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3D reactor technology: the new standard
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Design: multiscale modeling framework
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New trends in olefin production

Abundancy of cheap methane from shale gas and stranded gas

→ Develop processes to valorize methane to higher hydrocarbons
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Syngas / MeOH

Avoid syngas

Avoid intermediatesOxidative coupling of methane



Oxidative coupling of methane (OCM)

Recent history

1982  Keller and Bhasin: pioneering work

2008  DOW Chemical awards “methane challenge grants”

2013  Small firms are developing technologies for converting

natural gas to fuel and chemicals

April 2015  Siluria technologies anounces successful start-up of 

demonstration plant for OCM
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Demonstration unit for OCM in La Porte (TX)

• Strongly exothermic reaction(s)

• Inverse relationship between C2 hydrocarbon

selectivity and CH4 conversion: low C2 yields

Key challenges

Catalyst design

&

Reactor design



OCM research at LCT
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Catalyst for OCM
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Reactor design for OCM
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Static

Fluidized Bed
Riser/Circulating 

Fluidized Bed

Drag force

Gravitation

al force

Limitations:

• Limited slip velocities (~ 1 m s-1)

• Entrainment of particles at high gas 

flow rates

Advantages:

• Better heat and mass transfer

Conventional Fixed Bed

Limitations:

• Thermal control difficult:

• Potential formation of hotspots

OCM Reaction Section:

2CH4 + O2  C2H4 + 2H2O + 
heat

Ethane Conversion 
Section:

C2H6 + heat  C2H4 + H2

Methane

Oxygen

Ethane

Ethylene

Centrifugal 

force

Advantages:

• Dense particle bed

• High gas feed flow rates

• Higher slip velocity → better heat & 

mass transfer

Limitation:

• Mechanical moving parts (abrasion)

Gravitational fluidized bed Rotating fluidized bed



Gas-solid vortex reactor (GSVR) 
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Gas inflow

FC

Vortex reactor

Rotating bed in

• Dense particle bed  reduced reactor volume

• High gas feed flow rates  shorter gas residence time

• Higher gas-solid slip velocity  better gas-solid heat and mass transfer

 Momentum, heat and mass transfer intensification 



GSVR technology at LCT 
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Experiments & CFD simulations



GSVR technology at LCT

Developed for biomass fast pyrolysis

• Lignocellulosic biomass conversion to bio-oil & chemicals

• High interphase heat transfer demands

• Very small vapor residence time

• Temperature ~ 800 K

GSVR modifications for OCM

Direct conversion of methane to ethylene: substantially faster rates
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(Stansch, 1997) (Alexiadis, 2014)



Reactive GSVR

 Proof-of-concept unit: world’s first reactive GSVR for biomass fast

pyrolysis and OCM

 Design based on preliminary calculations and CFD simulations

 Flexible unit: number and angle of inlet slots can easily be adjusted

OCM-related issues:

 Heat management is important due to highly exothermic OCM reactions:

using N2 and/or catalyst diluent might be required

 Catalyst attrition in the GSVR is limited due to the dense rotating bed 

with rather uniform velocity
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Reactive GSVR: current design
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8 inlet slots

10° with respect to the tangent

1 mm width

Gas inlet velocity 60-140 m/s

 Diverging side wall shape

 Reduced backflow

 Recovery of kinetic energy of 

the swirl into pressure

[m s-1]

Backflow is minimized 

and displaced upwards 

towards the outlet

Gas only CFD simulation; N2 mass flow: 6.67 g s-1

Inlet temperature: 842K; Turbulence model: RSM



Non-reactive gas-particle simulations

Air feed: 40 Nm³/hr, 290 K

10 g particles (density 2700 kg/m³, dp 500 µm)
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Bubbling bed

8 inlet slots, dp 200 µm

Stable bed

16 inlet slots, dp 200 µm

Stable bed

8 inlet slots, dp 1 mm

Optimize design/operating conditions to obtain a stable bed

Nitrogen feed: 30 Nm³/hr, 923 K

16 g particles (density 2300 kg/m³)



Experimental validation

Particle image velocimetry (PIV)

 Measuring particle velocity profile to validate and

finetune hydrodynamic models

 Improve reactor geometry: number and shape of inlet

slots affects velocities and wall friction (attrition!)
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Negative radial velocities indicate where 

particles touch the wall

Higher acceleration-deceleration near the circumferential 

wall indicates significant frictional losses at that location

The simulated particle velocities resemble the PIV data qualitatively



2.5% methane conversion 15% C2 selectivity

Reactive CFD simulations

APCRE 2017, Shanghai 17

C2 selectivity and CH4 conversion can be increased by adjusting

• Bed density, solid loading

• Gas-phase residence time (flow rate)

• Type of catalyst (!)

• Particle diameter

• Temperature, pressure

• CH4/O2 ratio

A lot of degrees of freedom!

Methane mole fraction [-] C2 (C2H4 +C2H6) mole

fraction [-]

8 slots GSVR reactor

Gas feed: CH4:O2:N2 = 4:1:0, 10 g/s, 923 K

Catalyst particles: 2300 kg/m³, 16 g, ᴓ1 mm



Reactive CFD simulations
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 Increasing the number of inlet 

slots increases the bed 

uniformity 

 Less bypassing of the bed: 

higher conversion and C2-yields

 More uniform temperature profile

8 vs 16 slots GSVR reactor

Gas feed: CH4:O2:N2 = 4:1:0, 10 g/s, 873 K

Catalyst particles: 2300 kg/m³, 16 g, ᴓ1 mm



Reactive CFD simulations
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Catalyst volume 

fraction [-]

Temperature [K] Methane mole

fraction [-]

C2 (C2H4 +C2H6) 

mole fraction [-]

12.75% methane conversion 49.4% C2 selectivity16 slots GSVR reactor

Gas feed: CH4:O2:N2 = 5:1:10, 7 g/s, 1023 K

Catalyst particles: 1173 K, 2300 kg/m³, 11.5 g, ᴓ0.5 mm

Reasonable conversion, but more selective catalyst required



Conclusions

• GSVR emerges as a promising reactor technology for OCM

• Fluidization in a centrifugal field with particle inertial forces exceeding

gravitational force

̶ Much higher gas-solid slip velocities compared to conventional

fluidized beds: process intensification

̶ Improved bed uniformity and gas distribution: temperature control

̶ Short gas residence time and possibility for improving selectivity

towards C2 products

• Suitable catalyst must be selected for achieving high C2 yields
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