodys-

enteriae 

II  weak + - - + + B. intermedia 

IIIa  weak - - - - + B. murdochii 

IIIb  weak - - + - + B. innocens 

IIIc  weak - - + + + B. innocens 

IV  weak - + + - - B. pilosicoli 

* isolates positive for indole as well as isolates negative for indole have been described 

4.7.6 Genotypic identification 

Genetic based identification methods have been developed for the identification of 

Brachyspira species. For most pig related Brachyspira species there is substantial 

sequence homology of 16s rRNA, making this gene inappropriate for species 

differentiation. B. pilosicoli forms an exception since this species is more genetically 

distant from the other species. Two genes proved to be more genetically different 

between the Brachyspira species: 23S rRNA and the NADH oxidase gene (nox). 

Polymerase chain reaction (PCR) assays based on the detection of these two genes 

have been described [114,149]. For specific identification of B. hyodysenteriae, a PCR 

based on tlyA, a haemolysis associated gene, has been described as well [41,157].  

Several duplex or multiplex (q)PCRs have been described for simultaneous detection 

of multiple species: La et al. described a duplex PCR detecting B. pilosicoli and 

B. hyodysenteriae [104]. Song et al. described a multiplex qPCR detecting 

B. intermedia, B. pilosicoli, and B. hyodysenteriae [179]. Willems et al. described a 

multiplex qPCR detecting Lawsonia intracellularis, B. pilosicoli and B. hyodysenteriae 

[216]. Several multiplex qPCR assays are also commercially available.  

Rohde et al. described a Restriction Fragment Length Polymorphism (RFLP) assay 

based on the nox gene [164]. Using two restriction endonucleases, DpnII and BfmI, 

distinct restriction patterns can be obtained for B. hyodysenteriae, B. pilosicoli, 

B. intermedia, B. murdochii, B. suanatina and B. innocens. However, on a yearly basis 
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6-9% of isolates submitted for diagnostic purposes gave atypical restriction patterns 

and could not be identified to species level using this method [163]. 

Fluorescent in situ hybridization (FISH) has been described for detection of 

B. hampsonii and B. hyodysenteriae in formalin-fixed tissues. Probes for both species 

are based on the 23S rRNA gene. FISH using these probes can also be applied to 

detect both species in formalin fixed faeces, which shortens the time of detection in 

comparison with the application on tissues [16,21]. 

4.7.7 Matrix–assisted laser desorption/ionization time-of-flight mass spectrometry 

The last few years matrix–assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS) has made a new contribution in the identification of 

bacterial and fungal pathogens in human and veterinary medicine [13,175]. This 

technique has been explored to identify Brachyspira isolates to species level, both of 

animal and human origin. Using reference strains and strains from collections at 

diagnostic facilities that had previously been identified to species level using a 

combination of phenotypical characterization and nox based genetic characterization 

(RFLP and sequencing), databases for MALDI-TOF MS identification of Brachyspira 

sp. have been described. In general, high level of agreement was shown between 

MALDI-TOF MS identification and nox based identification for B. hyodysenteriae, 

B. pilosicoli, B. intermedia, B. innocens, B. murdochii, B. aalborgi, and B. alvinipulli 

[23]. However, some discrepancy was recorded for B. murdochii isolates (as specified 

by nox sequencing) that were ambiguously identified as B. murdochii/B. innocens by 

MALDI TOF MS [153]. B. suanatina has not been included in any database so far and 

although B. hampsonii could be identified, there was no agreement between the 

designation to clade I or II between MALDI-TOF MS analysis and nox sequencing 

[204].  

4.7.8 Strain typing methods  

To help understand epidemiological connections and to determine routes of 

transmission, strain typing methods for B. hyodysenteriae have been developed. Multi 

locus sequence typing (MLST) for B. hyodysenteriae is based on seven house-keeping 

genes; alcohol dehydrogenase (adh), alkaline phosphatase (alp), esterase (est), 

glutamate dehydrogenase (gdh), glucose kinase (glp), acetyl-CoA acetyltransferase or 

thiolase (thi), and phosphoglucomutase (pgm) [159]. This MLST scheme has a high 
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discriminatory power and has provided evidence that two or three distinct strains, with 

different sequencetypes, can be present at one farm. The presence of different strains 

on one farm could influence the outcome of control measurements, since these strains 

may differ in their biological properties, such as their antimicrobial resistance [106]. A 

database containing MLST data from B. hyodysenteriae, B. intermedia and 

“B. hampsonii” has been installed: http://pubmlst.org/brachyspira/ [85]. 

Since MLST is relatively expensive and not routinely used in diagnostic veterinary 

laboratories, a more economical strain typing method has been pursued as well. Based 

on the presence of multiple loci in B. hyodysenteriae with variable number of tandem 

repeats (VNTRs), a multiple-locus variable-number tandem-repeat analysis (MLVA) 

scheme has been established. The MLVA scheme uses eight polymorphic loci and 

proved to show a high discriminatory power. In contrast to the strains typed by MLST, 

MLVA profiles seem to be stable within one farm. This could be due to the VNTRs 

being less prone to minor changes or by coincidence the strain collection used for 

MLVA analysis may not harbour different strains isolated from the same farm [60].  

4.7.9 Serology 

Identification of infected animals by detection of serum antibodies has been of interest, 

especially to identify carrier animals. Carrier animals are the most important source of 

infection for herds free of SD. Carrier animals are difficult to identify by demonstrating 

the presence of B. hyodysenteriae, either by culture of faecal samples or by PCR on 

DNA extracted from faecal samples, since both methods require a minimum amount 

of B. hyodysenteriae or its DNA to be present in the faeces. In herds without clinical 

SD there is not only a low prevalence of animals shedding B. hyodysenteriae but 

shedding of B. hyodysenteriae occurs intermittent and in low numbers [37,32]. 

Detection of circulating antibodies directed to B. hyodysenteriae would be a better 

strategy to determine the SD status of animals. It has been demonstrated that elevated 

antibody levels can maintain up to 150 days after experimental infection. This implies 

that collection of sera at slaughter could be used to determine the SD status of herds 

[178].  

Enzyme-linked immunosorbent assays (ELISA) for detection of serum antibodies 

based on different coating substrates have been described. ELISA’s based on LPS 

extracts from B. hyodysenteriae strains are of limited use since they only detect 

antibodies directed to the homologue serotype [84,127,177]. When hyperimmune sera 
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are tested, cross reactivity between serotypes is noted, but sera of orally infected 

animals do not show the same cross reactivity. However, LPS based ELISA’s have 

been proved to be quite useful in regions where one specific serotype of 

B. hyodysenteriae is dominant [102]. To circumvent serotype specificity, ELISA’s 

based on whole cell sonicates of B. hyodysenteriae strains have been described. 

Nevertheless, these ELISA’s show a positive reaction with sera of animals that have 

been infected or colonised by other Brachyspira sp. such as the non-pathogenic 

B. innocens [218].  

The use of surface expressed conserved proteins of B. hyodysenteriae as ELISA 

antigen could resolve the issues with low sensitivity for the LPS based ELISA’s and 

with false positive reactions in whole cell sonicate based ELISA’s. Up till now the 

surface protein Bhlp29.7 was postulated as a suitable antigen but was later shown to 

be cross-reactive with B. innocens [105]. Besides, the Bhlp29.7 gene was proven to 

be present in only 58% of the strains in a German B. hyodysenteriae collection [8]. 

Recently Song et al. described a reverse vaccinology approach to identify several 

membrane associated proteins that could be suitable as ELISA antigen [181]. 

Eventually one of these predicted proteins proved to reach complete specificity, and 

sustain an acceptable sensitivity (91.7%). Still, in order to reach 100% specificity, a 

cut-off value of five standard deviations above the mean of SD negative herds was 

necessary. This in fact might indicate that the SD negative herds that were used to 

determine the cut-off, were not truly negative which is a concern for the accuracy of 

this ELISA [181].  

4.8 Treatment and prevention 

4.8.1 Antimicrobial therapy 

Several antimicrobial products are registered for the treatment of SD. The most 

commonly used products are macrolides, lincosamides and pleuromutilins, which all 

interact with the protein synthesis of the bacteria. The most currently used antimicrobial 

products, their dosage and administration route are summarized in Table 3 [5].  

Before 1980, tylosin, lincomycin and carbadox were most frequently used to treat or 

prevent SD. B. hyodysenteriae strains resistant to tylosin and lincomycin were first 

reported in the seventies [134] and the percentage of resistant strains has increased 

up to 100% for lincomycin and >90% for tylosin in most countries. The pleuromutilins 
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tiamulin and valnemulin (available since 1979 and 1999 respectively) became the 

drugs of choice to treat SD in the early 2000’s due to increasing resistance against 

lincomycin and tylosin, and the ban of carbadox in general, and the ban of tylosin and 

virginiamycin as feed additives in 1999. During the last decade decreased 

susceptibility has been reported for tiamulin and valnemulin in several swine producing 

countries worldwide [61,117,130,151,171].  

Acquired antimicrobial resistance against pleuromutilins, lincosamides and macrolides 

in B. hyodysenteriae is based on vertical transmission of certain mutations in the 50S 

ribosomal subunit or so called peptidyl transferase centre. Tylosin and lincomycin 

resistance is initiated by a single point mutation in the 23S rRNA gene [87]. This 

mechanism of resistance has not been described for tylvalosin, and fewer isolates with 

acquired resistance against tylvalosin have been reported [61]. For the pleuromutilins 

decreased susceptibility has been linked to several point mutations in domain V of the 

23S rRNA gene, sometimes in combination with mutations in the L3 protein [62,152]. 
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Table 3: antimicrobial products for treatment of SD 

Antimicrobial 
class 

Drug Dosage Duration Administration 

10 mg/kg 
 

1-3 days intramuscular 

8 mg/kg 
 

5-7 days drinking water 

100 ppm 
 

7-10 days feed 

Valnemulin 3-4 mg/kg 
 

1-4 weeks feed 

10 mg/kg 
 

3-5 days intramuscular 

5-10 mg/kg 
 

5-7 days drinking water 

Tylvalosin 4.25 mg/kg 
 

10-14 days feed 

8 mg/kg 
 

1-10 days drinking water 

100 ppm until disappearance of 
clinical symptoms, followed by 
40 ppm 

feed 

 

For determination of Minimal Inhibitory Concentrations (MIC), agar dilution and broth 

dilution methods have been described [89,166]. In general, the broth microdilution 

method generates MIC values 1-2 twofold dilutions lower compared to agar dilution 

methods [131]. With regard to breakpoints several different criteria have been reported 

[130,33,151,166,18]. The need for internationally harmonized MIC determination and 

Clinical and Laboratory Standards Institute (CLSI) approved clinical breakpoints has 

been expressed by numerous authors [61,88,132]. Given the limited number of 

antimicrobial compounds that can be used to treat SD and the high prevalence of 

(multi-)resistant isolates, prudent use of the remaining antimicrobial compounds is 

warranted.  

4.8.2 Alternative treatments 

Due to decreasing susceptibility of B. hyodysenteriae against antimicrobial products, 

the use of several alternative treatments has been reported. Vande Maele et al. 

demonstrated the in vitro antibacterial effects for B. hyodysenteriae of several essential 

oil components and organic acids [202]. Lowest MIC values were reported for 

cinnamaldehyde and lauric acid. Feed supplements containing extracts of citrus fruits 



32 | P a r t  I  

 

 

have also been reported to have an antibacterial activity in vitro. Bactericidal 

concentrations of the products ranged from 0.05% [116] to 20-40 ppm [4], depending 

on the product.  

Probiotic bacteria have also been investigated for their antagonistic activities against 

B. hyodysenteriae. Porcine isolated strains of Enterococcus faecium, Bifidobacterium 

thermophilum and Bacillus subtilis were able to inhibit the growth of B. hyodysenteriae 

in vitro [97]. Lactobacilli L. rhamnosus and L. farciminis coaggregate with 

B. hyodysenteriae in vitro, trapping them in a physical network [11].  

4.8.3 Elimination protocols 

To eliminate SD from a herd several strategies can be applied, depending on the 

infrastructure of a farm. If the B. hyodysenteriae strain isolated from the farm is still 

susceptible to antimicrobial products, a medicated approach can be used in which 

specific units of a farm are emptied, cleaned and disinfected before medicated pigs 

are housed in those units [217]. However, careful selection of appropriate farms is 

crucial and financial benefits should be studied for each individual farm. If the 

B. hyodysenteriae strain isolated from the farm is resistant to antimicrobial products, 

complete depopulation/repopulation can be considered.  

4.8.4 Prevention 

Prevention should include management factors such as all-in/all-out management with 

adequate cleaning and disinfection. Since SD outbreaks can be associated with 

stressful conditions, management practices should be designed to minimize stressful 

circumstances. Introduction of SD through the purchase of carrier animals is a genuine 

risk. Therefore, replacement stock should be purchased from a herd with an 

ascertained history and should be kept in quarantine for at least three weeks [48]. 

During this time period faecal samples can be examined for the presence of 

B. hyodysenteriae. Although it has been demonstrated that the incubation period of 

B. hyodysenteriae can surpass this three week time-frame [48], a quarantine of three 

weeks is regarded as a good consensus. Next to implementation of adequate biosafety 

measures, the presence of rats and mice on a farm should be kept to an absolute 

minimum [6].  
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4.9 Vaccination 

Animals that have recovered from SD seem to have established an immunological 

response, since these animals can be protected from re-infection [82]. Therefore, a 

number of different vaccine approaches have been explored with regard to swine 

dysentery.  

4.9.1 Inactivated vaccines 

Several reports describe the use of whole cell bacterins [31,42,45,54,146] or protein 

digests of whole cell bacterins [205-207]. Some of these bacterins, administered 

intramuscularly or intravenously, induced partial protection, demonstrated by less 

animals developing clinical SD, or animals developing less severe symptoms of SD 

[31,42,45]. In contrast with this, Olson et al. (1994) described animals developing a 

more severe form of SD, with an earlier onset, after vaccination with an inactivated 

B. hyodysenteriae vaccine [146]. For most of these studies serum antibody response 

was the only immune response that was monitored, and serum antibody response was 

never correlated with the level of protection a certain vaccine could induce [31,45]. 

Waters et al. describe the increase of CD4+CD8+ T-cells and their ability to proliferate 

and produce IFNγ upon antigen-recall after vaccination with a pepsin-digested 

bacterin. However none of these immune response parameters of this study are 

correlated with the level of protection [207].  

A major downside of the use of inactivated whole cell bacterins is that they can only 

evoke protection against infection with a homologous serotype of B. hyodysenteriae. 

Autogenous vaccines are reported to have a beneficial effect on farm level (personal 

communication J. Osorio, 2016). However, no experimental data on autogenous 

vaccines for B. hyodysenteriae are available so far.  

Vaccination with recombinant proteins has been reported to induce variable levels of 

protection, depending on the selected protein. The use of a recombinant flaB1 flagellar 

protein could not reduce the number of pigs developing SD after challenge with a 

virulent B. hyodysenteriae strain [44]. A preparation of BmpB, an outer membrane 

lipoprotein, resulted in a 50% reduction in clinical SD [107]. Song et al. describe a 

reverse vaccinology approach to select proteins for use in a subunit vaccine [180]. 

They also report a reduction in number of animals developing clinical SD, albeit not 

significant. In the studies of La et al. [107] and Song et al. [180] serum antibody 
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response is monitored and the level of colonic IgA is determined once using colonic 

epithelial scrapings collected at necropsy. Neither serum antibody response nor 

colonic IgA would be correlated with the level of protection each vaccine induced. 

DNA vaccines based on ftnA, encoding a putative ferritin protein, or SmpB, encoding 

a protein with unknown function, failed to protect mice against challenge with a virulent 

B. hyodysenteriae strain [30,63]. The use of DNA vaccines for SD has not been 

investigated in pigs. 

4.9.2 Live attenuated vaccines 

A tlyA mutant strain of B. hyodysenteriae has been examined for its use as a live 

attenuated vaccine. The mutant strain was intragastrically delivered to pigs and a 50% 

reduction in the number of animals developing clinical SD upon homologues challenge 

was demonstrated. However, there was no reduction in the number of animals that 

was colonised by the challenge strain [71]. In the same study a heterologous challenge 

was carried out as well. No reduction in the number of animals that was colonized 

and/or showed clinical signs could be demonstrated for this heterologous challenge. 

The presence of serum or colonic antibodies was not determined in this study.  
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Swine dysentery caused by Brachyspira hyodysenteriae, is associated with substantial 

economic losses. Besides the economic impact of a clinical outbreak, the occurrence 

of B. hyodysenteriae in a herd affects pig trade, even in the absence of overt clinical 

signs. The definitive Brachyspira species identification, which is crucial in such cases, 

is hampered by the close genetic relatedness of pig associated Brachyspira sp., which 

can differ greatly in their pathogenic potential. Even within the species of 

B. hyodysenteriae, major differences have been reported with regard to pathogenicity 

between strains. The recent rise of new, pathogenic, initially non-typeable isolates and 

species of Brachyspira have further increased the need for better diagnostics of 

porcine Brachyspira species. From a clinical point of view, it would be even more 

helpful to identify the pathogenic potential of a clinical isolate, regardless of species 

identification. 

The classical treatment of swine dysentery consists of antimicrobial agents. Since 

acquired antimicrobial resistance is increasing in B. hyodysenteriae, the sole use of 

antibiotics can result in therapeutic failure. Moreover, the use of antimicrobials is of 

growing public concern as it favors the development and spread of antimicrobial 

resistance in pathogenic and commensal bacteria. However, there are currently no 

efficient alternatives to antimicrobials available to treat or prevent swine dysentery. An 

efficient vaccine would be an important tool to manage this disease.  

Therefore, the general scientific aims of this thesis were to identify virulence factors of 

Brachyspira spp. and their genetic background, which could be used to predict the 

pathogenic potential of strains or species using molecular techniques, and to evaluate 

the protective capacity of a B. hyodysenteriae strain with mutations for one of these 

virulence factors when used as a live attenuated vaccine.  

The specific scientific aims were  

1. To establish a strain collection of pig associated Brachyspira sp. and evaluate 

the robustness of routinely used diagnostic procedures to identify Brachyspira 

isolates to the species level. 

2. To evaluate the minimum inhibitory concentration (MIC) patterns of this strain 

collection, associate MIC phenotypes with relevant gene mutations, and to 

estimate strain diversity for this population. 
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3. To evaluate in vitro virulence factor differences between strains, identify the 

underlying molecular differences, and correlate this to the in vivo pathogenic 

potential of these strains. 

4. To determine the effect of immunization of pigs with an avirulent 

B. hyodysenteriae strain, on the spread of swine dysentery after challenge with 

a virulent B. hyodysenteriae strain.



  

 

 

  



 

 

 

 

 

  



  

 

 

 

 

 

 

Part III 

Experimental Studies 

 
1: First isolation of Brachyspira hampsonii from  

pigs in Europe 

 

2: Presence and mechanisms of acquired antimicrobial 
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3: Variation in hemolytic activity of Brachyspira 

hyodysenteriae strains from pigs 

 

4: An avirulent Brachyspira hyodysenteriae strain elicits 
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Abstract 

Swine dysentery in Europe is classically attributed to Brachyspira hyodysenteriae. 

However, other Brachyspira species have been increasingly associated with intestinal 

disorders in pigs. This case report describes the first diagnosis of a Brachyspira 

hampsonii infection in European pigs. In a routine quarantine monitoring protocol, two 

gilts were presented for necropsy, in which soft watery non-haemorrhagic colonic 

content was found. Microbial culture from the colonic content and from faecal samples 

revealed the presence of strongly haemolytic, ring-phenomenon positive spirochetes 

indicative for Brachyspira hyodysenteriae. A diagnostic commercial PCR could not 

confirm the presence of B. hyodysenteriae. Phenotypic characterisation and PCRs 

targeting the 16S rRNA, 23S rRNA, nox, hlyA and tlyA genes of different swine-related 

Brachyspira spp. were performed. Phylogenetic analysis of sequences of the partial 

nox and 16S rRNA genes and multi locus sequence typing demonstrated that the 

isolates in this case were B. hampsonii isolates. This case report shows that the 

diagnosis of infections caused by new, emerging Brachyspira species is not self-

evident and that the combination of microbial culture and PCR is recommended, 

completed with more extensive genotyping if necessary. 
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Case report: first isolation of Brachyspira hampsonii from pigs in Europe 

Introduction 

Infections with Brachyspira spp. in swine occur in most swine-rearing countries and 

can result in substantial economic losses. Of all swine-related Brachyspira spp. 

infections classical swine dysentery, caused by Brachyspira hyodysenteriae, results in 

the most severe clinical symptoms (eg. mucohaemorrhagic diarrhoea, weight loss, 

poor feed conversion). B. hyodysenteriae was first recognized as the cause of swine 

dysentery in 1971 [28]. At that time, the strong haemolysis of B. hyodysenteriae 

appeared indicative for pathogenicity since other, weakly haemolytic Brachyspira 

(formerly Serpulina, Serpula and Treponema) appeared to be commensal and were 

therefore named Brachyspira innocens [15]. Several reports of clinical disease caused 

by weakly haemolytic Brachyspira indicated that not all weakly haemolytic Brachyspira 

spp. were non-pathogenic for pigs [19,29]. Further research of these weakly 

haemolytic isolates including DNA-DNA hybridisation, resulted in the designation of 

three more weakly haemolytic species namely B. intermedia, B. murdochii and 

B. pilosicoli [27,30].  

These weakly haemolytic species of Brachyspira diverge in the severity of clinical 

symptoms they cause. B. pilosicoli is pathogenic and causes spirochaetal colitis in 

pigs, which is marked by non-haemorrhagic diarrhoea and a poor feed conversion. For 

B. intermedia and B. murdochii the pathogenic potential is less clear-cut. Although both 

species have been isolated from clinical cases of diarrhoea, the clinical symptoms are 

mild or absent in experimental infections and yet high numbers of spirochetes are 

necessary to cause an effect [12,13].  

Recently, a new type of Brachyspira infection has been described. Outbreaks of 

mucohaemorrhagic diarrhoea, caused by strongly haemolytic Brachyspira strains 

inconsistent with B. hyodysenteriae, were reported in the USA and Canada. 

Phylogenetic analysis of these strains showed such a large genetic divergence 

between those isolates and all other Brachyspira spp. that these isolates likely 

represent a novel species, for which the name Brachyspira hampsonii has been 

proposed [5]. The current case report describes, to the best of our knowledge, the first 

confirmed B. hampsonii infection in pigs outside North-America. 
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Materials and methods 

Two gilts, imported from the Czech Republic, were presented for necropsy in a routine 

quarantine monitoring protocol. General macroscopic findings consisted of a low body 

weight and dilated large intestines in which soft watery non-haemorrhagic colonic 

content was present. Histological examination of these large intestines was not 

performed. Microbial culture of the colonic content was performed on Tryptic Soy Agar 

(BD, Heidelberg, Germany) supplemented with 5% sheep blood (IMP, Brussels, 

Belgium), 0.1% yeast extract (Oxoid, Aalst, Belgium) and following antimicrobials: 

spectinomycin (200 µg/ml), spiramycin (25 µg/ml), rifampin (12.5 µg/ml), colistin (6.25 

µg/ml), and vancomycin (6.25 µg/ml) [9]. The microbial cultures revealed strongly 

haemolytic, ring phenomenon-positive spirochetes, indicative for B. hyodysenteriae 

[7,9]. Some of the pigs, housed in the same group as the two gilts presented for 

necropsy, showed mild semi-solid non-bloody and non-mucoid diarrhoea. From the 

next batch of gilts from the same origin, additional faecal samples were taken in the 

quarantine. Strongly haemolytic Brachyspira isolates, with ring phenomenon, were 

again found on microbial culture, whereas commercial diagnostic PCR analysis 

(Adiavet Brachy, Paris, France) did not confirm the presence of B. hyodysenteriae in 

these samples. All faecal samples were negative for Salmonella.  

Phenotypic characterisation tests were performed on pure cultures which were 

obtained by at least three subcultures on Tryptic Soy Agar (TSA) plates supplemented 

with 5% defibrinated sheep blood and 1% yeast extract [11]. Phenotypic 

characterisation was performed on 4-day old cultures and was based on beta 

haemolysis, indole production, hippurate hydrolysis and the presence or absence of α-

galactosidase, α-glucosidase and β-glucosidase [7]. Indole production was determined 

using a spot-indole test (Remel BactiDrop, Dartford, UK) and for the other biochemical 

characteristics commercial discs were used according to the manufacturer’s 

instructions (Rosco Diatabs, Taastrup, Denmark). Type strains of B. hyodysenteriae 

(ATCC 27164), B. pilosicoli (ATCC 51139) and B. innocens (ATCC 29796) were 

included to provide positive controls for all the phenotypic characteristics that were 

examined. 

Several species-specific PCRs were performed, based on the following genes: tlyA 

[22], 23S rRNA [17] and nox [16] for B. hyodysenteriae, nox [21] and 23s rRNA [17] for 

B. intermedia, 16S rRNA for B. pilosicoli [16] and nox for B. murdochii/B. innocens [1]. 
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Additionally, PCR’s were performed for the haemolysis related genes hlyA and hlyA-

ACP [2]. 

Forward primer 5’ TAGCYTGCGGTATYGCWCTTT 3’ and reverse primer 5’ 

GCMTGWATAGCTTCRGCATGRT 3’ were used to partially sequence the nox gene 

[32]. A product of 1014 base pairs was obtained. Forward primer  5’ 

GTTTGATYCTGGCTCAGARCKAACG 3’ and reverse primer 5’ 

CTTCCGGTACGGMTGCCTTGTTACG 3’ were used to partially sequence the 16S 

rRNA gene of which a 1044 base pair product was obtained [14]. Sequencing reactions 

were performed on purified PCR-product with the same primers as for PCR. Nox and 

16S rRNA sequences from other Brachyspira isolates were retrieved from GenBank 

and compared with the sequences of the described field case isolate (D52) by BLAST 

analysis.  

The sequences of the nox gene of the strain retrieved in this case report (D52), of 

B. hyodysenteriae, B. intermedia, B. murdochii and B. innocens ATCC type strains and 

of 42 additional strains of several Brachyspira spp. retrieved from GenBank were 

aligned using ClustalW. Sequences of clade I strain 30599 and clade II strain 30446 

of B. hampsonii were also included [26]. Phylogenetic analysis was performed with an 

alignment sequence fragment of 540 bp and Kimura distance calculation and 

neighbour-joining method were used.  

For multilocus sequence typing (MLST) primers and PCR conditions as described by 

Råsbäck and others [24] were used to analyse genes encoding alcohol dehydrogenase 

(adh), esterase (est), glutamate dehydrogenase (gdh), glucose kinase (glpK), 

phosphoglucomutase (pgm) and acetyl-coA acetyltransferase (thi). For each locus the 

sequence obtained from the D52 isolate was matched with the online MLSTdatabase 

(www.pubmlst.org/brachyspira). 

Results 

The phenotypic characteristics of isolate D52 corresponded to those of B. hampsonii 

as described by Chander and others [5]. The isolate was strongly beta haemolytic, 

indole negative, hippurate negative, negative for α-galactosidase and α-glucosidase, 

and positive for β-glucosidase. Although not exclusively, most isolates of clade I are 

positive for β-glucosidase as compared to clade II, in which most isolates are negative 

for β-glucosidase. 

http://www.pubmlst.org/brachyspira
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Table 1 shows the PCR results. Isolate D52 generated a positive result in the two 

species-specific PCRs for B. intermedia based on the 23S rRNA and nox gene 

respectively. Interestingly, the PCR targeting tlyA, presumed typical for 

B. hyodysenteriae, also generated a positive result. The PCRs for several haemolysis 

associated genes, hlyA and ACP(fabF-fabG), were positive as well. 

The nox sequence of isolate D52 (GenBank accession nr KF202498) showed a 

similarity of 100% over 547 basepairs with B. hampsonii type strain NSH-16T (ATCC 

BAA-2463 = NCTC 13792) [18], Besides, the nox sequence of isolate D52 showed a 

similarity of more than 99% over 874 basepairs with previously described isolates 

KC35 en EB106 (JX197410.1 and JX197409.1) [4]. These isolates, originally 

described as strongly haemolytic B. intermedia are recently referred to as B. hampsonii 

clade I (GenBank). With strain B. hampsonii 30599 (clade I, NZ_AOMM01000255.1) 

as described by Rubin and others [26], the nox sequence of our isolate showed a 

similarity of 99% over 1014 bp (difference of 2 nucleotides). The 16S rRNA sequence 

of isolate D52 (GenBank accession nr KF586484 ) showed a sequence similarity of 

99% over 1044 bp with B. hampsonii type strain NSH-16T. 
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Table 1: Primers used in PCRs and results for B. hyodysenteriae reference strain 

ATCC 27164, B. intermedia reference strain ATCC 51140 and the field case isolate 

D52. 

Target 
Gene 

Species-
specificity 

Primer 
name 

Primer Sequence 
(5’-3’) 

Result  
D 52 

Result 
ATCC 
27164 
B.hyodys- 
enteriae 

Result  
ATCC 51140 
B. intermedia 

hlyA Non- specific hlyAFo TCG ATG AAA TTA 
AAG ATG TTG TT 

positive positive positive 

  hlyARe TTT TTC TTG ATC 
TTC TTG AGG A 

   

ACP(fabF
-fabG) 

Non-specific ACPFo AGG IGA AGT IAT 
AGC IGT TGA CG 

positive positive positive 

  ACPRe GAA ACA CCA TTA 
AGI AIA TTA TCC 
CA 

   

23S B. hyodysenteriae Hyo23SFo CGG TAA GTG 
ATG TAC TTG 

negative positive negative 

  Hyo23SRe AGC CTC AAC CTT 
AAA GA 

   

nox B. hyodysenteriae HyonoxFo ACT AAA GAT CCT 
GAT GTA TTT G 

negative positive negative 

  HyonoxRe CTA ATA AAC GTC 
TGC TGC 

   

tlyA B. hyodysenteriae tlyAFo GCA GAT CTA 
AAG CAC AGG AT 

positive positive negative 

  tlyARe GCC TTT TGA AAC 
ATC ACC TC 

   

nox B. intermedia IntnoxFo AGA GTT TGA AGA 
CAC TTA TGA C 

positive negative positive 

  IntnoxRe ATA AAC ATC AGG 
ATC TTT GC 

   

23S B. intermedia Int23SFo CCG TTG AAG 
GTT TAC CGT G 

positive negative positive 

  Int23SRe CGC CTG ACA 
ATG TCC GG 

   

16S B. pilosicoli Pilo16SFo AGA GGA AAG TTT 
TTT CGC TTC 

negative negative negative 

  Pilo16SRe GCA CCT ATG TTA 
AAC GTC CTT G 

   

nox B. innocens/      
B. murdochii 

Innmurdno
xFo 

CCT GAA AGT TTA 
AAA GCT G  

negative negative negative 

  Innmurdno
xRe 

CGA TGT ATT CTT 
CTT TTC C  

   

 

Phylogenetic analysis of the nox sequence of isolate D52 and nox sequences of other 

Brachyspira spp. clearly place isolate D52 in the cluster of isolates comprising clade I 

of B. hampsonii (figure 1) 
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Figure 1: Phylogenetic tree based on the alignment (540bp) of the nox gene of Brachyspira spp. The 

alignment was created using CLUSTALW, distance calculation (Kimura) and neighbour joining using 

PHYLIP. Bootstrap values are indicated. Scale bar indicates 0,02 substitutions per site.  
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As described for B. hampsonii in previous studies three of the seven loci for MLST 

could not be amplified [5]. From the sequences of the 4 loci that could be amplified 

(est, pgm, glp and thi), none of them gave an exact match with known alleles in the 

MLST database. The thi sequence matched closest with allele 24 of “Serpulina sp. 

P280/1” (difference of 21 nucleotides) in accordance with the findings of Chander and 

others for B. hampsonii [5]. 

Discussion 

The results of the phenotypic characteristics, sequence comparisons, MLST and 

phylogenetic analysis based on the nox sequence, identify the D52 isolate as 

B. hampsonii clade I. To the best of our knowledge it is the first time that B. hampsonii 

isolates from porcine origin are described in Europe, although the isolate Serpulina sp. 

P280/1 in retrospect also may belong to B. hampsonii [19].  

The isolates of strain D52 obtained from the current field case, all contained the hlyA, 

tlyA and ACP (fabF,fabG) genes. HlyA is the protein responsible for the strong 

haemolysis in B. hyodysenteriae [10]. In order to adequately perform its actions, the 

hlyA gene has to be correctly placed between the accompanying fab-F and fab-G 

genes, coding for an ACP-reductase and –synthetase [34]. Although the presence of 

hlyA has been reported in some weakly haemolytic Brachysira spp. isolates, the fabF 

and fabG genes were in those cases absent, probably rendering the hlyA gene 

functionally inactive [2]. Another haemolysin, namely tlyA is consistently found in 

B. hyodysenteriae. Although it has also been twice reported in weakly haemolytic 

species [20,31], these sequences show low sequence similarity (82-83%) with tlyA of 

B. hyodysenteriae [2]. The presence of both these haemolysin encoding genes in the 

isolates in the current field case may be responsible for the strong haemolysis 

displayed by these isolates.  

Rubin and others could experimentally induce mucohaemorrhagic diarrhoea in swine 

when infected with a B. hampsonii strain 30446 [25]. The clinical signs were 

indistinguishable from swine dysentery. It should, however, be noted that the strain 

30446 clearly falls into the cluster II isolates of B. hampsonii whereas the strain from 

this case falls into cluster I as shown in the phylogenetic tree in figure 1. Although 

experimentally B. hampsonii strain 30599, which belongs to clade I, can induce severe 

clinical symptoms [6], the symptoms in this case report were rather mild. This could be 
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due to difference in pathogenic potential between strains of clade I or be related to 

Brachyspira colitis being a multifactorial disease. Environmental or nutritional factors 

may alter the severity of clinical signs. For example soy feed may deteriorate faecal 

consistency [8] and addition of distillers dried grains with solubles may lead to a faster 

development of swine dysentery [33].  

This case report and the recent case reports from Canada and USA indicate that new, 

emerging species of Brachyspira can be important in swine-rearing countries [3,25]. 

The results of the species-specific PCRs show that diagnosis of infections caused by 

these emerging species can be confusing. When diagnosis is solely based on microbial 

culture, all strongly haemolytic isolates will be reported as B. hyodysenteriae, whereas 

they could belong to B. hampsonii, B. suanatina or even other emerging Brachyspira 

species [3,5,23,25]. On the other hand, when diagnosis is entirely based on PCR, 

strongly haemolytic isolates inconsistent with B. hyodysenteriae could easily be 

missed. For now, the combination of microbial culture and PCR, complemented with 

sequencing if necessary, is presumably the most complete method for diagnosis of 

Brachyspira spp. infections.  
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Abstract 

Swine dysentery (SD) is an economically important disease for which antimicrobial 

treatment still occupies an important place to control outbreaks. However, acquired 

antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this 

study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 

30 recent Belgian B. hyodysenteriae isolates were determined using a broth 

microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the 

L3 protein encoding genes were sequenced to reveal mutations associated with 

acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning 

tree analysis of multi locus sequence typing of the isolates. 

For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not 

belong to the wild-type population and were considered to have acquired resistance. 

For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance 

to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates 

showing acquired resistance to lincomycin and both macrolides displayed the A2058T 

mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation 

in the L3 protein were present in both wild-type isolates and isolates considered to 

have acquired resistance. Multi locus sequence analysis revealed a previously 

undescribed clonal complex, with 4 novel sequence types in which the majority of 

isolates showed acquired resistance to all tested antimicrobial products.  

In conclusion, acquired antimicrobial resistance is widespread among Belgian 

B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can 

pose a threat to swine industry. 

 

 

 

 

 

Keywords: Swine dysentery, Brachyspira hyodysenteriae, Minimal Inhibitory 

Concentration, antimicrobial resistance, Multi Locus Sequence Typing 
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Presence and mechanisms of acquired antimicrobial resistance in Belgian 

Brachyspira hyodysenteriae isolates belonging to different clonal complexes 

Introduction 

Swine dysentery (SD) is an economically important disease in swine producing 

countries worldwide. The causative agent, Brachyspira hyodysenteriae 

(B. hyodysenteriae), was first described in the early 1970s [2, 33]. Before 1980, tylosin, 

lincomycin and carbadox were most frequently used to treat or prevent SD. 

B. hyodysenteriae strains resistant to tylosin and lincomycin were reported in the 

1970s [22] and the percentage of resistant strain has gradually increased since then 

in most countries. In Europe, the pleuromutilins tiamulin and valnemulin (available 

since 1979 and 1999, respectively) became the drugs of choice to treat SD in the early 

2000’s due to increasing resistance against lincomycin and tylosin, the ban of carbadox 

in general, and the ban of tylosin and virginiamycin as feed additives in 1999. During 

the last decade, acquired resistance has been reported for tiamulin and valnemulin as 

well in several swine producing countries worldwide [4, 17, 20, 27, 31]. 

Acquired antimicrobial resistance against pleuromutilins, lincosamides and macrolides 

in B. hyodysenteriae is caused by mutations in the 50S ribosomal subunit or so called 

peptidyl transferase centre [4, 5, 10, 28]. Tylosin and lincomycin resistance are initiated 

by a single point mutation in the 23S rRNA gene at a position corresponding to position 

2058 in Escherichia coli [10]. Since tylvalosin is generated by refermentation of tylosin, 

cross-resistance between those two antimicrobial agents is expected [9]. However, 

B. hyodysenteriae isolates showing high MICs for tylosin but belonging to the wild-type 

population for tylvalosin, have been described [4, 27]. For the pleuromutilins, acquired 

resistance has been linked to several point mutations in the V domain of the 23S rRNA 

gene, sometimes in combination with mutations in the L3 protein [4, 5, 28]. Acquired 

resistance for doxycycline is associated with a 16S rRNA gene mutation at a position 

corresponding to position 1058 in Escherichia coli [26]. This specific mutation has been 

associated with tetracycline resistance in other bacteria as well [24]. 

Acquired resistance in B. hyodysenteriae strains has been reported for strains isolated 

in Belgium in 1995-1996 and 2003 [6, 37]. The aim of this study was to determine the 

antimicrobial susceptibility pattern of more recent Belgian B. hyodysenteriae isolates. 

The possible gene mutations responsible for reduced susceptibility were investigated 
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and Multilocus Sequence Typing (MLST) was performed to determine any possible 

sequence type or clonal complex related MIC patterns.  

Materials and methods 

Brachyspira hyodysenteriae isolates and growth conditions 

A collection of Brachyspira hyodysenteriae isolates (n=30) was assembled at our 

facilities during 2010-2015. Fresh faecal samples were collected by swine 

veterinarians on farms with SD-like clinical signs, apart from strains D28 and 10cI 

which were isolated from pigs with mild diarrhoea as previously described [19]. 

Participating swine veterinarians collected two or three pooled faecal samples on each 

farm which were cultured within 24 hours after sampling on selective plates consisting 

of Trypticase Soy Agar (TSA) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 

5 % sheep blood (E&O Laboratories, Bonnybridge, UK), 1% yeast extract (Becton 

Dickinson, Franklin Lakes, NJ, USA), 25 µg/ml vancomycin, 400 µg/ml spectinomycin 

and 25 µg/ml colistin (all antimicrobial compounds from Sigma-Aldrich,St. Louis, MO, 

USA). Plates were anaerobically incubated at 38°C for 3-10 days. Isolates were 

purified by three to five subcultures on Trypticase Soy Agar (TSA) plates supplemented 

with 5% sheep blood and 1% yeast extract [8] and stored at -70°C in 300 µl of a 

medium consisting of 75ml horse serum (Thermo Fisher Scientific, Carlsbad CA, USA) 

and 25ml Brain Heart Infusion (BHI) broth (Bio-Rad, Hercules CA, USA) supplemented 

with 10% (w/v) glucose (Merck, Darmstadt, Germany) until further use.  

All isolates were phenotypically characterized by determination of beta haemolysis, 

indole production, hippurate hydrolysis and the presence of α-galactosidase, α-

glucosidase and β-glucosidase as described previously [1]. Three B. hyodysenteriae-

specific PCRs were performed, based on the: tlyA [29], 23S rRNA [16] and nox [13] 

genes. 

All isolates originated from different, non-related farms, except isolates M1 and M2, 

which originated from the same farm. M1 was isolated from faecal samples of finisher 

pigs, M2 was isolated from faecal samples of growing pigs.  

Antimicrobial susceptibility testing 

Six antimicrobial compounds were used in following concentration ranges: lincomycin 

(0.063-128 µg/ml), doxycycline (0.016-16 µg/ml), valnemulin (0.002-32 µg/ml), tiamulin 
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(0.002-16 µg/ml), tylosin (0.25-1024 µg/ml), and tylvalosin (0.016-128 µg/ml). Stock 

solutions of each compound were prepared according to the Clinical and Laboratory 

Standards Institute [7]. For determination of the Minimal Inhibitory Concentration (MIC) 

the broth dilution method as described by Karlsson et al. [11], was used with some 

modifications [35]. Serial dilutions of the antimicrobial products in BHI broth 

supplemented with 10% foetal bovine serum (FBS) were freshly prepared and 200 µl 

of each dilution was placed in wells of a 48-well cell culture plate (Greiner Bio-One, 

Frickenhausen, Germany). Plates filled with antimicrobial serial dilutions were 

transferred to an anaerobic cabinet (84%N2, 8% H2, 8% CO2). To each well 200 µl of 

B. hyodysenteriae inoculum was added. The inoculum for each strain was prepared by 

harvesting a 4-day old TSA plate into BHI broth supplemented with 10% FBS. Using a 

spectrophotometer, inoculum density was adjusted to contain 1 x 106 to 5 x 106 

Brachyspira/ml. The inoculated 48-well plates were incubated anaerobically at 37°C 

on a rotary shaker for 3 days. The MIC was determined as the lowest antimicrobial 

concentration at which visible growth was not observed.  

For each strain the MIC of all antimicrobial products was determined in three 

independent experiments, and when a difference of one dilution was found, the value 

that was obtained twice was retained. In each experiment, the MIC for type strain 

B. hyodysenteriae B78 (ATCC 27164) was determined as well. The MICs for this strain 

were compared with the quality-control range as proposed by Pringle et al. and MIC 

values were recorded only if the MICs of strain B78 were within those quality-control 

ranges [25]. For analysis of all MIC values, epidemiological cut-off values were used 

as proposed by Pringle et al.: doxycyline > 0.5 µg/ml, lincomycin > 1 µg/ml, tylosin > 

16 µg/ml, tylvalosin > 1 µg/ml, valnemulin > 0.125 µg/ml, tiamulin > 0.25 µg/ml [27]. 

Isolates were classified as multi-resistant if acquired resistance was demonstrated for 

at least one antimicrobial compound of all following classes: macrolides, lincosamides, 

tetracyclines, pleuromutilins. MIC50 and MIC90 were determined as the lowest 

concentration that inhibited the growth of 50% and 90% of the isolates. 

Point mutations possibly involved in resistance mechanisms 

In order to determine the presence of a G1058C mutation in the 16S rRNA gene, 

associated with acquired resistance for doxycycline, a 644 bp fragment was 

sequenced for all isolates. Primers were previously described by Verlinden et al. [35]. 

Additionally a 910 bp fragment of the 23S rRNA gene was sequenced using following 
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primers: Fo 5'-GAGAGGTTAGCGTAAGCGAAGC-3' and Re 5'-

GCTTCCCACTTAGATGCTTTCAG-3' as described by Hillen et al. (2014) to detect 

mutations that could be associated with acquired resistance for lincomycin, 

pleuromutilins or macrolide antimicrobial agents [5]. A portion of the L3 ribosomal 

protein encoding gene was sequenced as well, using the primers Fo 5'-

GGGTATGACAACAGTTTTCG-3' and Re 5'-GCTCCAGGTATAGAACCYTT-3' as 

described by Pringle et al., to detect mutations associated with acquired resistance for 

pleuromutilins [28].  

Multilocus sequence typing 

Multilocus sequence typing was based on the scheme developed earlier by Råsbäck 

et al. and performed with some modifications [30, 36]. Briefly, the following genes were 

sequenced: alcohol dehydrogenase (adh), alkaline phosphatase (alp), esterase (est), 

glutamate dehydrogenase (gdh), glucose kinase (glpK), phosphoglucomutase (pgm) 

and thiolase (thi). All sequences were matched with the online MLST database 

(http://pubmlst.org/brachyspira/). A minimal spanning tree was constructed using 

Bionumerics Software 7.6 (Applied Maths, Sint-Martens-Latem, Belgium). Clonal 

clusters were identified as sequence types sharing six or more loci using Bionumerics 

[31].  

Results 

Antimicrobial susceptibility 

The MICs of all tested antimicrobial agents are given in table 1. Using the 

epidemiological cut-off values proposed by Pringle et al., 56.7% of the tested isolates 

were considered to have acquired resistance for valnemulin and 53.3% for tiamulin 

[27]. For lincomycin 86.7% of isolates was classified as displaying acquired resistance, 

and for tylosin 80% of the tested isolates were considered to have acquired resistance. 

For tylvalosin this was 70% and for doxycycline 83.3%.  

For tylosin, a bimodal distribution of MICs was observed, in which the majority of 

isolates could either only be inhibited at the highest tested concentration, or could not 

be inhibited at all. Doxycycline exhibited a bimodal distribution as well, with the majority 

of isolates showing acquired resistance at a MIC of 1µg/ml, and a group of isolates 

without acquired resistance showing MIC values reaching from 0.032 µg/ml to 
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0.25 µg/ml. For the other tested antimicrobial compounds no clearly distinct 

populations were observed.  

The MIC50, MIC90 and the MIC range for each tested antimicrobial agent are given in 

table 2. For all the tested antimicrobial agents the MIC50 is above the wild type cut-off 

values as proposed by Pringle et al. [27]. 

 



 

 

Table 1. Minimal inhibitory concentration distribution for six antimicrobial compounds on 30 B. hyodysenteriae isolates. Isolates with 

acquired resistance according to epidemiological cut-offs are given in bold. Grey shading: concentration test range, light grey: below 

epidemiological cut-off, dark grey: above epidemiological cut-off.  
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Table 2: MIC50, MIC90, and MIC range of B. hyodysenteriae isolates of this study. 

Antimicrobial 
compound 

MIC50 (µg/ml) MIC90 (µg/ml) MIC range (µg/ml) 

Tiamulin 0.5 4 0.004-8 

Valnemulin 0.25 2 ≤0.002-8 

Tylosin >128 >128 2-≥1024 

Tylvalosin 4 16 ≤0.128-32 

Lincomycin 16 32 0.25-64 

Doxycycline 1 2 0.032-4 

 

Molecular mechanisms of resistance 

For doxycycline, all isolates with MICs higher than the cut-off value displayed the 

G1058C mutation in their 16S rRNA gene. Accordingly, four of five isolates with MIC 

values below the cut-off, displayed the wild-type sequence. The isolate that had a MIC 

of 0.25 µg/ml, surprisingly also harboured the G1058C mutation.  

The results of both MIC tests and molecular typing of the associated resistance 

mechanism for lincomycin, tylosin and tylvalosin are given in table 3. All isolates 

considered to have acquired resistance for lincomycin and both macrolides (n=20) 

displayed the A2058T mutation in their 23S rRNA gene. Seven isolates were 

considered to have acquired resistance against either lincomycin or tylosin, against 

tylosin and tylvalosin, or against lincomycin alone. Six of those isolates harboured the 

A2058T or A2058G mutation in their 23S rRNA gene. Isolate M7 harboured the wild-

type 23S rRNA gene sequence and had the N148S mutation in its L3 protein. Three 

isolates were fully susceptible for tylosin, tylvalosin and lincomycin. Two of those 

isolates showed the wild type sequence for the 23S rRNA gene and the L3 protein 

coding gene, while one isolate (10cI) possessed the A2058G mutation in its 23S rRNA 

gene. 
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Table 3: MIC values for lincomycin and macrolides, 23S rRNA and L3 mutations 

 MIC (µg/ml) 23S rRNA mutations  
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Isolates with acquired resistance for tylosin, tylvalosin and lincomycin 
M3 32 1024 8  T C    

M5 32 >1024 2  T C    

M6 32 >1024 2  T C    

M8 32 1024 4  T C    

M12 16 64 4  T C    

M13 4 1024 4  T  A   

M14 16 1024 4  T C    

D1 8 128 4  T   G2201T  

D2 16 512 4  T  A   

D3 32 1024 8  T  A   

D4 32 128 4  T   G2116A 
G2165T 

 

D5 8 256 2  T  A   

3bIII 16 512 4  T C    

4cI 8 1024 4  T C    

6bI 32 256 2  T     

8dII 64 >1024 16 A T   C2146T  

14bII 16 1024 4  T C   N148S 

22cI 16 >1024 32  T  C G2201C  

25cI 4 256 2  T     

62 32 >1024 32  T   G2116A N148S 

Isolates with acquired resistance for lincomycin and tylosin 

5aI 8 64 1  G    N148S 

15bI 16 512 1  T     

M11 8 128 0,5  T     

Isolates with acquired resistance for tylosin and tylvalosin 

M9 1 >1024 16  T    N148S 

Isolates with acquired resistance for lincomycin only 

M1 4 8 1  T  A   

M2 4 8 1  T  A   

M7 2 8 1      N148S 

Isolates susceptible for lincomycin, tylosin and tylvalosin 

10cI 1 2 0,5 A G     

49 1 2 <0,125       

D28 0,25 2 <0,125    A T2402C 
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For the pleuromutilins, the MIC values and 23S rRNA gene and L3 protein coding gene 

mutations are given in table 4. Eighteen isolates were considered to have acquired 

resistance for both pleuromutilins. In four of these isolates (M9, M7, 14, and 62) there 

was an Asparagine – Serine amino-acid change at position 148 of the L3 protein 

(according to B. pilosicoli numbering). In another four isolates either no additional 

mutations were detected in the 23S rRNA gene (15bI, 49) or mutations occurred (D1, 

D4) at positions quite distant from the peptidyl transferase centre. Seven resistant 

isolates harboured a T2528C mutation in their 23S rRNA gene. A G2535A/C mutation 

could be detected in susceptible as well as resistant isolates. These nucleotides at 

position 2528 and 2535 form an adjacent base-pair as depicted in figure 1. 

Twelve isolates showed MICs below the epidemiological cut-off value of 0.125 µg/ml 

for valnemulin and 0.25 µg/ml for tiamulin [27]. Isolate 5aI showed the Asparagine – 

Serine amino-acid change at position 148 of the L3 protein. One isolate harboured the 

T2528C mutation (M14). Three isolates showed no additional mutations, two 

harboured the G2032A mutation, and two isolates showed mutations in positions quite 

distant from the peptidyl transferase centre (larger central loop in figure 1).  
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Table 4: MIC values for pleuromutilins, 23S rRNA and L3 mutations 

 MIC (µg/ml) 23S rRNA mutations  
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Isolates with acquired resistance for tiamulin and valnemulin 

22cI 8 8  T  C G2201C  

M5 4 4  T C    

M6 4 4  T C    

M8 1 2  T C    

M3 1 1  T C    

D3 1 0.5  T  A   

15bI 4 0.5  T     

M7 1 2      N148S 

49 2 2       

M9 0.5 2  T    N148S 

3bIII 0.5 1  T C    

4cI 0.5 1  T C    

M12 0.5 0.5  T C    

D5 0.5 0.25  T  A   

Isolates with acquired resistance for valnemulin only 

14 0.125 0.5  T    N148S 

D1 0.125 0.25  T   G2201T  

Isolates with acquired resistance for tiamulin only 

D4 1 <0.002  T   G2116A 
G2165T 

 

62 0.5 0.125  T   G2116A N148S 

Isolates susceptible for valnemulin and tiamulin 

M11 0.125 0.125  T     

M13 0.064 0.25  T  A   

8dII 0.063 0.016 A T   C2146T  

10cI 0.031 0.032 A G     

M1 0.016 0.016  T  A   

M2 0.016 0.016  T  A   

M14 0.016 0.004  T C    

D2 0.016 0.002  T  A   

6bI 0.016 <0.002  T     

5aI 0.008 <0.002  G    N148S 

D28 0.004 0.016    A T2402C  

25cI 0.004 <0.002  T     
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Figure 1:. B. hyodysenteriae 23S rRNA secondary structure, including peptidyl transferase loop (central 

larger loop). Numbering according to E. coli. Structure modified from E. coli structures from the 

comparative RNA website: http://www.rna.ccbb.utexas.edu/. The rhombi indicate positions where 

mutations are demonstrated in multiple isolates. 

Multilocus sequence typing 

All seven genes could be sequenced for the isolates of the current collection. Ten 

isolates showed previously deposited sequence types (ST). Seven of these isolates 

shared ST8. Sequence types ST 60, ST 112, ST 132 were each detected once. Those 

sequence types have all been described in European countries. Sequence type 8 has 

been reported to be a dominant isolate in Spain [23] and it has also been found in the 

UK, Italy, Serbia and Germany [14, 31, 32]. Sequence types 132 and 112 have been 

found in Germany [15]. Sequence type 60 has been reported from a mallard in Sweden 

[14].  

All other profiles detected here represented new sequence types but had four to six 

loci in common with already existing profiles in the pubMLST database. All isolates 

http://www.rna.ccbb.utexas.edu/
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have been deposited in the pubMLST database and sequence type numbers have 

been assigned (supplementary table S1, some were described in Mahu et al. (2016) 

[19]).  

A minimum spanning tree based on MLST typing showing isolates and their 

pleuromutilin susceptibility pattern is given in figure 2. The same tree, colour coded for 

the total number of antimicrobial compounds an isolate shows acquired resistance for, 

is given in figure 3. 

 

Figure 2: Minimal spanning tree analysis based on MLST typing showing strains and their susceptibility 

pattern for pleuromutilins. Green isolates are susceptible for both of the tested pleuromutilins, red 

isolates were considered to have acquired resistance for both pleuromutilins, orange for tiamulin, and 

purple for valnemulin. Grey shading defines a clonal cluster in which isolates have at least six loci in 

common with another isolate in the complex. Single locus variants are connected by dark bold lines, 

double locus variants by thin lines, and variants with three or more different loci with dotted lines.  
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Figure 3: Minimal spanning tree analysis based on MLST typing. Colour codes for the number of 

antimicrobial substances an isolate shows acquired resistance for. Grey shading defines a clonal cluster 

in which isolates have at least six loci in common with another isolate in the complex. Single locus 

variants are connected by dark bold lines, double locus variants by thin lines, and variants with three or 

more different loci with dotted lines. 

 

Ten isolates formed a clonal complex, depicted in grey shading in figure 2 and 3. Eight 

of these isolates were considered to have acquired resistance for both pleuromutilins. 

Two isolates were considered to have acquired resistance for tiamulin only, but the 

MIC value for valnemulin of isolate 62 was 0.125 µg/ml, thereby reaching the 

epidemiological cut-off value. All isolates in this cluster also showed acquired 

resistance for doxycyline, lincomycin and the macrolides, designating the isolates in 

this cluster multi-resistant (figure 3).  
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Discussion 

The MIC50 and MIC90 values recorded for lincomycin, tylosin and tylvalosin of this set 

of Belgian field isolates are comparable to those recently recorded in most other 

European countries (supplementary table S1). Earlier MIC studies regarding Belgian 

isolates have been conducted on field isolates from 1995-1996 [6] and field isolates 

from 2003 [37]. Those earlier Belgian studies used agar dilution to determine MIC 

concentrations instead of broth microdilution methods. Due to the different methods 

used for MIC determination, results from earlier Belgian studies and our results were 

not statistically compared. However, taking into consideration that on average MIC 

values are one dilution lower in broth microdilution procedures compared to agar 

dilution procedures [21], a trend towards increased pleuromutilin MICs can be 

observed, as MIC50 and MIC90 for the pleuromutilins have noticeably increased since 

the earlier studies (supplementary table S2). Tylosin MIC50 and MIC90 were already 

high in the nineties, and remain on that level. Lincomycin MIC50 and MIC90 seem 

slightly lower for the isolates of this study, but are still above the epidemiological cut-

off value, proposed by Pringle et al. [27]. 

Interpretation of MICs against B. hyodysenteriae is hampered by the lack of Clinical 

and Laboratory Standards Institutes (CLSI) approved clinical breakpoints. Here, the 

microbiological or epidemiological criterion was used and the epidemiological cut-off 

values as proposed by Pringle et al. were applied [27]. This criterion allows 

distinguishing wild-type populations of bacteria from those with acquired resistance 

[34]. For tylosin and, to a lesser extend for doxycycline, a clear bimodal distribution of 

MICs was observed, indicating acquired resistance in isolates in the higher range of 

MIC values. For all these isolates, MICs of tylosin or doxycycline were higher than the 

epidemiological cut-off values proposed by Pringle et al. [27], providing further 

evidence that they do not belong to the wild-type population. No clear bimodal but 

rather an extended frequency distribution range was seen against the other antibiotics 

tested here, making interpretation of the results more difficult. 

For doxycycline the G1058C 16S rRNA gene mutation is a well described causal 

mutation for acquired resistance. The isolates investigated here corroborate this, 

except one isolate (M2) harbouring the mutation while it was considered to belong to 

the wild-type population for doxycycline. Isolate M2 originated from a farm where M1 

was isolated as well. These two isolates share the same sequence type, and have 
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identical 23S rRNA gene and 16S rRNA gene sequences. Presumably these isolates 

represent one strain. A possible explanation for the discrepancy between the MIC 

value of M2 for doxycycline and the G1058C mutation in its 16S rRNA gene, could be 

that this isolate developed acquired resistance on the farm and that the isolate was a 

mixed culture of susceptible and resistant B. hyodysenteriae.  

For the macrolides and lincomycin, acquired resistance has been described to be 

caused by a single mutation at the 2058 position of the 23S rRNA gene. In accordance, 

all isolates in this study with increased MIC values for both macrolides and lincomycin 

harboured the A2058T mutation. Three isolates harboured the A2058T/G mutation, 

showed acquired resistance for lincomycin and tylosin, but had MIC values one or two 

dilutions below the cut-off value for tylvalosin. Such isolates have previously also been 

described in Spain [4]. This might indicate that there is no complete cross-resistance 

between tylosin and tylvalosin, which are both 16-membered ring macrolides. 

Alternatively, the epidemiological cut-off value for tylvalosin used here might have been 

set too high. 

For the pleuromutilins, the genetic mechanism of acquired resistance is less clear. 

Pringle et al. identified that laboratory derived mutants with an increased MIC of 

tiamulin, possessed mutations in their ribosomal L3 protein coding gene, or in the V 

domain of their 23S rRNA gene [28]. The nucleotide mutation in the L3 protein coding 

gene, causing a Asparagine–Serine amino acid substitution at position 148 (N148S) 

has been linked with pleuromutilin resistance by several authors [4, 5, 28]. In our 

isolates this amino acid substitution was found in five isolates. Four of those had MICs 

above the epidemiological cut-off values, but one isolate (5aI) was considered to 

belong to the wild-type population for both pleuromutilins. 

For the 23S rRNA gene, the mutation G2535A was first described to have no influence 

on the susceptibility for pleuromutilins due to its position, quite distant from the peptidyl 

transferase centre on the one hand (fig 2), and its presence in both resistant and 

susceptible isolates on the other hand [4]. In contrast with this, Hillen et al. described 

a significant correlation between the presence of the G2535A mutation and lower MICs 

for pleuromutilins [5]. In particular in isolates which were expected to have a high MIC 

due to the presence of an Asparagine – Serine amino-acid change at position 148 of 

the L3 protein, the G2535A mutation would subsequently lower the MIC value. In the 

isolate collection of our study, the G2535A mutation is present in susceptible and 
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resistant isolates, and never simultaneously with a N148S mutation in the L3 protein. 

Therefore the results for the isolates in our collection neither confirmed nor 

contradicted these findings. 

In our isolate collection, the adjacent nucleotide of 2535, T2528 (figure 1) was often 

mutated into a C, mainly in isolates considered to have acquired resistance for 

lincomycin, macrolides and pleuromutilins. This mutation has not been linked to 

pleuromutilin resistance in B. hyodysenteriae before. Since it has been stipulated that 

a mutation in G2535 influences susceptibility for pleuromutilins, it seems likely that a 

mutation in the adjacent nucleotide (figure 2) may influence pleuromutilins 

susceptibility as well. It might be of interest to conduct chemical footprinting 

experiments for mutations in these two adjacent nucleotides to investigate the 

influence of these nucleotides on the binding of pleuromutilins to the peptidyl 

transferase centre [28]. 

The G2032A mutation was found in the majority of Spanish field isolates with high 

tiamulin MICs and was also observed in laboratory derived resistant strains [4, 28]. In 

our subset of strains however, this G2032A mutation only occurred in pleuromutilin 

susceptible strains (8dII, 10cI). In our isolates, the C2146T mutation was found in an 

isolate susceptible for pleuromutilins. This is in accordance with the findings of Hidalgo 

et al. who found this mutation in susceptible and resistant isolates and considered this 

mutation to be located too far from the peptidyl transferase centre to influence 

susceptibility for pleuromutilins [4]. Mutations in the 23S rRNA gene at positions 2055, 

2447, 2504 and 2572 were demonstrated in laboratory selected isolates with high 

pleuromutilin MICs and it has been demonstrated by antibiotic footprinting experiments 

on mutant ribosomes that these mutated ribosomes have a reduced binding affinity for 

pleuromutilins [18, 27]. None of these mutations were present in our isolates, and have 

not yet been demonstrated in any field isolates to the best of our knowledge.  

The sequence types that were found in the current Belgian isolates mainly consist of 

sequence types that have not been previously described. Sequence type 8 however, 

is found in a variety of European countries, and was present among our isolates 7 

times as well. Minimal spanning tree analysis of the multilocus sequence typing of the 

isolates of this study revealed the presence of a clonal complex in which the vast 

majority of the isolates showed acquired resistance for at least one of the 

pleuromutilins. Since the isolates in this cluster also showed acquired resistance for 
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doxycyline, lincomycin and the macrolides, this cluster harboured multi-resistant 

isolates. The existence of multi-resistant clonal complexes can pose a threat to the 

swine industry. 

Conclusions 

A high frequency of acquired resistance was demonstrated in Belgian field isolates of 

B. hyodysenteriae. For doxycyline, lincomycin and tylosin there was a quite clear link 

between acquired resistance and mutations in the 16S rRNA and 23S rRNA genes. 

For the pleuromutilins, the presence or absence of certain mutations in the 23S RNA 

gene and L3 protein coding gene were less clearly linked with acquired resistance. The 

current Belgian isolates mainly belonged to new sequence types of which four of them 

formed a newly described clonal complex. Ten of these isolates showed acquired 

resistance to the majority of the tested antimicrobial compounds, including the 

pleuromutilins.  
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Supplementary data 

Table S1: isolates used in this study, with their sequence types and alleles for the 

seven housekeeping genes of the MLST 

strain ST adh alp est gdh glpK pgm thi 

D1 171 2 11 8 5 10 2 6 

D2 8 2 2 3 12 11 1 3 

D3 210 2 11 28 1 11 2 21 

D4 211 2 11 28 1 10 2 21 

D5 112 2 11 3 10 10 11 3 

M1 8 2 2 3 12 11 1 3 

M2 8 2 2 3 12 11 1 3 

M3 212 2 11 28 12 10 2 21 

M5 212 2 11 28 12 10 2 21 

M6 211 2 11 28 1 10 2 21 

M7 173 2 13 3 6 10 2 21 

M8 211 2 11 28 1 10 2 21 

M9 8 2 2 3 12 11 1 3 

M11 215 2 11 7 5 10 2 3 

M12 211 2 11 28 1 10 2 21 

M13 8 2 2 3 12 11 1 3 

M14 8 2 2 3 12 11 1 3 

3bIII 167 2 11 3 1 10 2 21 

4cI 167 2 11 3 1 10 2 21 

5aI 60 2 7 3 6 12 2 3 

6bI 216 2 8 17 1 22 2 3 

8dII 8 2 2 3 12 11 1 3 

10cI 168 2 11 8 4 9 2 3 

14bII 217 2 7 3 10 9 2 6 

15bI 132 2 6 3 4 12 2 7 

22cI 173 2 13 3 6 10 2 21 

25cI 170 2 18 8 5 6 1 11 

49 173 2 13 3 6 10 2 21 

62 167 2 11 3 1 10 2 21 

D28 172 2 11 3 20 6 2 21 
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Table S2: MIC50, MIC90, and MIC range (all in µg/ml) of B. hyodysenteriae isolates from 

the last decade (upper half of the table), and of isolates previously isolated in Belgium 

(lower half of the table). 

 
 
Country 
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for following antimicrobial agents 

L
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o
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y
c
in

 

T
y
lo

s
in

 

T
y
lv

a
lo

s
in

 

T
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m
u

lin
 

V
a
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e

m
u

lin
 

D
o
x
y
c
y
c
lin

e
 

Germany 
2009-2012 
[3] 

16 
32 
1->128 

>128 
>128 
>128 

NA* 
 

4 
>16 
0.125-
>128 

2 
>4 
≤0.004-
>128 

NA 
NA 

Switzerland 
(2009-2015) 
[12] 

16 
32 
≤0.5-32 

128 
>128 
≤2->128 

4 
8 
≤0.125-8 

≤0.063 
0.125 
≤0.063-
0.125 

≤0.031 
≤0.031 
≤0.031-
0.063 

0.25 
1 
≤0.125-
2 

Spain 
2008-2009 

[4] 

16 
>64 
1->64 

>128 
>28 
16->128 

4 
16 
0.5->32 

1 
8 
≤0.063-
>8 

1 
4 
≤0.031->4 

NA 
 

USA  
2009-2014 
[20] 

16 
32 
≤0.5-
>64 

4 
>128 
≤2->128 

NA 
 

≤0.063 
0.25 
≤0.063-
>8 

≤0.031 
≤0.031 
≤0.031-2 

0.25 
1 
≤0.125-
4 

Belgium  
2010-2015 
This study 

16 
32 
0.25-64 

>128 
>128 
2->128 

4 
16 
≤0.125-
32 

0.5 
4 
≤0.004-8 

0.25 
2 
≤0.002-8 

1 
2 
0.031-4 

Belgium  
1995-1996 
[6] 

64 
>256 
≤1->256 

128 
128 
4->256 

NA 
 

0.063 
0.5 
≤0.031-2 

NA 
 

NA 
 

Belgium  
2003 
[37] 

64 
128 
≤2->128 

>128 
>128 
4->128 

NA 
 

0.125 
0.5 
≤0.031-2 

≤0.031 
0.125 
≤0.031-0.25 

NA 
 

*NA: not available 
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Abstract 

Brachyspira hyodysenteriae is the primary cause of swine dysentery, which is 

responsible for major economic losses to the pig industry worldwide. The haemolytic 

activity of 10 B. hyodysenteriae strains isolated from stools of pigs with mild to 

mucohaemorrhagic diarrhoea was compared and seven haemolysis associated genes 

were sequenced. Haemolysis induced by these strains varied from strong to near 

absent. One weakly haemolytic B. hyodysenteriae strain showed sequence changes 

in five haemolysis associated genes (tlyA, tlyB, haemolysin III, haemolysin activation 

protein and haemolysin III channel protein) resulting in amino acid substitutions. The 

occurrence of weakly haemolytic strains identifiable as B. hyodysenteriae should be 

taken into account in swine dysentery diagnostics. The presence of these strains may 

affect herd dysentery status, with great impact on a farms trading opportunities. 
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Variation in haemolytic activity of Brachyspira hyodysenteriae strains from pigs 

Introduction 

Swine dysentery (SD) is caused by the anaerobic spirochete Brachyspira 

hyodysenteriae and is an important intestinal disease in swine rearing countries. 

Clinical signs typically consist of mucohaemorrhagic diarrhoea. The economic losses 

on farm level can be substantial due to mortality, diminished growth rates, deterioration 

of feed conversion and costs of medical treatment [3]. The occurrence of 

B. hyodysenteriae in a herd may affect the trading of pigs with economic 

consequences, even in the absence of overt clinical signs. Diagnostics of herds for the 

presence of B. hyodysenteriae is usually done by examining pooled faecal samples for 

the presence of this micro-organism by microbial culture and/or PCR tests [36]. 

Besides B. hyodysenteriae, other Brachyspira species of varying virulence have been 

described in pigs. There has been an interest in putative virulence factors to help 

explain the differential pathogenic potential of these different Brachyspira spp. Possible 

virulence factors include motility, chemotactic capacities, lipopolysaccharide, 

haemolysin(s) and enzymes such as NADH oxidase [3, 41].  

The pronounced haemolysis of B. hyodysenteriae that is displayed by growth on blood 

agar plates has been considered a hallmark of its pathogenicity [20, 21]. Apart from 

B. pilosicoli, weakly haemolytic porcine Brachyspira spp. such as B. murdochii and 

B. intermedia are indeed regarded mildly or non-pathogenic. Although they have been 

isolated from clinical cases of diarrhoea [18], their pathogenic potential is less clear-

cut since experimental infections require large numbers of spirochetes and clinical 

symptoms are either mild or absent [30]. On the other hand, virulence of the recently 

described strongly haemolytic B. suanatina and B. hampsonii is considered to be 

similar to that of B. hyodysenteriae [8, 10, 29, 38, 40, 46]. 

Several reports describe the purification of haemolysin produced by B. hyodysenteriae 

[20, 21, 23]. Using purified haemolysin in an ileal-colonic loop model, microscopic 

lesions similar to those seen in natural cases of swine dysentery have been reproduced 

[25]. Four haemolysis associated genes have been defined: tlyA, tlyB, tlyC and hlyA 

[15, 28, 43]. The protein encoded by tlyA, haemolysin A, shows homology with pore 

forming haemolysins of several bacteria such as Mycobacterium tuberculosis [34, 47], 

and Treponema denticola [9]. These homologues and Haemolysin A also encompass 
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a conserved domain which is predicted to function as a rRNA methyltransferase [9]. 

TlyA negative B. hyodysenteriae mutants are less haemolytic and induce less severe 

lesions in mice and pigs compared to their wildtype [16, 42]. The TlyB gene encodes 

a Clp protease, and tlyC encodes haemolysin C. Both recombinant proteins were 

proven to show haemolytic and cytotoxic activity in vitro [43]. Bellgard et al. [6] describe 

that, in order to display a haemolytic phenotype, B. hyodysenteriae could need an acyl 

carrier protein (ACP) for acylation of toxins. Such an ACP is encoded for by hlyA. The 

fabF and fabG genes encode an ACP-reductase and synthase that presumably play a 

role in the lipidation of the HlyA protein [48]. Even though some weakly haemolytic 

Brachyspira spp. strains also contain the hlyA gene, it is probably not functional due to 

incorrect localization between the fab genes [5].  

In addition to previously described haemolysis related genes tlyA, tlyB, tlyC and hlyA-

ACP Bellgard et al. [6] found three possibly important additional genes when the whole 

genome sequence of reference strain WA1 was described: haemolysin III, haemolysin 

activation protein and haemolysin III channel protein genes. Haemolysin III 

(BHWA1_RS02195) [6], encompasses a conserved domain yqfA, a predicted channel-

forming protein of the haemolysin III family. Homologues of haemolysin III are found in 

several bacteria such as Bacillus cereus [35]. The haemolysin III related channel 

protein (BHWA1_RS09085) [6], has a conserved domain composing an integral 

membrane protein. The haemolysin activation protein (BHWA1_ RS02885) [6], shares 

conserved domains with haemolysin C.  

We previously mentioned the existence of B. hyodysenteriae strains with an aberrant 

haemolytic phenotype [27]. In 1982, Lysons et al. [26] isolated three strains of 

B. hyodysenteriae that were reported to appear slightly less haemolytic on blood-

containing agar plate than virulent strains of B. hyodysenteriae, though considerably 

more haemolytic than avirulent B. innocens. Disease signs could not be induced using 

two of these strains in an in vivo experiment, even when animals were colonized by 

the strain. Recently, Hampson et al., described the existence of weakly haemolytic 

B. hyodysenteriae strains in Australia as well [13]. The current study aims to quantify 

the haemolytic capacity of a selection of B. hyodysenteriae strains and to identify the 

underlying molecular differences.  
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Materials and methods 

Brachyspira isolate collection and selection 

A collection of isolates of different Brachyspira species was composed during a six 

month period (Oct 2011-March 2012) at our facilities. B. hyodysenteriae isolates were 

collected by the participation of swine veterinarians who were asked to share fresh 

faecal samples, if B. hyodysenteriae infection was suspected on a farm based on 

clinical symptoms. Furthermore two diagnostic laboratories (Animal Healthcare 

Flanders, Drongen, Belgium and Mediclab, Aalst, Belgium) donated isolates of 

B. hyodysenteriae and other porcine associated Brachyspira species that they had 

collected during 2010-2011.  

Participating swine veterinarians collected two or three pooled faecal samples (3 pigs 

per pooled sample) on each farm which were cultured within 24 hours after sampling 

on selective plates consisting of Trypticase Soy Agar (TSA) (Sigma-Aldrich, St. Louis, 

MO, USA) supplemented with 5 % sheep blood (E&O Laboratories, Bonnybridge, UK), 

1% yeast extract (Becton Dickinson, Franklin Lakes, NJ, USA), 25 µg/ml vancomycin, 

400 µg/ml spectinomycin and 25 µg/ml colistin (all antimicrobial compounds from 

Sigma-Aldrich). Plates were anaerobically incubated at 38°C. Isolates were purified by 

three to five subcultures on Trypticase Soy Agar (TSA) plates supplemented with 5% 

sheep blood and 1% yeast extract [17] and eventually stored at -70°C in 300µl of a 

medium consisting of 75ml horse serum (Thermo Fisher Scientific, Carlsbad CA, USA) 

and 25ml Brain Heart Infusion broth (Bio-Rad, Hercules CA, USA) supplemented with 

10% (w/v) glucose (Merck, Darmstadt, Germany) until further use. Isolates donated by 

diagnostic laboratories were delivered on agar plates. All isolates were subcultured 

once after which they were also stored at -70°C. All donated isolates were 

accompanied by a brief description of clinical symptoms on the farm of origin. 

On all collected isolates phenotypic characterization and species-specific PCRs were 

performed. Phenotypic characterization was performed on pure 4-day old cultures and 

was based on beta-haemolysis, indole production, hippurate hydrolysis and the 

presence or absence of α-galactosidase and β-glucosidase [12, 14]. Indole production 

was determined using a spot-indole test (Remel BactiDrop, Dartford, UK). For the other 

biochemical characteristics, commercial discs were used according to the 

manufacturer’s instructions (Rosco Diatabs, Taastrup, Denmark). Type strains of 
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B. hyodysenteriae (ATCC 27164), B. pilosicoli (ATCC 51139) and B. innocens (ATCC 

29796) were included to provide positive controls for all the phenotypic characteristics 

that were examined.  

Three B. hyodysenteriae-specific PCRs were performed, based on the following 

genes: tlyA [37], 23S rRNA [24] and nox [22]. Species-specific PCR for the other 

species were based on nox [33] and 23S rRNA [24] for B. intermedia, 16S rRNA [22] 

for B. pilosicoli and nox [4] for B. murdochii/B. innocens.  

Out of the complete collection of B. hyodysenteriae isolates, 8 were selected at random 

to be evaluated in an in vitro assay for haemolytic capacity, MLST profiling, and 

sequence analysis of 16S rRNA, the NADH oxidase gene, and haemolysis associated 

genes. Two more isolates were specifically selected for the same assays, since they 

showed an aberrant phenotype when grown on blood containing agar plates: M2 

showed only moderate haemolysis and isolate D28 showed weak haemolysis. Strain 

B204 (ATCC 31212) was included as a positive control. These 10 selected isolates 

(and the positive control), the age group of the sampled pigs, and the clinical symptoms 

on the farm of origin are given in table 1. All isolates originated from different, non-

related farms, except isolates M1 and M2, which originated from the same farm. M1 

was isolated from faecal samples of finisher pigs, M2 was isolated from faecal samples 

of growing pigs. Both age groups suffered from mucohaemorrhagic diarrhoea.  

Sequencing of 16S rRNA, NADH oxidase and Multi Locus Sequence Typing genes 

The NADH oxidase (nox) gene and 16S rRNA gene were partially sequenced as 

previously described [19, 45]. The sequences retrieved from the isolates used in this 

study were compared by BLAST analysis to known sequences of B. hyodysenteriae 

type- and reference strains [1].  

Multilocus sequence typing (MLST) of the B. hyodysenteriae isolates was based on 

the MLST scheme as previously published [39] and performed with modifications [44]. 

For all strains, sequences for genes encoding alcohol dehydrogenase (adh), alkaline 

phosphatase (alp), esterase (est), glutamate dehydrogenase (gdh), glucose kinase 

(glpK), phosphoglucomutase (pgm) and thiolase (thi) were determined and matched 

with the online MLST database [2]. The concatenated sequences of the described 

isolates, a previously typed Belgian B. hyodysenteriae strain Be45 [31], 

B. hyodysenteriae reference strains B204 (ATCC 31212) and WA1 (ATCC 49526) and 
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four B. intermedia strains were aligned using ClustalW. The B. intermedia strains 

included the type strain PWS/AT (ATCC 51140), and three strains isolated from pigs 

previously described by Råsbäck et al. [39]. A dendrogram was constructed using 

Kimura distance calculation and unweighed pair group method with averages 

(UPGMA). 
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Table 1: Clinical signs on the farm of origin, phenotypic characteristics, MLST profile 

and sequence type, 16S rRNA and nox sequence lengths and accession numbers. 

Strain 
ID* 

Age 
group 
pigs 

Clinical 
signs on 
the farm 
of 
origina 

Haemolysis 
on agar 
plateb 

Enzymatic 
profilec 

MLST 
profile 
(sequence 
type)d 

Nox 
sequence 
accession 
number 
and 
sequence 
length 
(bp) 

16S rRNA 
sequence 
accession 
number 
and 
sequence 
length 
(bp) 

3bIII growing MH 
diarrhoea 

++ 1001 2-11-3-1-
10-2-21 
(ST167) 

KM052166 
990  

KM112083 
1286  

4cI finishing MH 
diarrhoea 

++ 1001 2-11-3-1-
10-2-21 
(ST167) 

KM052167 
975  

KM112082 
1286  

8dII sows MH 
diarrhoea 

++ 1001 2-2-3-12-
11-1-3 
(ST8) 

KM052168 
1000  

KM112081 
1319  

10cI finishing mild 
diarrhoea 

++ 1001 2-11-8-4-
9-2-3 
(ST168) 

KM052169 
971  

KM112080 
1299t 

21bI growing MH 
diarrhoea 

++ 0001 2-13-3-6-
10-2-3 
(ST169) 

KM052170 
977  

KM112079 
1299  

25cI finishing MH 
diarrhoea 

++ 1001 2-18-8-5-
6-1-11 
(ST170) 

KM052171 
1005  

KM112078 
1350  

M1* finishing MH 
diarrhoea 

++ 1001 2-2-3-12-
11-1-3 
(ST8) 

KM052172 
933  

KM112077 
1175  

M2* growing MH 
diarrhoea 

+ 1001  2-2-3-12-
11-1-3 
(ST8) 

KM052173 
983  

KM112076 
1175  

D1 finishing MH 
diarrhoea 

++ 1001 2-11-8-5-
10-2-6 
(ST171) 

KM052174 
986  

KM112075 
1300  

D28 weaners mild 
diarrhoea 

+/- 0001 2-11-3-20-
6-2-21 
(ST172) 

KM052175 
1005  

KM112074 
1182  

B204 
(ATCC 
31212) 

positive 
control 
strain 

MH 
diarrhoea 

++ 1001 1-16-3-4-
2-3-6 
(ST54) 

U19610.1 
1705  

U14932.1 
1433  

*strains M1 and M2 were isolated on one farm, all other isolates originated from different, non-related 
farms 
a: Clinical signs on the farm from which each strain was isolated, MH = mucohaemorrhagic 
b : ++ = strong, + = moderate, +/- = weak  
c : indole production, hippurate hydrolysis, α-galactosidase, β-glucosidase (1 present, 0 absent) 
d : allele numbers for adh-alp-est-gdh-glpK-pgm-thi. Between brackets: sequence type as assigned by 
Pub MLST database   
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In vitro haemolysis assay 

The haemolysis assay was based on the assays described by Fedorka-Cray et al. [11] 

and ter Huurne et al. [43] with some modifications. Fresh blood was collected from 8 

week old pigs and a volume of blood was immediately mixed with an equal volume of 

Alsever’s solution (Sigma-Aldrich) (50/50 v/v). This blood-Alsever’s mixture was 

washed three times with Dextrose-Glucose-Veronal (DGV) (Lonza, Walkersville MD, 

USA) buffered solution by centrifugation for 10 minutes at 500 g. The haematocrit of 

the suspension was determined using a micro-haematocrit centrifuge and reader. DGV 

buffered solution was added until a 10%-suspension of red blood cells was obtained.  

Fresh cultures of the different B. hyodysenteriae isolates were prepared by harvesting 

a 4-day old culture plate with a sterile cotton swab and stirring the cotton swab in an 

anaerobic Brain Heart Infusion (BHI) broth (Bio-Rad), supplemented with 10% of 

Foetal Bovine Serum (FBS) (Thermo Fisher Scientific). These cultures were incubated 

for 24 hours under anaerobic conditions at 37°C on a rocking platform and for each 

strain three cultures were made. After incubation, cultures were microscopically 

examined for purity and the Optical Density at 620 nm (OD620) was measured. Cultures 

were only retained if their OD620 measured between 0.30 and 0.35. Supernatant was 

collected by centrifugation at 500 g for 20 minutes and was sterilized by filtration 

(Millipore, 0.2 µm). The strongly haemolytic strain B204 (ATCC 31212) served as a 

reference strain in the in vitro haemolysis assay.  

The haemolysis assay was performed in 96-well U-bottom microtiter plates. After 

pipetting 100 µl of the 10% red blood cell suspension in each well, 100 µl of the filtered 

B. hyodysenteriae culture supernatant was added. Triton-X 2% served as a positive 

control (complete haemolysis) and DGV served as a negative control (no haemolysis). 

Plates were incubated for two hours at 37°C in a 5% CO2 atmosphere after which the 

96-well plate was centrifuged for 10 minutes at 500 g. The supernatant of the incubated 

fluid was transferred to a 96-well IWAKI-plate and the absorption at 450 nm was 

determined using an ELISA-reader. All assays were performed in triplicate and 

repeated three times.  
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Sequencing of haemolysis associated genes 

Complete sequences of the hlyA, tlyA, tlyB, tlyC, haemolysin III (BHWA1_RS02195), 

haemolysin activation protein (BHWA1_RS02885), and haemolysin III channel protein 

(BHWA1_RS09085) genes were determined for all B. hyodysenteriae strains. For 

hlyA, the ACP1-Fo and ACP1-Re primers were used as described by Barth et al [5]. 

For tlyA, the primers were designed based on the sequences of tly (GenBank: 

X61684.1) (tlyA was originally named tly as it was presumed to be the only haemolysin 

of Brachyspira) as deposited by Muir et al. [28] and the whole genome sequence of 

B. hyodysenteriae WA1 (GenBank: NC_012225.1) [24]. The tlyB and tlyC primers were 

based on the sequences (GenBank: X73140.1) (tlyB), (GenBank: X73141.1) (tlyC) [28] 

and their alignment with the whole genome sequence of WA1 respectively. In order to 

obtain a full length sequence for tlyB several amplicons were sequenced using the four 

described primer pairs. The generated sequences were concatenated to obtain the full 

length sequence. Primers for haemolysin III, haemolysin activation protein and 

haemolysin III channel protein genes were designed based on the whole genome 

sequence of B. hyodysenteriae strain WA1 (GenBank: NC_012225.1) [26] Primers, 

position as given in the whole genome sequence of WA1 (GenBank: NC_012225.1), 

product length and annealing temperature are shown in Table 2.  

PCR was performed under standard conditions in a 25 µl reaction volume with Taq 

polymerase (Bioline, Taunton, USA). The PCR program started with 95 °C for 15 

minutes, followed by 35 cycles of 95 °C for 30 seconds, 1 minute at the primer specific 

annealing temperature and 72 °C for 1 minute. The final extension step was 72 °C for 

2 minutes after which samples were cooled to 4 °C. Optimal annealing temperatures 

are given for each primer pair in table 2. For all strains, the sequences were compared 

to each other and to the whole genome sequence of B. hyodysenteriae strain WA1 

[26]. Furthermore, all sequences were compared to the whole genome sequences of 

18 additional B. hyodysenteriae strains, including type strain B78 and reference strains 

B204 and FM88.90. These whole genome sequences were recently described by 

Black et al. [47]. 

Statistical analysis 

The in vitro haemolysis test results were analysed by a one-way ANOVA, with 

Bonferroni corrections. A P-value of <0.05 was considered significant and all statistical 



106 | P A R T  I I I  Ex p e r im e n t a l  s t u d i e s  

 

 

analysis was performed with the SPSS Statistics 22.0 software (SPSS Inc., Chicago, 

USA). 
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Table 2: Primers, position, product size and annealing conditions for detection of 

haemolysis related genes tlyA, tlyB,tlyC, haemolysin III, haemolysin activation protein 

and haemolysin III channel protein 

Target gene : 
primer names 

Nucleotide 
sequence (5'→3') 

Position 
(NC_012225.1) 

Product 
size (bp) 

Temperature 
annealing (°C) 

tlyA: haemolysin A 

tlyAS1Fo GGTATTGGAGATG
AATATAC 

267034-267054 956 58 

tlyAS1Re TGATGTAGAAGGC
TTCTATA 

267969-267989   

tlyB : haemolysin B 

tlyBS3Fo GGAGTGGAGAGAA
AGTATTA 

1414613-
1414633 

974 57 

tlyBS3Re TGCTGTAAGCAGA
CTTATAG 

1415566-
1415586 

  

tlyBS4Fo AGCTGTCCTTCTTC
AAGTAC 

1415413-
1415433 

390 63 

tlyBS4Re AGTCGTAGGACAG
AAAGAAG 

1415782-
1415802 

  

tlyBS2Fo CCCTCTTCATAACC
AACATA 

1415533-
1415553 

1062 65 

tlyBS2Re AGGGACTTGCTGA
AAAGATA 

1416653-
1416673 

  

tlyBS1Fo  TTGTACCAGCAAC
AACTGAA 

1416575-
1416595 

1082 54 

tlyBS1Re AGCTCTATCTACAG
CAATAC 

1417635-
1417655 

  

tlyC : haemolysin C      

tlyCFo TTACGAATGCCTG
CTATTTG 

1644915-
1644935 

1131 50 

tlyCRe CTATTTTTAGGCGA
GGCTTT 

1646025-
1646045 

  

BHWA1_RS02195: haemolysin III  
 

HlysCBSFo GGAAAAAGGGATC
CTGGAAC 

704725-704745 1570 54 

HlysCBSRe TCCTGCTTGTTATC
AGCACA 

706278-706298   

BHWA1_RS02885: haemolysin activation protein 
 

Hlys3-1Fo CTATTGGAGAGCG
TACATCT 

503577-503597 1014 58 

Hlys3-1Re TACCCTGTACCTAC
AGAACA 

504571-504591   

BHWA1_RS09085: haemolysin III channel protein  

Hlys3-2Fo CTCCTCCCGTTCA
ATATGTA 

2156200-
2156220 

974 58 

Hlys3-2Re AATCCGCCATGTA
AAACTGC 

2157154-
2157174 
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Results 

Phenotypic and molecular identification of B. hyodysenteriae isolates 

A collection of 35 B. hyodysenteriae, 15 B. intermedia, 7 B. pilosicoli, 12 B. murdochii, 

10 B. innocens isolates, and 1 B. hampsonii isolate has been assembled. During the 

characterization of the strain collection it was noted that one isolate, M2, that was 

donated by a diagnostic laboratory, showed only moderate haemolysis on TSA plates 

supplemented with 5% sheep blood, although it had been presented as a 

B. hyodysenteriae isolate. Another isolate, D28, had been presented as B. murdochii 

by a diagnostic laboratory. This isolate was phenotypically identifiable as B. murdochii, 

but was positive in all B. hyodysenteriae specific PCR’s and negative in all species-

specific PCR’s for other Brachyspira sp.. 

For the final selection of ten isolates supplemented with the positive control strain 

B204, results of the phenotypic characterization are shown in Table 1. Most isolates 

showed strong haemolysis after growth for four days on TSA plates supplemented with 

5% sheep blood. However, as mentioned previously, isolate M2 showed only moderate 

haemolysis and isolate D28 showed weak haemolysis. Eight out of ten isolates were 

indole positive and two were negative.  

The ten selected strains tested positive in the B. hyodysenteriae specific PCRs based 

on 23S rRNA, nox and tlyA genes. Sequences of the nox genes of all the isolates 

showed 100% similarity to previously described B. hyodysenteriae strains retrieved 

from GenBank. For the ten selected strains the nox gene sequences were identical, 

except for strain 25cI. The 16S rRNA gene sequence of these strains also showed 

100% similarity to previously described B. hyodysenteriae strains retrieved from 

GenBank. All sequences were deposited in GenBank, accession numbers and 

sequence length are given in table 1. 

MLST results are given in table 1. All 7 genes could be amplified and sequenced for 

the described isolates. The MLST profiles of isolates 8dII, M1 and M2 are identical and 

have previously been deposited as sequence type 8. All other profiles represent new 

sequence types but have 4 or 5 loci in common with already existing profiles in the 

pubMLST database. A dendrogram based on the concatenated sequence (4086bp) of 

the 7 MLST genes of B. hyodysenteriae and B. intermedia is given in figure 1. 
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Figure 1: Dendrogram based on the concatenated sequence (4086bp) of the 7 MLST genes of 

B. hyodysenteriae and B. intermedia  

The alignment was created using clustalw, for the dendrogram distance calculation (Kimura) and 

UPGMA were used (PHYLIP). Bootstrap values greater than 60 are shown in the nodes. Scale bar 

indicates a distance of 1 substitution in 100 nt. 
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In vitro haemolysis of B. hyodysenteriae strains shows gradual variation 

Figure 2 displays the in vitro haemolysis of the described B. hyodysenteriae strains. 

The strength of haemolysis showed gradual variation, nevertheless most strains 

showed a strength of haemolysis in the same range as the B204 reference strain. For 

strain D28 and M2 the haemolysis was significantly lower than for the B204 reference 

strain (P<0.01). 

 

Figure 2: In vitro haemolytic capacity of B. hyodysenteriae strains used in this study.  

Haemolysis is represented by the mean value of absorption at 450 nm after incubation of red blood cell 

suspension with supernatant of the different B. hyodysenteriae identifiable strains. PC: positive control, 

NC: negative control. Significant differences between B. hyodysenteriae identifiable strains and 

reference strain B204 are indicated,* P< 0.01. 

 

Nucleic acid and amino acid substitutions in haemolysis associated genes  

The sequences for hlyA were identical to the whole genome sequences of WA1 and 

the 18 additional strains [7], except strain 3bIII and 4cI, which differed with regard to 2 

nucleotides. However, these nucleotide differences were synonymous and did not 

translate into a different amino acid sequence. The positive result for all strains in the 

hlyA-ACP PCR also showed that the hlyA gene was placed as expected between the 

accompanying fab-F and fab-G genes, coding for an ACP-reductase and –synthetase 

[48].  
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Weakly haemolytic strain D28 was the only strain with a nucleic acid substitution in the 

tlyA gene. The substitution was located at position 501 (G→T) as given in Tly 

(GenBank: X61684.1) by Muir et al. [28] or position 267228 as in the genome sequence 

of WA1 (GenBank: NC_012225.1) [6]. This non-synonymous nucleic acid substitution 

translated into a different amino acid at position 10 in the amino acid sequence (Glycine 

→ Cysteine). In all other whole genome sequences the sequence of tlyA was identical 

to WA1, except for strain ST195 were there was a synonymous substitution in one 

nucleotide at position 938 (A→C) as given in Tly (GenBank: X61684.1) by Muir et al. 

[28] or position 267725 as in the genome sequence of WA1 (GenBank: NC_012225.1) 

[6]. 

The sequence of the tlyB gene showed differences between the isolates and the 

number of nucleotide changes varied from 1 to 7 as given in table 3. For all strains, 

except the weakly haemolytic strain D28, these nucleotide differences were 

synonymous. The sequence of strain D28 differed at 2 positions of which the nucleotide 

change at position 1416206 (C→T) translates into an amino acid substitution at 

position 384 in the amino acid sequence (Alanine→ Threonine). In all other whole 

genome sequences only one strain (ST195) was reported to have a synonymous 

substitution [7]. 

With regard to the tlyC gene, all strains were identical to WA1 and all other whole 

genome sequences except for weakly haemolytic strain D28 of which the tlyC 

sequence differed in four nucleotides. Nonetheless this altered nucleotide sequence 

consisted of synonymous substitutions only. 

The haemolysin III gene sequence (BHWA1_RS02195) showed no nucleotide 

differences for seven of the strains. The strains 8dII, M1 and M2 shared an identical 

sequence which diverged 10 nucleotides compared to the sequence of 

B. hyodysenteriae reference strain WA1. However, these nucleotide differences did 

not translate into a different amino acid sequence. The weakly haemolytic strain D28 

showed 68 nucleotide differences compared to the sequence of B. hyodysenteriae 

reference strain WA1. These nucleotide differences resulted in 5 amino acid 

substitutions at following positions: 81 (Valine → Isoleucine), 113 (Methionine → 

Valine), 164 (Glutamic acid → Aspartic acid), 227 (Threonine → Serine), 264 (Valine 

→ Isoleucine). The majority of the other whole genome sequences showed a 

haemolysin III gene sequence identical to WA1, 6 strains showed synonymous 
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nucleotide substitutions and strain B6933 had two amino acid substitutions at position 

241(Methionine → Isoleucine) and 335 (Valine → Isoleucine). 

With regard to the haemolysin activation protein gene (BHWA1_RS02885) all strains 

showed a difference of 14 or 15 nucleotides with the sequence of B. hyodysenteriae 

reference strain WA1 (table 3). These sequences translated in 5 amino acid sequence 

differences at following positions: 51 (Proline → Serine), 56 (Valine → Isoleucine), 59 

(Valine → Leucine), 82 (Leucine → Isoleucine), 93 (Valine → Isoleucine). Strain D28 

showed 41 nucleotide differences compared to the sequence of B. hyodysenteriae 

reference strain WA1 (table 3), which translates into an amino acid sequence different 

from that of strain WA1 by 8 amino acids: 47 (Threonine → Isoleucine), 49 (Valine → 

Methionine), 56 (Valine → Isoleucine), 79 (Valine → Isoleucine), 82 (Leucine → 

Isoleucine), 111 (Valine → Isoleucine), 114 (Leucine → Proline), 133 (Methionine → 

Isoleucine). The whole genome sequences of the 18 additional B. hyodysenteriae 

strains showed various amino acid substitutions compared to WA1. Six strains shared 

the 5 amino substitutions as seen in most of the strains of this study, strains B204, 

B6933 and B78 showed one additional amino acid substitution at position 157 (Lysine 

→ Glutamic acid). One strain (NSW15) showed three amino acid substitutions 

compared to WA1 at positions 19 (Lysine → Arginine), 133 (Methionine → Isoleucine), 

180 (Isoleucine → Methionine), and strains Q17, B8044 and 865 showed four amino 

acid substitutions compared to WA1 at positions 54 (Isoleucine → Methionine), 82 

(Leucine → Isoleucine), 93 (Valine → Isoleucine) and 157 (Glutamic acid → Lysine). 

The sequences for haemolysin III channel protein gene (BHWA1_RS09085) of the 

strains in this study were either identical to that of B. hyodysenteriae reference strain 

WA1, differed by 1 or 2 nucleotides, or differed by 12 (strain D28). For strains 3bIII and 

4cI this resulted in an amino acid substitution at position 217 (Arginine → Isoleucine), 

and for strain D28 at position 209 (Valine → Isoleucine). For the other whole genome 

sequences 7 strains showed an identical haemolysin III channel protein gene 

sequence to WA1, 9 strains shared a synonymous nucleotide substitution at position 

2156792 as given in the genome sequence of WA1. Strain B78 showed one amino 

acid substitution at position 120 (Alanine → Threonine). 

Table 3 displays the number of nucleotide and amino acid differences for the 

sequences of the hlyA, tlyA, tlyB, tlyC, haemolysin III, haemolysin activation protein 

and haemolysin III channel protein genes between the B. hyodysenteriae strains in 
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comparison with the genome sequence of B. hyodysenteriae reference strain WA1. All 

sequences have been deposited in GenBank (accession numbers KM112034-

KM112073, KU215622-KU215658). 

Table 3: Nucleotide and amino acid differences for haemolysis related genes of 

B. hyodysenteriae identifiable strains used in this study. Differences compared with the 

genome sequence of B. hyodysenteriae strain WA1. Number of amino acid changes 

are given in brackets. 

Strain In vitro 
haemo
-lysis 

tlyA 
 

723 
nt 

hlyA 
 

237 
nt 

tlyB 
 

2487 nt 

tlyC 
 

807 
nt 

haemoly
sin III 

1335 nt 

haemolysin 
activation 

protein 
675 nt 

haemolysin III 
channel 
protein 
672 nt 

3bIII ++ 0 2 (0) 7 (0) 0  0 15(5) 2(1) 

4cI ++ 0 2 (0) 7 (0) 0  0 15(5) 2(1) 

8dII ++ 0 0 0 0  10(0) 15(5) 0 

10cI ++ 0 0 5 (0)  0 0 14(5) 1(0) 

21bI ++ 0 0 1 (0) 0  0 15(5) 1(0) 

25cI ++ 0 0 7 (0) 0  0 14(5) 1(0) 

D1 ++ 0 0 5  (0) 0 0 14(5) 1(0) 

D28 +/- 1 (1) 0 2 (1) 4 (0)  63(5) 44(8) 12(1) 

M1 ++ 0 0 0 0 10(0) 15(5) 0 

M2 + 0 0 0 0 10(0) 15(5) 0 

 

Discussion 

This study describes quantification of haemolytic capacity of B. hyodysenteriae strains, 

and provides evidence that the degree of haemolysis can vary within the species 

B. hyodysenteriae. The phenotypic characterization tests, species-specific PCR, and 

sequences of the nox and 16S rRNA genes of moderately or weakly haemolytic strains 

show that these strains belong to the species B. hyodysenteriae. The dendrogram 

based on the MLST results (Figure 1) shows that the weakly haemolytic 

B. hyodysenteriae strains are nested within clades containing strongly haemolytic 

B. hyodysenteriae strains. Even if only DNA/DNA hybridization might be considered 

sufficiently accurate enough to effectively identify a strain, the strains described here 

would undoubtedly be identified as B. hyodysenteriae in all currently used methods for 

genetic identification (PCR, nox and 16S rRNA sequencing, MLST). 

The comparative sequence analysis of the haemolysis associated genes leads to a 

hypothesis with regard to the underlying mechanism of the weak haemolysis. The 
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weakly haemolytic B. hyodysenteriae strain D28 possesses nucleotide sequence 

differences in the tlyA, tlyB, haemolysin III, haemolysin activation protein and 

haemolysin III channel protein genes resulting in amino acid substitutions. These 

sequences differ from those of all other strains in the study and from that of reference 

strain WA1. Whether the amino acid substitutions reported here are the sole reason 

for the weak haemolysis of this strain needs further studies. In our opinion the most 

important genes involved in the strong haemolytic phenotype of B. hyodysenteriae are 

tlyA, hlyA and probably haemolysin III. Deletion mutants for tlyA have been reported to 

be weakly haemolytic on blood containing agar plate [16]. The role of ACP in acylation 

of toxins has been demonstrated for other toxins, such as RTX toxins [6], which makes 

it likely that hlyA encoding an ACP plays a role in the haemolytic capacity of 

B. hyodysenteriae. Haemolysin III harbours a conservative domain yqfA, a predicted 

channel-forming protein of the haemolysin III family, which might indicate its role in 

B. hyodysenteriae haemolysis. Whether this reduced haemolytic capacity can be 

attributed to one of the amino acid changes in one of the haemolysis associated genes, 

remains to be determined. In order to completely elucidate this, the construction of 

specific mutants of B. hyodysenteriae which harbour one of the divergent haemolysis 

associated genes is a prerequisite. This might be hampered by the fact that is difficult 

to genetically manipulate B. hyodysenteriae. 

Not only a difference in amino acid sequence, which can affect the function of a protein, 

might influence the gradation in haemolytic capacity but there might also occur a more 

distant variance such as altered activity of promoter regions or altered transcription of 

genes under specific circumstances in vitro as well as in vivo. Although repeated 

subculturing can result in phenotypical changes such as loss of haemolysis [32], this 

has, to our knowledge, not been described for B. hyodysenteriae. Besides, already 

during primary isolation of strains D28 and M2, haemolysis was always weak and 

moderate, respectively.  

B. hyodysenteriae strain M2 is only moderately haemolytic. However, the nucleotide 

sequence differences observed for strain M2 did not result in amino acid changes 

except for the haemolysin activation protein gene. However, for this gene amino acid 

substitutions were observed for all investigated strains compared to WA1. It should be 

mentioned that unlike D28, which originated from a farm where only mild diarrhoea 

was present, M2 originated from a farm where pigs were suffering from 
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mucohaemorrhagic diarrhoea. Alongside M2, another isolate M1, originated from the 

same farm. The presence of different strains with divergent biological properties on 

one farm could influence the outcome of control measurements, since these strains 

may differ in other biological properties as well, such as their antimicrobial resistance. 

Strain D28 originated from a farm were only mild diarrhoea was present. In preliminary 

trials, in which pigs were inoculated with this strain, no symptoms of SD were observed, 

even if the strain was shed in the faeces of the inoculated pigs at 107copies/ g faeces. 

Even though the significance of the presence of weakly haemolytic strains of 

B. hyodysenteriae in a herd as a hazard for porcine health is not clear at the moment, 

the mere occurrence of weakly haemolytic strains of B. hyodysenteriae poses 

problems for the diagnosis of swine dysentery. When diagnosis is primarily based on 

microbial culture procedures, these strains could be mistaken for B. intermedia or 

B. murdochii, since the phenotypic profile of weakly haemolytic, indole positive 

B. hyodysenteriae is equal to that of B. intermedia and the phenotypic profile of weakly 

haemolytic, indole negative B. hyodysenteriae is equal to that of B. murdochii. When 

diagnosis is primarily based on the current PCR tests, the degree of haemolysis of the 

specific strain cannot be estimated. If a herd tests positive for B. hyodysenteriae, this 

may influence the trading possibilities of the farm in question, because of the possible 

risk of B. hyodysenteriae carrier animals. In order to avoid misdiagnosis, the 

combination of phenotypic characterization and PCR, complemented with sequencing 

of nox, haemolysin III or haemolysin activation protein genes if necessary, is 

presumably the most complete method for species identification of Brachyspira sp. for 

now.  

Although in our collection of 35 isolates, spanning a time-period of two years, only two 

B. hyodysenteriae strains were found with an aberrant haemolytic phenotype, 

appearance of weakly haemolytic, possibly low virulent strains of B. hyodysenteriae 

may affect herd dysentery status, with great impact on a farms trading opportunities. 

The prevalence of weakly haemolytic B. hyodysenteriae could be underestimated 

since it has not been regularly looked for or could go unnoticed if PCR and microbial 

culture are not combined.  

  



116 | P A R T  I I I  Ex p e r im e n t a l  s t u d i e s  

 

 

Declaration of conflicting interests 

Sources of financial support have been acknowledged and the authors declare that 

they have no competing interests. 

Authors’ contributions 

MM participated in the design of the study, performed the experiments, analysed the 

data and drafted the manuscript. NDP, LVM and MV participated in the experiments. 

FB participated in the design of the study and edited the manuscript. RD helped to 

interpret the results and edited the manuscript. FP, AM and FH coordinated the study, 

participated in the design of the study, helped to interpret the results and edited the 

manuscript. All authors read and approved the final manuscript. 

Acknowledgements 

This work was supported by the Flemish Agency for Innovation by Science and 

Technology (IWT), Grant Nr. IWT Landbouw 100850 and the Industrial Research Fund 

(IOF) Grant Nr F2014/IOF-ConcepTT/272. The participation of several swine 

veterinarians and diagnostic laboratories in this study is greatly appreciated. 

  



h a e m o l y t i c  a c t i v i t y  o f  B .  h y o d y s e n t e r i a e  s t r a i n s | 117 

 

 

References 

1. Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov. Accessed 4 Jan 2016 
2. Brachyspira MLST Databases. www.pubmlst.org/brachyspira. Accessed 21 Apr 2016 
3. Alvarez-Ordonez A, Martinez-Lobo FJ, Arguello H, Carvajal A, Rubio P (2013) Swine 

dysentery: aetiology, pathogenicity, determinants of transmission and the fight against 
the disease. Int J Environ Res Public Health 10:1927-1947 

4. Atyeo RF, Stanton TB, Jensen NS, Suriyaarachichi DS, Hampson DJ (1999) 
Differentiation of Serpulina species by NADH oxidase gene (nox) sequence 
comparisons and nox-based polymerase chain reaction tests. Vet Microbiol 67:47-60 

5. Barth S, Gommel M, Baljer G, Herbst W (2012) Demonstration of genes encoding 
virulence and virulence life-style factors in Brachyspira spp. isolates from pigs. Vet 
Microbiol 155:438-443 

6. Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, 
Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ (2009) 
Genome sequence of the pathogenic intestinal spirochete Brachyspira hyodysenteriae 
reveals adaptations to its lifestyle in the porcine large intestine. PLoS One 4:e4641 

7. Black M, Moolhuijzen P, Barrero R, La T, Phillips N, Hampson D, Herbst W, Barth S, 
Bellgard M (2015) Analysis of multiple Brachyspira hyodysenteriae genomes confirms 
that the species is relatively conserved but has potentially important strain variation. 
PLoS One 10:e0131050 

8. Chander Y, Primus A, Oliveira S, Gebhart CJ (2012) Phenotypic and molecular 
characterization of a novel strongly hemolytic Brachyspira species, provisionally 
designated "Brachyspira hampsonii". J Vet Diagn Invest 24:903-910 

9. Chu L, Burgum A, Kolodrubetz D, Holt SC (1995) The 46-kilodalton-hemolysin gene 
from Treponema denticola encodes a novel hemolysin homologous to 
aminotransferases. Infect Immun 63:4448-4455 

10. Costa MO, Hill JE, Fernando C, Lemieux HD, Detmer SE, Rubin JE, Harding JC (2014) 
Confirmation that "Brachyspira hampsonii" clade I (Canadian strain 30599) causes 
mucohemorrhagic diarrhea and colitis in experimentally infected pigs. BMC Vet Res 
10:129 

11. Fedorka-Cray PJ, Huether MJ, Stine DL, Anderson GA (1990) Efficacy of a cell extract 
from Actinobacillus (Haemophilus) pleuropneumoniae serotype 1 against disease in 
swine. Infect Immun 58:358-365 

12. Fellstrom C, Gunnarsson A (1995) Phenotypical characterisation of intestinal 
spirochaetes isolated from pigs. Res Vet Sci 59:1-4 

13. Hampson D, La T, Phillips N (2015) Emergence of Brachyspira species and strains: 
reinforcing the need for surveillance. Porcine Health Management 1:8 

14. Hommez J, Castryck F, Haesebrouck F, Devriese LA (1998) Identification of porcine 
Serpulina strains in routine diagnostic bacteriology. Vet Microbiol 62:163-169 

15. Hsu T, Hutto DL, Minion FC, Zuerner RL, Wannemuehler MJ (2001) Cloning of a beta-
hemolysin gene of Brachyspira (Serpulina) hyodysenteriae and its expression in 
Escherichia coli. Infect Immun 69:706-711 

16. Hyatt DR, ter Huurne AA, van der Zeijst BA, Joens LA (1994) Reduced virulence of 
Serpulina hyodysenteriae hemolysin-negative mutants in pigs and their potential to 
protect pigs against challenge with a virulent strain. Infect Immun 62:2244-2248 

17. Jenkinson SR, Wingar CR (1981) Selective medium for the isolation of Treponema 
hyodysenteriae. Vet Rec 109:384-385 

18. Jensen TK, Christensen AS, Boye M (2010) Brachyspira murdochii colitis in pigs. Vet 
Pathol 47:334-338 

19. Johansson KE, Duhamel GE, Bergsjo B, Engvall EO, Persson M, Pettersson B, 
Fellstrom C (2004) Identification of three clusters of canine intestinal spirochaetes by 
biochemical and 16S rDNA sequence analysis. J Med Microbiol 53:345-350 

20. Kent KA, Lemcke RM, Lysons RJ (1988) Production, purification and molecular weight 
determination of the haemolysin of Treponema hyodysenteriae. J Med Microbiol 27:215-
224 

21. Knoop FC (1981) Investigation of a hemolysin produced by enteropathogenic 
Treponema hyodysenteriae. Infect Immun 31:193-198 

https://blast.ncbi.nlm.nih.gov/
file://///files/mmahu/home/doctoraat/Finale%20delen/www.pubmlst.org/brachyspira


118 | P A R T  I I I  Ex p e r im e n t a l  s t u d i e s  

 

 

22. La T, Phillips ND, Hampson DJ (2003) Development of a duplex PCR assay for 
detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli in pig feces. J Clin 
Microbiol 41:3372-3375 

23. Lemcke RM, Burrows MR (1982) Studies on a haemolysin produced by Treponema 
hyodysenteriae. J Med Microbiol 15:205-214 

24. Leser TD, Moller K, Jensen TK, Jorsal SE (1997) Specific detection of Serpulina 
hyodysenteriae and potentially pathogenic weakly beta-haemolytic porcine intestinal 
spirochetes by polymerase chain reaction targeting 23S rDNA. Mol Cell Probes 11:363-
372 

25. Lysons RJ, Kent KA, Bland AP, Sellwood R, Robinson WF, Frost AJ (1991) A cytotoxic 
haemolysin from Treponema hyodysenteriae--a probable virulence determinant in 
swine dysentery. J Med Microbiol 34:97-102 

26. Lysons RJ, Lemcke RM, Bew J, Burrows MR, Alexander TJ (1982) An avirulent strain 
of Treponema hyodysenteriae isolated from herds free of swine dysentery.  7th 
International Pig Veterinary Society Congress Mexico City, Mexico 

27. Mahu M, De Pauw N, Vande Maele L, Verlinden M, Boyen F, Ducatelle R, Haesebrouck 
F, Martel A, Pasmans F (2014) Weakly hemolytic Brachyspira hyodysenteriae strains in 
pigs. In: Adler B, Frey J (eds) 3rd Prato Conference on the Pathogenesis of Bacterial 
Diseases in Animals. The Society Prato, Italy, p 39 

28. Muir S, Koopman MB, Libby SJ, Joens LA, Heffron F, Kusters JG (1992) Cloning and 
expression of a Serpula (Treponema) hyodysenteriae hemolysin gene. Infect Immun 
60:529-535 

29. Mushtaq M, Zubair S, Rasback T, Bongcam-Rudloff E, Jansson DS (2015) Brachyspira 
suanatina sp. nov., an enteropathogenic intestinal spirochaete isolated from pigs and 
mallards: genomic and phenotypic characteristics. BMC Microbiol 15:208 

30. Neef NA, Lysons RJ, Trott DJ, Hampson DJ, Jones PW, Morgan JH (1994) 
Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs. Infect Immun 
62:2395-2403 

31. Osorio J, Carvajal A, Naharro G, La T, Phillips ND, Rubio P, Hampson DJ (2012) 
Dissemination of clonal groups of Brachyspira hyodysenteriae amongst pig farms in 
Spain, and their relationships to isolates from other countries. PLoS One 7:e39082 

32. Peppler MS (1982) Isolation and characterization of isogenic pairs of domed hemolytic 
and flat nonhemolytic colony types of Bordetella pertussis. Infect Immun 35:840-851 

33. Phillips ND, La T, Amin MM, Hampson DJ (2010) Brachyspira intermedia strain diversity 
and relationships to the other indole-positive Brachyspira species. Vet Microbiol 
143:246-254 

34. Rahman A, Srivastava SS, Sneh A, Ahmed N, Krishnasastry MV (2010) Molecular 
characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: a non-
conventional hemolysin and a ribosomal RNA methyl transferase. BMC Biochem 11:35 

35. Ramarao N, Sanchis V (2013) The pore-forming haemolysins of Bacillus cereus: a 
review. Toxins 5:1119-1139 

36. Rasback T, Fellstrom C, Bergsjo B, Cizek A, Collin K, Gunnarsson A, Jensen SM, Mars 
A, Thomson J, Vyt P, Pringle M (2005) Assessment of diagnostics and antimicrobial 
susceptibility testing of Brachyspira species using a ring test. Vet Microbiol 109:229-243 

37. Rasback T, Fellstrom C, Gunnarsson A, Aspan A (2006) Comparison of culture and 
biochemical tests with PCR for detection of Brachyspira hyodysenteriae and 
Brachyspira pilosicoli. J Microbiol Methods 66:347-353 

38. Rasback T, Jansson DS, Johansson KE, Fellstrom C (2007) A novel enteropathogenic, 
strongly haemolytic spirochaete isolated from pig and mallard, provisionally designated 
'Brachyspira suanatina' sp. nov. Environ Microbiol 9:983-991 

39. Rasback T, Johansson KE, Jansson DS, Fellstrom C, Alikhani MY, La T, Dunn DS, 
Hampson DJ (2007) Development of a multilocus sequence typing scheme for intestinal 
spirochaetes within the genus Brachyspira. Microbiology 153:4074-4087 

40. Rubin JE, Costa MO, Hill JE, Kittrell HE, Fernando C, Huang Y, O'Connor B, Harding 
JC (2013) Reproduction of mucohaemorrhagic diarrhea and colitis indistinguishable 
from swine dysentery following experimental inoculation with "Brachyspira hampsonii" 
strain 30446. PLoS One 8:e57146 

41. ter Huurne AA, Gaastra W (1995) Swine dysentery: more unknown than known. Vet 
Microbiol 46:347-360 



h a e m o l y t i c  a c t i v i t y  o f  B .  h y o d y s e n t e r i a e  s t r a i n s | 119 

 

 

42. ter Huurne AA, Muir S, van Houten M, Koopman MB, Kusters JG, van der Zeijst BA, 
Gaastra W (1993) The role of hemolysin(s) in the pathogenesis of Serpulina 
hyodysenteriae. Zentralbl Bakteriol 278:316-325 

43. ter Huurne AA, Muir S, van Houten M, van der Zeijst BA, Gaastra W, Kusters JG (1994) 
Characterization of three putative Serpulina hyodysenteriae hemolysins. Microb Pathog 
16:269-282 

44. Verlinden M, Pasmans F, Garmyn A, De Zutter L, Haesebrouck F, Martel A (2012) 
Occurrence of viable Brachyspira spp. on carcasses of spent laying hens from 
supermarkets. Food Microbiol 32:321-324 

45. Weissenbock H, Maderner A, Herzog AM, Lussy H, Nowotny N (2005) Amplification and 
sequencing of Brachyspira spp. specific portions of nox using paraffin-embedded tissue 
samples from clinical colitis in Austrian pigs shows frequent solitary presence of 
Brachyspira murdochii. Vet Microbiol 111:67-75 

46. Wilberts BL, Arruda PH, Kinyon JM, Madson DM, Frana TS, Burrough ER (2014) 
Comparison of sesion severity, distribution, and colonic mucin expression in pigs with 
acute swine dysentery following oral inoculation with "Brachyspira hampsonii" or 
Brachyspira hyodysenteriae. Vet Pathol 51:1096-1108 

47. Wren BW, Stabler RA, Das SS, Butcher PD, Mangan JA, Clarke JD, Casali N, Parish 
T, Stoker NG (1998) Characterization of a haemolysin from Mycobacterium tuberculosis 
with homology to a virulence factor of Serpulina hyodysenteriae. Microbiology 
144:1205-1211 

48. Zuerner RL, Stanton TB, Minion FC, Li C, Charon NW, Trott DJ, Hampson DJ (2004) 
Genetic variation in Brachyspira: chromosomal rearrangements and sequence drift 
distinguish B. pilosicoli from B. hyodysenteriae. Anaerobe 10:229-237



 

 

 

  



 

 

 

 

 

 

 

4 

An avirulent Brachyspira 

hyodysenteriae strain elicits 

intestinal IgA and slows down 

spread of swine dysentery 

 

Maxime Mahu1, Filip Boyen1, Stefano Canessa1, Jackeline Zavala Marchan1,  

Freddy Haesebrouck1, An Martel1, Frank Pasmans1,  

 

1 Department of Pathology, Bacteriology and Poultry Diseases, Faculty of 

Veterinary Medicine, Ghent University, Belgium 

 

 

Veterinary Research (2017) 48:59



 

 

 

 

  



 v a c c i n a t i o n  a g a i n s t  B .  h y o d y s e n t e r i a e | 123 

 

 

Abstract 

Swine dysentery caused by Brachyspira hyodysenteriae, results in substantial 

economic losses in swine producing countries worldwide. Although a number of 

different vaccine approaches have been explored with regard to this disease, they 

show limitations and none of them have reached the market. We here determine the 

vaccine potential of a weakly haemolytic B. hyodysenteriae strain. The virulence of this 

strain was assessed in experimental infection trials and its protection against swine 

dysentery was quantified in a vaccination-challenge experiment using a seeder 

infection model. Systemic IgG production and local IgA production were monitored in 

serum and faeces respectively.  

Across all trials, pigs that were colonized by virulent, strongly haemolytic 

B. hyodysenteriae strains consistently developed swine dysentery, in contrast to none 

of the pigs colonized by the weakly haemolytic B. hyodysenteriae vaccine strain. In the 

seeder vaccination trial the velocity of spread of swine dysentery was significantly 

reduced in animals immunised with the weakly haemolytic strain compared to sham-

immunised animals. Furthermore, faecal scores, estimating severity of diarrhoea, were 

significantly lower in immunised animals compared to sham-immunised animals. The 

IgA response of immunised animals upon challenge with a virulent B. hyodysenteriae 

strain significantly correlated to a later onset of disease. The correlation between 

intestinal IgA production and protection induced by a non-haemolytic 

B. hyodysenteriae strain provides leads for future vaccine development against swine 

dysentery. 
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An avirulent strain of B. hyodysenteriae elicits intestinal IgA and slows down 

spread of swine dysentery 

Introduction 

Swine dysentery (SD) caused by Brachyspira hyodysenteriae, results in substantial 

economic losses in swine producing countries worldwide. Major costs associated with 

SD comprise medical treatment, retarded growth and increased feed conversion [1]. 

For infected herds costs/kg live weight have been estimated to increase with 15% [36]. 

Treatment with antimicrobial compounds is hampered due to increasing resistance 

against pleuromutilins and macrolides which are the most widely used compounds 

against SD [10,23]. Besides instigating therapeutic failure, there is growing public 

concern against the use of antibiotics in animal production in general because it may 

favour spread of antimicrobial resistance in different bacterial species, including 

zoonotic agents [26,32]. The impact of SD on swine health and production, increasing 

therapeutic failure of antimicrobial treatment and the need for a reduction of the use of 

antimicrobial compounds urge for alternative control measures against SD. 

The immunological response in pigs that recovered from SD has been shown to protect 

against subsequent challenge with B. hyodysenteriae [15]. Therefore, a number of 

different vaccination approaches have been explored with regard to SD. Several 

reports describe the use of whole cell bacterins [4,5,7,9,24] or protein digests of whole 

cell bacterins [33-35]. Some of these bacterins, administered intramuscularly or 

intravenously, induce partial protection, demonstrated by a lower proportion of animals 

developing clinical SD, or animals developing less severe disease signs of SD 

[4,5,7,8]. In contrast, Olson et al. [24] described animals developing a more severe 

form of SD with an earlier onset after vaccination with an inactivated B. hyodysenteriae 

vaccine. A major downside of the use of inactivated whole cell bacterins is that they 

usually only evoke protection against infection with a homologous serotype of 

B. hyodysenteriae [1].  

Vaccination with recombinant proteins has been reported to induce variable levels of 

protection, depending on the selected protein. The use of a recombinant flaB1 flagellar 

protein could not reduce the number of pigs developing SD after challenge with a 

virulent B. hyodysenteriae strain [6]. A preparation of BmpB, an outer membrane 

lipoprotein, resulted in a 50% reduction in clinical SD [18]. Song et al. [31] described a 
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reverse vaccinology approach to select proteins for use in a subunit vaccine. They also 

reported a reduction in number of animals developing clinical SD, albeit not significant. 

DNA vaccines based on ftnA, encoding a putative ferritin protein, or SmpB, encoding 

a protein with unknown function, failed to protect mice against challenge with a virulent 

B. hyodysenteriae strain [3,11]. The use of DNA vaccines for SD has not been 

investigated in pigs. A tlyA mutant strain of B. hyodysenteriae has been examined for 

its use as a live attenuated vaccine. A 50% reduction in the number of animals 

developing clinical SD upon challenge with a virulent B. hyodysenteriae strain was 

demonstrated. However, there was no reduction in the number of animals that was 

colonised by the challenge strain [13].  

Despite all these efforts, an efficient vaccine against B. hyodysenteriae is currently not 

available. Recently, we isolated a weakly haemolytic B. hyodysenteriae strain which 

appeared to be less virulent than strongly haemolytic B. hyodysenteriae strains [22]. In 

this study we explore this strain’s vaccination potential by verifying its virulence in pigs 

and determining the extent of protection it provides against SD in an experimental 

infection trial. 

Materials and methods 

The animal experiments were approved by the Ethical Committee of the Faculty of 

Veterinary Medicine, Ghent University (EC 2012/01, EC 2013/147, EC2014/130, 

EC2015/22, EC2015/134) and complied with all ethical and husbandry regulations. 

B. hyodysenteriae strains and growth conditions 

Three B. hyodysenteriae field strains and the strongly haemolytic reference strain 

B204 (ATCC32121) were used in the experimental infection trials: weakly haemolytic 

strain D28 and strongly haemolytic strain 8dII are two field strains which have been 

described previously [22]. Strongly haemolytic strain 49 was isolated in this study from 

seeder animals that were purchased from a commercial source suffering an acute 

outbreak of SD. Strains and their strength of haemolysis are given in table 1. Strength 

of haemolysis was determined as visible haemolysis of growth on blood supplemented 

culture plates and by in vitro quantification as described in a previous study [22]. 

For the virulence trials, strains were obtained from frozen stocks, thawed and grown 

on Tryptic Soy Agar (BD, Heidelberg, Germany), supplemented with 5% sheep blood 

(IMP, Brussels, Belgium) and 1% yeast extract (Oxoid, Aalst, Belgium) [14]. Strains 
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were subcultured twice and suspensions were prepared by harvesting a 4-day-old 

culture plate with a sterile cotton swab and stirring the cotton swab in 50 ml of an 

anaerobic Brain Heart Infusion (BHI) broth, supplemented with 10% of Foetal Bovine 

Serum (FBS). The broth was incubated during 40 hrs on a rocking platform at 37°C. 

After incubation, cultures were microscopically examined for purity and each animal 

was administered 40 ml of B. hyodysenteriae culture which contained approximately 

1x108 colony forming units per ml. For the seeder vaccination trial, cultures were 

obtained in grossly the same way as for the virulence trials except that bacteria were 

grown in BHI broth with 10% FBS for 30 hrs, after which the broth was anaerobically 

centrifuged at 1500 g for 20 minutes and the pellet was suspended in a volume leading 

to a final concentration of approximately 1x 109 B. hyodysenteriae per ml. 

Virulence trials 

In order to determine the in vivo virulence of different B. hyodysenteriae strains, several 

experimental infection trials were conducted. The correlation between faecal shedding, 

as a proxy of intestinal colonization, and faecal score, as a measure for the 

development of SD, was determined independently for the four different 

B. hyodysenteriae strains in five experimental infection trials. Experiments were 

conducted separately in different time periods. In each experiment a single strain was 

used. Strain D28 was used in two independent experiments. 

Experimental set-up: the five experimental set-ups are presented in table 1. In all set-

ups, experimental animals were purchased from commercial sources with no prior 

history of SD. Animals were 5-6 weeks old on arrival, except for trial 3 in which animals 

were 11 weeks old at the start of the trial. On arrival, faeces were collected from all 

individual animals and examined for the presence of Salmonella sp. by microbial 

culture and for the presence of B. hyodysenteriae by microbial culture and qPCR [30]. 

All animals were fed a commercial starter feed ad libitum.  

Experimental procedures: inoculation was performed on three consecutive days and 

was preceded by a 12h fast. Inoculation was performed orally or intragastrically as 

given in table 1. For intragastric inoculation, animals were anaesthetized by 

intramuscular injection with a combination of xylazin at 4.4 mg/kg (Xyl-M 2%®, VMD, 

Arendonk, Belgium) and zolazepam/tiletamin at 2.2 mg/kg (Zoletil® 100, Virbac, 

Carros, France). All intragastrically inoculated animals were pretreated 90 minutes 
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before inoculation with 0.75 mg/kg ranitidine (Zantac™, GlaxoSmithKline, Genval, 

Belgium) to reduce stomach acid production.  

In experiment 3 instead of direct inoculation, the contact animals (receivers) were 

placed in the same unit with animals that were shedding B. hyodysenteriae and had 

been confirmed to have SD (seeders). These seeder animals were purchased from a 

commercial source suffering an acute outbreak of SD. Strain 49 was isolated from 

faecal samples of those pigs. 

Follow-up: In all trials, animals were observed daily for the presence of diarrhoea and 

other disease signs. Two to three times a week, faeces were scored and stool samples 

were collected. Faecal scores were determined as 0: normal, 1: softer but formed, 2: 

unformed semi-wet, 3: runny, 4: runny with mucus and blood. Scores 2 and 3 were 

supplemented with 0.5 if blood or mucus were present. DNA was extracted from the 

stool samples using a Qiagen Stool Mini Kit (Qiagen, Hilden, Germany) and the 

extracted DNA was used to determine the quantity of B. hyodysenteriae DNA with 

qPCR [30]. Correlation between faecal excretion of the strain used for inoculation and 

faecal score was determined for each experiment. 

At the end of the trial (3-5 weeks after inoculation) or 24 hrs (trial 2) after the first signs 

of swine dysentery, animals were euthanized. During necropsy, tissue samples of the 

apex of the colon were collected in 10% buffered formalin for histology. Animals were 

anaesthetized with a combination of xylazin at 4.4 mg/kg (Xyl-M 2%®, VMD, Arendonk, 

Belgium) and zolazepam/tiletamin at 2.2 mg/kg (Zoletil® 100, Virbac, Carros, France). 

They were euthanized by administering an overdose of pentobarbital (Release®, 

45mg/kg; Ecuphar, Oostkamp, Belgium) by intracardial injection. Fixed samples were 

paraffin embedded, sectioned at 5–8 µm and stained with hematoxylin and eosin or 

with Periodic Acid Schiff reagent (PAS). 

Vaccination trials  

In the seeder vaccination trial, non-virulent B. hyodysenteriae strain D28 was used as 

the immunising strain, and virulent B. hyodysenteriae strain B204 as the challenge 

strain. Sixty, six-week-old male and female piglets were purchased from a commercial 

source with no previous history of SD. On arrival, animals were weighed and randomly 

assigned to six groups; three immunisation groups (10 animals each) and three non-

immunisation groups (10 animals each). Individual faecal samples were taken to 
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confirm absence of B. hyodysenteriae by microbial culture and qPCR. All animals were 

fed a commercial starter feed ad libitum. 

After a nine-day acclimatization period, animals in the immunisation groups were orally 

inoculated as described for the virulence trials on three consecutive days (d-2, d-1, d0) 

with 20 ml of a culture containing approximately 109 colony forming units (cfu)/ml of 

nonvirulent strain D28. Correspondingly, animals in the non-immunisation groups were 

orally inoculated with 20 ml of BHI broth supplemented with 10% FBS. All animals were 

pre-treated 90 minutes before inoculation with 0.75 mg/kg ranitidine (Zantac™, 

GlaxoSmithKline, Genval, Belgium) to reduce stomach acid production. 

Three weeks after (sham-)immunisation, five animals of each group were challenged 

with virulent B. hyodysenteriae strain B204 on three consecutive days by oral 

inoculation (d19, d20, d21) as described above for the immunising strain. These 

challenged animals served as seeder animals for the remaining five animals 

(receivers) in each group. 

Animals were observed daily for the presence of diarrhoea and other disease signs. 

During the period post-immunisation until challenge, faecal samples were collected 

three times a week from immunised animals. From these faecal samples DNA was 

extracted as described above to determine excretion of the immunising strain and 

faeces were scored as described for the virulence trials. These faecal samples were 

also used to determine the presence of faecal IgA against B. hyodysenteriae. Faecal 

samples from non-immunised animals were collected once during this period to 

confirm the absence of B. hyodysenteriae. After challenge, faecal samples were taken 

two times a week from all animals. These samples were scored and DNA was 

extracted as described above to determine the excretion of the immunising and/or 

challenge B. hyodysenteriae strain. These faecal samples were used to determine the 

presence of faecal IgA against B. hyodysenteriae as well. 

Animals were weighed at the start of the trial (before immunisation), after immunisation 

at day 17 and at necropsy. Average daily weight gain was calculated for each individual 

animal. Blood samples for determination of the presence of B. hyodysenteriae reactive 

serum IgG were taken before immunization (d-13) and before challenge (d17).  

Animals were euthanized at day 50-52 (30-32 days post challenge) or sooner if apathy 

or depression was noted. Euthanasia was performed as described for the virulence 

trials.  
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qPCR differentiating between the immunising and the challenge strain 

In order to specifically determine the quantity of B. hyodysenteriae DNA of the 

immunising strain and the challenge strain in faecal and intestinal samples, primers 

were designed to specifically anneal with DNA of either strain. Primers were based on 

the haemolysin III gene from both strains: D28 (GenBank KU215635) and B204 

(GenBank JXND01000108) [2,22]. Following primers were used for specific detection 

of the immunising strain D28: HlyVacFo 5’TGGTGAAATACTGCCAAAA3’ and 

HlyVacRe 5’TGTTGTTATATCGTCCATAC3’. Following primers were used to 

specifically detect the challenge strain: HlyInfFo 5’GTTAATGCTGAAAAAATGATG3’ 

and HlyInfRe 5’AAGCTCTTGTATGGAATATAC3’. For both strains, following primer 

pair was used to generate an amplicon to be used as a standard: HlySTFo 

5’CAAGTTCTATGATACCTAC3’ and HlySTRe 5’GCCGCCTTTAACATAYTCTTT3’. 

The quantitative PCR was performed on a CFX96™ RT-PCR System with a C1000 

Thermal Cycler (Bio-Rad, Hercules CA, USA). Two μL of DNA was suspended in a 

10μL reaction mixture consisting of SensiMix™ SYBR No-ROX (Bioline Reagents Ltd, 

UK), HPLC water and primers at 1.5 µM for the challenge strain, and at 0.5 µM for the 

immunising strain. The PCR program consisted of denaturation for 10 min at 95 °C, 

followed by 40 cycles of 95 °C for 30s, and 60 °C for 30s. Standards and samples were 

run in duplicate. Reactions for both strains were performed separately, since both 

amplicons generated a melt temperature of 74.5°C and could not be distinguished 

based on their melt temperatures. The Bio-Rad CFX Manager (version 1.6) software 

was used for calculation of threshold cycles (Ct)-values and melting curve analysis of 

amplified DNA.  

Enzyme-Linked Immuno Sorbent Assay (ELISA) for specific detection of serum IgG 

and faecal IgA against B. hyodysenteriae 

For detection of antibodies against B. hyodysenteriae strains D28 or B204, in-house 

whole cell ELISAs were prepared as described previously for Salmonella enterica [20]. 

Each strain was grown in BHI with 10% FBS for 48hrs on a rocking platform at 37°C. 

Cultures were inactivated by adding 0.18% (v/v) formalin. The inactivated 

B. hyodysenteriae suspensions were washed with Phosphate Buffered Saline (PBS) 

with 0.18% formalin (v/v) and finally resuspended in coating buffer (1.08g 

Na2CO3.10H2O, 0.968g NaHCO3, 0.25 l aqua ad injectabilia 100% w/v). F96 Nunc-
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immuno plates (Nunc International, Roskilde, Denmark) were coated with 140 µl of 

inactivated B. hyodysenteriae in coating buffer, diluted to an optical density of 0.3 at 

660 nm. After a 24hr-incubation period at 4°C, plates were washed three times with 

100 µl of wash buffer (0.6g NaH2PO4.2H2O, 5.6g NaH2PO4.12H2O, 0.5ml Tween 20, 

12.5g NaCl). Plates were kept at 4°C until further use. 

Wells were pre-incubated with 1% skim milk powder solution in distilled water for 15 

minutes to block non-specific binding. For detection of IgG in serum samples, 100 µl 

of 1/200 diluted sera were added to the wells and incubated for 30 minutes at room 

temperature. After incubation, wells were washed 5 times with wash buffer after which 

100 µl of a 1/20 000 dilution of a horseradish peroxidase conjugated anti-porcine IgG 

(Sigma-Aldrich, St. Louis, MO, USA) was added. After 30 minutes of incubation wells 

were washed 5 times with wash buffer and 100 µl 3, 3′,5 ,5′-Tetramethylbenzidine 

(Sigma-Aldrich, St. Louis, MO, USA) reagent was added. The enzymatic reaction was 

stopped after 10 minutes by adding 100 µl of 1N HCl. Optical densities were measured 

with a spectrophotometer (Multiskan MS, Thermofisher Scientific, Waltham, MA, USA) 

at 450 nm. 

For detection of IgA in faecal samples, extracts were prepared as described by Peeters 

et al. [25]. One gram of frozen faeces was weighed and placed on ice. Three ml of 

extraction buffer (PBS, 0.5% Tween 20%, 0.05% NaN3) was added and the suspension 

was centrifuged at 4°C for 20 minutes at 1500 g. The supernatant was collected in a 

2ml Eppendorf tube (Eppendorf, Hamburg, Germany). Twenty µl of proteinase inhibitor 

(Sigma-Aldrich, St. Louis, MO, USA) was added before centrifugation for 10 minutes 

at 3000 g at 4°C. Supernatant was collected and stored at -20°C until further use. For 

detection of IgA reactive with B. hyodysenteriae in these faecal extracts, ELISA was 

carried out as for IgG detection in serum with following changes: faecal extracts were 

used undiluted and were incubated for 60 minutes, the secondary antibody, goat anti-

porcine IgA (Bio-rad, Kidlington, UK ) was used in a 1/5 000 dilution.  

Statistical analysis 

Correlation between faecal excretion and faecal score was determined by Spearman’s 

rank order correlation (r) and was performed with SPSS 22.0 software (SPSS Inc, 

Chicago, USA). In the seeder vaccination model, faecal scores were analysed using 

cumulative logit link regression. Interactions between time, type and treatment were 

included, as well as random effects at the individual level, to control for pseudo-
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replication in the individual time series, and at the pen effect to account for clustering. 

The analysis was performed using package “ordinal” in R. Analysis was repeated for 

faecal excretion, this time using a linear mixed model (package “lme4” in R), with the 

same predictors as above.  

The effect of treatment on average daily weight gain was analysed using linear 

regression. The effect of faecal IgA response on the time of onset of SD was analysed 

in two steps. First, measurements for individual animals, collected at regular intervals 

(3, 6, 10, 13, and 17 days post challenge), were analysed using a survival model, 

estimating whether the probability of an individual developing SD was delayed by a 

stronger faecal IgA response. The use of the survival model enabled us to account for 

censoring (some individuals had not developed disease by the time the experiment 

was terminated). To capture several possibilities, the analysis of the survival model 

was repeated using as response variable alternatively the maximum IgA value, the 

arithmetic mean and the geometric mean across all days before the first notice of 

disease signs for a given individual. The geometric mean was used to better reflect the 

possible dependency between successive measures of IgA in the same individual. All 

three survival models included a fixed effect for individual type (seeder/receiver) and a 

random effect at the pen level to account for clustering. All analyses of faecal IgA 

responses were carried out using the “survival” package in R. For all analyses, the 

statistical significance level was set at α=0.05. 

3 Results 

The low haemolytic B. hyodysenteriae strain D28 is avirulent in pigs. 

In all virulence trials, faeces of all animals were negative for B. hyodysenteriae on 

arrival, although some animals of each trial tested positive for B. innocens. All animals 

tested negative for Salmonella sp.. Across all infection trials, out of 12 pigs that were 

colonized by strongly haemolytic B. hyodysenteriae strains, 11 consistently developed 

SD, in contrast to none of the 34 pigs colonized by the weakly haemolytic strain D28 

(table 1). One receiver animal in experiment 3 shed B. hyodysenteriae in its faeces on 

two occasions at the end of the trial. At the same time the animal had a faecal score 

of 2. It is possible that this animal would have developed SD in the following days. 

However, since the trial ended simultaneously for all animals in that trial, the animal 

was euthanized and the development of SD could not be confirmed. 
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In the seeder vaccination trial, during the period between immunisation with strain D28 

and the challenge with the virulent strain, no clinical signs of dysentery were noticed in 

any animal. On all sampling occasions, maximum faecal score was 1. Score 1 was 

noted in immunised as well as in non-immunised animals.  

Table 1: B. hyodysenteriae strains, experimental set-up and results for faecal 

excretion and clinical signs of SD 

Virulence 

trial 

number 

B. hyodysenteriae 

strain 

Strength of 

haemolysis  

Model and 

inoculation 

route 

Number 

of pigs 

positive 

for faecal 

excretion* 

Number 

of pigs 

with 

SD*  

1 8dII strong direct oral 

inoculation 

2/6 2/6 

2 B204 strong direct 

gastric 

inoculation 

5/9 5/9 

3 49 strong seeder 

model 

5/14 4/14 

4 D28 weak direct oral 

inoculation 

5/8 0/8 

5 D28 weak direct 

gastric 

inoculation 

4/12 0/12 

vaccination 

experiment 

D28 weak direct oral 

inoculation 

25/30 0/30 

 

* given as proportion of total number of inoculated pigs  

Figure 1 shows the correlation between faecal excretion and faecal scores for weakly 

haemolytic strain D28 (panels a-c) and for strongly haemolytic strains 8dII (panel d), 

49 (panel e) and B204 (panel f).The correlation between faecal excretion and faecal 

scores was significant (p<0.01) for the strongly haemolytic strains and the correlation 

coefficients (r) were 0.67 (strain 8dII), 0.40 (strain 49) and 0.64 (strain B204) 

respectively. For weakly haemolytic strain D28 there was no correlation between faecal 

excretion and faecal score in any of the experiments; experiment 4 r = 0.049, 

p = 0.684, experiment 5 r = -0.064, p = 0.536, seeder vaccination experiment 

r = - 0.007 p = 0.919.  
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Figure 1: Correlation between faecal excretion of the different B. hyodysenteriae strains used for 

inoculation and faecal scores of pigs inoculated with these strains. Panels a and b: weakly haemolytic 

B. hyodysenteriae strain D28 in experiments nr 4 and 5,  panel c: weakly haemolytic B. hyodysenteriae 

strain D28 in the seeder vaccination experiment, panel d: strongly haemolytic B. hyodysenteriae strain 

8dII in experiment nr 1, panel e: strongly haemolytic B. hyodysenteriae strain 49 in experiment nr 3, 

panel f: strongly haemolytic B. hyodysenteriae strain B204 in experiment nr 2. n= total number of 

inoculated pigs in each experiment. 

All animals, inoculated with one of the strongly haemolytic B. hyodysenteriae strains, 

that showed clinical signs of SD had various lesions in large parts of the colon. 

Contents of the colon were liquid and macroscopic lesions consisted of serosal 

hyperaemia, fibrinous colitis, enlarged mesenteric lymph nodes and the presence of 

excessive mucus at the colonic mucosa. Histologically, elongation of the colonic crypts 
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and presence of a large amount of mucoid material in the lumen of the infected animals 

were remarkable. The lamina propria mucosae was infiltrated by lymphocytes, plasma 

cells, and neutrophils.  

Of the animals that shed weakly haemolytic B. hyodysenteriae strain D28, some 

showed slight hyperaemia of the colonic mucosa but no other apparent macroscopic 

lesions were observed. Histologically, no elongation of the colonic crypts was observed 

and no infiltration of inflammatory cells could be observed in the lamina propria.  

PAS staining showed elongation of the colonic crypts (reflected by the size of the 

brackets) and a high number of Goblet cells in animals colonized with a strongly 

haemolytic strain (figure 2b; animal colonized with strongly haemolytic strain 8dII as 

an example), but not in those colonized with the weakly haemolytic strain D28 (figure 

2c) or in negative control animals (figure 2a). 

 

Figure 2. PAS staining of formalin fixed colonic tissue samples of pigs infected with different 

B. hyodysenteriae strains. Colonic mucosa from a: sham inoculated animal, b: animal infected by 

strongly haemolytic B. hyodysenteriae strain 8dII (33 days post inoculation), c: animal infected by weakly 

haemolytic B. hyodysenteriae strain D28 (32 days post inoculation).  

Vaccination with the avirulent strain delays the spread of SD 

In the seeder vaccination trial, of the 30 animals inoculated with immunising strain D28, 

the majority shed the strain in their faeces for less than one week (12 animals) or less 

than two weeks (10 animals). Three animals shed the strain for more than two weeks 

and for five animals, strain D28 could not be detected with qPCR. Most animals (18 

out of 25) started shedding strain D28 in their faeces within the first week after 

inoculation, six animals in the second week, and one animal at 17 days post 

inoculation. During the period post vaccination until challenge, vaccinated animals had 

a significantly lower average daily weight gain (507 g/day) compared to sham-
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vaccinated animals (650 g/day) (linear regression coefficient for treatment: β=-

0.52±0.2 s.e., p=0.010).  

The total number of animals that developed SD after challenge with the virulent 

B. hyodysenteriae strain is given in figure 3. The onset of SD, defined as the first day 

on which a faecal score of 2.5 or more was reached and mucus and/or blood were 

present, was postponed in immunised animals compared to non-immunised animals. 

There was a significant interaction between immunisation and number of days from 

challenge until onset of SD (regression estimate β=0.065±0.022 s.e., p=0.004). Seeder 

animals in the immunisation groups developed SD on average after 11.1 (10-11.8) 

days while seeder animals in the non-immunisation groups developed SD on average 

after 9.2 days (7.6-12). Receiver animals developed SD on average after 21.2 days 

(18.8-22.4) in the immunised groups, and after 17.3 days (15.6-20.25) in the non-

immunised groups.  

The average cumulative faecal score of pigs after challenge with virulent 

B. hyodysenteriae strain B204 is given in figure 4. The main effects in the regression 

showed that the probability of having a higher faecal score decreased with 

immunisation (regression coefficient: β= -1.398±0.384 s.e., p=0.0002), indicating that 

immunisation significantly reduced the probability of having a higher faecal score.  

Immunisation was not significantly correlated with a decrease in faecal excretion of the 

B. hyodysenteriae challenge strain (all p>0.3). Faecal excretion of the challenge strain 

was correlated with faecal scores, and equally strong for vaccinated and non-

vaccinated animals (vaccinated animals r= 0.79, p<0.001, non-vaccinated animals 

r=0.74, p<0.001). In all weight gain analyses, no significant differences were found 

between seeders and receiver individuals. Although a trend could be observed for 

immunised animals, most noticeable for receiver animals, to have a higher weight gain 

in the post challenge period compared to non-immunised animals, this difference was 

not significant (p=0.17). Plots of average daily weight gain are given in figure 5. 
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Figure 3: Cumulative number of pigs that developed SD after challenge with virulent B. hyodysenteriae 

strain B204, preceded either (rhombi) or not (squares) by exposure to non-virulent B. hyodysenteriae 

strain D28.  

 

 

Figure 4: Average cumulative faecal score of pigs after challenge with virulent B. hyodysenteriae strain 

B204, preceded either (rhombi) or not (squares) by exposure to non-virulent B. hyodysenteriae strain 

D28. 
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Figure 5: Plots of average daily weight gain (period: post-vaccination to necropsy), of pigs after 

challenge with virulent B. hyodysenteriae strain B204, preceded either (green) or not (yellow) by 

exposure to non-virulent B. hyodysenteriae strain D28, grouped by individual type (seeder, receiver and 

both) and by vaccination treatment. Boxes indicate 25% and 75% quantiles: bars indicate 2.5% and 

97.5% quantiles. Average daily weight gain given in kg.  

 

The avirulent strain does not induce a fast IgG response 

Serum IgG ELISA responses against B. hyodysenteriae are given in table 2. There 

was no significant increase of IgG post-vaccination either for vaccinated or non-

vaccinated animals, regardless of which strain was used to coat the whole cell ELISA. 

There were no significant differences between vaccinated and non-vaccinated 

animals, before or after vaccination.  
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Table 2: Production of serum IgG against B. hyodysenteriae before and after 

vaccination with the avirulent strain D28. The reaction of IgG with both the vaccination 

strain (D28) and the challenge strain (B204) are shown and presented as OD450 values 

with standard deviation. 

 

Group 

Whole cell ELISA, D28 coated Whole cell ELISA, B204 

coated 

 Pre vaccination 

(d-13) 

Post 

vaccination 

(d17) 

Pre vaccination 

(d-13) 

Post 

vaccination 

(d17) 

Vaccinated 

animals 

0.27 ± 0.17 0.31 ± 0.13 0.25 ± 0.16 0.23 ± 0.06 

Non-

vaccinated 

animals 

0.19 ± 0.14 0.23 ± 0.17 0.21 ± 0.14 0.21 ± 0.09 

 

The avirulent strain induces a local yet variable IgA response 

During the period post-vaccination and before challenge with the virulent 

B. hyodysenteriae strain, faecal IgA increased in 11 of 30 vaccinated animals. The 

faecal IgA response was measured 7 times during this period and there were large 

individual differences. The faecal IgA response was measured in non-vaccinated 

animals once at the end of this period. For none of those non-vaccinated animals there 

was an increase in IgA. Faecal IgA responses are given in table 3. 
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Table 3: Faecal IgA production before and after vaccination with the avirulent 

B. hyodysenteriae strain D28. The reaction of IgA with both the vaccination strain (D28) 

and the challenge strain (B204) are shown and presented as OD450 values with 

standard deviation. 

 Whole cell ELISA, D28 coated Whole cell ELISA, B204 

coated 

Days post 

vaccination 

Vaccinated 

animals 

Non-

vaccinated 

animals 

Vaccinated 

animals 

Non-

vaccinated 

animals 

Day -13 0.12 ± 0.14 0.12 ± 0.28 0.11 ± 0.13 0.14 ± 0.41 

Day 3 0.08 ± 0.04 NA* 0.07 ± 0.03 NA 

Day 5 0.15 ± 0.28 NA 0.11 ± 0.13 NA 

Day 7 0.14 ± 0.15 NA 0.09 ± 0.06 NA 

Day 10 0.34 ± 0.70 NA 0.13 ± 0.18 NA 

Day 12 0.39 ± 0.55 NA 0.12 ± 0.09 NA 

Day 14 0.66 ± 0.99 NA 0.25 ± 0.47 NA 

Day 17 0.62 ± 0.96 0.11 ± 0.06 0.18 ±0.21 0.10  0.06 

 

*NA= not applicable 

Faecal IgA responses were also determined in the period after challenge on days 3, 6, 

10, 13, and 17 post challenge. To assess the effect of IgA on the delay of development 

of clinical SD, maximum IgA response and geometric mean IgA response of individual 

animals were determined and correlated to the time of onset of SD for that specific 

animal. Since delay in onset of SD was to be determined, only IgA values before the 

actual onset of SD for each animal were retained. Furthermore, we only considered 

seeder animals, since for receiver animals the time of first exposure to 

B. hyodysenteriae is unknown. 

Non-vaccinated animals showed low levels of faecal IgA until onset of SD. For 

vaccinated seeder animals there was greater variability between individuals. The 

maximum IgA response and the geometric mean IgA response of those vaccinated 

seeder animals were significantly correlated to a later onset of disease (regression 

coefficient for geometric mean IgA: β=7.26±3.59 s.e., p=0.043, for maximum IgA 
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response: β=7.59±2.58 s.e., p=0.003). The maximum IgA and geometric mean IgA 

response, correlated with the time of onset of SD are shown in figure 6 and figure 7. 

 

 

 

Figure 6: IgA max correlated with time of onset of SD (given in days post challenge with the virulent 

strain) for vaccinated seeder animals. X-axis presents OD450 values as measured in the ELISA. 

 

 

Figure 7: Geometric mean IgA correlated with time of onset of SD (given in days post challenge with the 

virulent strain) for vaccinated seeder animals. X-axis presents OD450 values as measured in the ELISA. 
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Discussion 

In the pigs inoculated with the three strongly haemolytic strains, a significant correlation 

between faecal excretion of B. hyodysenteriae and faecal scores was observed. In the 

two virulence trials using the weakly haemolytic strain D28, however, none of the nine 

animals that shed the strain in their faeces developed disease signs or lesions 

associated with SD. Moreover a faecal score of more than one was never observed 

and there was no correlation between shedding of the weakly haemolytic 

B. hyodysenteriae strain and an elevated faecal score. This lack of correlation was 

independently confirmed in the seeder vaccination trial, in which none of the 25 pigs 

that shed strain D28 in their faeces developed disease signs of SD, and no correlation 

between shedding of this strain and elevated faecal scores could be observed. All 

these results strongly indicate that the weakly haemolytic B. hyodysenteriae strain is 

avirulent in pigs. 

La et al. [19] described reduced virulence in a weakly haemolytic B. hyodysenteriae 

strain obtained from a herd with no clinical signs of SD. In this herd, sows were present 

with substantial growth of B. hyodysenteriae strain JR11 in their colon, without any 

clinical sign of SD. Although true virulence potential has not yet been verified under 

experimental conditions, authors described strain JR11 as particularly innocuous [19]. 

Interestingly, strains D28 and JR11 share almost identical differences in their 

haemolysin III and haemolysin activation protein, as given for strain D28 earlier [22]. 

Compared to the whole genome sequence of reference strain WA1 (accession number 

NC_012225), both weakly haemolytic strains JR11 and D28 show five identical amino 

acid substitutions (positions 81, 113, 164, 227, 265) in the haemolysin activation 

protein BHWA1_RS02885 and eight identical amino acid substitutions in the 

haemolysin III protein BHWA1_RS02195 (positions 47, 49, 56, 79, 82, 111, 114, 133). 

For strain JR11 two additional amino acid substitutions were identified in the 

haemolysin III protein at positions 30 and 213. It should be noted that unintentionally, 

for the haemolysin III protein table 3 in La et al [19], comparing the nucleotide and 

amino acid differences of strain D28 and JR11, gives the amino acid differences from 

other B. hyodysenteriae strains compared to WA1 and not the amino acid differences 

found in D28 as given in Mahu et al. [22]. As determined by MLST strain JR11 and 

D28 do not share the same sequencetype  
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Since structural studies or deletion mutant studies are not available for those 

haemolysis associated genes, it is uncertain if the amino acid changes in these two 

strains indeed alter the functionality of their proteins. However, the unique similarity of 

the amino acid changes in two, otherwise genetically unrelated strains, that share the 

same aberrant phenotype and presumably are both low or avirulent, is striking. 

The seeder vaccination trial described in this study shows that the velocity of spread 

of SD is significantly reduced in immunised animals compared to sham-immunised 

animals. Although faecal shedding after challenge was not significantly decreased, 

pre-immunised animals showed significantly lower faecal scores compared to sham-

immunised animals. The absence of a clear IgG response in serum after immunisation 

is not surprising since it has been demonstrated that after experimental infection, 

serum antibody levels start to rise after two to four weeks and reach their maximum 

after 4 to 7 weeks. [15]. In this experiment serum samples were taken 17 days post 

inoculation with the immunizing strain, which might have been too early to see a clear 

response. Furthermore, since this strain lacks virulence, epithelial damage in the colon 

can be expected to be absent. Disruption of the colonic mucosa during SD probably 

permits further penetration of the underlying tissues and blood vessels by bacterial 

antigen, which could enhance serum antibody response more intense compared to 

local mucosal stimulation alone [28].  

The production of intestinal IgA may play a role in protection against SD. The delay of 

the onset of SD in immunised pigs coincided with the presence of a substantial local 

IgA response at the moment of challenge. Earlier, Rees et al. [29,28] described the 

presence of colonic IgA and IgA memory cells in gut associated lymphoid tissue in pigs 

who were re-challenged 14 weeks after recovering from a first or second challenge 

with B. hyodysenteriae strain B204. In those studies the IgA levels in colonic washings 

or faeces were correlated with a recent exposure, but not with protection against 

development of clinical SD. This discrepancy with our findings is partially explained by 

the definition of protection in those earlier studies as the presence or absence of SD, 

rather than time to development of SD. Most importantly in those studies, samples 

were taken only once, at the time of necropsy, which was several weeks after the last 

exposure to B. hyodysenteriae. Indeed IgA in seeder vaccinated animals rose shortly 

after the exposure to the challenge strain, but in those seeder vaccinated animals 
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where this rise in IgA upon challenge was absent, the development of SD was not 

delayed.  

For other bacterial enteropathogens like Shigella flexneri, a rise in colonic IgA plays a 

role in induction of protection by immunization with live attenuated strains [16]. It was 

shown there that in order to elicit a high and optimal mucosal immune response, 

multiple doses of the live strain were necessary. Obviously there are differences 

between the pathogenesis of Shigella flexneri infections and SD, as well as between 

the responses of their respective hosts. However, both bacteria share the niche of the 

colon and for both bacteria, serum antibody responses are not linked with protection. 

It has been demonstrated on several occasions that the number of animals that is 

protected against SD is significantly higher after three or four exposures to 

experimental challenge [15,24] which would be in line with having a higher and 

prolonged mucosal immune response after multiple exposures.  

The link between local IgA and delayed onset of SD opens perspectives for future 

vaccine development against B. hyodysenteriae. Some earlier studies of immunity 

induced by experimental infection of B. hyodysenteriae point to the importance of 

mucosal IgA. Recently there has been a developing interest in Th17 cells and 

interleukin-17A (IL-17) as critical host defence against extracellular pathogens through 

upregulation of intestinal IgA [21]. In pigs, IL-17 is exclusively produced by CD4+ and 

γδTCR+ T-cells. The importance of CD4+ cells in the immune response following 

B. hyodysenteriae infection has been described by several authors [12,35]. We have 

demonstrated a 9-fold increase in mRNA levels of IL-17A in SD infected pigs [27]. 

Taken together, it would be of most interest to determine if CD4+ cells and upregulation 

of IL-17A are present in the colonic mucosae of pigs immunised with our strain D28 

and to explore ways to further optimise the intestinal IgA response. For example, 

combined parenteral and oral immunisation has been demonstrated to significantly 

enhance mucosal IgA response for S. flexneri [17] and might be useful in a 

B. hyodysenteriae immunisation regime as well.  

In conclusion, we describe the lack of virulence of weakly haemolytic 

B. hyodysenteriae strain D28. Immunisation of pigs by oral inoculation of this strain, 

significantly slows down the spread of SD compared to sham-immunised animals in a 
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seeder challenge model. This protection was associated with a strong IgA response 

upon challenge, providing directions for future vaccine development. 
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Since the first description of swine dysentery (SD) in 1920, the specific needs for 

diagnostics, treatment and prophylaxis have evolved and changed during this nearly 

100 year period. Substantial advances in the fight against SD have been made since 

the causative agent “Treponema hyodysenteriae” (as Brachyspira hyodysenteriae was 

originally named), was identified [20, 58]. In those early days of SD, diagnosis and 

treatment might have seemed straightforward: clinical outbreaks were unambiguously 

related to the colonic and faecal presence of the strongly haemolytic spirochete, 

“Treponema hyodysenteriae”, and treatment consisted of lincomycin, carbadox or 

tylosin. If weakly haemolytic spirochetes were present in faeces, these were 

considered non-pathogenic and grouped under “Treponema innocens” [30]. Recent 

taxonomic insights and increasing issues with SD treatment, have resulted in new 

challenges for SD diagnosis and treatment. For consistency, the species name 

Brachyspira will be used throughout this discussion, regardless the species name at a 

given time-point (Treponema = Serpula = Serpulina = Brachyspira). 

SPECIES DELINEATION: WHAT’S IN A NAME? 

Brachyspira taxonomy was once based on haemolytic properties, with on the one hand 

the weakly haemolytic, non-pathogenic Brachyspira innocens [31], and on the other 

hand the strongly haemolytic, pathogenic Brachyspira hyodysenteriae [20]. The 

discovery of several weakly haemolytic Brachyspira isolates not compliant with the 

description given for B. innocens, called for a new taxonomy [5,61]. Phenotypic and 

genotypic analyses using multilocus enzyme electrophoresis (MEE) of 

B. hyodysenteriae isolates and a variety of weakly beta-haemolytic intestinal 

spirochetes (WBHIS), suggested the existence of five subgroups later identified as: 

B. hyodysenteriae, B. innocens, B. intermedia, B. murdochii and B. pilosicoli [5,36-38]. 

For diagnostic purposes phenotypic identification schemes based on strength of 

haemolysis and enzymatic profiles were provided by Fellström and Gunnarsson [12] 

and Hommez et al. [25] who divided the genus Brachyspira in six biochemical groups 

(I, II, IIIA, IIIB, IIIC, IV).  

However, 16S rRNA sequence analysis of isolates in these biochemical groups, only 

discriminated between three groups unambiguously [13,48]. Based on 16S rRNA 

sequence analysis there was one genetic group comprising biochemical groups I and 

II, supposedly representing B. hyodysenteriae and B. intermedia, a second genetic 
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group comprising biochemical groups IIIa, IIIb, and IIIc, supposedly representing 

B. innocens and B. murdochii, and a third genetic group with biochemical group IV, 

representing B. pilosicoli.  

One could wonder, as demonstrated by the existence of multiple isolates that do not 

comply with the biological or pathogenic properties of a species, if current species 

delineation is perhaps too narrow and a division in only three species, with further 

subspecific division, might have been more appropriate. That would also explain why 

16S rRNA of Brachyspira is said to be unspecific to delineate the existing species. 

Conversely, the 16S rRNA analysis might mirror a more appropriate species division. 

This is somewhat corroborated by DNA-DNA hybridisation between B. innocens-

B. murdochii, which show a similarity of 64-66% and B. intermedia-B. hyodysenteriae 

which show a similarity of 57-68%, thereby approaching the threshold of being 

accepted within species diversity (70%) [59].  

In contrast to this, for the recently named Brachyspira hampsonii a single species has 

been maintained, subdivided over several genomovars [42]. The genome-to-genome 

distances between these genomovars of B. hampsonii are larger than the genetic 

distances between B. innocens and B. murdochii, or between B. hyodysenteriae–

B. intermedia-B. suanatina. The rationale for maintaining all B. hampsonii genomovars 

within a single same species was based on the lack of clearly distinguishable 

properties such as phenotypic characteristics or pathogenicity [42,63]. This rationale 

would evenly apply to B. murdochii-B. innocens, which are phenotypically only different 

in the presence of α-galactosidase, or to B. hyodysenteriae-B. suanatina, for which 

there are no phenotypic differences [45,52].  

Following figure represents a phylogenetic tree based on core genomes (adapted from 

Mushtaq et al.) [45]. The figure shows that the species B. innocens and B. murdochii, 

and the species B. hyodysenteriae, B. intermedia, B. suanatina are separated from 

each other by a distance similar to that separating genomovars B. hampsonii I and 

B. hampsonii II, represented in the figure by B. hampsonii 30599 and B. hampsonii 

30446 respectively.  
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Figure 1: radial unrooted tree based on concatenated amino acid sequence of 1309 

core genes [45] 

 

Furthermore, species delineations have sometimes been based on information of a 

few isolates, which were later shown not to be representative of a certain taxon. For 

example, the type strain of B. intermedia shows a large genetic distance from most 

other B. intermedia isolates [49], a bias of the large strain diversity found in this 

species. Since most diagnostic PCRs have also been based on genetic information 

retrieved from those first few isolates of a species, it is quite common to find weakly 

haemolytic Brachyspira isolates for which there is an inconsistency between the 

phenotypic species identification and the identification by PCR, substantially 

confounding species determination [8].  

The last decade the diagnostic identification of Brachyspira sp. has further been 

complicated due to the appearance of new strongly haemolytic Brachyspira species, 

Brachyspira hampsonii and Brachyspira suanatina [7,44,45,52,54]. The strong 

haemolysis of these two species had always been considered pathognomonic for 

B. hyodysenteriae. Diagnostic laboratories using culture methods would misidentify 

these new species as B. hyodysenteriae when culture methods were not accompanied 

by PCR, which would alert laboratories that the isolate in question was aberrant since 

species-specific PCRs for B. hyodysenteriae will be negative for these isolates. More 
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worrying, diagnostic laboratories relying on PCR instead of culture methods would 

identify B. hampsonii or B. suanatina as ‘a weakly haemolytic Brachyspira sp.’, since 

most diagnostic PCRs only distinct B. hyodysenteriae, B. pilosicoli, B. intermedia, and 

‘others’. This kind of misidentification would lead to false conclusions regarding the 

clinical relevance of an isolate.  

Additionally, our identification of weakly haemolytic B. hyodysenteriae isolates [40], 

further extended by the description of weakly haemolytic B. hyodysenteriae isolates in 

Germany and Australia [35,17], complicates diagnostics further. These strains will be 

identified as B. hyodysenteriae by PCR, but PCR will not provide the nuance of the 

weak haemolysis which would be detected if culture methods were used as well. 

Laboratories relying on culture methods and biochemical tests would identify such 

isolates as B. intermedia or B. murdochii depending on the presence or absence of 

indole production.  

VIRULENT: TO BE OR NOT TO BE? 

The fluidity of Brachyspira taxonomy and pronounced virulence differences within 

currently recognized Brachyspira species render attribution of virulence to a field 

isolate unreliable when merely based on species identification. Instead of focusing on 

proper identification as main indicator for virulence, a pragmatic approach may be more 

appropriate, one focused on virulence characteristics. Such approach might have 

important consequences for the pig industry, for example for pig trade. Currently, when 

a herd tests positive for B. hyodysenteriae, this compromises the trading possibilities 

of the farm regardless of the strain’s virulence. The presence of avirulent strains should 

not compromise trading opportunities. 

Reliable prediction of the pathogenic potential of a B. hyodysenteriae field isolate 

depends on a thorough knowledge of the pathogen’s major virulence traits. However, 

since the mechanisms underpinning the pathogenesis of swine dysentery are largely 

unknown, few virulence traits have been unambiguously identified. Lipoproteins, 

haemolysins and genes involved in motility and chemotaxis have been linked with 

virulence in the past [62]. Although motility and chemotaxis undoubtedly play a role in 

effective colonisation of pigs, and therefore in a strain’s virulence [30,53], 

B. hyodysenteriae strains with insufficient colonisation capacity would probably remain 

largely undetected in a farm due to their low presence in the colon. Besides, recent 
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analysis of whole genome sequences of B. hyodysenteriae isolates with different 

pathogenic potential has revealed very limited variation in genes associated with 

motility and chemotaxis [6], making it unlikely that genes involved in chemotaxis and 

motility are useful in distinguishing virulent and avirulent strains. 

Although Black et al. demonstrated some genetic variation for lipoproteins and surface 

proteins, this genetic variation could not be linked with variation in virulence, which 

makes these genes unfavourable for distinguishing virulent and avirulent strains as 

well [6]. The presence of a plasmid and of six rfb genes on that plasmid was linked 

with virulence [34]. Complete absence of the plasmid has been shown in avirulent 

strains, but so far this has only been described for one laboratory strain (B78) and for 

one Australian field strain. Since the description of the specific genes on the plasmid, 

several field strains have been identified that either are virulent and lack some of these 

genes, or are less virulent and possess all the plasmid genes [35]. This makes the rfb 

plasmid genes unsuitable as virulence markers.  

The haemolytic capacity of B. hyodysenteriae has been regarded a hallmark of its 

pathogenic properties ever since the first description of the species. Our research into 

the weakly haemolytic B. hyodysenteriae strain D28 [40] and the research of La et al. 

[35] into a weakly haemolytic B. hyodysenteriae strain isolated in Germany have 

reinforced the importance of haemolysis as a virulence trait, and have presented 

further genetic analysis of this virulence trait.  

Substantial nucleotide and amino acid differences in the haemolysin III and haemolysin 

activation protein were revealed when haemolysis associated genes of our weakly 

haemolytic strain D28 and the German weakly haemolytic strain JR11 were compared 

to haemolysis associated genes of 20 B. hyodysenteriae strains. Additionally, strain 

JR11 showed an insertion mutation in the promoter region of hlyA. Although these 

three haemolysis associated genes are assumed to be a key factor in virulence of 

B. hyodysenteriae, due to the avirulence of the described strains on one side, and the 

unique nucleotide differences in these otherwise strongly conserved genes on the 

other side, definitive proof is lacking. This would require function tests of laboratory 

derived specific mutant strains which are very difficult to construct for 

B. hyodysenteriae.  
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Whole genome sequencing and the increasingly easier accessibility of this tool will 

undoubtedly promote the identification of virulence traits and their genetic background. 

Ideally the whole genome sequence of a large number of B. hyodysenteriae isolates, 

for which pathogenic potential has been decisively proven in experimentally infected 

pigs, should be analysed and compared, to identify virulence traits that predict a 

strain’s virulence. Genetic information of these traits could be used in further design of 

diagnostic (q)PCRs or even serological tests. 

WILL ANTIMICROBIAL THERAPY SURVIVE? 

Worldwide, antimicrobial resistance against doxycyline, lincomycin and macrolides is 

high for B. hyodysenteriae [22,32,43,50]. For many swine producing countries, 

pleuromutilins are the only valid treatment option that is left. With the exception of the 

USA and Switzerland, levels of antimicrobial resistance for the pleuromutilins 

valnemulin and tiamulin are increasing as well [32,43]. In the USA and Switzerland, 

the lack of any such increase can probably be explained by the limited usage of these 

products as therapeutic agent against swine dysentery. In Switzerland, SD has only 

emerged after 2008 and in the USA, carbadox can still be used, although since 1 

January 2017 it has been withdrawn for growth promoting purposes, and the FDA has 

recommended to prohibit the use of carbadox therapeutically for swine as well [10,11]. 

Antimicrobial resistance against pleuromutilins is expected to increase when 

pleuromutilin products are used more often, as exposure of B. hyodysenteriae to these 

antimicrobials will induce SNPs responsible for acquired antimicrobial resistance 

[22,24,51]. 

In Belgium, due to relatively high levels of acquired resistance against lincomycin and 

macrolides, pleuromutilins are the drugs of choice to treat SD. The existence of Belgian 

B. hyodysenteriae strains with acquired resistance against pleuromutilins, renders 

swine dysentery untreatable in some cases. If multi-resistant clonal complexes as we 

described further spread, this poses a genuine threat to swine industry [41].  

It would be very helpful to install a monitoring program in which the epidemiology of 

acquired resistance of B. hyodysenteriae isolates is surveyed. The limited number of 

antimicrobial products that are available, should be used only in confirmed cases of 

SD, and after determining the MIC of the antimicrobial to be used.  
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The lack of CLSI-approved methods for susceptibility testing of B. hyodysenteriae, 

combined with a lack of standardized clinical breakpoints greatly impair the set-up for 

such control programs. Although there is a general consensus among researchers in 

the field of SD that broth dilution method is the most reliable technique for susceptibility 

testing, there seems to be no real prospect for CLSI authorisation in the near future 

(7th Conference on Colonic Spirochaetosis in Animals and Humans, Hannover, 2016). 

The use of antimicrobial products in food producing animals in general is under severe 

pressure, due to potential consequences for public health. Although currently there are 

few products using pleuromutilins in human medicine, veterinary use of pleuromutilins 

may select for resistance against other antibiotics in bacteria that are of zoonotic 

importance. Treatment of swine with pleuromutilins for instance may favour spread of 

vga or cfr genes in methicillin resistant Staphylococcus aureus (MRSA) or enterococci. 

These genes are often localized on plasmids or transposons that may spread 

horizontally. Vga genes encode cross resistance against pleuromutilins, streptogramin 

A and lincosamides, while cfr genes code for cross resistance against phenicols, 

lincosamides, oxazolidinones, pleuromutilins and streptogramin A. Some of those 

antimicrobial compounds are of critical importance in human medicine [64].  

Undoubtedly, this continuing pressure on the use and on the effectiveness of the 

currently available antimicrobials for SD, strongly urges for the development of 

alternative measures to tackle this disease. As shown in figure 2 in the lower section, 

depopulation/repopulation and alternative treatments are additional options to manage 

pigs with swine dysentery. Although alternative treatments such as plant derived feed 

additives [1,39], may be beneficial for certain more chronically infected farms, it’s 

unlikely that such additives will replace antimicrobial therapy in general. 

Depopulation/repopulation demands large financial efforts and as long as the purchase 

of carrier animals is difficult to avoid, it is unlikely that depopulation/repopulation will 

be used on a large scale in swine industry. 

In the upper section of figure 2 the most important routes of infection are given. In some 

farms enhanced biosecurity or improved rodent control might still decrease the risk of 

B. hyodysenteriae infection [3,16,29]. However, in modern swine industry where 

biosecurity including rodent control is assumed to be adequate, more substantial 

improvement can be expected from either avoiding the purchase of carrier animals or 

from vaccines that prevent development of SD in animals.   
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Figure 2: Swine dysentery: main routes of infection in the upper section, therapeutic 

options in the lower section.  

ELISA: HOW TO BUY PIGS FREE OF SD? 

Given that purchase of asymptomatic B. hyodysenteriae carriers is a major infection 

risk for a pig farm, the availability of a specific and sensitive screening tool for entry 

control, would be extremely helpful in the fight against SD [2,58]. As detection of 

B. hyodysenteriae in a farm will have substantial implications on the trading abilities of 

that farm, false positive results should be reduced to a minimal. Taking this into 

consideration, specificity might be more important for SD than sensitivity. Since 

B. hyodysenteriae is shed intermittently in low numbers, which do not always surpass 

the detection limit, detection systems based on presence of B. hyodysenteriae in 

faeces, are less effective and require a very large sampling number to reach some 

sensitivity. The number of B. hyodysenteriae is higher in samples of colonic contents 

compared to faecal samples. Therefore, colonic sampling at the abattoir would 

somewhat increase detection probability compared to faecal sampling on farm [18].  

Serological detection of a B. hyodysenteriae infection at farm level would be a far more 

practical tool. As mentioned earlier, genetic differences between Brachyspira species 

are quite small. This is translated into a limited number of species-specific proteins, 
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which could serve as antigens for serological detection of B. hyodysenteriae infections 

using e.g. ELISA [57]. The wide spread presence of B. innocens in swine farms, and 

B. murdochii to a lesser extent, renders non-species specific Brachyspira antibodies to 

be quite present in pig herds [65]. 

An ELISA based on protein H114 has been developed [18,57]. In this ELISA the cut-

off had to be set at five standard deviations above the mean, to maintain a specificity 

of 100%, seriously impeding the sensitivity. When using a lower cut-off, several farms 

which were considered negative for SD, were positive in the ELISA. Later it was shown 

that a number of farms considered to be healthy and free of SD which were positive in 

the Priocheck® Brachyspira porcine Ab ELISA, based on the protein H114, eventually 

proved to have B. hyodysenteriae carrier animals by culturing faeces or colonic abattoir 

samples [18]. However, this was true for 6 of 14 herds that were considered free of 

SD, but were positive on ELISA. In five other farms, carrier animals could not be 

detected, and three farms were not tested. Since there is no gold standard method for 

determining whether a herd is truly negative for B. hyodysenteriae, it is problematic to 

use these pig herds as a negative control in validation of ELISA under field conditions. 

In conclusion, the screening of breeding farms for B. hyodysenteriae on a herd level 

using a specific ELISA, would be tremendously useful and desired by swine industry, 

but might proof to be exceptionally difficult to construct. 

VACCINATION: HOW TO KEEP PIGS FREE OF SD? 

A vaccine would be most welcome as an alternative or additional tool for swine 

veterinarians trying to obtain or maintain a SD free production unit. The most 

straightforward way of vaccine development is the production of whole cell bacterins. 

However, these induce little protection and are serotype specific [9,14,15,46]. Although 

in most parts of the world like the USA, Europe and Australia large serotype or 

serogroup diversity has been reported [4,19,21], serotype specific vaccines may have 

some use in areas where most field strains share the same serotype, for example in 

South-East-Asia. The on farm use of autogenous vaccines, which are generally 

speaking also whole cell bacterins, has been reported to have beneficial effects 

[23,47]. To justify a wider use of autogenous vaccines in swine industry, these vaccines 

should be evaluated experimentally more thoroughly.  
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Oral administration of live attenuated strains has the potential to reduce clinical signs 

or delay the spread of SD in a herd as demonstrated in our seeder vaccination 

experimental trial using a naturally attenuated B. hyodysenteriae strain and by Hyatt et 

al. (1994) who used a tlyA mutant strain of B. hyodysenteriae [26]. The drawbacks of 

using live attenuated strains as a commercial vaccine include the presumed difficulties 

of growing these strains on large scale. If they were to be developed into a commercial 

vaccine, methods for freeze-drying and preserving viability would certainly be the first 

concerns.  

Alternatively, the use of recombinant proteins as demonstrated for BmpB [33] or a 

number of proteins identified by reverse vaccinology [56] could further be developed 

into a commercial vaccine. For BmpB a significant reduction of clinical SD has been 

demonstrated. Although in the study using BmpB as a vaccine no rise in colonic IgA 

was shown, subsequent research has been published about methods increasing local 

IgA production for this protein. Jiang et al. described the use of an M cell homing 

peptide fused with the BmpB protein to enhance antigen uptake by M-cells [28]. 

Furthermore different protein carriers have been described to enhance bioavailability 

of the protein [27,28,55]. For example the fusion of BmpB with M-cell homing peptide 

carried by microparticles induced a 24.7 fold increase in local IgA production in mice 

compared to using the BmpB protein alone [27]. 

The lack of extensive knowledge on parts of the pathogenesis of B. hyodysenteriae 

infections and the host immune responses, has hampered a more targeted 

development of efficient vaccines. Current growing availability of whole genome 

sequences of virulent and avirulent strains of B. hyodysenteriae and their comparison 

might enhance knowledge on detailed pathogenesis mechanisms by identification of 

proteins essential for virulence. Extended knowledge on the regulation of IgA 

production and its exact significance with regard to protection can further aid in the 

development of a vaccine for SD, regardless if it is based on live attenuated strains or 

on recombinant proteins.  
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CONCLUSION 

Brachsypira hyodysenteriae infections will remain a challenge in the future. Newly 

emerging Brachyspira sp. that are pathogenic for swine ask for awareness and 

carefulness of diagnostic laboratories when they determine Brachyspira species 

identity. Diversity in pathogenic potential, not only between pig associated Brachyspira 

sp., but also within the species B. hyodysenteriae appeals for a diagnostic tool to detect 

virulence markers. This would allow swine veterinarians to estimate the pathogenic 

potential of a B. hyodysenteriae field isolate and the need for treatment or trading 

restrictions on a farm. Undoubtedly, increasing antimicrobial resistance will further 

push research towards vaccination and alternative treatments. Ideally, those newer 

treatments would be complemented with a reliable method for entry control such as 

ELISA. 
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Summary 

Swine dysentery (SD) is an economically important disease in swine producing 

countries worldwide, caused by the spirochete Brachyspira hyodysenteriae. A typical 

SD clinical outbreak is characterized by a bloody, mucoid diarrhea. Swine farms are 

often chronically infected, which leads to recurrent periods of diarrhea, mainly in 

growing pigs. The economic impact of SD arises from mortality, costs for treatment 

and from retarded growth and increased feed conversion. Furthermore, the mere 

presence of B. hyodysenteriae on a farm, even in the absence of overt clinical signs, 

negatively influences the trading opportunities for the farm in question.  

Treatment of swine dysentery primarily exists of the administration of antimicrobial 

compounds. Lincomycin, doxycycline, macrolides such as tylosin or tylvalosin, or 

pleuromutilins such as valnemulin and tiamulin have been registered for treatment of 

SD. Unfortunately, increasing acquired resistance of B. hyodysenteriae for those 

compounds has been reported from different parts of the world. The use of 

antimicrobial compounds in livestock in general is under pressure, due to potential 

consequences for public health. A vaccine would be most welcome as an alternative 

or additional tool for swine veterinarians trying to obtain or maintain a swine dysentery 

free production unit. 

The aims of this thesis were to establish a collection of B. hyodysenteriae strains, 

supplemented with strains from other swine associated Brachyspira spp, and to 

characterise this collection of strains. The minimal inhibitory concentrations (MIC) of 

six antimicrobial compounds against the B. hyodysenteriae strains were determined. 

One of the most important virulence factors, haemolysis, was phenotypically and 

genotypically further studied and the pathogenic potential of a weakly haemolytic 

B. hyodysenteriae strain was determined in vivo. Finally, the extent of protection 

conferred by this weakly haemolytic B. hyodysenteriae strain against infection with a 

virulent B. hyodysenteriae strain was determined.  

In chapter 1, 50 Brachyspira isolates were collected and identified. For identification, 

the strong haemolysis that is shown when B. hyodysenteriae is grown on agar plates, 

was considered a hallmark for this Brachyspira species. The last decade two additional 

strongly haemolytic Brachyspira species have been identified: B. suanatina, reported 

from Scandinavia, and B. hampsonii, reported from USA and Canada. The description 
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of the first isolation of B. hampsonii in Europe in chapter 1, indicates that B. hampsonii 

should be included in diagnostic protocols in Europe as well.  

To establish the presence of acquired antimicrobial resistance in the recent Belgian 

B. hyodysenteriae isolates from the first study, the minimal inhibitory concentration 

(MIC) of 6 antimicrobial compounds against these field isolates was determined in 

chapter 2. We show that over 50% of the field isolates harbour acquired resistance 

against pleuromutilins and over 70% of the field isolates harbour acquired resistance 

against doxycycline, lincomycin or macrolides. Sequence type analysis as determined 

by Multi Locus Sequence typing of the field isolates, revealed a novel clonal complex, 

containing multi-resistant isolates.  

In chapter 3 we reveal that strong haemolysis, assumed to be a hallmark for 

B. hyodysenteriae, is not always present in B. hyodysenteriae strains. Quantitative in 

vitro analysis of the haemolytic capacity of field strains, shows that the degree of 

haemolysis can vary between B. hyodysenteriae strains. Sequence analysis of seven 

haemolysis associated genes of weakly and strongly haemolytic strains was 

performed. One weakly haemolytic strain, D28, showed marked differences in five of 

these haemolysis associated genes, mainly resulting in amino acid substitutions in 

tlyA, haemolysin III and the haemolysin activation protein.  

To further investigate the importance of haemolytic capacity as a virulence trait of 

B. hyodysenteriae, this unique weakly haemolytic B. hyodysenteriae strain D28 was 

used in in vivo virulence trials, as described in chapter 4. Pigs colonised by strain D28 

showed no clinical signs of SD, even if they shed strain D28 in high numbers. In 

contrast, for strongly haemolytic B. hyodysenteriae strains, faecal excretion as a proxy 

for intestinal colonisation, was shown to be consistently accompanied by clinical 

symptoms. Furthermore, pigs colonised by strain D28 showed no macroscopic or 

histological lesions on necropsy.  

Given that strain D28 proved to colonize pigs, without causing clinical symptoms and 

that this strain is phenotypically and genotypically distinguishable from virulent field 

strains, this strain shows potential for use as a vaccine strain. Therefore the protective 

capacity of strain D28 was investigated in chapter 4. In a seeder vaccination model, 

three groups of animals were vaccinated by oral inoculation with B. hyodysenteriae 

strain D28 and three groups of animals were sham vaccinated by inoculation with 

culture medium without Brachyspira. Three weeks later, 50% of animals (seeder 
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animals) in each group were challenged by inoculation with a virulent 

B. hyodysenteriae strain. These seeder animals could infect the remaining animals 

(receiver animals) by faecal excretion of the challenge strain. Vaccination with strain 

D28 significantly slowed down the spread of swine dysentery in vaccinated animals 

compared to non-vaccinated animals. For vaccinated seeder animals there was a 

significant correlation between the presence of a strong local IgA response and the 

delay of onset of swine dysentery.  

 

In conclusion, diagnosis of infections with Brachyspira spp. in swine has become less 

straightforward. For accurate species identification one should be aware of the 

possible presence of ‘other’ strong haemolytic Brachyspira spp. such as B. hampsonii, 

and it should be kept in mind that not all B. hyodysenteriae isolates will show strong 

haemolysis.  

For swine veterinarians, in order to provide accurate advise on clinical importance of a 

strain, or on the trading implications of any given strain, a diagnostic tool differentiating 

between virulent and avirulent strains might become necessary. This diagnostic tool 

could be based in the haemolysis associated genes as described in chapter 3. 

As antimicrobial resistance in B. hyodysenteriae is increasing worldwide, and in 

Belgium as seen in chapter 2, future treatment options for SD will probably evolve 

towards vaccination and alternative treatments. The significant correlation between 

local IgA response and delay in the development of SD as seen in chapter 4 provides 

directions for future vaccine development.
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Samenvatting 

Varkensdysenterie is een wereldwijd verspreide ziekte die een grote economische 

impact heeft op de varkensindustrie. De aandoening wordt veroorzaakt door de 

spirocheet Brachyspira hyodysenteriae en de typische symptomen bij een uitbraak zijn 

bloederige, slijmerige diarree. Vaak zijn bedrijven chronisch besmet en treedt een 

cyclisch terugkerende periode van diarree op, voornamelijk bij de vleesvarkens. De 

economische gevolgen van een B. hyodysenteriae infectie zijn te wijten aan sterfte, 

kosten voor medicatie en vooral aan de vertraagde groei van aangetaste dieren en de 

gestegen voederconversie. Bovendien kan de aanwezigheid van B. hyodysenteriae op 

een bedrijf impact hebben op de handelsmogelijkheden van dit bedrijf, zelfs in 

afwezigheid van duidelijke symptomen.  

Behandeling van dysenterie bestaat hoofdzakelijk uit toediening van antimicrobiële 

middelen. Naast lincomycine en doxycycline, kunnen macroliden zoals tylosine of 

tylvalosine, of pleuromutilinen zoals valnemuline en tiamuline worden ingezet. Helaas 

wordt uit verschillende delen van de wereld resistentie van B. hyodysenteriae tegen 

de meeste van deze middelen gemeld. Door de toenemende resistentie, maar ook 

door de toenemende maatschappelijke druk op het gebruik van antimicrobiële 

middelen bij voedselproducerende dieren in het algemeen, staat de traditionele 

behandeling van dysenterie onder druk. De beschikbaarheid van een vaccin zou een 

zeer welkome aanvulling op of alternatief voor de traditionele behandeling vormen. 

Het doel van deze thesis was om een verzameling aan te leggen van 

B. hyodysenteriae stammen, aangevuld met stammen van andere, bij varkens 

voorkomende Brachyspira sp. en deze te karakteriseren. De minimale inhibitorische 

concentratie (MIC) van zes antimicrobiële middelen werd bepaald voor de 

B. hyodysenteriae stammen. Eén van de belangrijkste virulentiefactoren, hemolyse, 

werd fenotypisch en genotypisch onderzocht. Het pathogeen effect van een 

B. hyodysenteriae stam met zwakke hemolyse werd nagegaan in vivo. Tenslotte werd 

ook onderzocht of deze stam beschermende immuniteit kon induceren in een “seeder”-

vaccinatie model. 

In hoofdstuk 1 werden 50 Brachyspira isolaten verzameld en geïdentificeerd. Van 

oudsher werd de sterke hemolyse bij groei op cultuurplaat van B. hyodysenteriae 

aanzien als kenmerkend voor deze pathogene species. De laatste jaren zijn er 

bijkomend twee sterk hemolytische, pathogene species geïdentificeerd: B. suanatina, 
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die voornamelijk in Scandinavië wordt gerapporteerd en B. hampsonii die wordt 

gerapporteerd in de VSA en Canada. De beschrijving van het voorkomen van 

B. hampsonii in België in hoofdstuk 1 toont aan dat er ook in Europa aan deze species 

aandacht moet besteed worden.  

Om het voorkomen van verworven antibioticaresistentie na te gaan bij Belgische 

B. hyodysenteriae isolaten uit de eerder aangelegde collectie, werd voor elk van deze 

isolaten de Minimum Inhibitorische Concentratie (MIC) van 6 antimicrobiële middelen 

bepaald zoals beschreven in hoofdstuk 2. Uit de analyse van de MICs van deze 

isolaten blijkt dat meer dan 50% van de isolaten verworven resistentie vertoont tegen 

pleuromutilinen en meer dan 70% van de isolaten tegen doxycyline, lincomycine of 

macroliden. Uit analyse van de aanwezige sequentietypes zoals bepaald met behulp 

van Multi Locus Sequence Typing, blijkt dat sommige Belgische stammen klonale 

complexen vormen die bestaan uit multiresistente isolaten. 

In hoofdstuk 3 wordt aangetoond dat de sterke hemolyse die onlosmakelijk verbonden 

leek met B. hyodysenteriae, niet altijd aanwezig is. Door de hemolytische capaciteit 

van verschillende stammen te bepalen en te vergelijken, hebben we kwantitatief 

kunnen aantonen dat de hemolyse, die bij groei op plaat eerder zwak lijkt voor 

sommige B. hyodysenteriae stammen, inderdaad significant lager kan zijn.  

Sequentie analyse van zeven met hemolyse geassocieerde genen van sterk en zwak 

hemolytische B. hyodysenteriae stammen toonde aan dat één van de zwak 

hemolytische stammen, D28, nucleotideverschillen had in vijf van deze genen. Dit 

resulteerde in aminozuur substituties in tlyA, hemolysine III en in het hemolysine 

activatie eiwit.  

Om het belang van hemolyse als virulentiefactor verder te onderzoeken werd in 

hoofdstuk 4 de virulentie van de zwak hemolytische B. hyodysenteriae stam D28 

getest. Bij varkens die gekoloniseerd werden door deze stam werden geen 

ziektetekens waargenomen, ondanks uitscheiding van hoge aantallen van deze stam 

in de mest. Dit in tegenstelling tot virulente, sterk hemolytische stammen waarbij 

kolonisatie en uitscheiding in de mest steeds gepaard gingen met het ontwikkelen van 

dysenterie. Ook vertoonden varkens, gekoloniseerd door zwak hemolytische stam 

D28, geen macroscopische of histologische letsels ter hoogte van het colon.  
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Omdat stam D28 dus varkens koloniseert zonder symptomen te veroorzaken en omdat 

deze stam zowel genotypisch als fenotypisch te onderscheiden is van virulente 

veldstammen, zou deze stam geschikt kunnen zijn als vaccinstam. Daarom wordt in 

hoofdstuk 4 ook de beschermende capaciteit van stam D28 nagegaan. In een seeder 

vaccinatie model werden drie groepen varkens gevaccineerd door orale toediening van 

een cultuur van D28. Drie placebo groepen werden oraal geïnoculeerd met 

cultuurmedium zonder stam D28. Drie weken later werd de helft van alle dieren 

(“seeder” dieren) in een groep geïnoculeerd met een virulente B. hyodysenteriae stam. 

Deze “seeder” dieren zorgden voor besmetting van de andere dieren in de groep 

(“receiver dieren”) door uitscheiding van de virulente stam in de mest.  

Vaccinatie met stam D28 reduceerde de spreiding van dysenterie binnen een groep 

dieren. In vergelijking met de groepen waar placebo was toegediend, verliep de 

spreiding van dysenterie trager in de groepen gevaccineerde dieren. Bij de 

gevaccineerde “seeder” dieren trad dysenterie significant later op bij die dieren, die na 

contact met de challengestam een sterke lokale IgA respons vertoonden.  

Als conclusie kan gesteld worden dat de diagnose van Brachyspira infecties 

bemoeilijkt wordt door de variabele mate van hemolyse die B. hyodysenteriae 

stammen vertonen en door de aanwezigheid van andere, sterk hemolytische species 

zoals B. hampsonii.  

Opdat varkens dierenartsen juiste adviezen kunnen formuleren aangaande het klinisch 

belang van een B. hyodysenteriae isolaat, en daarmee gepaard gaande de 

handelsmogelijkheden van een bedrijf, is een diagnostische test die het onderscheid 

maakt tussen virulente en niet-virulente B. hyodysenteriae stammen noodzakelijk. Zo 

een test kan bijvoorbeeld gebaseerd zijn op de met hemolyse geassocieerde genen, 

zoals beschreven in hoofdstuk 3.  

Omdat antimicrobiële resistentie van B. hyodysenteriae wereldwijd toeneemt en ook 

in België een probleem vormt (hoofdstuk 2), zullen in de toekomst allicht alternatieve 

maatregelen moeten aangewend worden voor de zal de bestrijding van dysenterie, 

zoals vaccinatie. Voor vaccinontwikkeling kan de bevinding dat vertraging van het 

ontwikkelen van dysenterie significant gecorreleerd is met een lokale IgA respons, 

zoals besproken in hoofdstuk 4, een goede basis vormen voor verder onderzoek.  
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Ja het is zover ! Na zes jaar ‘Brachyspira’ wordt dat hoofdstuk nu afgesloten met dit 
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Brachyspira! Met jou samenwerken is echt een plezier, aan een half woord heb je 



 

 

genoeg, alles voer je met toewijding en precisie uit en elke ochtend begin je met een 

uitbundige lach. Zalig . Ik wens je succes en plezier in je nieuwe werk.  

Lien en Nele, het lijkt al heel lang geleden dat we met drie aan dit brachyspira avontuur 
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je bracht voor mij en Jackeline mattentaarten mee om ons humeur op te krikken, het 

heeft gewerkt ;-). 
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