

DRIVING CHEMICAL TECHNOLOGY

CFD BASED DESIGN OF A NOVEL REACTOR TECHNOLOGY FOR THE OXIDATIVE COUPLING OF METHANE

Laurien A. Vandewalle, Patrice Perreault, Kevin M. Van Geem, Guy B. Marin

Laboratory for Chemical Technology (Ghent University, Belgium)

THE 8TH ASIAN-PACIFIC CHEMICAL REACTION ENGINEERING SYMPOSIUM **NOVEMBER 14, 2017, SHANGHAI (CHINA)**

3D reactor technology: the new standard

TURBULATOR REACTOR

ROTOR REACTOR

APCRE 2017, Shanghai

Design: multiscale modeling framework

APCRE 2017, Shanghai

New trends in olefin production

Abundancy of cheap methane from shale gas and stranded gas → Develop processes to valorize methane to higher hydrocarbons

Oxidative coupling of methane (OCM)

Recent history

- **1982** Keller and Bhasin: pioneering work
- 2008 DOW Chemical awards "methane challenge grants"

2013 Small firms are developing technologies for converting

natural gas to fuel and chemicals

April 2015 Siluria technologies anounces successful start-up of

demonstration plant for OCM

Key challenges

- Strongly exothermic reaction(s)
- Inverse relationship between C2 hydrocarbon selectivity and CH₄ conversion: low C2 yields

Cataly & <u>React</u>

Demonstration unit for OCM in La Porte (TX)

Catalyst design

Reactor design

APCRE 2017, Shanghai

OCM research at LCT

Quantitative screening of an extended Oxidative Coupling of Methane catalyst library (Alexiadis et al. 2016)

Oxidative Coupling of Methane: opportunities for microkinetic modelassisted process

implementations (Obradović et al. 2016)

Catalyst for OCM

Reactor design for OCM

Conventional Fixed Bed

Limitations:

- Thermal control difficult:
- Potential formation of hotspots

Gravitational fluidized bed

Advantages:

Better heat and mass transfer

Limitations:

- Limited slip velocities (~ 1 m s⁻¹)
- Entrainment of particles at high gas \bullet flow rates

Rotating fluidized bed

Advantages:

- Dense particle bed •
- High gas feed flow rates
- Higher slip velocity \rightarrow better heat & mass transfer

Limitation:

Mechanical moving parts (abrasion)

Gas-solid vortex reactor (GSVR)

- Dense particle bed \rightarrow reduced reactor volume
- High gas feed flow rates \rightarrow shorter gas residence time
- Higher gas-solid slip velocity \rightarrow better gas-solid heat and mass transfer

Momentum, heat and mass transfer intensification \checkmark

Rotating bed in Vortex reactor

APCRE 2017, Shanghai

GSVR technology at LCT

Cold flow unit

Hot flow unit

Experiments & CFD simulations

Reactive unit

GSVR technology at LCT

Developed for biomass fast pyrolysis

- Lignocellulosic biomass conversion to bio-oil & chemicals \bullet
- High interphase heat transfer demands \bullet
- Very small vapor residence time \bullet
- Temperature ~ 800 K

GSVR modifications for OCM

Direct conversion of methane to ethylene: substantially faster rates

Reactive GSVR

- Proof-of-concept unit: world's first reactive GSVR for biomass fast pyrolysis and OCM
- Design based on preliminary calculations and CFD simulations
- ✓ Flexible unit: number and angle of inlet slots can easily be adjusted

OCM-related issues:

- Heat management is important due to highly exothermic OCM reactions: X using N_2 and/or catalyst diluent might be required
- Catalyst attrition in the GSVR is limited due to the dense rotating bed with rather uniform velocity

Reactive GSVR: current design

Gas only CFD simulation; N_2 mass flow: 6.67 g s⁻¹ Inlet temperature: 842K; Turbulence model: RSM

Non-reactive gas-particle simulations Optimize design/operating conditions to obtain

Nitrogen feed: 30 Nm³/hr, 923 K 16 g particles (density 2300 kg/m³) Air feed: 40 Nm³/hr, 290 K 10 g particles (density 2700 kg/m³, d_p 500 μ m)

Experimental validation

Particle image velocimetry (PIV)

- \checkmark Measuring particle velocity profile to validate and finetune hydrodynamic models
- ✓ Improve reactor geometry: number and shape of inlet slots affects velocities and wall friction (attrition!)

The simulated particle velocities resemble the PIV data qualitatively

Higher acceleration-deceleration near the circumferential wall indicates significant frictional losses at that location

2.0

Reactive CFD simulations

C2 selectivity and CH₄ conversion can be increased by adjusting

- Bed density, solid loading ٠
- Gas-phase residence time (flow rate) •
- Type of catalyst (!) ٠

- Particle diameter
- Temperature, pressure
- CH_4/O_2 ratio

Reactive CFD simulations

8 vs 16 slots GSVR reactor

Gas feed: $CH_4:O_2:N_2 = 4:1:0, 10 \text{ g/s}, 873 \text{ K}$ Catalyst particles: 2300 kg/m³, 16 g, $\otimes 1 \text{ mm}$

Increasing the number of inlet slots increases the bed uniformity

 \checkmark

 \checkmark

 \checkmark

Less bypassing of the bed: higher conversion and C2-yields More uniform temperature profile

Reactive CFD simulations

Reasonable conversion, but more selective catalyst required

Gas feed: CH₄:O₂:N₂ = 5:1:10, 7 g/s, 1023 K

APCRE 2017, Shanghai

Conclusions

- GSVR emerges as a promising reactor technology for OCM ullet
- Fluidization in a centrifugal field with particle inertial forces exceeding ulletgravitational force
 - Much higher gas-solid slip velocities compared to conventional ____ fluidized beds: process intensification
 - Improved bed uniformity and gas distribution: temperature control
 - Short gas residence time and possibility for improving selectivity towards C2 products
- Suitable catalyst must be selected for achieving high C2 yields

APCRE 2017, Shanghai

Acknowledgements

Colleagues @ LCT

Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation

Thank you for your attention

APCRE 2017, Shanghai