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Large-amplitude dust-acoustic solitons and double layers in a dusty plasma model comprised of

nonthermal Cairns electrons and ions, and cold, negative and positive dust grains had earlier been

investigated, before newer concepts such as supersolitons, solitons at the acoustic speed, and even

acoustic speed supersolitons arose. It turned out that under certain conditions, three distinct roots of

the same polarity coalesce into a triple root, so that now a systematic investigation is carried out

into the existence domains and properties of triple root solitary structures. From the analysis of the

Sagdeev pseudopotentials, it transpires that there is a wide range of compositional parameters and

soliton speeds where triple root structures can exist, and these are shown to be intimately connected

with double layer and supersoliton ranges. Thus, triple roots are much more common than at first

expected, even at the acoustic speed or in the presence of Boltzmann rather than Cairns nonthermal

hot species. Once the existence domains are properly established, as many examples can be worked

out as one chooses, generating typical soliton or double layer and electric field profiles. A great

many combinations of compositional parameters and soliton speeds have been numerically tested,

and they all reveal a similar pattern, with quantitative but no inherent qualitative changes.

Published by AIP Publishing. https://doi.org/10.1063/1.5006026

I. INTRODUCTION

Dusty plasmas contain heavier grains, typically of micron

size rather than on elementary particle scales, in the presence of

traditional plasma electrons and ions. The plasma environment

is responsible for the charging of these grains via different

mechanisms, and it is no wonder that such mixtures occur in

heliospheric and astrophysical plasmas, and also in laboratory

and technological applications.1,2 In the commonly used charg-

ing model, the dust grains would be essentially charged by the

capture of the more mobile electrons; hence, they become nega-

tively charged. Lighter grains, however, might well be charged

positively due to, e.g., photo-ionization or secondary electron

emission, which is assumed to occur in the outer part of the rings

of Saturn, in cometary tails, and in the Jovian magnetosphere.3–5

Because of the very small charge-to-mass ratio of the

charged dust grains, the dust motion has to be taken into

account at the lowest frequencies. Consequently, a new fre-

quency range becomes important, below the ion-acoustic

regime, of that of the dust-acoustic modes.6–9 As the coexis-

tence of negative and positive dust has been observed in the

Earth’s magnetosphere and in cometary tails,4,5 there has

been an interest in nonlinear waves in dusty plasmas contain-

ing both negatively and positively charged dust.10–15

We will revisit in this paper a specific dusty plasma model

which includes nonthermal electrons and ions, and cold, nega-

tive and positive dust grains. This has been investigated already

with an emphasis on the existence ranges and properties of

dust-acoustic solitons and double layers,16 before new concepts

were introduced, such as supersolitons,17–25 solitons at the

acoustic speed,26–31 and even acoustic speed supersolitons.32

In addition, for a very specific plasma composition and

soliton speed, it was suggested that three roots of the same

polarity might coalesce into a triple root.16 As we will show

in what follows, the existence of triple root structures is

intimately connected with double layer and supersoliton

ranges. Such triple root structures hence call for a system-

atic investigation, rather than the incidental attention

obtained so far, indicating that triple roots are more com-

mon than at first expected and can even occur at the acous-

tic speed or in the presence of Boltzmann rather than

nonthermal hot species.

The paper is structured as follows: in Sec. II, we deal

with the basic formalism, leading to the Sagdeev pseudopo-

tential and its main properties; in Sec. III, the existence

domains for negative triple root structures are determined,

allowing then the generation of typical examples of Sagdeev

pseudopotentials, and soliton and electric field profiles, includ-

ing neighboring supersolitons and double layers; Sec. IV

repeats this exercise for triple root structures at the acoustic

speed, whereas in Sec. V, the Boltzmann limit for the hot spe-

cies is discussed. Our conclusions are summarized in Sec. VI.

II. BASIC FORMALISM

As the specific dusty plasma model investigated in the

present paper has been discussed already before,16 we very

briefly repeat, in the interest of readability, some of the basic
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analysis needed to determine the Sagdeev pseudopotential33

for this composition. The model includes nonthermal elec-

trons and ions, and cold, negative and positive dust grains.

The fraction of charge residing on the negative dust is

f¼Zdn ndn0/n0 and on the electrons is 1 – f¼ ne0/n0, whereas

the fraction of charge residing on the positive dust is g¼ Zdp

ndp0/n0 and on the ions 1� g¼ ni0/n0. Here, n0¼ ne0þZdn

ndn0¼ ni0þZdp ndp0, where Z refers to the absolute value of

the dust charges and the other symbols have their usual

meaning.

In the Cairns nonthermal description,34 the normalized

electron and ion densities are given by

ne ¼ ð1� f Þð1� buþ bu2Þ exp u½ �;
ni ¼ ð1� gÞð1þ buþ bu2Þ exp �u½ �;

(1)

respectively, in terms of an electrostatic potential u normal-

ized to jT/e and of the macroscopic nonthermality parameter

b. For reasons explained elsewhere,16 the same value of b
and T is used for the electrons and the ions.

The cold dust is described by the continuity and momentum

equations in normalized variables,26,27 referred, among others,

to a measure for the dust-acoustic speed cda ¼ ðZdnjT=mdnÞ1=2
.

The normalization implies that the space coordinate is in units

of ðe0jT=n0e2Þ1=2
, and the negative dust species is the

reference, leading to a normalized mass-per-charge l ¼ mdp

Zdn=Zdpmdn.

If the common charging models are adopted, the heavier

dust is negatively charged due to primary electron capture

and the lighter dust might then be positive, due to, e.g.,

photo-ionization, in which case l< 1. However, evaluation

of models where l¼ 1 or l> 1 is perfectly covered by our

formalism, as will be seen below.

In a frame where the nonlinear structure is stationary

(@=@t ¼ 0) and all variables tend to their undisturbed values

at x! �1, one derives that the normalized dust densities

are given by

ndn ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2u
M2

r ; ndp ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2u
lM2

r ;
(2)

in terms of the normalized soliton velocity M¼V/cda, with V
being the physical velocity of the solitary structure in an

inertial frame.

There are limitations on u, on the negative side at

un ¼ �M2=2 and on the positive side at up ¼ lM2=2. If one

of the dust species is totally absent,26,27 there are limits only

on one side, but on the other side, double layers are possible

under favourable circumstances, at near depletion of the

plasma species of the same sign as the dust.

The basic set of equations is closed by the Poisson’s

equation, which gives after integration an energy-like

integral

1

2

du
dx

� �2

þ Sðu;MÞ ¼ 0; (3)

in terms of a Sagdeev pseudopotential

Sðu;MÞ ¼ fM2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u

M2

r !
þ ð1� f Þ

� 1þ 3b� ð1þ 3b� 3buþ bu2Þ exp u½ �
n o

þglM2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2u

lM2

s0
@

1
Aþ ð1� gÞ

� 1þ 3b� ð1þ 3bþ 3buþ bu2Þ exp �u½ �
n o

:

(4)

For brevity, compositional parameters like f, g, b, and l are

not explicitly written as arguments of Sðu;MÞ, whereas M
contains the as yet unknown soliton velocity V and the main

variable is the electrostatic potential u. By construction and

assumption Sð0;MÞ ¼ S0ð0;MÞ ¼ 0, but to obtain solitary

waves S00ð0;MÞ � 0 is needed, so that the origin is a (local)

unstable maximum, at least on one side if not on both u
sides. Derivatives of Sðu;MÞ with respect to u are denoted

by primes.

The convexity condition, S00ð0;MÞ � 0, ensures that the

nonlinear structures are superacoustic or, exceptionally,

occur at the global acoustic speed, and S00ð0;MÞ ¼ 0 yields

the minimal M for their existence

M2 � M2
s ¼

flþ g

ð1� bÞlð2� f � gÞ : (5)

Here, Ms is a measure for the global acoustic speed, in terms

of the chosen normalization, and M=Ms is then the true

Mach number of the solitary structures, because the normali-

zation of the velocities cancels out.

Moreover, S0ðu;MÞ represents in normalized parameters

the total charge density, involving the expressions (1) and

(2) with the appropriate signs, and it is seen that

limu!un;p
S0ðu;MÞ ! 71. Owing to the required convexity

to obtain solitary waves, S0ðu;MÞ goes through u ¼ 0 with a

negative or zero slope, and hence S0ðu;MÞ has an odd num-

ber of positive and negative zeroes, outside u ¼ 0, before

the asymptotes at un;p are reached, whereas Sðu;MÞ is well

behaved for all accessible u.

The zeroes of S0ðu;MÞ are charge-neutral points, by defi-

nition, and they are a necessary condition to obtain roots for

Sðu;MÞ.35,36 Unfortunately, they are not sufficient to indeed

obtain soliton or double layer roots. Single roots give the usual

hump- or dip-like soliton, if there is only one charge-neutral

point between it and the undisturbed condition at u ¼ 0, or

supersolitons if there are three distinct intermediate charge

neutral points. The latter then correspond to three local

extrema of the same polarity, where Sðu;MÞ < 0, so that the

supersoliton root is the first accessible one.

On the contrary, a double root/layer also counts as a

charge-neutral point, with an intervening local maximum

where Sðu;MÞ < 0. A triple root structure corresponds to

two coinciding charge-neutral points, and, as we will see

below, behaves as a double layer of a rather peculiar kind.

To avoid the longish expression “triple root double layer,”

we have used a “triple root structure.”
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There is a link between the sign of

S000ð0;MsÞ ¼ f � gþ 3ð1� bÞ2ð2� f � gÞ2ðg� fl2Þ
ðf lþ gÞ2

; (6)

and the polarity of Korteweg-de Vries (KdV)-like soli-

tons.29,30,37,38 By KdV-like, we mean that solitons share the

property of the weakly nonlinear solitons which are solutions

of a KdV equation, in that their amplitude shrinks and can be

arbitrarily small when M! Ms from above. Such KdV-like

solitons are thus superacoustic, but in the Sagdeev formalism

there is no need to restrict the soliton amplitudes a priori, in

the sense that a reductive perturbation limitation to quadratic

or cubic nonlinearities requires them to be. On the contrary,

the amplitudes in Sagdeev pseudopotential treatments are

limited by physical constraints, and not by mathematical

considerations.

In the case of coexistence of solitons of negative and of

positive polarity, one polarity generates KdV-like solitons,

and the other what has been called non-KdV-like soli-

tons.29,30,37,38 The latter are characterized by a finite ampli-

tude at M¼Ms, and hence are linked to the existence of

solitons at the acoustic speed. Since the sign of S000ð0;MsÞ
determines the polarity of the KdV-like solitons, the non-

KdV-like solitons have the opposite polarity. By

“coexistence” we mean that solutions of both polarities can

exist for a given set of compositional and speed parameters,

but it is understood that only one solitary wave or double

layer can be realized at a time, much like for an unstable

equilibrium in one-dimensional motion, the particle can only

slide down the hill in one direction at a time.

Finally, we mention a symmetry in the Sagdeev pseudo-

potential (4). It is easily verified that the Sagdeev pseudopo-

tential is invariant under the simultaneous substitutions

u! �u; f $ g; l! 1

l
; M ! ffiffiffi

l
p

M: (7)

III. TRIPLE ROOTS, DOUBLE LAYERS, AND
SUPERSOLITONS

Given that the earlier paper16 already gave a discussion

of different dust-acoustic solitons and double layers in the

chosen plasma model, we will focus here on the aspects

which were not covered: triple root structures, and, in partic-

ular, how the triple root range is connected with double

layers and supersolitons. In the Secs. IV and V, we will

address triple root structures at the acoustic speed and also in

the Boltzmann limit for the hot species.

It should be noted that, because of the symmetry (7), a

negative triple root for l> 1 corresponds to a positive triple

root for l< 1. With this in mind, we do not place any limits

on the choice of l, and we can restrict the complete analysis

to (nonlinear) modes of one polarity. We have chosen to

investigate the properties of negative triple root structures

and related solitons and double layers. However, some of the

triple root structures might happen to coexist in certain

parameter regimes with modes of the other, positive polarity.

We will encounter some of those and include them on the

graphs where useful, although they are not the main focus of

the paper. All the conclusions automatically also hold for the

positive u range, by simple mirroring of the relevant graphs

in u, with judicious adjustments of the normalization.

A. Existence domains for negative triple roots

We start with the existence domains of negative triple

roots, the conditions for which being that

Sðu;MÞ ¼ 0; S0ðu;MÞ ¼ 0; S00ðu;MÞ ¼ 0 (8)

should have a common root u 6¼ 0 outside equilibrium.

There are four compositional parameters, f, g, b, and l, plus

the solitary structure speed M, which needs to be determined.

To investigate the dependence of the triple root struc-

tures on these parameters, we take a typical f and pick some

representative g, so that (8) determines M, b, and u, as func-

tions of l. These existence domains cover quite a range of

parameter values, but it is seen in Figs. 1–3, which are for

f¼ 0.3, 0.5, and 0.7, respectively, that these result only in

quantitative changes, with the overall qualitative trends

being very similar. Thus, M/Ms, b, and the triple root ampli-

tudes juj increase with l, although at high g the amplitude is

nearly constant. Initially, as l increases, Sagdeev pseudopo-

tentials also have positive roots for the same compositional

parameters, but these are not otherwise considered here,

except that their amplitudes have been shown in Figs.

1(c)–3(c).

In those figures, the lower limits on l are given by M/Ms

starting from M/Ms¼ 1. The upper limits on b have been set

at b‘¼ 4/7, because for larger b the underlying phase space

Cairns distribution has no longer only one local maximum

but develops wings, and thus two-beam instabilities might

arise.26 This cut-off at b‘ ¼ 4=7 indicates how far one can

go in the range l> 1, except in Fig. 3, where one can seem-

ingly go to very high values for l, but for graphical clarity,

the curves have been limited to l¼ 10.

On the contrary, the limit for f¼ 0.3 is near l¼ 1.68 for

g¼ 0.9, but at smaller l for g< 0.9, whereas for f¼ 0.5 it is

at l¼ 5 for g¼ 0.9. The graphs also indicate that g> f is

needed to have triple root structures.

At f¼ 0.3, the negative solitons and triple root structures

are KdV-like below and non-KdV-like above g¼ 0.8, with a

corresponding crossover at b¼ 0.386. Conversely, the posi-

tive solitons are KdV-like above and non-KdV-like below

g¼ 0.8, which can be seen in the positive range for u in

Fig. 1. We remark here that for g¼ 0.4 and g¼ 0.5, values of

b > b‘ ¼ 4=7 are needed to generate triple root structures,

and hence, the corresponding curves have been omitted.

At f¼ 0.5, the negative solitons and triple root structures

are KdV-like below and non-KdV-like above g¼ 0.723, with

a corresponding crossover at b¼ 0.312. Conversely, the pos-

itive solitons are KdV-like above and non-KdV-like below

g¼ 0.723, as seen in Fig. 2(c) on the positive range for u.

For f¼ 0.7, the negative solitons and triple root struc-

tures are KdV-like and the positive solitons are non-KdV-

like for the whole range, without crossover, as seen in Fig. 3.

As mentioned already, there is no obvious limit to l.
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Because the Sagdeev pseudopotential is, from a mathe-

matical point of view, continuous in the different composi-

tional parameters, Mach numbers, and the electrostatic

potential, there is a wide domain where triple root structures

can exist. Once the existence domains are established, one

can work out as many examples in detail as one chooses. We

have tested a great many combinations of compositional

parameters, and they all reveal a similar pattern, with quanti-

tative but no qualitative changes. None of these are included

here, to avoid overloading the paper with repetitive graphs

and figures, except for one typical example, selected among

an infinity of other equally valid choices with analogous

results. This is worked out in Sec. III B

B. Sagdeev pseudopotentials, soliton, and electric
field profiles

As a generic illustration, we pick f ¼ 0:5; g ¼ 0:8,

l¼ 1, and b¼ 0.358, where the b value ensures that a triple

root exists, at u ¼ �0:818 for M/Ms¼ 1.0248, and the corre-

sponding Sagdeev pseudopotential is indicated in Fig. 4 by

the solid blue line. Taking a lower value M/Ms¼ 1.0233

gives a Sagdeev pseudopotential with a normal soliton root

at u ¼ �0:535 (long green dashes), whereas a higher value

M/Ms¼ 1.0252 gives a supersoliton root at u ¼ �0:988 (red

dashes), all for exactly the same plasma composition.

The corresponding solitary structure profiles and electric

fields are shown in Fig. 5, for the same parameter values and

curve coding. The solid blue line shows the triple root struc-

ture. It follows that the triple root serves as the end of a range

of solitons, at increasing M/Ms, and for larger M/Ms a range

of supersolitons occurs, until the telltale electric field wig-

gles disappear.

Next, we focus on changes in b, leaving the other com-

positional parameters unchanged. First, when b decreases

below the value needed to obtain a triple root structure, we

cannot find double layers, but there is a small range where

supersolitons can exist. This is illustrated in Fig. 6, for the

same parameters f¼ 0.5, g¼ 0.8, and l¼ 1, but b¼ 0.356.

The green dashed curve signals a Sagdeev pseudopotential

with an inflection point, where two of the local extrema have

FIG. 1. Existence domains for negative triple root waves, drawn as functions

of l, for f¼ 0.3 but different g, for (a) Mach numbers M/Ms, (b) b, and (c)

corresponding triple root amplitudes u. The curve coding is for g¼ 0.6

(black solid), g¼ 0.7 (green dashed), g¼ 0.8 (red dotted), and g¼ 0.9 (blue

dotted-dashed). In (c), the positive roots of some of the Sagdeev pseudopo-

tentials with negative triple structures have also been shown, but their exis-

tence is limited at an increasing amplitude by up, encountered at l¼ 1.232

for g¼ 0.7, at l¼ 1.104 for g¼ 0.8, and at l¼ 0.886 for g¼ 0.9. For

g¼ 0.6, the imposed limit b‘¼ 4/7 intervenes before up is reached.

FIG. 2. Existence domains for f¼ 0.5 with the same coding and interpreta-

tion as in Fig. 1. The positive root amplitude is limited by up, encountered

at l¼ 1.279 for g¼ 0.6, at l¼ 1.192 for g¼ 0.7, at l¼ 1.056 for g¼ 0.8,

and at l¼ 0.839 for g¼ 0.9.
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coalesced, and for larger M/Ms we find supersoliton curves.

When b increases towards the triple root value, the inflection

point gets closer to the horizontal axis, until a triple root is

generated.

On the contrary, we note that at increasing b> 0.358,

other plasma parameters being equal, the triple root signals

the beginning of a range of double layers as limiting factors

of a range of ordinary solitons. To illustrate this, we pick

b¼ 0.36 and plot the results in Fig. 7, with the same curve

and parameter conventions as in Fig. 4, except that the blue

curve now refers to the double layer rather than the triple

root structure. Here, the double layer ends a range of stan-

dard solitons, beyond which a range of supersolitons exist,

all for increasing M/Ms. The inflection point is now shifted

above the horizontal axis, as shown by the green dashed

curve. It turns out that for the plasma parameters chosen to

illustrate this subsection, once b> 0.358, one can increase b
up to b‘ and still find double layers. The supersoliton range

ends, however, when the third negative root of the Sagdeev

pseudopotential no longer exists, i.e., once un is reached.

The corresponding solitary structure profiles and electric

fields are shown in Figs. 8(a) and 8(b), respectively, for the

same parameter values and curve coding.

Although it is difficult to see on the solid blue graphs in

Figs. 5 and 8, there is a distinct difference between the triple

and the double root profiles, in the way they approach zero

or the triple/double root for large x. At u ¼ 0, as also for a

FIG. 3. Existence domains for f¼ 0.7 with the same coding and interpreta-

tion as in Fig. 1. The positive root amplitudes are limited by up, encountered

at l¼ 1.13 for g¼ 0.8, and at l¼ 0.886 for g¼ 0.9.

FIG. 4. Typical Sagdeev pseudopotentials having a negative triple root

structure (blue curve, M/Ms¼ 1.0248), a supersoliton (red dashes, M/

Ms¼ 1.0252), and a standard soliton (long green dashes, M/Ms¼ 1.0233), all

three for f¼ 0.5, g¼ 0.8, l¼ 1, and b¼ 0.358.

FIG. 5. (a) Solitary structure profiles and (b) electric fields are plotted for

the Sagdeev pseudopotentials shown in Fig. 4, for the same parameter values

and curve coding.

FIG. 6. Typical Sagdeev pseudopotentials having a negative supersoliton

(red dashes, M/Ms¼ 1.0259) and two ordinary solitons (long green dashes,

M/Ms¼ 1.0258 and black dots, M/Ms¼ 1.0256), all three for f¼ 0.5, g¼ 0.8,

l¼ 1, and b¼ 0.356.
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double layer, S¼ 0 and S0 ¼ 0, so that the decay of the pro-

file is exponential for large jxj.39 On the contrary, the (nega-

tive) triple root conditions are S¼ 0, S0 ¼ 0, and S00 ¼ 0, for

a value u < 0, which implies that the decay is algebraic for

x! þ1, whereas it remains exponential for x! �1.39

This is illustrated in more detail in Fig. 9, where we

focus on the typical triple root structure (blue solid curve,

copied from 5) and on the double layer (red dashed curve)

profiles having the same amplitude u ¼ �0:818 and for the

same f¼ 0.5, l¼ 1, and b ¼ 0:358. However, one cannot

have all compositional parameters equal, so that g¼ 0.8 and

M/Ms¼ 1.0248 yield a triple root structure and g¼ 0.856 and

M/Ms¼ 1.0430 a double layer. On the approach x! �1
both curves are very similar, but there is quite a distinction

between exponential and algebraic approaches for x! þ1.

Similar effects can be noted upon the perusal of the soli-

tary structure profiles in Figs. 5 and 8, but are there harder to

see clearly.

IV. ACOUSTIC SPEED SOLITONS

Remarkably (at least it came as a surprise to us), there

are even triple root structures at the acoustic speed. Because

at the acoustic speed Sðu;MsÞ has a triple root at the origin

for the undisturbed conditions (u ¼ 0), Sagdeev pseudopo-

tentials with a triple root u 6¼ 0 have to be negative between

those two triple roots.

Before giving an example, we have investigated the pos-

sibilities of finding solutions to

Sðu;MsÞ ¼ 0; S0ðu;MsÞ ¼ 0; S00ðu;MsÞ ¼ 0; (9)

where effectively M has disappeared from the set. There

remain in (9) four compositional parameters, f, g, b, and l.

Following a variant of the method used in Sec. III, we pick

some values for f, and let (9) determine g, b, and u as func-

tions of variable l. This gives the typical existence curves

shown in Fig. 10, but other, equivalent procedures are possi-

ble. It shows that as l increases, at a given f, b increases, but

g and the amplitudes juj decrease.

The curves for g and u show little variation with f or b,

and because juj becomes very small near l¼ 1, that signals

the end of the ranges. We have been unable to find such tri-

ple roots at the acoustic speed for f � 0:8, which can be

guessed from Fig. 10(b). As in Sec. III, the solitons are all

negative, but now S000ð0;MsÞ > 0, so that the triple root and

other solitons are non-KdV-like.

To illustrate our findings (again for one generic example

to avoid tedious repetitions with analogous characteristics),

given that we have quite a choice we pick f¼ 0.3 and g¼ 0.9

and then l¼ 0.615 and b¼ 0.3032 ensure that a triple

root exists, at u ¼ �0:697. The corresponding Sagdeev

FIG. 7. Typical Sagdeev pseudopotentials having a negative double layer

(blue curve, M/Ms¼ 1.0245), a supersoliton (red dashes, M/Ms¼ 1.0252),

and a standard soliton (long green dashes, M/Ms¼ 1.0241), all three for

f¼ 0.5, g¼ 0.8, l¼ 1, and b¼ 0.36.

FIG. 8. (a) Solitary structure profiles and (b) electric fields corresponding to

the Sagdeev pseudopotentials shown in Fig. 7, for the same parameter values

and curve coding.

FIG. 9. Focus on the approach x! þ1 of typical triple root (blue solid

curve) and double layer (red dashed curve) profiles (a) and electric fields (b),

having the same amplitude u ¼ �0:818, for f¼ 0.5, l¼ 1, and b¼ 0.358,

but slightly different g and M/Ms. These are g¼ 0.8 and M/Ms¼ 1.0248 for

the triple root and g¼ 0.856 and M/Ms¼ 1.043 for the double layer.
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pseudopotential is indicated in Fig. 11 by the solid blue line.

Since the negative triple root is at the acoustic speed, only

negative superacoustic non-KdV-like modes are possible. By

varying b, one obtains neighboring supersolitons, all at the

acoustic speed (M/Ms¼ 1).

We remark that the Sagdeev pseudopotential with a tri-

ple root structure has two triple roots: because of it being at

the acoustic speed, one is at the origin, and the other is at the

root itself. As there are two consecutive triple roots, the soli-

ton and electric field profiles will decay algebraically on

both sides.39 Since the graphs of these otherwise look very

similar to those of Figs. 5 and 8, they have not been included

here.

We have not specifically looked for acoustic speed

supersolitons, since these have already been found and dis-

cussed at length in an earlier paper.32 This was based on a

simplification of the model investigated here, where one of

the nonthermal hot species had been omitted. In the more

complicated plasma composition we are investigating in the

present paper, having more leeway in the hot species density

parameters, acoustic speed supersolitons certainly exist here,

but we have shied away from a tedious exploration of this,

the emphasis being on triple root structures. And as is obvi-

ous from the Sagdeev pseudopotential triple root curves, tri-

ple roots can initiate a range of supersolitons, as in other

circumstances double roots can do, but the triple roots cannot

themselves be supersolitons.

Trying to see if there are neighboring double layers at

the acoustic speed (an aspect not studied in the earlier

paper16) by modifying b and l, we could find much weaker

double layers and associated supersolitons. A typical exam-

ple is shown in Fig. 12, for a Sagdeev pseudopotential hav-

ing a negative double root structure at the acoustic speed

(blue curve, for b¼ 0.3145) and a supersoliton (red dashes,

for b¼ 0.3142), both for f¼ 0.3, g¼ 0.9 and l¼ 0.6. In (a)

the full curves are shown, up to the supersoliton root at

FIG. 10. Existence domains for negative triple root structures at the acoustic

speed, drawn as functions of l, for different values of f, and (a) g, (b) b, and

(c) corresponding triple root structure amplitudes u. The curve coding is for

f¼ 0.1 (black dotted-dashed), f¼ 0.3 (red dashed), f¼ 0.5 (blue dotted), and

f¼ 0.7 (green). The curves are limited by the approach l! 1.

FIG. 11. Typical Sagdeev pseudopotentials having a negative triple root

structure at the acoustic speed (blue curve, for b¼ 0.3032), a supersoliton

(red dashes, for b¼ 0.3029), and an ordinary soliton (long green dashes, for

b¼ 0.304), for f¼ 0.3, g¼ 0.9, and l¼ 0.615.

FIG. 12. Typical Sagdeev pseudopotentials having a negative double root

structure at the acoustic speed (blue curve, for b¼ 0.3145) and a supersoli-

ton (red dashes, for b¼ 0.3142), both for f¼ 0.3, g¼ 0.9, and l¼ 0.6. In (a),

the full curves are shown up to the supersoliton root at u ¼ �1:332, near a

nonaccessible root u ¼ �1:334 of the double layer Sagdeev pseudopoten-

tial. As the double layer at u ¼ �0:368 cannot be seen on the scale of (a), a

blowup is shown in (b).
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u ¼ �1:332, near a nonaccessible root u ¼ �1:334 of the

double layer Sagdeev pseudopotential. As the double layer at

u ¼ �0:368 cannot be seen on the scale of (a), a blowup

concentrating on it is shown in (b).

Because of the character of the acoustic speed double

layer, the origin corresponds to a triple root, to which the

double layer amplitude decays algebraically, whereas at the

double layer itself the decay is exponential.39

V. BOLTZMANN LIMIT

One can note on the curves of Fig. 10(b) that for f¼ 0.3,

f¼ 0.5, and f¼ 0.7, acoustic speed triple root structures can

be found even when b¼ 0, i.e., the Boltzmann limit. To

study the situation in the Boltzmann limit for general triple

root structures and their associated supersolitons, we put in

(4) and (8) b¼ 0 and are left with the parameters and varia-

bles f, g, l, M, and u. As g shows little variation, we typi-

cally take g¼ 0.9 and determine from (8) M, f and u, as

functions of l. This is illustrated in Fig. 13.

To illustrate our findings (again for one generic example

to avoid tedious repetitions with analogous characteristics),

we pick g¼ 0.9 and l¼ 1, and then f¼ 0.786 and M/

Ms¼ 1.0390 ensure that a triple root exists, at u ¼ �1:677.

The corresponding Sagdeev pseudopotential is indicated in

Fig. 14 by the solid blue line. By increasing M/Ms above the

triple root value M/Ms¼ 1.0390, supersolitons are obtained,

and by decreasing M/Ms below this, standard solitons are

generated, for the same plasma composition. The corre-

sponding solitary structure and electric field profiles have not

been included here, as they are analogous to those illustrat-

ing Sec. III.

Because of the many papers in the literature using

Boltzmann hot species, there is no point to further dwell on

this limit, once it has been amply shown that triple root struc-

tures can be generated.

VI. SUMMARY

We have revisited a specific dusty plasma model having

nonthermal Cairns electrons and ions, and cold, negative and

positive dust grains. Aspects of large-amplitude dust-acous-

tic solitons and double layers had been investigated before,

with an emphasis on their existence ranges and generic prop-

erties,16 but preceding the introduction of new concepts like

supersolitons, solitons at the acoustic speed, and even acous-

tic speed supersolitons. It was suggested for a very specific

plasma composition and soliton speed that three distinct

roots of the same polarity might coalesce into a triple root.

In this paper, therefore, rather than the incidental atten-

tion obtained so far, a systematic investigation has been car-

ried out into the existence domains and properties of triple

root structures. Because the Sagdeev pseudopotential is, from

a mathematical point of view, continuous in the different com-

positional parameters, Mach numbers, and the electrostatic

potential, there is a wide range where triple root structures can

exist. Triple root structures are shown to be intimately con-

nected to double layer and supersoliton ranges, as the nonther-

mal parameters are changed, rather than merely the

normalized soliton speed or Mach number. This shows that

triple root structures can be much more common than at first

expected, even at the acoustic speed or in the presence of

Boltzmann rather than Cairns nonthermal hot species.

Once the existence domains are properly established,

one can work out as many examples in detail as one chooses.

We have tested a great many combinations of compositional

FIG. 13. Existence domains for negative triple root waves, drawn as func-

tions of l, for a typical g¼ 0.9 and in the Boltzmann limit b¼ 0, for (a)

Mach numbers M/Ms, (b) f, and (c) triple root amplitudes u. In (c), the posi-

tive roots have also been shown, but the existence of these is limited at

increasing amplitude by up, encountered at l¼ 0.955.

FIG. 14. Typical Sagdeev pseudopotentials having a negative triple root

structure (solid blue curve, at M/Ms¼ 1.0390), a supersoliton (red dashes, at

M/Ms¼ 1.0397), and an ordinary soliton (long green dashes, at

M=Ms ¼ 1:0352), all three for f¼ 0.786, b¼ 0, and l¼ 1.
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parameters, and they all reveal a similar pattern, with quanti-

tative but no qualitative changes. None of these have been

included in the presentation, to avoid overloading the paper

with repetitive graphs and figures, except for a couple of typ-

ical, generic examples, selected among an infinity of other

equally valid choices with analogous results.

This type of analysis has then been extended to triple

root structures at the acoustic speed and to the regime where

the hot species are Boltzmann, which is one of the limits of

the nonthermal Cairns description.

Finally, we have on purpose taken the same nonthermal-

ity parameter b and the same temperature T for both the

Cairns nonthermal hot electrons and ions, for the simple rea-

son that otherwise the parametric discussion becomes

unwieldy and cannot be carried out in a rather comprehen-

sive and systematic way. The main argument is that if, with

this simplification, triple root structures and supersolitons

can be generated, a more complex model will certainly also

contain these, as one has more compositional parameters to

play with. Experience has shown that the more complicated

the composition the more soliton modes can be obtained, but

we feel that with double layers, triple root structures, super-

solitons, and coexistence regimes we have quite a rounded

off picture.

Indeed, to the best of our knowledge, we have not

encountered in the literature or among our own efforts exam-

ples of physically relevant Sagdeev pseudopotentials having

five local extrema of the same polarity outside equilibrium.

These would, if existing, allow the theoretical possibility of

having two successive double layers for a judicious choice

of compositional parameters and structure speeds.
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