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1.1 Introduction 

Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite, present across the 

globe and causing an infection in all warm-blooded animals, among which are aquatic 

and terrestrial mammals and birds. The prevalence of toxoplasmosis in humans varies 

considerably between countries or ethnic groups but reaches up to 50% of the 

worldwide population, regardless of the continent, economic status of the countries or 

environmental factors such as climate, humidity or altitude (Tenter et al., 2000; Gamarra 

et al., 2008; Halonen and Weiss, 2009; Shapiro et al., 2010; Robert-Gangneux and Dardé, 

2012; Flegr et al., 2014). 

1.1.1 History  

The discovery of the parasite dates to the early 20th century, when it was separately 

isolated from blood, spleen and liver of a gundi (Ctenodactylus gundi) in North Africa 

and a rabbit in Brasil (Nicolle and Manceaux, 1908; Splendore, 1908). The name of 

“Toxoplasma gondii“ was introduced for the first time in 1909 and refers to the shape 

in which the parasite was observed (“toxo”: an arch or bow, “plasma”: life), combined 

with the name of the African rodent gundi (Black and Boothroyd, 2000; Weiss and 

Dubey, 2009a).  

The first description of a human infection with severe clinical symptoms caused by the 

parasite was made in 1923 by Janků (1923), while the first case of fatal congenital 

toxoplasmosis (CT) was reported in 1939 by Abner Wolf et al. (1939). Since then the 

attention for the parasite and the attempts for the development of a successful vaccine 

significantly increased in both human and veterinary sciences. In addition to severe 

outcomes of the infection in human patients, the parasite was found responsible for 

abortions and death in ewes, and therefore for high economical losses (Dubey and 

Jones, 2008). Frenkel, Hutchison and Dubey revealed the full life cycle within the 

Felidae, the final host, and the distinct developmental stages (Frenkel et al., 1970; 
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Hutchison et al., 1970; Dubey, 1970b), in the second half of the 20th century by the 

isolation of the parasite from naturally infected hosts.  

1.1.2 Taxonomy 

T. gondii represents the only species within the genus Toxoplasma. The subsequent 

taxonomic groups refer to a unicellular organism with the distinct nuclear membrane 

and membrane bound organelles (Eukaryota), small submembranous cavities or alveoli 

(Alveolata), and a unique plastid-like organelle or the apicoplast (Apicomplexa), 

together with a cluster of microtubules and organelles in the apical complex (Levine, 

1970; Cavallier-Smith, 1993; Cooper and Hausmann, 2015). T. gondii as the member of 

the class Conoidasida possesses a conoid or a motile structure, composed of fibers 

arranged as spiral inside the polar rings, and serving for penetration into the host cell. 

Further, it belongs to the subclass Coccidiasina, since it is an obligatory intracellular 

parasite of the vertebrates, with a sexual multiplication step in the gastrointestinal tract 

of the host, followed by spores stage in the environment and cysts in the tissues of the 

intermediate host (Sarcocystidae) (Kreier, 1993; Bertolino et al., 2003). 

The full taxonomy is presented in Table 1.  
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Table 1.1 : Taxonomy of T. gondii 

(from http://www.ncbi.nlm.nih.gov/Taxonomy/) 

 

Domain Eukaryota 

Supergroup Chromoalveolata 

Kingdom Alveolata 

Phylum Apicomplexa 

Class Conoidasida 

Subclass Coccidiasina 

Order Eucoccidiorida 

Suborder Eimeriorina 

Family Sarcocystidae 

Genus Toxoplasma 

Species T. gondii 

 
 

1.1.2 Genetic diversity 

Due to the high clinical relevance and the search for a successful treatment and 

prevention, the parasite was isolated from the naturally infected animals and humans 

for molecular analysis of the parasitic genome using PCR, restriction fragment length 

polymorphism (RFLP), or random amplified polymorphism DNA (Fuentes et al. 2001, 

Dardé et al. 1995, Guo et al. 1995a, Howe et al. 1997, Sibley et al. 1992). The obtained 

data led to genetic identification of the isolated parasites, and, therefore, allowed to 

distinguish three major multilocus genotypes of T. gondii.  

The genetic lines named I, II, and III, correspond to the genetic analysis of the 

polymorphic surface antigen 2 locus (SAG2) (Howe et al. 1997) and are characterized 

by a different degree of virulence and pathogenicity in mice. Type I is considered as 

the most virulent genotype, followed by type III and II. The latter is the most prevalent 

genotype present in the animal reservoir and human population in Europe. 

Additionally, some of the strains isolated from naturally infected humans or wild and 
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domestic animals in South America, Africa and Asia do not fit into these three lineages, 

showing a highly divergent genotype or a mix of type I, II and/or III. Consequently, new 

genotypes were identified worldwide such as a type IV in North America, type I in Asia, 

type I to III in Africa, and type II, III and IV in Brazil (Ferguson, 2009; Herrmann et al., 

2010; Dubey et al., 2011; Robert-Gangneux and Dardé, 2012; Turčeková et al., 2013; 

Dardé et al., 2014; Ajzenberg et al., 2016). The recently identified strains show often an 

increased virulence in mice and sometimes in humans, suggesting the existence of new 

atypical haplogroups (Saeij et al., 2005; Innes, 2010).  

Despite the genetic heterogeneity between the strains, the T. gondii genome is 

uniformly haploid during the main developmental stages (except for the oocyst phase) 

and consists of three major DNA components: nuclear (87 Megabases (Mb)), 

mitochondrial (linear and omega shaped, 6 to 8 Mb) and apicoplastic (circular 35 Mb) 

(Blader and Saeij, 2009; Liting and McFadden, 2011; Ramakrishnan et al., 2012; Reiff et 

al., 2012).  

1.2 Life cycle and the infectious stages 

The life cycle of T. gondii is complex, since this obligatory intracellular coccidian parasite 

operates in a hunter-prey system that alternates between final and intermediate hosts, 

which are correlated with a sexual and asexual reproduction mode, respectively (Dubey, 

1998b; Black and Boothroyd, 2000; Robert-Gangneux and Dardé, 2012). The life cycle 

consists of an entero-epithelial and extra-intestinal part, involving at least two or more 

hosts (Figure 1.1) (Ferguson, 2008; Robert-Gangneux and Dardé, 2012; Halonen and 

Weiss, 2013). 

The sexual reproductive stage (or forming of gametocytes) proceeds exclusively in 

enterocytes of the small intestine of the Felidae, represented by domestic or wild cats 

and other members of the Felidae family (Ajzenberg et al., 2004; Saeij, 2005; Ferguson, 

2009; Beck et al., 2009). 
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The asexual part of the life cycle may virtually take place in any nucleated cell of all 

endothermic terrestrial and aquatic animals, including domestic and wild mammals, 

birds and humans. 

In order to accomplish the sexual multiplication and complete the life cycle, T. gondii 

has a multi-stage development, consisting of the following transmissible forms, 

described below: 1) the gametocytes, which are the protagonists of the sexual 

reproduction by anisogamy in the final host; 2) the oocysts, which are formed in the 

definitive host and are shed as non-sporulated, hence, not-infectious, to the 

environment; 3) the sporozoites, formed after sporulation of the oocysts in the 

environment;  4) the highly infectious tachyzoites, which are the motile and fast-

multiplying form in the intermediate hosts and 5) the latent bradyzoites or the slow 

asexually replicating form inside tissue cysts in the final or the intermediate hosts 

(Kortbeek, 1999; Tenter et al., 2000; Van der Giessen et al., 2003; Sibley, 2009; Turner et 

al., 2013; White et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Life cycle of T. gondii (adapted from: Robert-Gangneux and Dardé, 2012). 

The numbers refer to the transmissible forms of the parasite.  
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1.2.1 Entero-epithelial cycle 

As indicated above, the sexual stage of the life cycle of T. gondii appears in the intestinal 

tract of the Felidae. The final host sheds oocysts upon ingestion of one of the three 

infectious stages: tachyzoites, bradyzoites or sporozoites. The prepatent period (the 

time between initial infection of the final host and the excretion of oocysts) is 

dependent on the parasitic stage that had been ingested: it comprises 3 to 10 days 

after ingestion of bradyzoites, more than 13 days after ingestion of tachyzoites and 

longer than 18 days after ingestion of sporulated oocysts (Dubey, 1998a; Hill et al., 

2005, Dubey, 2008a). However, not each infected animal will develop toxoplasmosis 

with shedding of the oocysts. Since the tachyzoites are sensitive to challenging 

environmental conditions, and are not resistant to the action of the gastric enzymes,  

eventually less than 30% of the tachyzoites- or oocyst-infected cats will excrete oocysts 

as the result of the completed life cycle, while nearly all cats will excrete oocysts after 

intake of tissue cysts (Dubey et al, 1998; Dubey, 2004). 

Once the cysts derived from tissues of the intermediate host are ingested, gastric 

enzymes will degrade the cyst wall. The released bradyzoites will then penetrate the 

epithelial cells of the small intestine, where several rounds of asexual replication take 

place, which is characterized by the development of several generations of schizonts 

containing merozoites (schizogony and merogony).  

Schizogony proceeds within enterocytes upon colonization by the tachyzoites, which 

were generated by the released bradyzoites. There are five consecutive stages (A to E) 

of the schizogony or the asexual reproduction. Inside each schizont (also called meront) 

the first generation of merozoites is produced, which eventually are released from the 

schizont and then colonize new epithelial cells.  

This event is the first step of the entero-epithelial cycle, occurring 2 days after the 

ingestion of the tissue cysts, and followed by the formation of male and female micro- 

and macrogametes, respectively (gametogony).  
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Gametocytes and non-sporulated oocysts 

Starting from 2 days after ingestion of the parasite the first generation of merozoites 

colonizes new epithelial cells and, instead of becoming schizonts, proceeds with the 

formation of a second generation of merozoites (also called gamonts) by gametogony. 

These merozoites will differentiate either into a microgametocyte or a 

macrogametocyte. The microgametocyte (defined as microgamete after maturation) 

multiplies until the cell breaks, liberating the microgametes, which are motile and 

translocate in order to find the epithelial cell containing the macrogamete. Thereafter, 

the microgamete penetrates the cell and fertilization occurs, resulting in the formation 

of the zygote. After fertilization of the macrogamete with a microgamete a zygote is 

formed with a resistant oocyst wall (Hill et al, 2005; Robert Gangneux and Dardé, 2012). 

The multiple zygotes break the epithelial cells and form oocysts, which are 

simultaneously shed first into the intestinal lumen of the final host, and subsequently 

to the environment with the faeces. Shedding of oocysts usually starts 3 to 7 days after 

the ingestion of tissue cysts and can continue during 7 to 20 days post initial infection 

(with a variation of 2 to 10 days).  On average, at least 100 million oocysts may be 

excreted, resulting in a severe environmental contamination. The unsporulated oocyst 

or zygote has a spherical shape, from 10 to 12 μm of diameter, a large nucleus with an 

amorphous nucleoplasm, and contains one sporoblast (Figure 1.2) (Dubey, 1998a). 

Sporulated oocysts 

Within five days after shedding of the oocysts to the environment the sporulation is 

initiated, driven by a meiosis division process resulting in a haploid sporulated oocyst. 

The following events proceed during the sporulation in the environment, namely the 

sporoblast is divided by sporogony within the oocyst in two sporoblasts with four 

sporozoites inside (Dubey et al., 1998a; Ferguson, 2009) .  The duration of sporulation 

varies from 1 to 24 days, and is dependent on the temperature, humidity and the 

presence of oxygen, as oocysts sporulate between 24 to 28 hours after excretion at 
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25°C, 2 to 5 days at 15°C and 21 days at 11°C  (Dubey et al., 1970; Kortbeek, 1999; Van 

der Giessen et al., 2003; Torrey and Yolken, 2013).  

Sporulated oocysts are spherical to oval in shape and have a size of 11-13 µm. They 

consist of two sporocysts (6-8 µm), each containing four haploid sporozoites (2 to 6 

µm) (Dubey et al., 1998a; Dubey, 2009a; Ferguson, 2009; Poukchanski et al., 2013). 

 

 

Figure 1.2 : Oocysts: A) unsporulated oocyst, B) sporulated oocyst with two sporocysts 

(arrows indicate four sporozoites), C) sporulated oocyst where large arrow indicates the 

thin oocyst wall, arrowheads show the two sporocysts and small arrows present 

sporozoites where one is longitudinally cut (from Dubey et al., 1998a). 

 

The wall of a sporulated oocyst is extremely robust and multi-layered, ensuring the 

resistance against chemical and physical factors such as UV-light, ozone and chlorine-

based products. Under humid and warm circumstances the oocysts remain infectious 

during 1 to 2 years in soil, or during 2 and 4.5 years in salt and in surface water, 

respectively (Tenter et al., 2000; Van Wormer et al., 2013). When altering the conditions 

to 4° C, the oocysts persist without the loss of infectious capacity up to 54 months, 

while in a hot and a dry environment they become inactivated already after one minute 
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(Dubey et al., 1998a; Ferguson, 2009; Robert-Gangneux and Dardé, 2012; Dumètre et 

al., 2013).  

The feline host acquires a protective immunity after the primary infection, however the 

immunity does possibly not have a lifelong span. In some cases and especially in 

immunocompromised older animals with viral or bacterial co-infections, a second 

excretion period may occur after reinfection (Van der Giessen et al., 2003, De Craeye et 

al., 2008). 

 

1.2.2 Extra-intestinal cycle 

The extra-intestinal cycle of T. gondii is initiated by the ingestion of sporulated oocysts 

from the environment, or by predation of chronically infected intermediate hosts. This 

part of the life cycle can proceed in both the final (Felidae) and the intermediate 

(carnivorous and herbivorous mammals) host, including humans (Ajzenberg et al., 

2004; Saeij et al., 2005; Beck et al., 2009). 

The developmental stages present here are the tachyzoites and the bradyzoites, which 

share some morphological and physiological characteristics with the sporozoites such 

as the size, sickle shape and the division by endodyogeny within the host’s cell. 

Nevertheless, the main difference between the two former parasitic forms is the speed 

of the multiplication, corresponding to the subsequent phases of the infection (Black 

en Boothroyd, 2000). 

Tachyzoites 

The tachyzoites are the first and asexual stage of the extra-intestinal cycle, representing 

the acute phase of the infection. They are the rapid multiplying stage in any nucleated 

cell of the intermediate hosts and in non-intestinal epithelial cells of the definite host. 

Their name refers to the speed of replication (Greek for ‘fast’) (Dubey, 2008a). 

A tachyzoite has a half-moon shape, is 2 to 6 µm long and contains different organelles 

such as the nucleus, the endoplasmatic reticulum with associated Golgi apparatus, 

mitochondria, the apicoplast, involved in protein and fatty acids synthesis, and multiple 
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inclusion bodies (Figure 1.3) (Dubey et al., 1998b). In comparison with the sporozoites, 

there are more abundant secretory organelles such as micronemes, rhoptries and 

amylopectin granules in tachyzoites, which secrete proteolytic enzymes, necessary for 

the host’s cell penetration. These organelles also contribute to an appropriate 

environment for growth and development of the parasite in the infected cells 

(McFadden, 2011). Tachyzoites lack any motility organ like cilia or flagella, but they can 

move by rotation, undulation, flexing or gliding (Chiappino et al., 1984).  

The tachyzoites differentiate from sporozoites upon ingestion of the oocyst, or from 

bradyzoites within the tissue cysts, and, when released, subsequently penetrate any 

nucleated cell, multiply and disseminate further. 

 

Figure 1.3 : Tachyzoite (left) and bradyzoite (right) (from Dubey et al., 1998b).  

 

When the host’s cell is being invaded by phagocytosis or by an active penetration, 

initial recognition facilitated by surface antigens (SAGs) leads to adhesion of the 

parasite to the cell via MIC proteins. Soon after that stage a parasitophorous vacuole 

(PV) is established, by rhoptry proteins (ROP) secretion and conoid movements, and 

consisting of the host’s and parasitic components. Upon forming the PV, replication of 
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the parasitic DNA follows every six to nine hours, prior to cell division (Kafsack et al., 

2007).  

Tachyzoites multiply very rapidly in all nucleated cells by endodyogeny, with daughter 

cells still in the original cell during the acute phase of the infection (Dubey et al., 1998b; 

Black and Boothroyd, 2000; Robert-Gangneux and Dardé, 2012). 

The multiplication continues until the cell bursts, releasing the tachyzoites to the blood 

stream in order to disseminate the infection, with the preference for the central nervous 

system, eye, skeletal muscles and heart. The process leads indirectly to destruction of 

the initially infected cells and invasion of the others (Dubey et al., 1998b; Black and 

Boothroyd, 2000; Montoya and Liesenfeld, 2004).  

In the final stage of the division and 1 to 2 weeks (7 to 10 days) after the initial infection, 

the tachyzoites convert to bradyzoites and generate tissue cysts (see further 

Bradyzoites and tissue cysts) (Van der Giessen et al., 2003; Ferguson, 2009).  

Bradyzoites and tissue cysts 

Bradyzoites are the slow multiplying stage of T. gondii, and their name is associated 

with the prolonged speed of replication (Greek for ‘slow’) (Dubey, 2008a). They are 

present in the chronic phase of the infection, showing a very low level of metabolic 

activity; they can persist life-long within the host (Kortbeek, 1999; Black and Boothroyd, 

2000; Dubey, 2008a).  

Bradyzoites are sickle shaped, 7 by 1.5 μm in size, and are enclosed per hundreds within 

a tissue cyst. The bradyzoite is morphologically very similar to tachyzoite; among 

others, it is slightly thinner and less susceptible to degradation by proteolytic enzymes 

than a tachyzoite (Figure 1.3). Additionally, the prepatent period in cats after infection 

with bradyzoites is shorter than for tachyzoites: 3-10 and >10 days, respectively 

(Dubey, 2004; Hill et al., 2005; Dubey, 2008a). 

Despite the morphological and physiological differences, bradyzoites also multiply by 

endodyogeny inside the tissue cyst (Dubey et al., 1998b; Black and Boothroyd, 2000; 

Robert-Gangneux and Dardé, 2012).  
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The tissue cysts develop intracellularly within the nucleated cell cytoplasm of the 

intermediate or final hosts. In reference to the infected cell type and the age of the 

cyst, a young tissue cyst has a 5 μm diameter and contains two bradyzoites, while more 

mature cyst can contain multiple hundreds or thousands of them, having a spheroidal 

(70 μm of diameter) or elongated (100 μm of diameter) shape, when present in the 

brain or in the intramuscular tissue, respectively (Figure 1.4) (Dubey et al., 1998b; 

Robert-Gangneux and Dardé, 2012).  

Tissue cysts reside predominantly lifelong in neural and muscular tissues like brain, 

eyes and skeletal and cardiac muscles, causing a very limited and local inflammatory 

response of the host. The tissue cyst wall is composed of host cell and parasite materials 

(Dubey et al., 1998b; Ferguson, 2009). Reactivation of the resting tissue cysts might 

occur in individuals with a temporarily or permanently compromised immune system 

(Dubey et al., 1998b; Black and Boothroyd, 2000; Van der Giessen et al., 2003; Montoya 

and Liesenfeld, 2004).  

As described earlier, due to the predation or ingestion of raw or undercooked infected 

meat, the tissue cysts reach the digestive tract of the final or the intermediate hosts, 

where cysts are disrupted liberating bradyzoites. These bradyzoites initiate the asexual 

cycle in the intermediate host by subsequently infecting the intestinal epithelium of 

the new host, differentiating into tachyzoites and disseminating in the body, or they 

give rise to several generations of merozoites for the sexual multiplication in the final 

host, resulting in the gametocytes production, followed by oocyst shedding (Black and 

Boothroyd, 2000; Dubey, 2009a; Innes, 2010; Robert-Gangneux and Dardé, 2012). 
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Figure 1.4 : Tissue cyst with bradyzoites (courtesy of dr S. De Craeye, National 

Reference Laboratory for Toxoplasmosis, WIV-ISP, Brussels, Belgium).  

1.3 Toxoplasmosis as a zoonotic disease 

As indicated above, T. gondii is widespread in all warm-blooded animals (carnivores 

and herbivores). The infection is initiated within the final host and is passed onto a 

variety of the intermediate hosts including humans via several transmission routes 

(Figure 1.5). To date, not much data is described on the pathogenesis or clinical 

symptoms of the natural acute or chronic infection in pigs. Although the thesis mainly 

discusses the porcine toxoplasmosis and the associated immune responses and the 

dissemination of the parasite, the well-known human infection served as a model to 

study the corresponding events in the porcine host. 

 

1.3.1 Transmission routes between and within the hosts 

From the evolutionary point of view, the original infection path, representing a full life 

cycle of the parasite, is limited to two hosts: members of the Felidae family and small 

animals such as rodents or birds. The intermediate host ingests the oocysts spread in 

the environment with the faeces of the cat and, depending on the virulence of the 

strain, dies due to acute toxoplasmosis or survives after subclinical infection but 

becomes chronically infected. The tissue cysts developed during the chronic phase 
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contain bradyzoites, which reach the final host by predation of the chronically infected 

rodent and by this close the life cycle of T. gondii.  

 

Figure 1.5 : The life cycle of T. gondii  (adapted from: Hunter and Sibley, 2012). 

 

Also other mammals next to small rodents, including humans, can accidentally ingest 

the oocysts due to contamination of grass, vegetables or water with cat feces, and serve 

as such as intermediate hosts for the parasite. Due to the fact that oocysts are shed in 

a very high amount, heavily contaminating the environment, together with their 

prolonged viability, ingestion of the oocysts is a major infection source for humans 

(Opsteegh et al., 2016b). An alternative infection route for the carnivorous mammals 

and humans is the predation or consumption of the chronically infected intermediate 

hosts such as wild and domestic animals. In this case, the ingestion of the tissue cysts 

present in the muscles and organs will lead to the conversion of bradyzoites into 
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tachyzoites in the intestines followed by systemic dissemination, and may result in the 

development of a new generation of latent tissue cysts.  

Both these sources of infection refer to a horizontal T. gondii transmission between 

hosts by means of oocysts or bradyzoites. In addition, a vertical transmission within a 

female host is also possible. Congenitally acquired infection occurs, when the mother 

undergoes a primary infection during pregnancy. In this case circulating tachyzoites, 

resulting from the acute phase, cross the placental barrier and infect the foetus 

(Ferguson, 2009; Jones and Dubey, 2012). 

 

1.3.2 Human toxoplasmosis  

As mentioned earlier, according to global estimations, 30 to 50% of the world human 

population is infected by T. gondii (Tenter et al., 2000; Flegr et al., 2014). The lowest 

seroprevalence (10-30%) is reported in the following regions: Northern Europe, North 

America, South East Asia, and Sahelian countries of Africa; in the Central and Southern 

European countries a moderate seroprevalence (30-50%) is observed, while Latin 

America and tropical Africa seem to show the highest seroprevalence (80%) of T. gondii 

in humans (Innes, 2010; Robert-Gangneux and Dardé, 2012).  

Within the European human population subclinical infection is estimated to be present 

in 50%-80% of inhabitants, with an incidence rate of 0.56 per 100,000 population of 

confirmed reported cases, and the frequency of 2-8 maternal seroconversions per 1000 

pregnancies (EFSA report, 2012; Opsteegh et al., 2016b).  

In Belgium, the seroprevalence in pregnant women or women at childbearing age was 

50% and 63%, respectively, in the past 25 years (Luyasu et al., 1997; Carlier et al., 2012; 

Flegr et al., 2014), while the rate of the seroconversion during pregnancy is estimated 

at 3-10 per 10,000 live births (Breugelmans et al., 2004).   

Horizontal transmission 

The horizontal route of infection may occur via accidental oocysts ingestion due to the 

environmental contamination, via the consumption of the infected animal products 
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containing bradyzoites, or by accidental transmission of the acute, reactivated or 

chronic forms of the parasite via blood, tissue or organ transplants.  

As described earlier, domestic or wild Felidae shed big amounts of oocysts into the 

environment during a short period of time upon the primary (or in rare cases 

reactivated) infection (Dubey, 1995a). Human toxoplasmosis via oocysts originating 

from the direct contact with sporulated, hence infectious, oocysts follows e.g. 

manipulation of the faeces when emptying the litter box, or indirectly via contaminated 

soil, water or vegetables.  

Due to a long survival of oocysts in mild environmental temperature and humid 

conditions, the direct contact with soil, during e.g. gardening or playing in sandpits, 

seems to be an important risk factor, contributing to 6-17% of primary human 

infections, as reported in a case-control study in Europe (Cook et al., 2000, Petersen et 

al., 2010).  

The oocysts of T. gondii remain viable for an extensive period of time not only in soil, 

but also in ground, surface or seawater, in which the parasitic DNA has been already 

detected (Yang, et al., 2009; Mazzillo et al., 2013; Verant et al., 2014). Additionally, 

aquatic mammals and invertebrate biological organisms may passively carry the 

parasite. The human consumption of shellfish, such as, oysters, clams and mussels is 

consequently a potential source of human infection (Esmerini et al., 2010; Robert-

Gangneux and Dardé, 2012).  

Bringing both infection sources together, contaminated water and soil serve as the 

transfer medium for oocysts to consumable plants, vegetables and fruits. The lack of 

hygienic measures when processing fresh food increases the risk of T. gondii infection 

incidence in humans (Afonso et al., 2008; Robert-Gangneux and Dardé, 2012). 

The second mode of horizontal transmission of the infection to humans is by the 

consumption of raw, undercooked, cured and derived meat products.  

In European countries any source of meat from wild and domesticated mammals and 

birds is considered as a potential source of T. gondii infection. Meat consumption of 

undercooked or cured meat is responsible for 30-63% foodborne human 
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toxoplasmosis cases worldwide (Table 1.2), although this can vary, in reference to the 

local culinary habits, and to the prevalence of the parasite in meat-producing animals 

(Cook et al., 2000; Kijlstra and Jongert, 2008; Robert-Gangneux and Dardé, 2012). Based 

on a recent EFSA report (Opsteegh et al., 2016b), the ranking of the animal species 

ordered by diminishing incidence is as follows: sheep (48.1%), horses (27.8%), goats 

(13.3%), pigs (3.6%) and bovines (3.2%). However, new trends in farming of different 

species, tending to animal-friendly organic herds or bio-farms with free-ranging 

animals will presumably lead to a rise in T. gondii prevalence in animals and, 

subsequently, in the human population (Hill et al., 2010; Dubey et al., 2012b). Next to 

the origin of the meat, both the storage conditions and the processing method can 

play an important role in the viability of the tissue cysts. Fresh meat products, meat 

pieces that underwent freezing at temperatures above -12°C, temperatures lower than 

-12°C but for shorter than 3 days, or products heated at the core for lower than 67°C 

or manufactured by insufficient processing (such as cured with too low salt 

concentration) or by low temperature smoking, can all contribute to food-borne 

human toxoplasmosis (Cook et al., 2000; Hill et al., 2006; Bayarri et al., 2010; Petersen 

et al., 2010; Sullivan and Jeffers, 2012).  

It is worth mentioning that other animal products than meat can also serve as a source 

of infection. In rare documented cases, the consumption of raw milk containing 

tachyzoites from recently infected goats, sheep or camels can lead to acquired 

toxoplasmosis in humans (Jones et al., 2009, Gembremedhin et al., 2014; Boughattas, 

2015a, 2015b).  

The last (and least frequent) mode of horizontal transmission of T. gondii towards 

humans is transplantation, where the infection can be passed on to a human patient 

by donation of blood, bone marrow, retina or a solid organ containing cysts. Donors 

undergoing the acute phase of subclinical infection when donating blood or bone 

marrow, spread tachyzoites, while seropositive individuals serving as donors for visceral 

organs can potentially transfer tissue cysts. Heart transplants are more prone to house 

tissue cysts in comparison with internal organs such as liver, lungs or kidneys due to 
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the fact that muscles commonly favour parasite encystment; moreover the heart is 

known to be one of the predilection sites during systemic dissemination of the 

tachyzoites in the intermediate host. In addition, the immunosuppressive treatment 

prior to transplantation makes the receiving patient more vulnerable upon the 

transfusion or surgery, what frequently leads to reactivation of dormant bradyzoites in 

the donated organ (Tenter et al., 2000; Barsoum, 2004; Robert-Gangneux and Dardé, 

2012).  

Table 1.2 : The sources of human toxoplasmosis (Cook et al. 2000; Kijlstra and Jongert, 

2008; Robert-Gangneux and Dardé, 2012 EFSA report 2016).  

 

Vertical transmission 

As a consequence of a primary infection during pregnancy, the tachyzoites raised 

during the acute phase disseminate, can cross the placental barrier and colonize the 

maternal and fetal tissues in on average 30% of the cases (Robert-Gangneux and 

Dardé, 2012). The placental barrier against T. gondii is more efficient during the first 3 

months than during the second or third trimester (Tait and Hunter, 2009). The 

frequency of CT prevalence increases with the proceeding gestational stage: an 

infection of the mother in early pregnancy carries a low risk for congenital infection (6-

8%) and increases over 30-45% during the second trimester until 60-90% in the last 

three months (Dunn et al., 1999, Dubey, 2010).  

30-50% • human toxoplasmosis worldwide 

30-63% • meatborn human toxoplasmosis 

3.6% • human toxoplasmosis due to pork meat 

consumption



  Chapter 1: Toxoplasma gondii 

 ______________________________________________________________________________________________________________  

35 

 

The severity of the malformations of the foetus resulting from the congenital infection 

are clearly inversely correlated with the gestation stage (see further 1.3.3) (Tenter et al., 

2000; Pfaff et al., 2007; Dubey, 2010; Milewska-Bobula et al., 2015).  

 

1.3.3 Clinical signs and symptoms 

The course of T. gondii infection in an intermediate host such as a human or a domestic 

pig is predominantly subclinical. A symptomatic infection accompanied by the clinical 

signs with a broad range in severity, occurs in certain groups of patients. These groups 

are at a higher risk and, consistently, develop a more severe disease outcome. 

Seronegative pregnant women and newborns with CT, and patients with a temporary 

compromised or permanently impaired immune system could be included to this 

category (Weiss and Dubey, 2009a). 

Subclinical toxoplasmosis in immunocompetent individuals 

In immunocompetent individuals a subclinical, hence, asymptomatic infection is 

expected in more than 80% of the cases (Robert-Gangneux and Dardé, 2012; Halonen 

and Weiss, 2013; Halsby et al., 2014). However, even in healthy immunocompetent 

patients and presumably depending on the strain and dose, some atypical symptoms 

are reported, frequently associated with flu or mononucleosis, such as: sore throat and 

lymphadenopathy of a. o. cervical lymph nodes, fever, headache, myalgia and 

arthralgia, general malaise and weakness, anorexia due to abdominal pain (Walker et 

al., 1990; Hill and Dubey, 2002; Ho-Yen, 2003; Weiss and Dubey, 2009a; Galli-

Tsinopoulou et al., 2010; Taila et al., 2011; Anand et al., 2012; Cuomo et al., 2013; 

Machala et al., 2013; Chaudhry et al., 2014). These clinical features are limited in time 

and self-resolving, but under certain circumstances more severe outcomes may be 

presented, such as splenomegaly, lymphadenitis, pneumonia, hepatitis, polymyositis or 

myocarditis (Nunura et al., 2010; Abhilash et al., 2013; Cuomo et al., 2013). 
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Occasionally, T. gondii induced retinochoroiditis (TRC) or ocular toxoplasmosis (OT) can 

also result from a postnatally acquired infection, but not only from CT as generally 

assumed. In addition, OT-patients carry the risk of recurrence of the symptoms 

(Theodossiadis et al., 1995; Baglivo and Safran, 2003; Stanford et al., 2005; Flegr et al., 

2014; Undseth et al., 2014). Finally, latent toxoplasmosis in immunocompetent humans 

is nowadays considered as an important risk factor for the development of 

neuropsychiatric disorders, associated with behavioural changes, such as 

schizophrenia, Parkinson’s disease and suicidal intentions (Yolken et al., 2009; Lester, 

2010; Miman et al., 2010). The reason for these would lie in increased dopamine and 

decreased tryptophan and serotonin levels as a consequence of T. gondii metabolism 

within the neural tissues (Träskman et al. 1981; Müller et al., 2009; Okusaga et al., 2012; 

Flegr, 2013; Wong et al., 2013). 

In general, once the patient acquires humoral and cellular immunity, the protection is 

life-long and the symptoms fade away. Nevertheless, clinical signs were described in 

patients upon re-infection with a strain of a different genotype, indicating that cross-

immunity was not sufficient in providing a full protection (Elbez-Rubinstein et al;, 2009; 

Valdès et al., 2011).  

Congenital toxoplasmosis in the foetus or newborn 

The most serious consequences of a T. gondii infection are associated with the 

congenital transmission from the primary infected pregnant mother to her foetus. As 

mentioned before, in early pregnancy the parasite is less capable of crossing the 

placental barrier; opposite to that, the clinical manifestations in the first trimester have 

the greatest impact on fetal development, showing a decreasing severity over the 

gestational time (Dunn et al., 1999; Cook et al., 2000; Hill and Dubey, 2002). 

Infection of the foetus during the first weeks of the pregnancy can lead to abortion, 

stillbirth or severe abnormalities in the cerebral tissues, among which are hydro- or 

microcephaly, intracranial calcifications, psychomotoric and mental retardation, 

epileptic seizures or deafness (Dubey, 2010; Chaudhry et al., 2014; Flegr et al., 2014).  
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The ocular tissues are also frequently affected leading to unilateral or bilateral 

microphthalmia, cataract, glaucoma, strabismus, nystagmus, retinochoroiditis, optic 

and retinal neuritis or blindness (Yamamoto et al., 2000; Miller et al., 2009; Robert-

Gangneux and Dardé, 2012; Paquet and Yudin, 2013). However, it is important to 

mention that the ocular symptoms of congenital toxoplasmosis can occur years after 

prenatal infection, during childhood or in the early adulthood (Butler et al., 2013; 

Chaudhry et al., 2014). 

Maternal infection in a later stadium of the pregnancy leads to mild or asymptomatic 

CT in 85% of the neonates at birth, and when followed up for the effectiveness of the 

treatment until early childhood (Dunn et al., 1999; Foulon et al., 1999).  

Cerebral and extra-cerebral toxoplasmosis in immunocompromised individuals 

Cerebral toxoplasmosis is a life threatening illness in immunocompromised individuals. 

This category includes HIV-carriers, leukaemia and lymphoma patients, or people 

undergoing an immunosuppressive therapy for cancer or for organ transplantation 

(Tait and Hunter, 2009; Robert-Gangneux and Dardé, 2012; Flegr et al., 2014). 

Toxoplasmosis develops here most frequently as the reactivation of a latent infection, 

rather than as a primary infection, except for organ donations between a chronically 

infected donor and a seronegative receptor (Israelski and Remington, 1993, Derouin 

and Pelloux, 2008).  

Toxoplasmic encephalitis (TE) or neurotoxoplasmosis (NT) has the highest prevalence 

in HIV-infected patients due to the impairment and deficiency of the T-cell populations, 

and is associated with headache, lethargy, incoordination, loss of memory, epilepsy, 

obsessive-compulsive disorders and dementia (Correia et al., 2013; Flegr et al., 2014). 

In NT patients, also other organs can be involved, among which are the eyes 

(retinochoroiditis or OT) lungs (pneumonitis, bronchiolitis or pulmonary toxoplasmosis 

or PT), heart (myocarditis, pericarditis), liver (hepatosplenomegaly, hepatitis), pancreas, 

bone marrow, bladder, lymph nodes, kidney, spleen and skin (Rabaud et al., 1994; 

Anand et al., 2012. Robert-Gangneux and Dardé, 2012).  
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In humans undergoing immunosuppressive therapy for receiving organ transplants, 

the risk of reactivation of the latent T. gondii infection is related to the duration and 

level of immunosuppression. Additionally, as indicated earlier, heart transplantations 

are associated with a higher risk of the transmission of the disease in comparison with 

other transplants, since muscles, and heart in particular, are the predilection tissues for 

hosting the cysts (Carruthers and Suzuki, 2007). 

The pathogenesis and associated clinical signs of porcine T. gondii infection are 

discussed in Chapter 3.  

1.4 Diagnostic methods in humans and animals 

The diagnosis of an acute or chronic T. gondii infection in humans or animals is 

established by the combination of different techniques. The clinical features are, 

although with some exceptions, not exclusive for this parasite. It is therefore 

recommended to apply a single or multiple diagnostic assay(s) to obtain the highest 

specificity (Sp) and sensitivity (Se) (or the analytical sensitivity: the ability of a test to 

detect a target analyte (e.g. an antibody or antigen), which is usually expressed as the 

minimum detectable concentration of the analyte). The final choice will depend on the 

type of sample available and the aim of the assay (detection versus isolation). Among 

the commonly used techniques serological tests are the first choice for an initial 

screening of antibodies against the parasitic antigens. Direct detection of the parasite 

in smears of blood or biopsy sections is performed by microscopic examination. 

Detection and isolation of the viable parasite from host’s tissues is possible with 

bioassay or cell cultures, while the presence of the parasitic DNA can be determined 

by molecular techniques such as Real Time-PCR or Magnetic Capture PCR (Montoya 

and Liesenfeld, 2004). 
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1.4.1 Serological techniques 

Serological confirmation of T. gondii infection by immunoglobulin (Ig) M and/or IgG 

antibody detection is indicative for a recent or former exposure of the host to the 

parasite (Mancianti et al., 2010; Bhattacharwa et al., 2013; Chahed Bel-Ochi et al., 2013).  

The isotype IgM antibodies appear during a primary infection, starting from the first 

week post infection (pi), and they are followed by the appearance of IgG isotype 

antibodies (Kortbeek, 1999; Hill and Dubey, 2002). The titer of IgM gradually decreases 

from 1 month pi, while that of IgG is just about to rise exponentially. IgM antibodies 

can persist up to one year after infection; their presence can be interpreted as a recent 

exposure to the parasite. The IgM detection alone as a tool for the prenatal diagnosis 

of CT has therefore a limited diagnostic value, but it can be used in addition to another 

assay (Kortbeek, 1999; van der Giessen et al., 2003).  

IgG starts to appear from 3 weeks pi and progressively increases until 3 months pi.  

While the titer of IgM gradually and relatively quickly decreases over time, IgG persists 

at a high concentration in blood, urine and cerebrospinal liquid. Therefore, IgG assures 

a long-term humoral immunity to a greater extent than IgM, and it serves as a marker 

of chronic infection (Dubey, 1998a). Under certain circumstances, IgG can serve as the 

detection tool of recent T. gondii infection: though not via a single but via a paired 

samples measurement. Such analysis requires two samples, taken with 2-4 weeks 

interval to measure seroconversion or an increase in the IgG titre (Van Knapen, 1986; 

Hill and Dubey, 2002). 

IgG avidity assay is performed in pregnant women with high titers of both conventional 

isotypes, or in pregnant women with a recent seroconversion to estimate the time-

point of the primary infection (Figure 1.6) (Roberts et al., 2001; Sukthana, 2006; 

Pourabolghasem et al., 2011; Smets et al., 2016). As the maturation of the IgG avidity 

proceeds with the increasing interval from the infection, a low-avidity IgG may also 

persist throughout the pregnancy as the result of the anti-Toxoplasma treatment with 

spiramycin (Lefevre-Pettazzoni et al., 2007; Meroni et al., 2009). 
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Additionally, next to IgM and IgG detection, an increase in IgA levels can be used as 

the marker of the recent infection. The elevation of IgA titers follow shortly the initial 

IgM rise and persist at the detectable levels for 6 to 7 months pi. The use of IgA as a 

diagnostic tool is, however, controversial, since its detection can vary from case to case, 

being affected by the patients’ heterogeneity and their immune status; it also depends 

strongly on the time point of the blood collection, sensitivity of the applied assay and 

the used antigen (Roberts et al., 2001; Suzuki et al., 2001, Nascimento et al., 2008, Murat 

et al., 2013).  

For the discrimination of CT from the passively transferred maternal immunity, IgA and 

IgM are detected in the new born child, since these isotypes, opposite to IgG, cannot 

cross the placental barrier and, thus, can only arise from an active infection during 

pregnancy (van der Giessen et al., 2003). The recognition pattern of the parasitic 

antigens can be visualized and compared via immunoblotting, and when different 

between mother and child it is significant for a congenital infection (Hill and Dubey, 

2002; Rorman et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.6 :  Antibodies titer in the course of the primary infection (adapted from: 

Robert-Gangneux and Dardé, 2012). ELISA: Enzyme-linked immunosorbent assay; dye-

test: Sabine-Feldman Dye Test (DT); IFA: Indirect Immunofluorescence Assay. 
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Sabine – Feldman Dye Test (DT)  

This technique is defined as the “gold standard” for T. gondii detection in serum of 

humans due to the highest sensitivity and specificity close to 100% (Willis et al., 2002). 

Viable tachyzoites, harvested from intraperitoneally infected mice, actively take up 

methylene blue dye from the culture medium when incubated with the serum of the 

patient and activated by the complement and present antibodies. Parasites eliminated 

by complement-mediated lysis (due to the presence of antibodies and complement in 

serum and plasma of patient, respectively) do not take up the dye and remain 

colourless under inverted microscopy observation (Reiter – Owona et al., 1999; Kijlstra, 

2004; Rorman et al., 2006).  

Agglutination assays  

These techniques detect macroscopically visual agglutination of the cells and do not 

require microscopic inspection (Murat et al., 2013). 

In the direct agglutination serial dilutions of serum are brought together with a 

suspension of whole tachyzoites in U-shaped wells. Parasites dispersed over the 

bottom of the well stand for a positive reaction, while sedimentation of the individual 

parasites indicate a negative reaction. Direct agglutination can detect all kind of 

immunoglobulins at the same time and thereby is only used as a screening method 

(Tlamçani et al., 2013). 

Modified agglutination test (MAT) is a modification of the direct agglutination 

developed by Desmonts and Remington (1980) to increase the test sensitivity and, 

indirectly, specificity up to 83% and 90%, respectively (Dubey et al., 1995b). This 

method uses formalin–preserved whole tachyzoites and a pre-treatment of serum 

samples with mercaptoethanol to selectively denature IgM, which tends to give a 

strong agglutination due to a high avidity, and to detect IgG instead. By this, the 

specificity of the assay also increases, as IgG shows a higher affinity to the antigens, in 

comparison with the IgM (Dubey et al., 1995b; Willis et al., 2002. Dubey, 2010). 
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In the indirect haemagglutination test T. gondii tachyzoites soluble antigen is coated 

on tanned red blood cells that are then agglutinated in the presence of antibodies in 

the serum sample (Figure 1.7) (Murat et al., 2013). The assay performs better, when 

applied on human samples (Se: 100% and Sp: 98.5%) than on porcine serum (Se: 30% 

and Sp: 98%), (Dubey et al., 1995b; Liu et al., 2015).  

In the latex agglutination test (LA) the same soluble antigen is coated on latex particles 

and subsequently incubated with the serum in order to observe agglutination (Dubey, 

2010). Despite the optimal assay characteristics in tests on human samples (Se: 86-94% 

and Sp: 100%; Liu et al., 2015), porcine samples may yield fals negative results due to 

the low sensitivity (Se: 46% and Sp: 97%; Dubey at al., 1995b).   

 

Figure 1.7: Positive and negative results of the haemagglutination test (Laboratory for 

Immunology, Faculty of Veterinary Medicine, Ghent). 

 

Enzyme-linked immunosorbent assay (ELISA) 

Enzyme-linked immunosorbent assay is a useful and powerful method to detect small 

concentrations (in the range of picogram) of antibodies or proteins in solution (Murphy 

et al., 2008). The main advantages of this technique are the possibility of using different 

parasitic antigens (both native or recombinant), the prominent sensitivity and 

specificity (Se: 78-94% and Sp: >85%, depending on the study) and the high 
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throughput of the samples, together with the titration or quantification of the detected 

antibodies.  

The high flexibility of the ELISA system allows substantial variation in protocols (e.g. 

direct or indirect antigen ELISA, single or double sandwich ELISA), in antigen used for 

capturing of the parasite-specific antibodies and in detection of antibodies (total 

antigen-specific Ig’s or rather of different isotypes (IgA, IgE, IgG, IgM)) and this in the 

biological fluids of different species.  

The primary used antigen mixture was derived from viable and homogenized 

tachyzoites of the RH-strain (referring to the initials of the first infected patient) and 

named as Total Lysate Antigen (TLA) (Hughes et al., 1982; Hughes et al., 1986). TLA 

preparation implies producing tachyzoites by culturing the parasite in cell lines or in 

mice, and has therefore a potential bio-safety risk for the operator. The inoculation of 

mice has severe consequences for the animals, since mice develop an acute 

toxoplasmosis with fatal peritonitis upon inoculation. On top of that, the collected 

ascites contains cellular material as the result of infection but also the innate immune 

response. Cell line cultivation leads to T. gondii lysate collection via an animal-friendly, 

but still bio-hazardous method. Nevertheless, it does not contain immune cell rests, 

but may still contain host cell residues. Furthermore, its composition can vary 

significantly between laboratories or production rounds, what makes the ELISA’s using 

TLA as a capture antigen difficult to standardize and evaluate (Liu et al., 2015).  

A better option is the use of recombinant antigens, relatively easily produced at high 

concentrations in bacterial cells as a vector. The main advantages of the recombinant 

antigenic proteins is the predefined and homogenized composition and a significant 

time and work reduction (Holec-Gąsior, 2011). The antigens frequently used in the 

serological assays are P35, matrix protein (MAG), different dense granule proteins 

(GRAs), microneme proteins (MICs) or surface antigens (SAGs) (Kotresha and Noordin, 

2010; Holec-Gąsior, 2013).  

However, the combination of multiple parasitic antigens in one serologic assay such as 

TLA or chimeric antigens, instead of a single recombinant protein, should ensure a 
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more efficient antibodies detection by the higher number of available epitopes for the 

antibody binding and because not all recombinant antigens are expressed in equal 

amounts in the course of the infection (Basso et al., 2013; Bokken et al., 2015).    

 

Indirect Immunofluorescence assay (IFA) 

In this assay the recognition of the whole tachyzoites, coated on a glass slide, is 

detected by the use of secondary antibodies, labeled with a fluorescent dye such as 

fluorescein isothiocyanate (FITC), Texas Red, Peridinin Chlorophyll protein (PerCP), 

rhodamine and phycoerythrin (PE) (Murphy et al., 2008; Elgert, 2009; Odell and Cook, 

2013) and results can be observed using a fluorescence microscope (Figure 1.8) (Storch, 

2000; Murphy et al., 2008). The assay scores high in terms of Se (75%) and Sp (100%), 

(Udonsom et al., 2010). Confocal fluorescence microscopy, which employs computer-

aided techniques to produce an ultrathin optical section of a cell or tissue, gives a 

higher resolution allowing analysis of cellular components (Murphy et al., 2008; Elgert, 

2009).  

 

A)        B)    

Figure 1.8 : Immunofluorescence microscopy image of fixed tachyzoites incubated 

with: A) negative porcine serum and B) positive porcine serum (courtesy of Dr S. De 

Craeye, National Reference Laboratory for Toxoplasmosis, WIV-ISP, Brussels).  
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1.4.2 Microscopy  

Tachyzoites can be detected via light or fluorescence microscopy in blood smears, in 

the amniotic fluid or the cerebrospinal liquid in case of CT in a newborn or in 

cryosections made from biopsy samples from infected individuals. The techniques 

include a direct staining with Giemsa dye or the combination of a primary and an 

enzyme-conjugated or fluorescent secondary antibodies (Figure 1.9) (Tabei, 1982; 

Bottone, 1991). By the use of antibodies against stage-specific antigens it is possible 

to make a differentiation between tachyzoites and bradyzoites and other related 

Protozoa (McAllister et al., 1996).  

 

 

Figure 1.9 : Light microscopy image of Giemsa-stained tachyzoites collected from 

intraperitoneally infected mice (adapted from: Duane’s Clinical Ophtalmology, Volume 

4, chapter 46 by K. F. Tabbara).  

 

Tissue cysts in hosts samples such as cerebral suspension can be observed by contrast-

phase microscopy (Figure 1.10) or visualized by staining with Giemsa and Hematoxylin-

Eosin (HE). 

Opposite to tachyzoites and bradyzoites, oocysts exhibit a blue autofluorescence and, 

therefore, do not need to be stained prior to detection under a ultra-violet light source 

(Lindquist et al., 2003).  

Finally, confocal fluorescence microscopy makes it possible to study the ultra-structural 

subcellular morphology of different stages of T. gondii (Melzer et al., 2010). 
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Summarizing, microscopy as a diagnostic method has many advantages among which 

is the ease of use, the short processing time, high specificity and the relatively low price 

of the equipment and reagents. However, the main drawback of this technique is the 

limited sensitivity due to small density of the parasite in the tissues or in non-

concentrated body secrets/excretes and liquids from the placenta or neural 

system (Dubey, 1998b). 

 

 

Figure 1.10 : Phase-contrast microscopy image of a tissue cyst in the cerebral 

suspension from a T. gondii (IPB-Gangji strain) infected mouse (courtesy of dr S. De 

Craeye, National Reference Laboratory for Toxoplasmosis, WIV-ISP, Brussels, Belgium). 

 

1.4.3 Detection of the viable parasite 

In this group of techniques the patient’s sample is transferred to the intermediate 

(mouse) or final host (cat) in order to proceed with the life cycle of the parasite and 

enable the detection, or is cultivated in vitro to stimulate the spontaneous 

multiplication.  

Bioassay 

Clinical toxoplasmosis can be diagnosed by the intra-peritoneal or subcutaneous 

inoculation of seronegative animals (Swiss mice) with the patient’s samples such as 

blood, urine, cerebrospinal liquid, biopsy samples from the lymph nodes or muscles. 
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Swiss mouse strain, being a very homogenous and well-established, does not show a 

reasonable susceptibility towards T. gondii (with the exception of the highly virulent 

strains such as RH) but develops an optimal immune response and is therefore suitable 

for the bioassay and strain maintance. The tachyzoites in the liquid samples can be 

directly injected upon washing and pelleting of the cell debris. The tissue should be 

first homogenized and enzymatically treated using pepsin or trypsin, in order to digest 

the wall of the tissue cysts and release the bradyzoites, which are less susceptible to 

the enzymatic activity of pepsin. Depending on the virulence and the dose of the 

inoculated strains, some mice develop acute toxoplasmosis shortly after infection and 

should be euthanized according to the human end points. This is mainly the case for 

the genotype I strains; less virulent strains (genotype II) lead to chronic asymptomatic 

infection (Jacobs and Melton, 1954; Derouin et al., 1987; Johnson, 1988). In that case 

the infection in mice is individually detected after 4 to 6 weeks by serological assay 

(IFA) and PCR (blood, lungs, brain) or light microscopy to demonstrate the presence of 

the tissue cysts.   

In addition to mice, also cats may be used in bioassay. This technique is particularly 

interesting when the estimated concentration of the tissue cysts is too low for the mice 

inoculation (Dubey, 2010). The cats are serologically followed up upon inoculation to 

detect seroconversion; the positive result of the assay is obtained by isolation of the 

excreted oocysts from the faeces by flotation techniques and the detection by PCR or 

microscopy (Dubey et al., 1970; Kourenti et al., 2003; Lindquist et al., 2003). The bioassay 

in cats is more sensitive than in mice due to several reasons: much bigger amounts of 

the test sample can be fed, cats show evolutionary a higher susceptibility to the 

ingested tissue cysts than mice, and, as the result of a successful infection, the number 

of shed oocysts is very high, even when inoculated with a very low virulent sample 

(Dubey, 1995; Dubey, 2008).  

Though considered as a gold standard test for the detection of viable T. gondii because 

of its high sensitivity (1 cysts per 100 g of sample) and a very high specificity (nearly 

100%) in mice and 100% in cats (Rothe et al., 1985), bioassay remains controversial due 
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to the excessive use of laboratory animals, long detection time, handling of hazardous 

material, possible contamination of the environment with the shed oocysts and for 

being labour-intensive. The assay may yield false negative results, when the parasite 

does not survive the handling procedure or when the infected sample is processed too 

late to initiate an infection with the viable parasite and evoke a response in the 

inoculated animal.  

Cell cultures 

In vitro cultivation of tachyzoites incorporated into a fast growing cell culture is a 

promising alternative for the use of mice in bioassay (Hughes et al., 1985; da Costa 

Silva et al., 2012; Wu et al., 2012). The parasite can already be detected from two days 

after inoculation. However, the assay seems to have a lower sensitivity and causes the 

reduction of virulence, together with a decreasing expression of some parasitic 

antigens, by which this technique is still under discussion (Foulon et al., 1999; 

Degirmenci et al., 2011).  

 

1.4.4 Molecular techniques 

PCR 

The polymerase chain reaction (PCR) allows the denaturation and amplification of a 

specific DNA sequence by the use of thermostable DNA polymerases to produce 

thousands of copies of the replicated DNA fragment (Murphy et al., 2008). The 

relatively high specificity and sensitivity of the PCR technique to detect small amounts 

of DNA allows detection of T. gondii nucleic acids using DNA targets such as 35 

repetitive B1 gen or 300-repetitive 529 – bp DNA sequence (Burg et al., 1989; Homan 

et al., 2000). PCR is commonly used for detection of T. gondii in CT (from amniotic fluid, 

placenta, cord blood, fetal blood and peripheral maternal blood), in ocular 

toxoplasmosis (ocular fluids) and in samples from immunosuppressed patients 

(cerebral biopsy, cerebrospinal fluid, lymph nodes, and others) (Murat et al., 2013; Liu 
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et al., 2015). In veterinary medicine it is mainly used for the confirmation of T. gondii 

infection in the abortion protocol in ewes (Wastling et al., 1993). The technique is very 

sensitive as an individual tachyzoite in the samples can be detected. This is especially 

important for the diagnosis in immunocompromised patients, where the antibody 

production against the parasite is impaired (Montoya and Liesenfeld, 2004). The 

biggest drawback is the high risk of contamination during processing, and, hence, 

obtaining false positive results. However, opposite to the conventional PCR, real-time 

PCR (see further) eliminates the possible risk of contamination and increases the assay 

characteristics (Liu et al., 2015). 

Real-time quantitative PCR (qPCR)  

Real-time quantitative PCR (qPCR) implies the same amplification and detection 

process as conventional PCR with a high specificity and sensitivity, but above that it 

allows also quantification of specific DNA sequences (Murat et al., 2013; Rahumatullah 

et al., 2015). 

This technique uses the same targets as conventional PCR: a target molecule is copied 

once at each cycle and data are captured by the thermal cycling. The amount of target 

molecules present in the sample is the limiting factor of this reaction (Tevfik, 2006). In 

qPCR fluorescent specific and non-specific probes are used to label PCR products from 

a series of dilutions of a standard and the samples. The total fluorescent signal is 

subsequently measured during the exponential phase of the reaction, where the mean 

fluorescence is directly proportional to the amount of target in the sample and the 

concentration of the parasite is calculated based on the standard values (Fraga et al., 

2008). 

Magnetic Capture (MC)-PCR 

In the conventional PCR the high sensitivity of the technique cannot, however, 

guarantee that the parasite, which is not always equally distributed in the samples 

(except for blood), will be successfully detected. The biggest challenge is then the 
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detection of the parasitic DNA in relatively small, in terms of size, biopsy of autopsy 

samples. Therefore, successful attempts have been undertaken to concentrate the 

parasitic DNA using magnetic beads coated with probes against common targets, and 

subsequently to perform a quantification by qPCR (Opsteegh et al., 2010; Algaba et al., 

2017). In that way, not 1 g of a tissue as for PCR or qPCR, but 100 g can be processed, 

increasing the potential chance of the detection of T. gondii. This technique is very 

valuable in the field of food safety and zoonosis prevention from production animals.  

1.5 Treatment and prevention 

The only fully effective medical drugs for the treatment of toxoplasmosis in humans 

are the sulfonamides, such as sulfadiazine, sulfamethazine or sulfamerazine, and 

pyrimethamine. They work synergistically by the inhibition of the metabolic pathway 

of aminobenzoic acid and folic acid, as they diffuse across the parasitic cell membrane 

to reach the cytoplasm. Unfortunately, they are only useful in case of acute 

parasitaemia, but they are not capable of eliminating the existing infection by affecting 

the bradyzoites in tissue cysts (Dubey, 2010).  

The commonly used treatment for CT is spiramycin, because it accumulates strongly in 

the tissues such as placenta, but without reaching the foetus by crossing the placental 

barrier. In case of encephalitis the combinations of frequently used drugs are 

pyrimethamine-sulfadiazine, trimethoprim-sulfamethoxazole and pyrimethamine-

clindamycin, each acting with a high efficacy but with no significant difference between 

them (Wei et al., 2015).  

The main aims of the prevention by vaccination in multi-species is the reduction of the 

circulating tachyzoites during acute infection and, therefore, inhibition of congenital 

transmission, limitation of the tissue cysts within the intermediate hosts and eradication 

of the environmental contamination by the cat. Although numerous potential vaccine 

candidates have been experimentally tested in animals in the last decades with varying 

degrees of success, and one vaccine is currently commercially available for sheep, there 

are no known effective and registered products for the use in humans (Kortbeek, 1999; 
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Montoya and Lieesenfeld, 2004; Buxton et al., 2007). The control strategy by vaccination 

has evolved from classic vaccines containing a single or a combination of parasitic 

antigens, among which are surface or excretion/secretion proteins, to DNA vaccines 

(Vercammen et al., 2000; Letscher-Bru et al., 2003; Jongert et al., 2008; Li, et al., 2011; 

Cao et al., 2015; Wagner et al., 2015). Another possibility is the use of attenuated viable 

strains, but the efficiency is still species-dependent and associated with the 

manipulation risk by the operator (Katzer et al., 2014; Burrells et al., 2015). Recent data 

on the use of vaccine candidates are promising but further research is necessary to 

prove their efficacy in different species and in humans.  

In addition to medical treatment and control of infection by vaccination, the efforts 

should be focused on the implementation of prevention methods in the daily human 

life, in particular in pregnant women or immunocompromised individuals (Kortbeek, 

1999; Hill and Dubey, 2002; van der Giessen et al., 2003; Breugelmans et al., 2004; 

Montoya and Liesenfeld, 2004; Opsteegh et al; 2015).  

As the current preventive trends are mainly focused on the reduction of the congenital 

toxoplasmosis due to the severity of the outcomes on a short- and long-term, the 

primary prevention methods should include a monthly follow-up during the pregnancy 

and providing the information to pregnant women on the possible infection sources 

and the corresponding preventive measures. Such a preventive information-based 

strategy has been proven to be successful in the reduction of seroconversion incidence 

from 1.43% to nearly 0.1% observed between 1979 and 2001 (Breugelmans et al., 2004).  

In brief, the advises should cover proper heating of all meat, avoiding the consumption 

of raw meat (or diary) products, hand hygiene for gardening and other soil contact, 

washing of vegetables and fruits consumed raw, and precaution measures for cleaning 

of the cat litter box and avoid contact with possibly contaminated water (Breugelmans 

et al., 2004; Opsteegh et al., 2015).  

Since domesticated or feral cats will always be present in and around the human 

population, the cat is presumed to be the main source of infection for humans, and this 

mostly indirect via contaminated environment or infected intermediate hosts. 
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Therefore, pregnant women and immunodeficient individuals should avoid cleaning 

the litter box and have contact with potentially contaminated soil or vegetables.  

Further, it is well established that food-borne toxoplasmosis by the consumption of 

infected raw or not well-baked meat or the ingestion of oocysts with the drink water 

and vegetables are the main sources of food-borne infection for humans. Therefore, 

the general precautions include hygienic measures, which should be taken during and 

after processing the food from animal origin, such as washing hands and kitchen 

material or avoiding contact with raw or unprocessed meat. It is recommended to store 

the meat during at least 3 days at a core temperature of -12°C, or to prepare it 

afterwards at minimum 67°C during 10 minutes to inactivate the parasite. When storing 

at + 4°C the bradyzoites survive approximately 3 weeks, while more than 10 days at -

6.7°C. While working in the garden or collecting vegetables for consumption, one 

should wash their hands with water thoroughly, and wear gloves to avoid direct contact 

with the oocysts (Dubey, 2010).  

Cats should not be fed with uncooked meat or viscera but with frozen, cooked, canned 

or dry feed. Dead animals on farms or in the slaughterhouses, as well as the placental 

and fetal tissues in case of abortion in sheep, should be immediately removed to avoid 

cannibalism in pigs and scavenging by other animals (Hill and Dubey, 2002; Sukthana, 

2006; Jones and Dubey, 2012; Robert-Gangneux and Dardé, 2012). 

A more detailed description of the risk factors and prevention methods on farm level 

will be discussed in Chapter 3.  
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2.1 General pathogenesis 

T. gondii infection in an intermediate host initiates a series of events, activating different 

components of the immune system during the acute and chronic stages of acquired 

toxoplasmosis. The acute phase of the infection is characterized by the rapid and 

excessive multiplication, followed by the thorough dissemination of the parasite within 

the host. These events trigger acute innate immune mechanisms by activating Natural 

Killer cells (NK’s), macrophages and granulocytes. Subsequently, cellular and humoral 

adaptive immune responses take over in an attempt to combat the latent stages of the 

parasite or at least prevent the stage conversion into the more virulent form. 

Nevertheless, the host’s immune responses are complex and intended to keep up the 

delicate balance between the invasion strategies of the parasite and the defense 

mechanisms of the host. 

Since few studies notified the natural immune events of acquired porcine T. gondii 

infection, the author based this chapter on widely described mouse and/or human 

studies. The immune responses induced by some experimental infections in pigs are 

highlighted in Chapter 3. 

As described in Chapter 1, upon ingestion of the sporulated oocysts or the tissue cysts 

and the subsequent action of the gastric enzymes, the parasites are released into the 

intestinal lumen. From there the sporozoites or bradyzoites, respectively, invade the 

intestinal epithelial cells and rapidly multiply, transforming into the virulent stage of 

the tachyzoites. The infected enterocytes burst open and discharge a new generation 

of daughter cells. Newly released tachyzoites proceed by penetrating the surrounded 

cells and forming the PV from the parasitic and host’s plasma membranes. When 

released outside to the extracellular matrix or lamina priopria, the parasite may be 

taken up by antigen presenting cells, namely dendritic cells (DC’s) or macrophages 

(Figure 2.1). From there the acute phase of the infection is initiated, with the release of 

cytokines (IL-12 and TNF-α) (Miller et al., 2009; Cohen and Denkers, 2014). These 
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cytokines initiate the next innate and adaptive immune responses by activating 

corresponding cell populations such as NK’s and T lymphocytes, respectively (see 2.2) 

(Suss-Toby et al., 1996; Carruthers, 2002; Kasper et al., 2004; Gregg et al., 2013; Cohen 

and Denkers, 2014). The recognition of the parasite by immune cells involves a certain 

set of Toll Like Receptors (TLR’s) in combination with the matching parasitic antigens 

to initiate the pathways of the intrinsic activation.  

Despite (or as the result of) the rapidly initiated innate host’s defense, T. gondii crosses 

the trans epithelial barrier of the intestine, subsequently disseminates via the lymph 

vessels and further via the systemic circulation to the peripheral tissues, escaping from 

the initiated gut immune response (Dubey, 1998b). This unusual distribution appears 

to proceed preferably within the monocytes, which not only have the capacity of 

reaching the lymph organs but also can migrate and reside into the internal organs, 

which particularly favours the parasite survival and persistence during the chronic 

phase of the infection (see 2.3).  

It is important to notice that the ingested stage of the parasite seems not to influence 

the immune response in the intermediate host. The interaction of the host with the 

infectious stages of the parasite (oocysts and tissue cysts) appears to last too short to 

induce a different pattern of the acquired immune response. The wall of the oocyst or 

tissue cyst is equally digested by the gastric enzymes, leading to the release of the 

encapsulated parasites. No evidence has been found so far that the pattern of immune 

response is different upon ingestion of one of these forms (Miller et al., 2009). However, 

the extent of the immune reaction following the inoculation might be indeed greater 

when ingesting bradyzoites, since a single oocysts contains only 8 sporozoites, while 

there might be hundreds to thousands single bradyzoites within a tissue cysts, each of 

them being able to transform into a tachyzoite (Dubey, 2010).  
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Figure 2.1 : Major steps in the pathogenesis of T. gondii infection and the involved cell 

populations (adapted from: Yarovinsky, 2014).  

 

2.2 Acute and sub acute phase of the infection 

Acute T. gondii infection is initiated fairly immediate after the natural or experimental 

oral ingestion of any of the developmental stages of the parasite. It lasts on average 

less than ten days and is characterized by the presence of the fast multiplying 

tachyzoites within the enterocytes, which burst open and release a new generation of 
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daughter cells. This allows the dissemination of this stage of T. gondii towards all the 

other organs, with the preference of the central nervous system, heart and skeletal 

muscles (Filisetti and Candolfi, 2004). 

In the early stage of the infection robust Th1-biased innate and cellular immune 

reactions are initiated (Figure 2.1). However, the first defense line against the 

pathogenic microorganisms includes the cells of the innate immune system, primed by 

the contact with the disseminated parasites or by the intracellular infection.  

Different activation pathways play here a predominant role and several cell populations 

are involved (Miller et al., 2009; Andrade et al., 2013; Gazzinelli et al., 2014; Sturge and 

Yarovinsky, 2014). The main mechanisms rely on the identification of the pathogen-

associated molecular patterns (PAMP’s) displayed by the microorganisms (Murphy et 

al., 2008; Momeni et al., 2014). These PAMP’s are characterized by the highly conserved 

expression on exclusively microbial cells, essential for the pathogen’s survival 

(Gazzinelli and Denkers, 2006). The corresponding scavenger receptors at the host’s 

side are the pathogen recognition receptors (PRR’s), which are expressed on DC’s, 

macrophages and neutrophils. By binding the parasitic ligand with the compatible PRR 

the pro-inflammatory immune response is initiated, intended to protect the host from 

the parasite’s invasion. The most important PRR’s are the Toll-like receptors (TLR’s), 

more specifically TLR11 and 12 in mice; further TLR7, 8 and 9 in humans and TLR7 and 

9 in other mammals like pigs (Figure 2.1) (Miller et al., 2009; Andrade et al., 2013; 

Koblansky et al., 2013; Gazzinelli et al., 2014). Several parasitic antigens have been 

associated with the certain TLRs, for instance, tachyzoites-derived surface antigens 

(SAG’s), SAG-related sequences (SRSs) and SAG-unrelated surface antigens (SUSA’s), 

activate TLR2, TLR4 and TLR11 (Debierre-Grockiego et al., 2007). Additionally, TLR11 

and TLR12 are the host cell receptor in mice for T. gondii actin-binding protein profilin 

(Plattner et al., 2008; Yarovinsky et al., 2008; Miller et al., 2009; Denkers, 2010; Kucera 

et al., 2010; Skillman et al., 2012; Koblansky et al., 2013; Raetz et al., 2013). Another 

antigen, heat shock protein 70 (TgHSP70), acts via stimulation of TLR2 and TLR4, 

activating B cells and DC’s (Fang et al., 2008; Kikumura et al., 2010; Ge et al., 2014). The 
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parasite’s protein profilin is recognized by interferon regulatory factor 8 (IRF8) positive 

DC’s in mice; on the contrary, human and porcine DC’s and monocytes are activated 

by the recognition of the parasite’s ssRNA and DNA via TLR7 and TLR9, respectively 

(Uneishi et al., 2012; Andrade et al., 2013).  

It is striking that different parasitic antigens seem to be simultaneously identified by 

various TLR’s; consequently, their synergistic action leads to stimulation of the 

corresponding immune cells, which contribute to a more optimal host’s defense 

(Debierre-Grockiego et al., 2007). Despite the differences in the antigen recognition, 

the activation mechanisms remain the same: TLR’s are known to possess an adaptor 

protein, the myeloid differentiation primary-response protein factor 88 (MyD88) (Miller 

et al., 2009), which is stimulated after uptake of the parasite or parasite’s antigens. The 

MyD88 signalling pathway subsequently activates other signalling molecules such as, 

the nuclear-factor-kappaB (NFκB) or the mitogen-activated protein kinase (MAPK) 

(Murphy et al., 2008; Ge et al., 2014). Both the NFκB and MAPK are essential for the 

production of the pro-inflammatory cytokines IL-2 and IL-12. These cytokines act in 

synergy with the tumor necrosis factor-α (TNF-α) produced by macrophages, resulting 

together in the stimulation of NK's to secrete another cytokine, interferon gamma (IFN-

γ) (Murphy et al., 2008; Ge et al., 2014). In parallel to these events, the extensive IL-12 

production by DC’s upon the uptake of profilin leads to the activation of NK’s cells, 

which are responsible for the IFN-γ release and subsequent stimulation of the 

macrophages and granulocytes (Sturge and Yarovinsky, 2014).  

As already described, multiple cell populations of the innate and acquired immunity 

play a role during the early stages of toxoplasmosis.  

Dendritic cells (DC’s) 

Immature DC’s reside normally in peripheral tissues, more specifically in the lamina 

propria of the intestine. Upon activation by the recognition of T. gondii antigens, for 

instance profilin via the TLRs or chemokine CCR5 ligand by the corresponding receptor, 
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DC’s migrate into the inflammatory and maturation sites in lymphoid tissues (Miller et 

al., 2009). During the maturation DC’s present an increased expression of the Major 

Histocompatibility Complex (MHC) molecules, which upregulates the proliferation of 

naive T-cells. When activated, DC’s stimulate further this cells subset by the releases of 

cytokines, among which IL-12 (Miller et al., 2009). The latter produced predominantly 

by DC’s in the acute T. gondii infection, facilitates the NK’s activation, and induction of 

a Th1 immune response (Filisetti and Candolfi, 2004; Miller et al., 2009; Denker, 2010). 

Further, mature DC’s secrete IFN-γ and act as Antigen-Presenting Cells (APC’s), 

activating naive CD4+ T-lymphocytes. The stimulated NK’s and Th1 cells also react with 

IFN-γ, which contributes to persistent DC’s activation (Murphy et al., 2008; Miller et al., 

2009; Cohen and Denkers, 2014).   

Macrophages 

The primary role of the macrophages is the detection of the tachyzoites via the PRR’s 

and the subsequent cytotoxicity by phagocytosis. The cells are attracted to the 

inflammation site by the local secretion of cytokines and chemokines, as the result of 

the multiplication of the parasite in the enterocytes. Macrophages are activated by  

IFN-γ (auto-secreted and by NK’s and T cells); TNF-α (auto-secreted) and IL-2 

(produced by CD4+ T cells) (Filisetti and Candolfi, 2004; Miller et al., 2009).  

The inhibition of the parasite’s replication is accomplished by production of reactive 

oxygen intermediates (ROI) and nitric oxide (NO), which together inhibit essential 

mitochondrial and nuclear enzymes, and by nutrient deprivation mechanisms such as 

enzymatic tryptophan degradation (Miller et al., 2009; Zhang et al., 2013). Finally, 

macrophages develop autophagolysosomes, which break down the parasitic parts 

ingested via phagocytosis, by the action of the proteolytic enzymes. Macrophages, as 

APC’s, display T. gondii antigens to CD4+ T lymphocytes, and, hence, trigger T cell 

activation (Sibley et al., 1992; Filisetti en Candolfi, 2004; Kasper et al., 2004; Ling et al., 

2006; Miller et al., 2009). On top of these activities, macrophages are crucial during the 
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dissemination stage of the parasites by the early IL-12 production, which contributes 

to the NK’s activation by the DC’s (Miller et al., 2009).  

Natural Killer Cells (NK’s)  

NK’s are the leucocytes belonging to the innate immune system, which circulate in the 

blood stream or residue in the lymph nodes. They become activated in response to 

cytokines derived from themselves or other cell populations: IFN-γ (NK’s), IL-12 (DC’s, 

granulocytes, macrophages), TNF-α (macrophages) and IL-2 (CD4+ T cells). NK cells 

also possess CCR5 chemokine receptor (Filisetti and Candolfi, 2004; Murphy et al., 2008; 

Gigley, 2016).   

Activated NK cells are the major source of IFN-γ production, which has as direct effect 

an increased MHC II expression and an increased parasite recognition and uptake by 

the phagocytic cells, proliferation of CD4+ T cells and subsequently their differentiation 

into inflammatory Th1 cells in the very early phase of the immune response against T. 

gondii (Miller et al., 2009; Murphy et al., 2008). The NK’s do not possess any direct 

cytotoxic activity towards the parasite  (Denkers and Sher, 1993; Cohen and Denkers, 

2014; Sturge and Yarovinsky, 2014). 

Granulocytes 

The main cell population among the granulocytes, which are actively involved in T. 

gondii infection are the neutrophils. Shortly after infection of the enterocytes, IL-12+ 

neutrophils are attracted to the infection site by the locally increased production of 

cytokines and chemokines. Neutrophils have the capacity to phagocyte the parasite 

and to defeat it by the release of toxic compounds from the granules, by the ROI and 

NO production, and, finally, by the synthesis and secretion of the pro-inflammatory 

cytokines such as TNF-α, CCR5 ligands and IL-12 to attract other immune cells (Denkers 

et al., 2004; Filisetti and Candolfi, 2004; Bennouna et al., 2006; Miller et al., 2009). 

Neutrophil depletion affects not only the mentioned cytokines but has also an indirect 



Review of the literature 

 ______________________________________________________________________________________________________________  
 

62 

 

effect on IFN-γ expression and lower counts of activated NK-cells, CD4+ and CD8+ T-

lymphocytes (Bliss et al., 2001; Kasper et al, 2004; Miller et al., 2009). 

T-lymphocytes 

The CD4+ and CD8+ T-lymphocytes are the central populations of the adaptive cellular 

host resistance against acute toxoplasmosis. The cytokines produced by earlier 

activated cells will determine the polarisation of the CD4+ T-helper cells. Consequently, 

IL-12, IFN-γ and TNF-α produced by DC’s, macrophages, NK’s and neutrophils will 

stimulate the activation of Th-1 cells. On the contrary, IL-4 will tip the differentiation 

towards the Th-2 population. The CD4+ Th-1 cells start shortly with IL-2 and IFN-γ 

secretion to pass on the activated state to other cells of the adaptive system.  

Three signals are required for CD8+T cells activation, namely the antigen presentation 

via MHC class I, in combination with a co-stimulatory signal from B7 (on an APC) and 

CD28 (on a T-cell) complex, and of the TNFR/TNF superfamily of proteins. Finally, the 

presence of IL-2 and IFN-γ produced by Th1 CD4+ T cells contributes as well to the 

cytotoxic activity of CD8+ cells (Filisetti and Candolfi, 2004; Murphy et al., 2008). 

Activated CD8+ T cells produce more IFN-γ, creating a feedback loop, and differentiate 

into effectors T cells. Upon differentiation, they express their cytotoxic activity and 

cytokines secretion against tachyzoites or cells infected intracellularly with T. gondii 

(Gigley et al., 2011). Additionally, they also produce TNF-α, which induces secretion of 

IFN-γ by NK cells (Dimier-Poisson, 2003; Filisetti and Candolfi, 2004). By the cytotoxic 

action of the CD8+, viable tachyzoites may possibly be released from infected cells and 

disseminate systemically or infect the surrounding cells. Nevertheless, the innate 

immune system remains active and mobilized to capture the parasite.  

After primary infection, T cells (CD4+ and CD8+) transform to memory cells that protects 

the host against re-infection via the rupture of existing tissue cysts, or by recurrent 

alimentary infections (Denkers, 1999; Filisetti and Candolfi, 2004; Suzuki et al., 2012; 

Sturge en Yarovinsky, 2014).  
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B-lymphocytes 

Although it has been sporadically reported that humoral immune response alone does 

not play an important role in the protection against T. gondii (Lindberg and Frenkel, 

1977; Frenkel and Taylor, 1982), more recent studies have proven the opposite (Kang 

et al., 2000; Johnson and Sayles, 2002; Filisetti and Candolfi, 2004; Santana et al., 2012; 

Zhang et al., 2013).  

The produced target specific immunoglobulins act on the extracellular tachyzoites, 

released after bursting of the infected cells, by facilitating the lysis, opsonisation and 

phagocytosis of the parasites in the presence of the complement system (Kang et al., 

2000; Filisetti and Candolfi, 2004).  

The several classes of the specific immunoglobulins appear on different time-points 

following the inoculation. The IgM class appears in serum at the end of the first week 

post infection. It activates the complement system, which leads to opsonisation and 

cell lysis. The IgM detection has been very useful for serological diagnosis, as described 

in Chapter 1 (Filisetti and Candolfi, 2004; Garweg et al., 2011). The limits of IgM 

detection are due to its time-dependent appearance and its low affinity for the parasite, 

which is compensated by its high avidity (as they possess 10 antigen-binding sites) 

(Murphy et al., 2008). 

The IgG class appears during the subacute and/or chronic stages of T. gondii infection 

and mostly remains detectable at a moderate level for the lifetime of the host. The 

IgG’s protect from the homologous re-infection (as long as the strains from the primary 

and the secondary infection belong to the same genotype) and are also able to cross 

the placental barrier in both humans and animals (Chucri et al., 2010). Their main 

targets are the surface antigens of the parasite, but the IgG’s are also involved in the 

antibody-dependent cytotoxicity or opsonisation (Filisetti and Candolfi, 2004; Santana 

et al., 2012; Zhang et al., 2013).  

The IgA class is released to secretions such as saliva, tears, milk, mucous but they are a 

predominant isotype of the immunoglobulin in the intestinal and respiratory tract 
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(Murphy et al., 2008). A significant IgA concentration can be temporarily measured in 

the intestines at the initial site of T. gondii infection (Igarashi et al., 2010). When 

transiting towards a subacute phase, high titers of IgA can be measured in serum of 

animals and humans, displaying clinical toxoplasmosis (Filisetti and Candolfi, 2004; 

Saadatnia et al., 2011; Amin et al., 2012). 

The B cells are an important immune component of the chronic infection phase, since 

they contribute greatly to controlling the infection on long term. B-cell-deficient mice, 

which survived the acute infection, succumbed one month later due to the impaired 

antibody production (Kang et al., 2000). These findings demonstrate that neither the 

adaptive humoral nor cellular immunity alone is sufficient to combat the parasite but 

the combined effect of the different immune components is the most effective in 

defeating chronic toxoplasmosis.  

2.3 Chronic phase of the infection  

As highlighted in the previous chapter, the production of high levels of IFN-γ by 

different cell populations triggers the conversion of tachyzoites into bradyzoites and 

prevents cysts rupture, generating the chronic infection. The main feature of this phase 

of the infection is the presence of hundreds of bradyzoites, enclosed in tissue cysts and 

disseminated into different organs (Filisetti and Candolfi, 2004). Tissue cysts are the 

stage of the parasite which can persist during the host lifetime and are highly prevalent 

in brain, heart, eyes, internal organs such as lungs or liver and skeletal muscles of 

intermediate hosts (Afonso et al., 2012; Batz et al., 2012).  

The presence (and persistence) of the T. gondii cysts in the peripheral tissues is 

maintained by the synergistic action of CD4+ and CD8+ T lymphocytes. The CD4+ T cells 

stimulate predominantly a Th-1 response by producing IFN-γ, which is of pivotal 

importance for keeping the parasite in the latent form by driving the conversion of the 

rapidly multiplying tachyzoites towards the slow multiplying bradyzoite stage, and by 

suppressing their reversion to tachyzoites (Miller et al., 2009). However, CD4+ play also 
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a critical role in the protection against the chronic infection or a reinfection by the 

induction of the antigen-specific antibodies production (Johnson and Sayles, 2002).  

Although the intracellular bradyzoites are enclosed within the tissue, the latent CD8+ T 

cell cytotoxic activity may be still involved. In the immunocompetent intermediate 

hosts the bradyzoites remain dormant for the rest of the host's life, while in the 

immunocompromised individuals a reactivation of the latent tissue cysts may occur, 

leading to severe and even lethal course of toxoplasmosis (Denkers, 2010; Zhang et al., 

2013) (see also Chapter 1, paragraph 1.3.3 Clinical symptoms).  

T. gondii is considered a successful parasite, which not only relies on the rapid host 

invasion, in order to avoid different components of the immune system such as 

phagocytes, complement and antibodies; in addition, its survival strategy relies on 

preservation of the latent stage of the parasite within the tissue cysts and inhibition of 

the stage conversion towards the more vulnerable tachyzoites by the following 

mechanisms: 

1) expression of the homologous epitopes with the host’s cells, or the 

molecular mimicry, by which the parasite may persist within the tissues 

without any immune response from the host;  

2) forming of PV, consisting of elements from the parasite and host’s cell; 

3) immunosuppression in the chronic phase by the synergistic effect of the IL-

10 stimulation and IL-12 inhibition;  

4) induction of the dormant stage of the cells, by which it does not undergo 

apoptosis; in that way the tissue cysts may persist for the entire lifespan of 

the host without losing any activity or virulence (Denkers and Sher, 1993; 

Birner et al., 2000; Filisetti and Candolfi, 2004; Aliberti, 2005; Miller et al., 

2009; Esch and Petersen, 2013; Yarovinsky, 2014).  

However, the continuous IFN-γ production induces several modes of action aiming the 

parasite’s elimination (Figure 2.2), such as:  
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expression of the inhibitory protein indoleamine 2,3-dioxygenase (IDO), which 

depletes tryptophan or an essential amino acid for the growth and replication of T. 

gondii:  

1) production of the nitric oxide (NO) by the increased activity of the inducible NO-

synthase (iNOS), which inhibits the mitochondrial and nuclear enzymes and 

prevents the parasite’s replication; it appears that NO is highly toxic for the 

tachyzoites, while nearly harmless for the bradyzoites, protected by the cyst wall; 

another action of NO is the depletion of another essential amino acid or 

arginine, decreasing the multiplication rate;  

2) expression of the effector proteins immunity related GTP-ases (IRG’s) and 

guanylate-binding proteins (GBP’s); there are 21 IRG’s known in mice and just a 

single one in humans, while there are 12 GBP’s described in mice and 7 in 

humans; these molecules contribute together to destruction of the PV’s 

membrane, and, hence, lead to exposure of the parasite to endolysosomal 

enzymes, followed by the enzymatic degradation; 

3) increased activity of the phagocytes for the elimination of the free parasites 

(Denkers and Sher, 1993; Birner et al., 2000; Filisetti and Candolfi, 2004; Aliberti, 

2005; Miller et al., 2009; Esch and Petersen, 201;  Yarovinsky, 2014).  

 

It is noteworthy to mention that the excess of IFN-γ on short and long term might lead 

to pathologic changes in the infected tissues. More specifically, the uncontrolled 

cytokine production triggered by the presence of the cysts, is directly associated with 

the high NO levels released by, among others, macrophages. The NO is highly toxic 

under every circumstances for the target parasitic cells, but it may have a major impact 

on the surrounding healthy tissues.  
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Figure 2.2 : The mechanisms of IFN-γ mediated elimination of the parasite from the 

infected cells (adapted from: Yarovinsky, 2014). 

 

Therefore, a well-balanced inhibitory mechanism is required to temper the excessive 

IFN-γ production to moderate levels such as the release of anti-inflammatory IL-10 

(Miller et al., 2009; Rijkers et al., 2009). The mode of action of IL-10 mainly relies on the 

immunomodulation of the APC’s, or on inhibition of cytokine production and cytotoxic 

activity of the T cells. When intentionally deprived from IL-10, animals suffering from a 

chronic T. gondii infection develop a severe inflammation that can lead to necrotic sites 

in the intestine and liver (Filisetti en Candolfi, 2004; Aliberti, 2005; Miller et al., 2009). 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3  Pig as a model for an intermediate 
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3.1 Prevalence of T. gondii in domestic pig 

As mentioned in chapter 1, the pig is, among other domestic and wild mammals, a 

common intermediate host for T. gondii. At the same time, the parasite can cause 

human infection via the consumption of raw, undercooked or cured porcine meat 

products (Cook et al, 2000; Gauss et al., 2005; Klun et al., 2006; Pastiu et al., 2013; Vitale 

et al., 2014). Therefore, pork is indicated as one of the major meat sources associated 

with human foodborne T. gondii infection worldwide (Havelaar et al., 2015; Scallan et 

al., 2015; Opsteegh et al., 2016b).  

Although the exact prevalence of this food pathogen in consumption meat is difficult 

to establish, the subsequent infection rate of humans has been estimated as an average 

of 300 consumers per 1 infected animal (Fehlhaber et al., 2002; Ortega-Pacheco et al., 

2013). In addition, nearly all tissues from a pig are used directly for consumption or 

processed in potentially hazardous meat products without freezing or cooking, 

increasing in that way the chance of the transmission of the disease (Tenter et al., 2000).  

In comparison with other meat sources such as beef, horsemeat or poultry, pork seems 

to be more likely infected with T. gondii due to the high susceptibility of swine to the 

parasite (Hill and Dubey, 2013).  

The global incidence of porcine infection per continent and country is shown in Table 

3.1, taking into account the origin and the age of the animals, the farm management 

and the serologic assay applied (Dubey, 2009b; Dubey, 2010; Guo et al., 2015b). 

According to the report from the European Food Safety Agency (2012) describing the 

number of the positive animals between 2008 and 2010, the highest proportion of 

samples positive in PCR or serology for T. gondii across all countries was reported for 

sheep and goats. However, the clinical manifestation of toxoplasmosis is particularly 

obvious in these two species due to abortion, so it is also more likely to be confirmed, 

compared with other animal species, in which the more subtle signs of infection 

(particularly in the acute phase of the disease) may be missed. Referring to the same 

report, the prevalence of T. gondii specific antibodies in porcine serum samples 

collected in all the EU-states was 2.2% (EFSA report, 2012).  
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In general, the seroprevalence of T. gondii dropped significantly during the last decades 

in Europe and the USA. Corresponding to that, a low (0.0%-0.4%) to moderate (36%) 

prevalence was estimated on conventional pig farms in European countries (Kijlstra et 

al., 2004; Bartova et al., 2011; Guo et al., 2015b). In the USA a higher (25%) prevalence 

was detected in the free-range animals than in the outdoor- (6.8%) or indoor-ranged 

finishers (2.8%), (Dubey et al., 2008c; Hill et al., 2008; Gebreyes et al., 2008). In most 

industrialized countries the prevalence is not higher than 5% (Robert-Gangneux and 

Dardé, 2012). For Belgium, official data are missing, but based on a recent study 3.3% 

and 4% seropositive animals were detected in Flanders and 53.5% and 73.3% in 

Walloon, as determined with GRA7 and TLA ELISA, respectively (Jennes et al., 2017, 

submitted). In the Netherlands a spectacular drop in prevalence was seen over the 

period of 20 years for the finishers (from 54% to 1.9%, van Knapen, 1989) and for the 

seropositive sows (30.9% to 5.6%, van der Giessen et al., 2007). Nevertheless, the low 

prevalence in USA cannot prevent the high transmission rate to humans, as even as 

low as 1 % is equal to 1 million T. gondii seropositive animals, infecting potentially 300 

million humans (Jones and Dubey, 2012).  

To date, there is no obligatory screening on national level or notification system in the 

EU-states to detect and sample by molecular methods the seropositive animals on farm 

level or in slaughterhouses.  

These observations and the possible reasons of the decreased prevalence are further 

discussed in detail (see 3.2).  
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Table 3.1 : Seroprevalence of T. gondii in domestic pigs (adapted from Guo et al., 2015b) 

Continent Country Origin # Animals Prevalence (%)  Assay and titer Reference 

Europe 

Romania 

Backyard 2,564 30.50 

IFAT, 1/32 Pastiu et al., 2013 Sows 371 12.40 

Finishers 660 0.00 

Ireland Finishers 137 4.70 LAT, 1/64 Halova et al., 2013 

Latvia 
Finishers  269 0.40 

In-house ELISA Deksne and Kirjusina, 2013 
Free-range 543 6.20 

Portugal Farm 254 9.80 MAT, 1/20 Lopes et al., 2013 

Slovakia 
Slaughter 923 2.16 

ELISA kit1 Turcekowa et al., 2013 
Sows 47 4.26 

Czech Republic Slaughter 551 36.00 ELISA kit2 Bartova and Sedlak, 2011 

France Slaughter 49 2.00 ELISA kit3 Roqueplo et al., 2011 

Italy 
Indoor raised 960 16.10 IFAT, 1/16 Veronesi et al., 2011 

Slaughter 2160 16.30 ELISA kit1 Villari et al., 2009 

Serbia Slaughter 488 9.20 MAT, 1/25 Klun et al., 2011 

Switzerland 

Finishers 50 14.00 

ELISA kit3 Berger-Schoch et al., 2011 Adult 120 3.60 

Free range 100 13.00 

Spain 
Finishers 1570 9.70 

MAT, 1/25 Garcia-Bocanegra et al., 2010 
Sows 1400 24.20 



 

74 

 

Germany 
Finishers 4999 4.10 In-house ELISA de Buhr et al., 2008 

Sows 2041 16.50 IFAT, 1/16 Damriyasa et al., 2004 

Poland Slaughter 106 26.40 MAT, 1/40 Sroka et al., 2008 

The 

Netherlands 

Organic 406 10.9 

In-house ELISA 

Kijlstra et al., 2008 

Indoor raised 265 0.40 

van der Giessen et al., 2007 Organic 402 2.70 

Free range 178 5.60 

Organic 2796 3.00 ELISA-kit3 Meerburg et al., 2006 

Indoor raised 621 0.00 

LAT, 1/64 Kijlstra et al., 2004 Free range 635 4.70 

Organic 660 1.20 

North-America 

Mexico 
Backyard 337 17.20 

MAT, 1/25 Alvarado-Esquivel et al., 2012 
Farm 188 0.50 

Canada Finisher 6048 0.74 ELISA kit4 Poljak et al., 2008 

USA 

Indoor raised 6238 2.60 ELISA kit4 Hill et al., 2010 

Outdoor raised 324 6.80 
In-house ELISA Gebreyes et al., 2008 

Indoor raised 292 1.10 

Free range 48 25.00 ELISA kit4 Dubey et al., 2008b 

Slaughter 152 16.40 Western blot Saavedra et al., 2004 

South-America Brazil 

 Farm  143 25.50 In-house ELISA de Sousa et al., 2014 

Slaughter 190 19.50 IFAT, 1/64 Cademartori et al., 2014 

Indoor raised 27 11.50 In-house ELISA Luciano et al., 2011 
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Free range 34 20.60 

Farm 606 13.40 MAT, 1/25 Piassa et al., 2010 

Chile Slaughter 340 8.80 ELISA kit4 Munoz-Zanzi et al., 2012 

Panama Indoor raised 290 32.10 IFAT, 1/20 Correa et al., 2008 

Argentina Sows 230 37.80 MAT, 1/25 Venturini et al., 2004 

Peru Slaughter 137 27.70 Western blot Saavedra et al., 2004 

Asia 

Nepal Slaughter 742 11.70 In-house ELISA Devleesschauwer et al., 2013 

China 

Finishers 1014 4.60 IHAT, 1/64 Chang et al., 2013 

Farm 2,277 29.60 In-house ELISA Du et al., 2012 

Slaughter 1164 12.00 IHAT, 1/64 Wu et al., 2012 

Finishers 3558 24.50 In-house ELISA Tao et al., 2011 

Mixed farm 813 53.40 ELISA kit5 Yu et al., 2011 

Sows 605 14.40 IHAT Huang et al., 2010 

Malaysia Sows 100 0.00 IFAT, 1/200 Chandrawathani et al., 2008 

Taiwan Slaughter 395 10.10 LAT, 1/32 Tsai et al., 2007 

Vietnam 

Finishers 325 23.00 

MAT 1/25 Huong et al., 2007 Sows 207 32.30 

Free range 70 35.70 

 
1 Institut Pourquier, Montpellier, France; 2 ID Screen Toxoplasmosis Indirect, ID-Vet, Grabels, France; 3 p30-ELISA; 4  SafePath Laboratories, Carlsbad, CA; 5 Haitai 

Biological Pharmaceuticals Co., Ltd., Zhuhai, People’s Republic of China. IFAT: indirect fluorescence antibody test; IHAT: indirect haemagglutination test; LAT: 

latex agglutination assay; MAT: modified agglutination assay.



Review of the literature 

 ______________________________________________________________________________________________________________  
 

76 

 

3.2 Risk factors associated with porcine toxoplasmosis 

Several factors can potentially modify the risk of T. gondii infection in pigs, such as the 

presence of cats on farms, rodent control, age of the animals, size and type of the herd, 

outdoor access, the carcass disposal, and feeding of unprocessed animal products such 

as goat whey to pigs (van der Giessen et al., 2007; Dubey, 2009b; Villari et al., 2009; 

García-Bocanegra et al., 2010a, b; Hill et al., 2010; Meerburg et al., 2012). 

 

3.2.1 Risk factors 

The cat is responsible for the direct transmission of the infection to farm animals such 

as pigs by entering the stables and shedding the oocysts in the animal facilities, or by 

contaminating the near environment of the stables, and indirect spreading by animals 

entering the stables like dogs or birds. The free access to the stables for people, without 

the application of strict hygienic measures (e. g. disinfecting foot bath or protective 

footwear and clothes for the exclusive use in the animal facilities), can also contribute 

to the dissemination of the oocysts within the herd or the transmission to the stables 

from the contaminated environment (Lehmann et al., 2003; Hill et al., 2008; Hill et al., 

2010). The lack of these measures is especially important if domesticated or feral cats 

live in the close neighbourhood of the animal facilities.  

The second factor, namely the insufficient rodent control in the stables, drives the 

persistence of the parasite on farm level in two ways: the rodents serve as a constant 

reservoir of T. gondii for the cats, maintaining the infection risk within the herd; 

additionally, the rodents can directly be involved in the infection transmission by the 

predation or accidental ingestion of the mice by pigs (Lehmann et al., 2003; Kijlstra et 

al., 2008).  

Age as a risk factor contributes to an increased seroprevalence in older animals, due to 

a longer exposure to the pathogen from the potentially hazardous environment. 
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Although the titer of the colostral antibodies in piglets declines by 120 days of age, 

irrespectively from the source of the infection in sows (natural versus experimental), 

maternal immunoglobulins do not provide a full protection. Consequently, post-

weaning pigs are more susceptible to the infection than older animals (Garcia-

Bocanegra et al., 2010). An age-dependent increase in seroprevalence in pig farms has 

been described in numerous studies, with a higher incidence in adult pigs (19.5%) than 

in young animals (10.9%), (Alvorado-Esquivel et al., 2011), or in breeding sows than in 

finishers: 30.9% versus 1.9% in the Netherlands (van Knapen et al., 1995) and 24.2% 

versus 9.7% in Spain (Garcia-Bocanegra et al., 2010). 

The age of the animals at the slaughter has also an important implication for the 

transmission of the disease towards human consumers and the epidemiology of 

human toxoplasmosis. Indeed, the younger the animals, the more chance that the meat 

will be consumed fresh and unprocessed, while the meat derived from older animals 

such as sows, will undergo processing to end up in different pork products, which is 

harmful for the parasite and thus safer for the consumer in terms of parasitic load 

(Dubey, 2009b). 

One of the major factors contributing to the incidence of the porcine infection is the 

size and the management type of the herd. The on-farm prevalence showed a reverse 

correlation with the size: small herds showed a higher rate of seropositive animals 

(4.1%) than medium (1.9%) or large (0.6%) herds (Zimmerman et al., 1990; Hill et al., 

2006). The reason would be the higher exposure per animal in smaller farms due to the 

lower density of the pigs.  

Even more critical for the risk of porcine toxoplasmosis is the management type of the 

farm. The recently observed decrease in seroprevalence of the infection in pig 

population might be due to the implementation of the modern management system 

in porcine herds, with a visible shift from housing of a smaller number of animals in 

less strictly confined establishments or outdoor, to large scale facilities with a high 

output and a fast turn-over, characterized by all-in-all-out or farrow-to-finish models 
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(Davies et al., 1998; Hill et al., 2010; Guo et al., 2015b). The intensive pig production 

expressed by the increasing number and size of porcine herds is driven by the high 

consumption of pork in the developed countries in Europe and the USA. In Belgium for 

instance, the total population of pigs comprises 6.5 million animals, housed in 5000 

conventional farms, ranging between on average 700 to 1300 pigs, as estimated by the 

National Institute of the Calculations, Federal Public Service Economy, (Actualization of 

the Industrial Study on Pork, 2015). Consequently, nearly 12 million of animals are 

slaughtered each year for consumption (35 kg/year/inhabitant) or export in 

comparison with other countries. The majority of the in Belgium slaughtered pigs are 

exported within EU (56% of the carcasses to Germany, 18% to Poland and 6% to UK). 

The export of the fresh meat products covers 86% the export within EU countries: to 

Germany (36%), The Netherlands (11%), Italy (10%), France (10%) and UK (5.5%). Finally, 

the processed meat products are mainly sold to The Netherlands (34%), UK (14%), 

France (14%) and Germany (13%). On the contrary, only 3% of the carcasses processed 

in Belgium is imported (mainly from France (70%), UK (10%) and Germany (5%)), while 

almost 25% of the fresh meat comes from Germany (25%), The Netherlands (18%), Italy 

(17%), France (17%) and Spain (15%). Further, nearly 50% of the processed pork 

products sold in Belgium is imported: from Germany (35%), France (31%), The 

Netherlands (16%), Italy (8%) and Spain (5%). Summarizing, the porcine meat on the 

Belgian market does not originate from Belgium only and, hence, implies the necessity 

of a common approach with EU to maintain the same food safety standards.   

Summarizing, in the modern large-scale herds, as the great majority of the Belgian 

farms, the risk of T. gondii infection, and, thus, the prevalence of seropositive animals, 

can be substantially reduced by the use of the strict confinement housing with 

restrictive biosecurity regulations (Tenter et al., 2000; Gebreyes et al., 2008; Hill et al., 

2010; Wang et al., 2012; Guo et al., 2015b).  

However, in the last years a new tendency in animal husbandry deserves the attention, 

namely the animal-friendly herds, housing organic or free-range animals, providing 
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daily a permanent or a temporary outdoor access to the animals. The term ‘organic’ 

refers to the quality and safety of the porcine products, with constraints about the 

chemical compounds originating from the feed or drug treatment, while ‘free-range’ 

stands for the life-quality of the animals during the production round. Hence, organic 

pigs are mainly reared outdoor, receive organic feed, are provided with an animal 

friendly living space, the piglets are weaned at a later age than 3-4 weeks as on the 

intensive farms, and undergo a restrictive use of antibiotics. The free-range pigs differ 

from the regular pigs by the outdoor access and straw bedding, but are fed with a 

standard porcine feed and may receive drug treatment, if necessary, without losing a 

label as in case of the organic pigs (Kijlstra et al., 2004). 

In both types of farming, pigs are continuously exposed to the parasite by the contact 

with contaminated soil or ground water and can easily transmit the infection further in 

the food chain (Kijlstra et al., 2004; Hill et al., 2010; Dubey et al., 2012b). As estimated 

by others, the statistical chance for the detection of T. gondii-specific antibodies is 

approximately 2-times higher in the free-range than in the organic farms, or 8-times 

and 16-times higher in the organic and free-range farms, respectively, than in the 

conventional herds (van der Giessen et al., 2007).  

As indicated above, an appropriate rodent control is of significant importance for the 

reduction of the risk for porcine infection; in addition, a proper carcass disposal of pigs 

seems to be equally essential, since both measures are intended to avoid the ingestion 

of formerly infected tissues (Lehmann et al., 2003; Hill et al., 2010). The cases of 

cannibalism by the accidental access to dead animals, especially when animal tissues 

are buried or composted, are considerably common (van der Giessen et al., 2007; 

Dubey, 2009b; Villari et al., 2009; García-Bocanegra et al., 2010a, b; Hill et al., 2010). 

Similarly, providing drinking water of unknown quality to the pigs, possibly 

contaminated with oocysts, and feeding of raw animal products such as goat whey is 

also a potential risk, if made from unprocessed milk containing tachyzoites from a 
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recently infected animal undergoing the dissemination phase (Meerburg et al., 2012; 

Gebremedhin et al., 2014; Boughattas, 2015a, 2015b; Cisak et al., 2017). 

Finally, the prevalence of porcine toxoplasmosis may be influenced by the climate and 

geographical factors, e. g. altitude, temperature, and humidity, since they have a direct 

impact on the survival of T. gondii oocysts in the environment. As mentioned in Chapter 

1, the oocysts remain infectious for a long period of time in a humid and cold 

environment, as long as they are not dried out or frozen. Hence, the prevalence of 

toxoplasmosis in pigs is higher in the mountains (32.1%) than in semi-desert areas in 

Mexico (14%) (Alvarado-Esquivel et al., 2011), or in the coastal and northern regions of 

the USA (2.9-3.2%) than in the south continental part of the country (Hill et al., NAHMS 

report, 2013).  

 

3.2.2 Preventive measures 

The preventive measures in porcine farming are focused on the elimination of the risk 

factors listed above. As mentioned earlier, the decline in infection prevalence in pigs 

may be attributed mainly to the implementation of the modern management systems 

on large scale, but also to some other improvements in farm management, which 

support further reduction of the infection rate. Therefore, they include: 1) farm 

management with confinement of the animals, 2) general hygienic measures for people 

entering the facilities 3) the controlled access to the stable for other animals like cats, 

dogs, birds or others, 4) rodent control, 5) feed and water supply.  

The strict confinement housing, with no outdoor access of the animals and the all-in-

all-out or farrow-to-finisher model, contributes to the greatest extent to the decreased 

prevalence of T. gondii infection in the pig population. The restrictive biosecurity 

regulations defining the access to the animal facilities for the visitors and animals, 

combined with the disinfection of the footwear, clothes and the surfaces on the one 
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hand, along with an efficient rodent control on the other hand, prevent transmission 

of the infection within the facility.  

In contrast with the free-range farming, an important preventive measure taken in the 

modern porcine herds is providing disinfected water and feed to the animals, instead 

of the regular feed or scavenging opportunities with the outdoor access, surface water 

of unknown composition and sterility, and possibly contaminated straw bedding. 

Likewise, the animal friendly organic farms cannot circumvent the potential risk of the 

infection when the free access is provided to the soil, grass or plants, ground water or 

highly qualitative feed, as the cats and small rodents can enter such facilities (Jones 

and Dubey, 2012; Robert-Gangneux and Dardé, 2012). 

Finally, an appropriate carcass disposal inhibits cannibalism and accidental ingestion of 

the tissue cysts or tachyzoites. 

It is worth mentioning that these precautionary measures not only reduce the 

prevalence of porcine T. gondii infection, but also indirectly prevent the transmission 

of the infection towards humans (see also Chapter 1).  

To date, there is no successful vaccine candidate on the market to control the infection 

incidence in pigs. The only registered attenuated vaccine (Ovilis® by MSD Animal 

Health, New Zealand) is available for sheep and goats, and prevents temporarily from 

the high rate of abortion, which normally occurs upon T. gondii infection in these 

species. The vaccine-induced protection is essential due to the high infection 

prevalence in grazing livestock, and because of the high economic losses in case of 

ovine or caprine congenital toxoplasmosis. However, due to the severe hazards for the 

operator of the vaccine and the potential reversion of the attenuated strain to the 

virulent wild type strain, this vaccine is limited in use to several countries only (Montoya 

and Liesenfeld, 2004; Buxton et al., 2007; Dubey et al., 2010). 

One of the missing elements in the prevention of infection transmission by porcine 

meat is the regulatory screening of the animals prior to or at the arrival in the 

slaughterhouse. Since a seropositive animal is most likely hosting multiple tissue cysts, 
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the serologic screening could be used to prevent that tissues from chronically infected 

animals would enter the food chain without steps necessary to kill the parasites and as 

such disseminate the disease.  

3.3 Pathogenesis and clinical symptoms in a porcine host 

3.3.1 Pathogenesis 

Pig as intermediate host can be infected with different stages of the parasite: oocysts, 

tissue cysts or, in rare cases, via tachyzoites. The most common infection route, by 

which pigs become infected with T. gondii, is via ingestion of oocysts. This is in 

particular notable for free-ranging or organic pigs, having access to a most likely 

contaminated environment. Depending on the stringency of the on-farm hygienic 

measures, inside-raised pigs can also be exposed to cats, which shed millions of 

oocysts, subsequently contaminating drinking water, stable bedding or animal feed. 

Another transmission mode for pigs is predation of intermediate hosts such as mice or 

rats, occasionally present in the stables. Unprocessed animal products such as whey 

made from raw milk has been described to serve as the source of infection, when fed 

to the pigs or consumed by humans. Occasionally and mainly in non-EU countries, pigs 

can also be exposed to tissues containing cysts with bradyzoites by the intended 

feeding with meat scraps or accidentally by scavenging porcine tissues, if the carcasses 

or tissues like placentas are not optimally removed or locked away (Meerburg et al., 

2012; Gebremedhin et al., 2014; Boughattas, 2015a, 2015b; Cisak et al., 2017). 

Finally, transplacental transmission is very rare in pigs but possible to be induced in 

experimental conditions but, when so, the parasite causes mortality in neonatal pigs 

(Dubey and Urban, 1990; Dubey, 2009b; Pastiu et al., 2013). 

Upon infection, the parasite rapidly undergoes a multiplication step in the small 

intestines and subsequently disseminates to peripheral tissues to convert into a latent 

stage or bradyzoites (see also Chapter 1).  
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3.3.2 Clinical symptoms 

In general, T. gondii leads to a subclinical infection in pigs, but there are very few cases 

documented, describing most striking clinical signs. The symptoms include anorexia, 

fever, dyspnoea, limb weakness or death (Jungersen et al., 1999; Dubey, 2010). Systemic 

toxoplasmosis in pigs has been very rarely noticed (Klein et al., 2010). The infection has 

been documented in prenatal (Chang et al., 1990), neonatal (Haritani et al., 1988; 

Kumagai et al., 1988; Giraldi et al., 1996; Venturini et al., 1999; Thiptara et al., 2006) and 

weaned pigs (Okamoto et al., 1989; Weissenböck et al., 1993; Liao et al., 2006; Kim et 

al., 2009).  

Prenatal outbreaks of T. gondii among pregnant sows result often in abortion. Most 

likely, systemic tachyzoites’ dissemination leads to degenerative changes in the 

placental and fetal tissues, and was found the causative event of the abortion in a 

described case (Chang et al., 1990). The first incidences of neonatal toxoplasmosis in 

pigs were described during several outbreaks in Japan (Haritani et al.,1988; Kumagai et 

al. 1988; Okamoto et al, 1989). Stillborn piglets showed pneumonia and hepatic 

necrosis, while newborn piglets displayed an abnormal motoric coordination and 

encephalitis, pneumonia and necrotic lymphadenitis when autopsied upon their death 

at two weeks of age.  

Depending on the genotype and the virulence of the strain, the clinical and 

pathological signs can vary in affected animals. Strikingly, even the piglets from the 

same litter may show a different degree of the clinical symptoms; presumably in 

function of the extent of parasite transmission per animal during the gestation. In a 

well-documented case in Brazil aborted foetusses, stillborn piglets and piglets born 

without clinical signs were reported. Moreover, the parasite was isolated from brains, 

hearts, lungs, livers, retinas and spleens from diseased and clinically healthy piglets 

(Giraldi et al., 1996). 
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Two more cases of stillborn piglets but with contrasting clinical signs in the surviving 

piglets were described in Argentina (Venturini et al., 1999) and Thailand (Thiptara et al., 

2006), respectively. In Argentina, stillborn and live piglets were born from a seropositive 

sow; however, the infection could only be demonstrated by the presence of antibodies 

in fetal fluids but there were no clinical signs. In Thailand on the contrary, tachyzoites 

were identified on smears from lungs of the stillborn piglets, while surviving piglets 

were suffering from a haemorrhagic diarrhoea and dyspnoea. On the same farm also 

animals from different age groups (neonatal and growing piglets, adult sows and a 

boar) without clinical signs showed anti-T. gondii antibodies (Thiptara et al., 2006). 

Nevertheless, clinical signs due to porcine toxoplasmosis have also been described in 

other age groups than piglets and this by other sources of infection than the 

transplacental transmission (Okamoto et al., 1989). Similarly, feed borne toxoplasmosis 

in Austria showed the typical set of the symptoms (Weissenböck and Dubey, 1993). 

Fatal toxoplasmosis in two adult sows was also documented (Liao et al., 2006). A more 

recent T. gondii manifestation in adult sows occurred in Korea (Kim et al., 2009), where 

clinical signs included fever, anorexia, neurological symptoms and abortions.  

In analogy with the natural course of infections in piglets or sows, also experimental 

infections have been performed. Inoculation of pigs with oocysts of the SSI-119 strain 

can induce fever, anorexia or loss of appetite and a decline in the general condition 

(Wingstrand et al., 1997). A clear age effect and the corresponding severity of the 

clinical signs was described upon inoculation of sows in gestation or piglets with RH-

strain tachyzoites at different ages: a congenital infection had the greatest impact on 

the foetus, while neonatal inoculation of piglets resulted in fewer and less pronounced 

clinical signs, whereas young adult animals frequently experienced subclinical 

infections (Work et al. 1970).  
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3.4 Acute and chronic immune responses induced by natural and experimental 

infections in pigs 

Immune responses associated with toxoplasmosis in pigs have been studied in the 

experimentally induced infection models, due to the constraint that the natural course 

of the infection is mainly subclinical (Dubey et al., 1995b). Few studies have determined 

the immunological mechanisms associated with the acute and/or chronic stage of the 

disease in pigs, as described more in detail further (Dubey, 1998c; Solano Aguilar et al., 

2001; Dawson et al., 2004; Kringel et al., 2004; Dawson et al., 2005; Garcia et al., 2005; 

Jongert et al., 2008; Verhelst et al., 2011; Burrells et al., 2015; Verhelst et al., 2015).  

 

3.4.1 Natural infections 

As described in Chapter 1, in most cases T. gondii infection proceeds asymptomatic in 

pigs, and the animals only occasionally develop clinical signs. Therefore, the naturally 

infected animals can be distinguished via anti-T. gondii IgM and/or IgG antibody 

detection by the use of one or a combination of several serological assays. Since each 

test has its own characteristics, namely, method of cut-off value determination and 

subsequently, sensitivity and specificity, the confirmation of the acute or chronic phase 

of the infection is not straightforward. Additionally, the presence of parasite-specific 

antibodies is not necessarily indicative for a recent exposure, but may also indicate a 

former exposure of the host to the parasite, since even IgM’s can persist for a long time 

or rise again in concentration upon re-infection (Kortbeek, 1999; van der Giessen et al., 

2003; Rorman et al., 2006; Petersen, 2007; Dubey et al., 2010; Mancianti et al., 2010).  

It would be recommended to combine and match the results of different tests to obtain 

the highest certainty about the infection status within the animal. However, only few 

studies combined different techniques (Chang et al., 1990; Damriyasa et al., 2005; 

Cavalcante et al., 2006; Kijlstra et al., 2008). The majority of the research groups applied 

a single technique (see Table 3.1).  
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Efforts have been made to isolate viable parasites or to detect the parasitic DNA by 

PCR from naturally infected animals. Based on the DNA isolated from the slaughtered 

animals, the majority of the strains circulating within the porcine population in North 

America belongs to the genotypes II and III or has a mixed allele composition, while in 

Europe genotype II seems to be the most predominant clonal type (Lehmann et al., 

2003; de Sousa et al., 2006).  In South America, on the contrary, genotype I or mixed 

types are prevalent (Belfort-Neto et al., 2007).   

 

3.4.2 Experimental infections 

Infection models under controlled and experimentally induced circumstances have 

shown a comparable pattern, as far as the immune response is concerned.  

First of all, inoculation of pigs with any infectious stage of T. gondii (oocysts, tissue cysts 

or tachyzoites) leads to development of antibodies against stage-specific parasitic 

antigens. The time-interval between the inoculation and the first detection of the 

immunoglobulins or cytokines varies depending on the virulence of the used strain, 

the infectious stage and the applied dose. Since the maternal antibodies do not persist 

for a long period of time (maximal 120 days), the weaned pigs develop actively own 

IgM and IgG immunoglobulins, which remain present at high concentration and 

partially or fully protect from a homologous challenge (Dubey et al., 1986; Lind et al., 

1997; Dawson et al., 2005; Garcia et al., 2005, Jongert et al., 2008). 

Secondly, a significant Th1-immune response is observed as an increase of IFN-γ 

production after inoculation with particular T. gondii strains at a well-defined 

inoculation dose (Solano Aguilar et al., 2001; Dawson et al., 2004; Dawson et al., 2005; 

Verhelst et al., 2015). This increase was positively correlated with the time-interval from 

the inoculation time point until a high-level plateau concentration was achieved. The 

produced cytokine was detected in the infected animals in serum samples, in the 

supernatant from cultured PBMCs, and also as IFN-γ mRNA expression in PBMCs and 



                                                  Chapter 3: Pig as a model for an intermediate host of T. gondii 

 ______________________________________________________________________________________________________________  
  

87 

 

intestinal lymphoid tissues. The IFN-γ production associated with experimental 

toxoplasmosis in pigs was the result of the activation of the cells of the innate and 

acquired immunity. The responses were investigated in vitro by determining the 

cytokine profile until 14 (Dawson et al., 2005), 40 (Solano Aguilar et al., 2001) or 56 days 

post infection (dpi) (Verhelst et al., 2011). 

Next to IFN-γ, also other cytokines are involved in the immune response, such IL-12 or 

TNF-α, as described earlier (see Chapter 2). Infection with the oocysts of the VEG-strain 

induced a Th-1 immune response, with production of IL-15 and TNF-α, determined as 

gene expression on mRNA level (Dawson et al., 2005). In another study, upon 

inoculation with the same infectious stage of the latter strain, a more pronounced Th-

2 profile with IL-10 and IL-12 was detected after the acute phase of the infection, 

dominated by IFN-γ production (Solano Aguilar et al., 2001).  

During the acute phase of the infection the immune responses are directed against the 

disseminating tachyzoites, while throughout the chronic toxoplasmosis they also target 

the latent cysts with bradyzoites in the variety of the tissues. It is well described that 

the parasite can persist within the intermediate host for a life span and can be found 

in all internal organs and muscles (Dubey et al., 1998c; Black and Boothroyd, 2000; van 

der Giessen et al., 2003; Montoya and Liesenfeld, 2004). Referring to the pigs as the 

intermediate host, viable T. gondii was recovered from porcine brains, hearts, tongues, 

diaphragms, livers and kidneys. Additionally, all edible commercial cuts of meat tested 

also positive, representing thereby a potential risk for consumers (Dubey, 1988, 

Opsteegh et al., 2016b). Nevertheless, it is a subject of discussion and study whether 

the host can clear tissues during the chronic infection phase. There is scientific evidence 

that the number of the cysts containing parasites can gradually decrease in porcine 

tissues, with a decline in its viability, as tested by bioassay (Verhelst et al., 2011).  

Summarizing, the induction of both a humoral and cellular immune response is 

necessary to control the infection in pigs. Although T. gondii as an intracellular parasite 

cannot be combatted and completely cleared from tissues, the elevated antibody and 
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cytokine production lead to a protective immunity, as evidenced by recovery from 

experimental infection with viable parasites (Dubey et al., 1991; Dubey et al., 1994; 

Dubey et al., 1998c; Solano Aguilar et al., 2001; Dawson et al., 2005). However, a delicate 

balance between the protective mechanisms and the cytokines’ toxicity should be 

maintained (see Chapter 2).  

Finally, a partial protection can be obtained in vaccination studies and challenge 

experiments, but there is still need to improve the current knowledge (Kringel et al., 

2004; Garcia et al., 2005; Jongert et al., 2008, Verhelst et al., 2011; Burrells et al., 2015). 

One of the goals used as a success rate parameter is the reduction of the parasitic load, 

obtained in the vaccinated and challenged group and determined by bioassay and 

qPCR on murine and porcine tissues. By achieving this, not only porcine toxoplasmosis 

is likely to be reduced in prevalence, or in severity of clinical signs, if applied in other 

species such as small ruminants; correspondingly, human T. gondii infection would lose 

one of the important natural sources.  
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T. gondii is considered an underestimated pathogen, infecting one third to half of the 

world human population and causing a severe disease in vulnerable groups, such as 

newborns and immunocompromised patients (Tenter et al., 2000; Gamarra et al., 2008; 

Halonen and Weiss, 2009; Shapiro et al., 2010; Robert-Gangneux and Dardé, 2012, Flegr 

et al., 2014). The estimations of the congenital and acquired toxoplasmosis burden 

revealed between one and two million healthy life years lost each year (Torgerson and 

Mastroiacovo, 2013; Torgerson et al., 2015). Since the majority (30-63%) of foodborne 

human toxoplasmosis cases is due to consumption of infected meat (Cook et al., 2000), 

knowledge of the T. gondii distribution among meat-producing animals is of pivotal 

importance for the implementation of efficient prevention strategies and, 

consequently, for the reduction of the potential exposure to the pathogen (Kijlstra and 

Jongert, 2008; Robert-Gangneux and Dardé, 2012). However, evidence is still missing 

about the natural course of infection in livestock and the parameters indicating the 

parasite’s dissemination. The potential risk for humans upon consumption of infected 

tissues is, hence, inevitable.  

As indicated earlier in the introduction, domestic (or wild) pigs not only maintain T. 

gondii infection, as intermediate hosts, but can also serve as an important source of 

this zoonosis for humans (Lehmann et al., 2003; Kijlstra et al., 2008; Meerburg et al., 

2012). Consequently, T. gondii infection in pigs can potentially affect multiple 

consumers due to distribution and processing of the fresh porcine edible tissues into 

the food chain. Despite the recent European initiatives to thoroughly investigate and 

document the presence of toxoplasmosis in a multispecies study, the complete 

information on the prevalence, parasite burden, the infectious capacity of the edible 

tissues and immunological parameters to identify the infection is still not available for 

pigs (EFSA report, 2012; Opsteegh et al., 2016b). For instance, the prevalence of T. 

gondii infection in pigs and the associated risk factors within the Belgian herds are not 

yet defined. Importantly, the intensive pork production in Belgium is characterized by 

a high consumption rate per inhabitant on the one hand, and a significant contribution 
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to the export of the produced meat within and outside of the EU on the other hand. It 

would be highly recommended to estimate the risk of foodborne T. gondii transmission 

via consumption of porcine meat products, and, on a long-term, to eradicate the 

infection in livestock both in Belgium, as in other countries. As a starting point, defining 

and analysing the immunological parameters associated with the progress of the 

infection in the porcine host could help with the identification of the circumstances, 

which potentially contribute to a reduction of the parasite burden in edible tissues. 

Further, identifying the parasite’s antigens inducing a strong immune response, could 

lead to the development of a vaccine. 

In order to address the above listed gaps and gain more insights into the host-

pathogen interaction of porcine toxoplasmosis in the acute and chronic phase of the 

infection, the following aims were formulated:  

1) Estimation of the true prevalence of T. gondii infection in Belgian swine and first 

steps towards identification of the risk factors (Chapter 4).  

2) Evaluation of the strain and dose effects in a single-strain experimental infection 

in pigs on: 

a. The immune response (Chapter 5, 6 and 7). 

b. The parasite burden and viability in tissues (Chapter 5, 6 and 7). 

3) The effect of reinfection with a heterologous strain on the parasite burden and 

the immune response (Chapter 6).  

4) Identification of the more potent immunogenic fractions within Total Lysate 

Antigen (TLA) of tachyzoites based upon in vitro IFN-γ induction (Chapter 7).  
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Chapter 4 True prevalence of anti-Toxoplasma 

gondii antibodies on Belgian pig farms 
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4.1 Abstract 

Toxoplasma gondii remains one of the most significant foodborne zoonoses in 

developed countries. Pork can serve as the source of human T. gondii infection, 

however, no data are available on the prevalence of the parasite in the porcine 

population in Belgium. We performed a serological analysis of 2263 serum samples 

from 251 conventional herds with intensive management system in Belgium. 

Recombinant (GRA7) or native (Total Lysate Antigen—TLA) antigens of T. gondii were 

used in ELISA to determine the seroprevalence of porcine T. gondii infection. Both tests 

showed a significantly higher total, between-herd and within-herd apparent prevalence 

of anti-T. gondii IgG in Wallonia than in Flanders (P < 0.001). Additionally, a Bayesian 

model was developed to estimate true within-herd and between-herd prevalence 

based on the results of both diagnostic tests. The total true prevalence across all herds 

reached 65% (95% uncertainty interval (UI) 52%–76%) in Wallonia, compared to 1% 

(95% UI 0%–2%) in Flanders. Likewise, the true between-herd prevalence reached 73% 

(95% UI 59%–85%) in Wallonia, versus 4% (95% UI 1%–10%) in Flanders. The true 

within-herd prevalence of infected farms was 89% (95% UI 82%–96%) in Wallonia and 

33% (95% UI 15%–55%) in Flanders. Together with the estimation of the true 

prevalence, the assay characteristics for the applied tests were calculated. The 

sensitivity of both the TLA- and GRA7-ELISA was lower in Flanders than in Wallonia, 

however without any significance. On the contrary, the specificities of the assays were 

significantly higher in Flanders, in particular for the GRA7-ELISA (91% vs 61%). This 

study is the first providing data on porcine toxoplasmosis seroprevalence in Belgium, 

and demonstrates a high burden in the Walloon Region. 

4.2 Introduction 

Toxoplasma gondii is an intracellular pathogen of all warm-blooded mammalian 

species, infecting wildlife, livestock and humans. With more than 10 million new clinical 
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infections each year, toxoplasmosis is one of the most common foodborne parasitic 

diseases worldwide. Congenital and acquired foodborne toxoplasmosis are estimated 

to result in between one and two million healthy life years lost each year (Torgerson et 

al., 2015).  

Domestic pigs can serve as the intermediate hosts for the parasite, and, simultaneously, 

as the source of the infection for humans even in the modern and intensive swine 

production systems (Lehmann et al., 2003; Kijlstra et al., 2008; Meerburg et al., 2012). 

Several factors seem to be of pivotal significance to influence the risk of the infection 

in pigs, such as the presence of cats on farms, increasing age of the animals due to a 

longer exposure, small size of the herd, free-range or backyard pigs rather than the 

strict confinement housing with restrictive biosecurity regulations, poor rodent control, 

and cannibalism by access to infected tissues by inappropriate carcass disposal (van 

der Giessen et al., 2007; Dubey, 2009b; Villari et al., 2009; García-Bocanegra et al., 2010a, 

b; Hill et al., 2010). Consequently, raw, undercooked or cured pork is considered to be 

an important source of human infection (Cook et al, 2000; Guo et al., 2015a; Opsteegh 

et al., 2016b). Additionally, no serological or molecular screening technique is 

mandatory in the slaughterhouses in Europe. Therefore, application of standard 

hygienic procedures on farm level, including the prevention of contact with the 

intermediate or final host, are required to eradicate or reduce the transmission of 

foodborne toxoplasmosis to humans (Hill et al., 2010). A reliable serological 

surveillance applied on farm or slaughterhouse level could be an efficient tool in the 

early detection and prevention of this zoonosis.  

The seroprevalence of T. gondii infection in pigs has been estimated in numerous 

studies. For European countries, in the last decade, a low (0.0%-0.4%) to moderate 

(36%) prevalence was estimated on conventional pig farms (Kijlstra et al., 2004; Bartova 

et al., 2011; Guo et al., 2015b). 

To the authors’ knowledge, no data have been published on the seroprevalence of T. 

gondii in pigs on Belgian farms. The total Belgian pig population comprises 6.5 million 
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animals, including 400,000 breeding sows, 200,000 fattening pigs above 110 kg of 

weight, 4.3 million fattening pigs under 110 kg of weight and 1.6 million piglets 

(Actualisation of the Industrial Study on Pork, National Institute of the Calculations, 

Federal Public Service Economy, 2015). Consequently, nearly 1 million animals are 

slaughtered per month for the export and the use on the national market, due to an 

excessive consumption rate per inhabitant (35 kg/year), in comparison with other 

countries. The animals are raised in approximately 5000 conventional registered pork 

farms, located mainly (93%) in Flanders, and particularly in the provinces of West 

Flanders, East Flanders and Antwerp (Actualisation of the Industrial Study on Pork, 

National Institute of the Calculations, Federal Public Service Economy, 2015). In the past 

years the number of herds decreased with 50% but the total amount of pigs produced 

in Belgium reduced only with 12% due to an increased average herd size. Consequently, 

these changes led to a rise in animals’ concentration per farm from approximately 700 

to 1300 pigs, exceeding 2000 animals in 20% of Flemish farms. In the Walloon Region, 

on the other hand, only 7% of the national pig farms are located, uniformly distributed 

across the different provinces. There the pig production is characterized by size-limited 

herds, raising free-range pigs or providing an outdoor access to the animals. According 

to recent data, there are only 14 registered organic (or biologic) farms in Flanders, 

housing approximately 2500 pigs, while in Wallonia there are 6800 pigs in 50 herds in 

this category. Organic pig raising requires an outdoor access, biologic pig feed, animal 

friendly housing conditions, delayed weaning and restricted use of the medical 

treatment, as regulated by the European Union Council (No 834/2007 and No 2092/91). 

In addition to the certified organic pig farms in Wallonia, there are herds, providing an 

unlimited outdoor access to the animals. These farms are, however, not classified as 

such and, therefore, assumed to raise free-range pigs in conventional conditions 

(Actualisation of the Industrial Study on Pork, National Institute of the Calculations, 

Federal Public Service Economy, 2015). 
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To study the prevalence of porcine toxoplasmosis in Belgium we conducted a 

serological survey on porcine serum samples collected as part of a preventive Aujeszky-

screening from 10 provinces across Flanders and the Walloon Region.  

Whereas isolation of T. gondii by bioassay using laboratory animals is considered the 

gold standard for demonstrating parasite infection, the Sabin-Feldman Dye Test is 

considered the gold standard to establish anti-Toxoplasmaantibodies in humans 

(Dubey, 2010). However, this assay does not demonstrate the same accuracy in animals 

such as swine and has the disadvantage that live parasites are used as the antigen. In 

animals several serological assays have been described to detect anti-T. gondii 

antibodies, such as the modified agglutination test (MAT), latex agglutination test 

(LAT), indirect immunofluorescence assay (IFA) and enzyme-linked immunosorbent 

assay (ELISA) (Dubey, 2010).  

Because no commercial ELISA for porcine serum samples was available at the time of 

the data collection, we used two in-house ELISAs, based on recombinant (GRA7) and 

native (Total Lysate Antigen - TLA) T. gondii antigens, respectively. None of these 

serological assays could be considered a gold standard, possibly resulting in false 

positive or false negative results, limiting their accuracy and yielding only an apparent 

prevalence estimate (Speybroeck et al. 2013). To account for the imperfectness of the 

serological assays used, and because the tissues of the sampled animals were not 

available for testing in bioassay, true prevalence was estimated in a Bayesian 

framework. In this approach, prior external information, e.g. based on expert 

knowledge, serves as a probabilistic restriction to make an assumption on the 

diagnostic sensitivity (i.e. conditional probability that an individual/sample having a 

disease will be correctly identified as such) and specificity of the assays (Berkvens et al, 

2006). In addition to calculating the apparent percentage of T. gondii positive animals, 

we therefore developed a Bayesian model to estimate true total, within-herd and 

between-herd prevalence, adapted from covariance-based true prevalence estimation 

model proposed by Branscum et al. (2004). 
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4.3 Material and methods 

4.3.1. Sampling design 

In total, 2263 serum samples were collected between 2009 and 2013 from finisher pigs 

at 4 to 6 months of age, corresponding to 110 kg of weight, as part of a preventive 

Aujeszky-screening on Belgian pig farms. Since no earlier data were reported on the 

prevalence of T. gondii in Belgium in conventional farms, the samples available from 

the Aujeszky screening were used for this preliminary study in Flanders; in the further 

stage it was completed with the data set from Wallonia. The sample size per herd was 

based on a power calculation for Aujeszky virus prevalence and was set at 12 per herd, 

according to the formula: 1- (1-prevalence)^n, where (1-prevalence): negative samples, 

1-negative samples : positive samples, n : number of samples tested. However, in 

several cases less or more samples were collected and included in the screening. 

Samples were drawn from the jugular vein using 21G needles and a vacutainer system 

(BD, Erembodegem, Belgium) by the local veterinarian. The serum samples obtained 

after centrifugation (2500 x g, 10 min at 4°C) were stored at -20°C prior to analysis in 

the Laboratory for Immunology, Faculty of Veterinary Medicine, Ghent University.   

The serum samples originated from 151 Flemish (1773 samples) and 100 Walloon farms 

(490 samples). Samples from one additional Walloon farm had been collected but were 

unsuitable for testing due to excessive haemolysis and, therefore, excluded from the 

study.  

Farms participating in the study were randomly selected. No prior information was 

available on their serological status in reference to T. gondii nor their location or herd 

size, in order to avoid selection bias in the experimental setup. The Flemish farms 

originated from the five following provinces, according to a decreasing number of 

herds tested, roughly reflecting the density of pig farming in the Flanders region: West 

Flanders (88), East Flanders (39), Antwerp (14), Limburg (7) and Flemish Brabant (3). The 

number of serum samples per farm ranged from 2 to 17 (median n = 12). The Walloon 
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farms were selected in order to ensure a uniform geographical distribution among the 

study area. In that way, all five provinces (Liège [25], Luxembourg [21], Hainaut [19], 

Walloon Brabant [18] and Namur [17]) were represented with an approximately equal 

numbers of farms per province and a standardized (n = 5) number of samples per farm. 

With the exclusion of the samples where haemolysis was too excessive, the final 

number of tested samples per Walloon farm ranged between 2 and 5 (median n = 4.5).  

 

4.3.2 Serological assays 

Preparation of rGRA7 antigen 

Recombinant dense granule protein 7 (GRA7) was used in the serological assay to 

detect T. gondii-specific IgG antibodies, since it has be proven to be a reliable marker 

of an active infection, being expressed by all T. gondii stages (Jacobs et al., 1999; 

Verhelst et al., 2015). The antigen was prepared as previously described (Jongert et al., 

2007).  

 

Preparation of total lysate antigens 

Total lysate antigens (TLA) consist of parasitic crude proteins, extracted from viable 

tachyzoites of the T. gondii RH-strain as previously described (Vercammen et al., 2000; 

Jongert et al., 2007). In brief, tachyzoites were purified by differential centrifugation 

and filtration steps, followed by sonication under cooling conditions. Finally, the 

purified antigens were aliquoted and stored for further use at -20°C. All procedures 

were approved by the Ethical Committee of the National Reference Laboratory for 

Toxoplasmosis, Scientific Institute for Public Health, Brussels, Belgium (approval 

number 20140704-01). 
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rGRA7 and TLA ELISA 

The rGRA7 and TLA antigens were coated to the wells of a Nunc Polysorp™ ELISA plate 

(Life Technologies, Merelbeke, Belgium) at a concentration of 10 µg/ml in bicarbonate 

buffer (pH = 9.4) for 2 h at 37°C. The coating and washing steps were followed by 

overnight blocking at 4°C with 0.2% Tween®-80 in PBS, and 1 h incubation at 37°C 

with the serum samples 1/50 diluted in dilution buffer (0.05% Tween®-20 in PBS). On 

each plate, control serum samples from 3 seronegative animals (with no anti-T. gondii 

IgM or IgG) and from 1 seropositive animal (with anti-T. gondii IgG) were included in 

duplicate and at the same dilution. The seropositivity status of these control samples 

was determined earlier by indirect immunofluorescence assay (IFA) in the National 

Reference Laboratory for Toxoplasmosis. Subsequently, the plates were incubated for 

1 h at 37°C with goat anti-pig IgG-H+L HRP conjugate (Bethyl Laboratories Inc., 

Montgomery, Texas, USA), at a 1/10000 dilution, and developed by adding 2, 2'-Azino-

bis (3-Ethylbenzthiazoline-6-Sulfonic Acid) (ABTS) (Hoffman-La Roche, Basel, 

Switzerland) as substrate-chromogen solution after 30 min of incubation at 37°C. In 

between steps wells were washed with PBS 0.2% Tween®20. Absorbance was read at 

405 nm and the obtained data were managed with Microsoft Excel software. Diluted 

serum samples were considered positive if they exceeded the plate-specific cut-off 

value, calculated as the mean OD405 of the negative controls plus three times their 

standard deviation. Across plates, the cut-off value ranged between 0.115 – 0.305 for 

GRA7 and between 0.117 – 0.430 for TLA. All assays were performed by the same 

operator in the same laboratory facility, using the same lots of reagents and devices. 

Additionally, an external validation of the assays was performed on 100 porcine 

samples with an unknown serological status but the same approximate age (pigs at the 

end of the fattening period) in combination with IFA.  
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4.3.3 Statistical analysis 

Apparent within-herd and between-herd prevalence 

Apparent average within-herd prevalence was calculated by averaging herd level 

prevalence across herds. Apparent overall and between-herd prevalence, with 

corresponding 95% exact confidence intervals (CI) were calculated using the ‘propCI’ 

function in the prevalence package for R 3.3.1 (Devleesschauwer et al. 2015; R Core 

Team 2016). Differences in apparent within-herd prevalence between the Flemish and 

Walloon regions were analyzed using logistic regression, while differences in apparent 

overall and between-herd prevalence were analyzed using Pearson's Chi-squared test. 

 

True within-herd and between-herd prevalence 

We adapted the model by Branscum et al. (2004) to obtain true within-herd and 

between-herd prevalence based on the combined results of the two tests.  

In each region, 𝒏𝑘 = 𝑛1, 𝑛2, … , 𝑛𝐾 animals were randomly sampled from 𝐾 farms and 

subjected to two serological assays. The apparent test results for each herd 𝑘 are given 

by a vector 𝒙𝑘 = (𝑥11,𝑘, 𝑥10,𝑘, 𝑥01,𝑘, 𝑥00,𝑘), with 𝑥11,𝑘 the number of animals from herd 𝑘 

testing positive on both tests, 𝑥10,𝑘 the number of animals from herd 𝑘 testing positive 

on the first test but negative on the second, and so on. The different vectors 𝒙𝑘 =

𝒙1, 𝒙2, … , 𝒙𝐾 were assumed to be independent and distributed according to a 

multinomial distribution: 

𝒙𝑘 ~ multinomial(𝑛𝑘, 𝑨𝑷𝑘) 

with 𝑨𝑷𝑘 = (𝐴𝑃11,𝑘, 𝐴𝑃10,𝑘, 𝐴𝑃01,𝑘, 𝐴𝑃00,𝑘) the vector of apparent prevalences 

corresponding to each possible combination of test results. In line with Branscum et al. 

(2004), we defined the apparent prevalences in terms of the true within-herd 

prevalence 𝜋𝑘, the test sensitivities (𝑆𝐸1, 𝑆𝐸2), the test specificities (𝑆𝑃1, 𝑆𝑃2), and the 

covariances between the two tests for infected and non-infected animals (𝑎, 𝑏): 
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𝐴𝑃11,𝑘 = 𝜋𝑘[𝑆𝐸1𝑆𝐸2 + 𝑎] + (1 − 𝜋𝑘)[(1 − 𝑆𝑃1)(1 − 𝑆𝑃2) + 𝑏] 

𝐴𝑃10,𝑘 = 𝜋𝑘[𝑆𝐸1(1 − 𝑆𝐸2) − 𝑎] + (1 − 𝜋𝑘)[(1 − 𝑆𝑃1)𝑆𝑃2 − 𝑏] 

𝐴𝑃01,𝑘 = 𝜋𝑘[(1 − 𝑆𝐸1)𝑆𝐸2 − 𝑎] + (1 − 𝜋𝑘)[𝑆𝑃1(1 − 𝑆𝑃2) − 𝑏] 

𝐴𝑃00,𝑘 = 𝜋𝑘[(1 − 𝑆𝐸1)(1 − 𝑆𝐸2) + 𝑎] + (1 − 𝜋𝑘)[𝑆𝑃1𝑆𝑃2 + 𝑏] 

 

We modelled the true prevalence 𝜋𝑘 within each of the 𝐾 sampled herds as a mixture 

of point mass at zero and a Beta distributed random variable 𝜇, reflecting the true 

within-herd prevalence of infected herds: 

 

𝜋𝑘 = 0,                              with probability 1 − 𝜏 

𝜋𝑘 = 𝜇 ~ Beta(𝑎𝜇, 𝑏𝜇), with probability 𝜏 

 

with 𝜏 reflecting the true between-herd prevalence (i.e., the true prevalence of infected 

herds). The product of 𝜇 and 𝜏 then reflects the true within-herd prevalence across all 

herds. 

Table 4.1 presents the external information used on the test sensitivities and 

specificities. We fitted Beta distributions to these constraints using function 

'betaExpert' in the prevalence package for R 3.3.1 (Devleesschauwer et al. 2015; R Core 

Team 2016). The prior information was based on the application of the serological 

assays in the literature, where the recombinant and native antigens were prepared 

corresponding to the protocols applied in this study, and served as a serodiagnostic 

tool for the diagnosis of toxoplasmosis in humans and livestock (Lind et al., 1997; 

Jacobs et al., 1999; Beghetto et al., 2006; Shapaan et al., 2008; Holec-Gąsior et al., 2011; 

Terkawi et al., 2013). We assumed independent Beta(1,1) priors for 𝜇 and 𝜏. For the 

covariances between two tests, we assumed Uniform(−0.25,0.25) priors, i.e., 

uninformative priors spanning the natural limits of the covariance parameters.  
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Table 4.1 : Prior information on test sensitivities and specificities for the estimation of 

true herd prevalence. 

 

Test Sensitivity  Specificity  

 information distribution information distribution 

T1: TLA >0.80 Beta(43,5.6) >0.90 Beta(100,6.2) 

T2: GRA7 0.78–0.91 Beta(119,23) >0.85 Beta(63,5.9) 

Models for the true within-herd and between-herd prevalence were implemented 

independently for Flanders and Wallonia. For each model, we simulated two chains of 

20,000 iterations, of which the first 10,000 were discarded as burn-in. Convergence of 

the models was assessed by calculating the multivariate potential scale reduction factor 

(Brooks and Gelman, 1998) and by assessing trace and density plots. The models were 

implemented in JAGS 4.2.0 (Plummer 2003), using the rjags package in R 3.3.1 

(Plummer 2014; R Core Team 2016). The applied JAGS code is available in Appendix A.  

4.4  Results 

4.4.1 Apparent prevalence 

Appendix B provides the apparent test results per herd in both regions. A farm was 

considered positive from a single positive sample in any of the two serological tests. 

Table 4.2 shows the total, between-herd, and average within-herd apparent prevalence 

in both regions, for the two diagnostic tests. Both tests showed apparent prevalence 

estimates to be significantly lower in Flanders than in Wallonia (P < 0.001). In both 

regions, more samples tested positive with TLA-ELISA than with GRA7-ELISA. This inter-

assay difference was most pronounced in the Walloon region, where it reached 

significant levels. 
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Table 4.2 : Total, between-herd, and average within-herd apparent prevalence (AP) of 

porcine toxoplasmosis per region. 

 

  TLA GRA7  Comparison 

 pos/tested* AP (95%CI) pos/tested* AP (95%CI) P-value 

Flanders 
  

   

Total 72/1773 0.04 (0.03–0.05) 59/1773 0.03 (0.03–0.04) 0.285 

Between-herd 42/151 0.28 (0.21–0.36) 38/151 0.25 (0.18–0.33) 0.696 

Within-herd — 0.04 (0.00–0.25) — 0.03 (0.00–0.23) 0.349 

Wallonia      

Total 359/490 0.73 (0.69–0.77) 262/490 0.53 (0.49–0.58) <0.001 

Between-herd 93/100 0.93 (0.86–0.97) 81/100 0.81 (0.72–0.88) 0.021 

Within-herd — 0.73 (0.00–1.00) — 0.54 (0.00–1.00) <0.001 

* positives in ELISA/number of tested serum samples 

 

When considering the joint test results, only 1.0% (0.6%–1.5%; 17/1773) of the animals 

sampled in Flanders were found positive in both serological tests, while 41% (37%–

46%; 201/490) of the animals sampled in the Walloon region yielded a double positive 

result. On the other hand, 6.4% (5.3%–7.7%; 114/1773) of the animals sampled in 

Flanders were found positive in at least one serological test, versus 86% (82%–89%; 

420/490) of the animals sampled in the Walloon region. At the herd level, 8.6% (4.7%–

14%; 13/151) of Flemish herds were classified as positive in both serological tests, 

versus 71% (61%–80%; 71/100) of Walloon herds. Likewise, 42% (34%–51%; 64/151) of 

Flemish herds were classified as positive based on the results of at least one serological 

test, versus 100% of Walloon herds. In line with the low regional prevalence in Flanders, 

more than half of the positive farms only showed one positive animal, while the 

remaining positive farms showed two to seven positive animals on at least one test. On 

more than half of the positive farms from the Walloon region, on the other hand, all 

sampled animals tested positive on at least one test. 
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Table 4.3 shows the between-herd apparent prevalence of porcine T. gondii infection 

in the Flemish and Walloon provinces. In Flanders, the apparent herd level prevalence 

ranged from 0% to 38% based on TLA-ELISA, versus 8% to 50% based on GRA7-ELISA. 

East Flanders was the Flemish province with the highest apparent herd level prevalence 

(38%) based on TLA-ELISA, while the same province yielded the lowest apparent herd 

level prevalence in GRA7-ELISA (8%). In the Walloon Region, the apparent herd level 

prevalence ranged from 89% to 95% based on TLA-ELISA, versus 67% to 100% based 

on GRA7-ELISA. TLA-ELISA yielded a higher apparent herd level prevalence than GRA7-

ELISA in all Walloon provinces except for Hainaut. 

 

Table 4.3 : Between-herd apparent prevalence (AP) of porcine toxoplasmosis per 

province. 

 

  TLA 
 

GRA7  

 pos/tested* AP (95%CI) Pos/tested* AP (95%CI) 

Flanders 
  

  

Antwerp 3/14 0.21 (0.05–0.51) 7/14 0.50 (0.23–0.77) 

East Flanders 15/39 0.38 (0.23–0.55) 3/39 0.08 (0.02–0.21) 

Flemish Brabant 0/3 0.00 (0.00–0.71) 1/3 0.33 (0.01–0.91) 

Limburg 2/7 0.29 (0.04–0.71) 1/7 0.14 (0.00–0.58) 

West Flanders 22/88 0.25 (0.16–0.35) 26/88 0.30 (0.20–0.40) 

Walloon Region     

Hainaut 17/19 0.89 (0.67–0.99) 19/19 1.00 (0.82–1.00) 

Liège 23/25 0.92 (0.74–0.99) 20/25 0.80 (0.59–0.93) 

Luxembourg 20/21 0.95 (0.76–1.00) 15/21 0.71 (0.48–0.89) 

Namur 16/17 0.94 (0.71–1.00) 15/17 0.88 (0.64–0.99) 

Walloon Brabant 17/18 0.94 (0.73–1.00) 12/18 0.67 (0.41–0.87) 

* positives in ELISA/number of tested serum samples 
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4.4.2 True prevalence 

For both regions, convergence was achieved. Model estimates are listed in Table 4.4. 

In Flanders, the true between-herd prevalence was 4% (1%–10%), while the average 

true within-herd prevalence reached 33% (15%–55%). In Wallonia, on the other hand, 

both parameters were significantly higher, with a true between-herd prevalence of 73% 

(59%–85%) and an average true within-herd prevalence of 89% (82%–96%). In both 

regions, and in Flanders in particular, there tended to be a negative correlation between 

pairwise test results for infected animals. 

 

Table 4.4 : Model estimates (mean and 95% uncertainty interval).  

 

Variable Flanders Wallonia P-value 

True between-herd prevalence (𝜏) 0.04 (0.01–0.10) 0.73 (0.59–0.85) <0.001 

True within-herd prevalence of 

infected herds (𝜇) 

0.33 (0.15–0.55) 0.89 (0.82–0.96) <0.001 

True within-herd prevalence 

across all herds (𝜏 ∗ 𝜇) 

0.01 (0.00–0.02) 0.65 (0.52–0.76) <0.001 

Sensitivity, TLA-ELISA (𝑆𝐸1) 0.87 (0.76–0.95) 0.92 (0.86–0.97) 0.161 

Sensitivity, GRA7-ELISA (𝑆𝐸2) 0.83 (0.77–0.89) 0.86 (0.81–0.90) 0.038 

Specificity, TLA-ELISA (𝑆𝑃1) 0.96 (0.95–0.97) 0.90 (0.85–0.95) <0.001 

Specificity, GRA7-ELISA (𝑆𝑃2) 0.97 (0.96–0.98) 0.61 (0.52–0.69) <0.001 

Covariance between both tests for 

infected animals (𝑎) 

-0.16 (-0.25–-0.01) -0.03 (-0.07–0.01) 0.093 

Covariance between both tests for 

non-infected animals (𝑏) 

0.01 (0.00–0.01) 0.01 (-0.01–0.04) 0.011 

 

Interestingly, the specificity of both tests was estimated to be significantly lower in the 

Walloon region than in Flanders. This was particularly the case for the specificity of the 

GRA7-ELISA, which reached an estimated value of only 61% (52%–69%) in the Walloon 

region, compared with an estimated value of 97% (96%–98%) in Flanders. 
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4.5 Discussion 

As the consumption of raw or undercooked wildlife and livestock meat containing T. 

gondii tissue cysts is one of the main sources of human infection with the parasite, 

together with the accidental ingestion of sporulated oocysts (Cook et al, 2000; 

Opsteegh et al., 2016b), the assessment of the prevalence of porcine toxoplasmosis is 

of pivotal importance for public health in countries, such as Belgium, where cultural 

feeding habits include regular consumption of pork or derived products. Since, to date, 

no former research has been performed to estimate the infection rate of T. gondii of 

conventionally raised Belgian pigs, we conducted a study to determine both the 

apparent and true prevalence in herds distributed in the entire country. 

In the present study, a GRA-7-specific as well as a TLA-specific antibody ELISA were 

used to determine the apparent prevalence of toxoplasmosis among swine in Flanders 

and Wallonia, and to estimate the true prevalence in a Bayesian framework. The 

outcomes of this research indicate a significant difference in infection levels between 

both regions. When comparing the results of the apparent prevalence, significant 

differences were observed for the total, between-herd, and within-herd prevalence 

estimates. These discrepancies can be explained by the different farm management 

practices. Indeed, the farms in the Flemish region tend to be very intensive and high 

output-orientated, while the pig farms in the Walloon region are in general 

characterized by housing of a smaller number of animals in less strictly confined 

establishments or outdoor. As mentioned earlier, according to the Belgian 

governmental agricultural service, there are 50 registered organic farms in Wallonia, 

compared to 15 Flemish farms, raising biologic pigs (data from 2015). However, there 

are possibly even more free-ranging pigs in Wallonia, since providing the outdoor 

access does not require a registration of the farm in the national database and 

obtaining an EU-label; consequently, these animal facilities could be included in our 

study as conventional farms likewise in Flanders. It is well described that free-ranging 

or organic pigs are exposed to a higher risk of acquired T. gondii infection than indoor 
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animals (Hill et al., 2010; Dubey et al., 2012b), therefore, the average prevalence of 

porcine toxoplasmosis in the Walloon region may even be higher than currently 

estimated. Based on preliminary results from an ongoing study, an apparent 

seroprevalence of 91% (1804 out of 1983) was found among fattening pigs in Wallonia 

when tested with the TLA-ELISA. Additionally, molecular detection of the parasitic DNA 

by PCR in hearts of 92 Walloon pigs from organic farms collected in the slaughterhouse, 

showed a positive result in 14 samples (15%). In contrast, serum samples of 233 

slaughter-age pigs from conventional Flemish herds gave a negative or a non-

consistent positive result in serological assays (IFA, TLA- and rGRA7 ELISA); in none of 

16 collected hearts the parasite could be detected by PCR (personal communication: 

Algaba, 2017).   

There is a need to improve the currently available serological assays, mostly used in 

large scales studies, in order to improve their sensitivity and specificity. Inconsistencies 

in the test results could be much affected by the various systemic (e.g. sampling 

strategy), technical (e.g., assay procedure, antigen used) or biological factors associated 

with infection such as, genetic strain, dose, viability of the pathogen, or simply by the 

diversity of the hosts and their immune efficiency (Greiner and Gardner, 2000). 

Looking at the test accuracy with the use of one particular antigen such as GRA7 or 

SAG1 indirect ELISA applied on serum samples, satisfactory sensitivity and specificity 

could be achieved (Jacobs et al., 1999; Beghetto et al., 2006; Pardini et al., 2012; Basso 

et al., 2013; Terkawi et al., 2013). High concentrations of these recombinant antigens 

can be relatively easily produced for use in serological assays. Additionally, the 

advantages of the recombinant antigenic proteins above the parasite-derived include 

the well-defined, precise and homogenised composition of the product, the possibility 

of defining the phase of the infection, and, eventually, reduction in time- and labour-

consumption in the production process (Holec-Gąsior, 2011).  

The GRA-family proteins are however, not exclusively expressed in T. gondii but they 

are shared by closely related parasites from the Sarcocystidae family such as 
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Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti. Although the 

well-established final and intermediate hosts for these parasites do not include pigs, it 

is inevitable that the omnivorous foraging behaviour of these animals could result in 

accidental exposure of the (oo)cysts and subsequently, to a predicted cross-reactivity 

in serological assays (Gondim et al., 2017). This may explain why in our study the 

estimated GRA-7 ELISA specificity was much lower in Wallonia than in Flanders, since 

there are more free-range, and organic pig herds in Wallonia.  

The isolation of antigens obtained from viable tachyzoites requires, conversely, tissue 

culture or mice inoculation. The latter is not favourable for the animal welfare, since 

the inoculated mice develop an acute infection with, among others, peritonitis and 

have to be sacrificed to collect the ascites containing tachyzoites. Additionally, the 

manipulation of the highly virulent strain is associated with biohazard for the operator 

and high mortality of the host and, thus, an excessive production cost. Moreover, the 

T. gondii lysate may contain residues from culturing or host cell’s material and its 

composition can vary significantly between laboratories or production rounds, what 

makes the assay difficult to standardize and evaluate (Liu et al., 2015).  

Despite that, the combined use of multiple parasitic antigens at a time in TLA, instead 

of single recombinant protein such as GRA7, should provide more certainty about the 

seroprevalence status or at least increase the chance of polyclonal antibodies detection 

by the higher number of available epitopes for the antibody binding (Basso et al., 2013; 

Bokken et al., 2015).  

Indeed, in this study the TLA-ELISA detected more frequently T. gondii-specific 

antibodies on both animal and farm level, irrespective of the geographical distribution 

in Belgium. Strikingly, individual samples could yield contradictory results when 

comparing both types of antigens, as multiple TLA-positive serum samples were 

detected in GRA7-negative farms, and conversely, in TLA-negative herds, some animals 

had antibodies against GRA7. This could be explained by different stages of the 

ongoing infection or genetic diversity of the circulating strains in Belgian pig 
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population. Alternatively, however, this may also have resulted from false positive test 

results on one or the other test.  

It is well established that the apparent prevalence values could unwillingly include a 

number of false positive and negative results, altering the true outcome. For this 

reason, a more exact estimation of the prevalence should be applied to compensate 

for this imperfectness, generated by the use of prior estimates and statistical modelling, 

such as Bayesian approach (Bokken et al., 2015).  

One of the constraints of the study was a limited number of sampled farms from 

Wallonia, together with a smaller number of samples per farm. Nonetheless, the 

obtained results showed a consistently high prevalence across and within herds in the 

Walloon region, supporting the validity of our results, and, as explained earlier, in 

correlation with recently obtained unpublished results, showing a very high 

seroprevalence in Walloon pigs.  

Since the detection methods still should be improved in terms of sensitivity, in 

meanwhile efforts should be made to focus on prevention of toxoplasmosis in swine 

herds. Rodent control is of pivotal importance to reduce the risk of T. gondii infection 

in pigs, together with the proper disposal of carcasses, since both measures are 

intended to avoid the ingestion of formerly infected tissues (Lehmann et al., 2003; Hill 

et al., 2010). More factors can, however, contribute to an increased risk of infection in 

pigs, such as the presence of the cats on farms and the free access to the stables, an 

increasing age of the animals, a small herd size, free-range or backyard pig raising 

rather than strict confinement housing, source of water, and feeding of unprocessed 

animal products such as goat whey to the pigs (Meerburg et al., 2012). The age of the 

animals at the slaughter has important implications for the transmission of the disease 

and the epidemiology of human toxoplasmosis. Indeed, conventionally raised pigs are 

slaughtered at 5-6 months of age (corresponding to the weight of approximately 110 

kg), and their meat is mainly intended for fresh products. Therefore, the younger the 

animals, the more chance that the meat will access the market unprocessed and fresh. 
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Opposite to that, the lower quality carcasses from multiparous sows or reproduction 

boars, will undergo processing, which is harmful for the parasite and, thus, safer for the 

consumer in terms of parasitic load (Dubey, 2009b).  

In conclusion, in the present study we could demonstrate that both GRA7 and TLA-

ELISA showed a significantly higher apparent total, within-herd and between-herd 

prevalence of anti-T. gondii IgG antibodies in Wallonia than in Flanders (P < 0.001). We 

also applied conventional and Bayesian approaches to estimate total, within-herd and 

between-herd prevalence of T. gondii in Flanders and Wallonia. The use of the TLA-

ELISA for the detection of T. gondii-specific antibodies resulted in a higher rate of 

positive samples on both animal and farm level. The specificity of both serological 

assays differed significantly between Flanders and Wallonia. These observations 

underscore the advantages and the constraints of the here applied serological tests, 

but also the value of statistical models, which take the limitations of the diverse assays 

into account as shown in our study.  
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Appendix A. JAGS code for estimating true within-herd and between-herd 

prevalence.  

model { 

  prob_se[1] <- SE[1] * SE[2] + a[1] 

  prob_se[2] <- SE[1] * (1 - SE[2]) - a[1] 

  prob_se[3] <- (1 - SE[1]) * SE[2] - a[1] 

  prob_se[4] <- (1 - SE[1]) * (1 - SE[2]) + a[1] 

  prob_sp[4] <- SP[1] * SP[2] + b[1] 

  prob_sp[3] <- SP[1] * (1 - SP[2]) - b[1] 

  prob_sp[2] <- (1 - SP[1]) * SP[2] - b[1] 

  prob_sp[1] <- (1 - SP[1]) * (1 - SP[2]) + b[1] 

  for (i in 1:4) { 

    constraint3[i] <- step(prob_se[i]) 

    O3[i] ~ dbern(constraint3[i]) 

    constraint4[i] <- step(prob_se[i] - 1) 

    O4[i] ~ dbern(constraint4[i]) 

    constraint5[i] <- step(prob_sp[i]) 

    O5[i] ~ dbern(constraint5[i]) 

    constraint6[i] <- step(prob_sp[i] - 1) 

    O6[i] ~ dbern(constraint6[i]) 

  } 

  for (j in 1:N) { 

    x[j, 1:4] ~ dmulti(AP[j, 1:4], n[j]) 

    for (i in 1:4) { 

      AP[j, i] <- TP[j] * prob_se[i] + (1 - TP[j]) * prob_sp[i] 

          constraint1[j, i] <- step(AP[j, i]) 

      O1[j, i] ~ dbern(constraint1[j, i]) 

      constraint2[j, i] <- step(AP[j, i] - 1) 

      O2[j, i] ~ dbern(constraint2[j, i]) 

    } 
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    tp.between[j] ~ dbern(tau) 

    tp.within[j] <- mu 

    TP[j] <- tp.between[j] * tp.within[j] 

  } 

  tau ~ dbeta(1, 1) 

  mu ~ dbeta(1, 1) 

  pi <- tau * mu 

  SE[1] ~ dbeta(42.57316, 5.61924)   # TLA 

  SP[1] ~ dbeta(99.69833, 6.194649)  # TLA 

  SE[2] ~ dbeta(119.0083, 22.97782)  # GRA7 

  SP[2] ~ dbeta(62.55002, 5.918684)  # GRA7 

  a[1] ~ dunif(-0.25, 0.25) 

  b[1] ~ dunif(-0.25, 0.25) 

} 
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Appendix B. The apparent prevalence per individual herd in Flanders (upper 

section) and Wallonia (lower section); T1: TLA, T2: GRA7. 

FARM PROVINCE IN FLANDERS T1+,T2+ T1+,T2- T1-,T2+ T1-,T2- 

1 Limburg 0 1 0 11 

2 West Flanders 0 0 0 12 

3 East Flanders 0 2 0 10 

4 East Flanders 0 2 0 10 

5 West Flanders 0 0 0 17 

6 West Flanders 0 0 0 12 

7 East Flanders 0 1 0 9 

8 West Flanders 0 0 1 11 

9 West Flanders 0 0 0 12 

10 West Flanders 0 0 1 11 

11 West Flanders 0 0 0 2 

12 West Flanders 1 0 0 13 

13 East Flanders 0 0 0 3 

14 East Flanders 0 0 0 8 

15 West Flanders 0 1 0 11 

16 West Flanders 0 0 0 12 

17 West Flanders 0 0 0 11 

18 East Flanders 0 0 0 12 

19 West Flanders 0 3 0 9 

20 West Flanders 1 0 0 11 

21 West Flanders 0 0 0 12 

22 East Flanders 0 0 0 15 

23 West Flanders 0 1 0 12 

24 West Flanders 0 1 0 9 

25 West Flanders 0 0 0 12 

26 West Flanders 0 0 0 12 

27 Limburg 0 0 1 11 

28 West Flanders 0 0 0 13 

29 East Flanders 0 0 0 11 

30 West Flanders 0 0 0 12 

31 East Flanders 0 1 0 12 

32 East Flanders 0 1 0 7 

33 East Flanders 0 0 0 12 

34 Flemish Brabant 0 0 0 11 

35 East Flanders 0 0 0 13 

36 West Flanders 1 3 0 5 

37 East Flanders 0 3 0 9 

38 East Flanders 0 0 0 12 

39 East Flanders 0 1 0 10 

40 East Flanders 0 0 0 12 
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41 West Flanders 0 3 0 9 

42 West Flanders 0 2 0 12 

43 East Flanders 0 1 0 11 

44 East Flanders 0 3 0 9 

45 East Flanders 0 3 0 9 

46 East Flanders 0 1 1 10 

47 East Flanders 0 0 0 12 

48 East Flanders 0 2 0 10 

49 East Flanders 0 0 0 10 

50 East Flanders 1 1 0 10 

51 East Flanders 0 1 0 9 

52 Antwerp 0 0 0 12 

53 East Flanders 0 0 0 12 

54 East Flanders 0 0 0 12 

55 East Flanders 0 0 1 11 

56 West Flanders 0 0 0 11 

57 West Flanders 0 0 0 13 

58 West Flanders 0 0 0 12 

59 West Flanders 0 0 1 11 

60 West Flanders 0 0 2 10 

61 West Flanders 0 0 1 11 

62 West Flanders 0 1 1 10 

63 West Flanders 0 0 0 12 

64 West Flanders 0 0 0 13 

65 West Flanders 0 0 0 12 

66 West Flanders 0 1 0 11 

67 West Flanders 0 0 0 12 

68 West Flanders 0 0 0 12 

69 West Flanders 0 0 1 11 

70 West Flanders 0 0 2 10 

71 West Flanders 0 1 0 11 

72 West Flanders 0 0 0 12 

73 West Flanders 0 0 0 12 

74 West Flanders 0 0 1 11 

75 East Flanders 0 0 0 12 

76 West Flanders 1 0 0 11 

77 East Flanders 0 0 0 12 

78 West Flanders 0 0 1 11 

79 West Flanders 0 0 0 12 

80 West Flanders 0 0 0 12 

81 West Flanders 0 0 0 12 

82 West Flanders 0 0 0 12 

83 West Flanders 0 0 0 12 

84 West Flanders 0 0 0 12 
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85 West Flanders 0 0 0 12 

86 West Flanders 0 1 0 12 

87 West Flanders 0 0 0 12 

88 West Flanders 0 0 1 10 

89 East Flanders 0 0 0 13 

90 West Flanders 0 0 0 12 

91 West Flanders 0 0 2 8 

92 East Flanders 0 0 0 10 

93 East Flanders 0 0 0 12 

94 West Flanders 0 0 0 12 

95 West Flanders 1 0 0 11 

96 West Flanders 0 0 0 12 

97 West Flanders 4 0 3 5 

98 West Flanders 0 0 2 10 

99 West Flanders 0 1 1 10 

100 West Flanders 1 0 1 11 

101 West Flanders 0 0 0 10 

102 West Flanders 0 0 0 9 

103 West Flanders 0 0 4 8 

104 West Flanders 0 0 0 14 

105 Flemish Brabant 0 0 1 11 

106 Antwerp 0 0 0 12 

107 Antwerp 0 0 0 12 

108 Antwerp 0 0 0 12 

109 Antwerp 0 0 3 7 

110 Antwerp 0 0 2 10 

111 Antwerp 0 0 4 8 

112 Antwerp 1 0 0 11 

113 East Flanders 0 0 0 12 

114 Antwerp 0 0 1 11 

115 West Flanders 0 0 0 12 

116 Antwerp 1 2 0 9 

117 East Flanders 0 1 0 11 

118 West Flanders 1 0 0 9 

119 West Flanders 0 0 0 5 

120 West Flanders 0 0 1 11 

121 Limburg 0 0 0 12 

122 Limburg 0 0 0 12 

123 West Flanders 0 0 0 14 

124 West Flanders 0 2 0 10 

125 West Flanders 0 0 0 12 

126 Antwerp 2 3 0 7 

127 West Flanders 0 0 0 12 

128 West Flanders 0 0 0 12 
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129 Flemish Brabant 0 0 0 12 

130 West Flanders 0 0 0 13 

131 Antwerp 0 0 0 11 

132 East Flanders 0 0 0 12 

133 West Flanders 1 0 0 11 

134 West Flanders 0 0 0 12 

135 East Flanders 0 0 0 12 

136 Antwerp 0 0 0 12 

137 Limburg 0 0 0 12 

138 West Flanders 0 0 0 12 

139 West Flanders 0 1 0 11 

140 West Flanders 0 0 0 12 

141 Limburg 0 3 0 9 

142 West Flanders 0 0 0 12 

143 Antwerp 0 0 0 12 

144 West Flanders 0 0 1 11 

145 East Flanders 0 0 0 12 

146 East Flanders 0 0 0 12 

147 West Flanders 0 0 0 12 

148 West Flanders 0 0 0 12 

149 Limburg 0 0 0 12 

150 West Flanders 0 0 0 12 

151 West Flanders 0 0 0 12 

 

FARM PROVINCE IN WALLONIA T1+,T2+ T1+,T2- T1-,T2+ T1-,T2- 

1 Namur 5 0 0 0 

2 Luxembourg 4 0 1 0 

3 Walloon Brabant 2 2 0 0 

4 Liège 4 0 1 0 

5 Namur 2 0 1 0 

6 Luxembourg 4 1 0 0 

7 Walloon Brabant 0 0 4 1 

8 Liège 1 2 0 2 

9 Hainaut 5 0 0 0 

10 Hainaut 3 1 1 0 

11 Walloon Brabant 1 0 2 2 

12 Luxembourg 0 0 4 1 

13 Namur 0 0 5 0 

14 Luxembourg 1 0 4 0 

15 Liège 0 0 4 1 

16 Namur 0 1 2 2 

17 Walloon Brabant 2 0 3 0 

18 Namur 2 0 2 1 
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19 Liège 5 0 0 0 

20 Liège 2 3 0 0 

21 Hainaut 3 2 0 0 

22 Hainaut 4 1 0 0 

23 Liège 5 0 0 0 

24 Luxembourg 4 1 0 0 

25 Liège 1 4 0 0 

26 Walloon Brabant 2 2 0 1 

27 Namur 3 0 1 0 

28 Walloon Brabant 5 0 0 0 

29 Luxembourg 1 0 1 0 

30 Walloon Brabant 4 0 0 0 

31 Liège 3 1 1 0 

32 Luxembourg 4 1 0 0 

33 Namur 4 0 0 1 

34 Walloon Brabant 5 0 0 0 

35 Luxembourg 5 0 0 0 

36 Namur 5 0 0 0 

37 Namur 4 1 0 0 

38 Luxembourg 4 0 1 0 

39 Liège 0 0 3 2 

40 Liège 4 0 1 0 

41 Namur 3 1 1 0 

42 Luxembourg 5 0 0 0 

43 Hainaut 4 0 1 0 

44 Hainaut 4 0 1 0 

45 Hainaut 1 0 3 1 

46 Hainaut 0 1 1 3 

47 Hainaut 0 0 3 2 

48 Hainaut 0 0 5 0 

49 Walloon Brabant 2 0 2 1 

50 Walloon Brabant 0 5 0 0 

51 Liège 0 5 0 0 

52 Walloon Brabant 2 3 0 0 

53 Luxembourg 0 5 0 0 

54 Liège 0 3 0 2 

55 Liège 1 2 0 2 

56 Walloon Brabant 2 1 0 2 

57 Hainaut 1 1 0 3 

58 Hainaut 2 1 0 2 

59 Hainaut 1 4 0 0 

60 Hainaut 3 1 0 1 

61 Hainaut 0 1 1 3 

62 Luxembourg 0 4 0 1 
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63 Namur 5 0 0 0 

64 Liège 0 3 0 1 

65 Namur 0 3 0 2 

66 Luxembourg 0 3 0 2 

67 Liège 1 4 0 0 

68 Liège 0 5 0 0 

69 Liège 1 3 0 1 

70 Liège 1 1 0 3 

71 Liège 4 1 0 0 

72 Liège 1 4 0 0 

73 Liège 5 0 0 0 

74 Liège 3 2 0 0 

75 Liège 1 3 0 1 

76 Liège 1 3 0 1 

77 Hainaut 3 2 0 0 

78 Hainaut 3 2 0 0 

79 Hainaut 1 2 0 2 

80 Hainaut 2 3 0 0 

81 Walloon Brabant 0 5 0 0 

82 Walloon Brabant 1 4 0 0 

83 Walloon Brabant 0 2 0 3 

84 Walloon Brabant 0 2 0 2 

85 Walloon Brabant 0 3 0 2 

86 Walloon Brabant 0 1 0 4 

87 Liège 0 4 0 1 

88 Luxembourg 2 2 0 1 

89 Luxembourg 0 5 0 0 

90 Luxembourg 0 2 0 3 

91 Luxembourg 0 2 0 3 

92 Luxembourg 3 2 0 0 

93 Luxembourg 1 3 1 0 

94 Luxembourg 3 2 0 0 

95 Luxembourg 2 2 0 1 

96 Namur 5 0 0 0 

97 Namur 0 5 0 0 

98 Namur 4 1 0 0 

99 Namur 1 4 0 0 

100 Namur 3 2 0 0 
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 5.1 Abstract 

Livestock animals are a potential risk for transmission of toxoplasmosis to humans. In 

particular, pork is considered an important source of infection, since it is often 

consumed undercooked, and processed in many meat-derived food products. In the 

current study, IFN-γ (type 1 response), IL-4 (type 2 response) and IL-10 mRNA (anti-

inflammatory response) expression by blood mononuclear cells, and the serum 

antibody responses against Toxoplasma gondii total lysate antigen, recombinant GRA1, 

rGRA7, rMIC3 and rEC2, a chimeric antigen composed of MIC2, MIC3 and SAG1, were 

studied in pigs two months upon an oral T. gondii strain IPB-Gangji inoculation. 

Additionally, the parasite distribution in heart, brain and two skeletal muscles was 

evaluated. Surprisingly, from the five antigens included to study the humoral response, 

only rGRA7-specific antibodies could be demonstrated. The cytokine expression was 

exclusively elevated for IFN-γ, whereas it remained beyond the detection level for IL-4 

and IL-10. Although the viable parasite and its DNA could be demonstrated in all the 

porcine samples tissues by both bio-assay and qPCR, the results indicate that heart 

could be an important target tissue to demonstrate the presence of T. gondii infection 

in pigs.  

5.2 Introduction 

T. gondii, an obligate intracellular protozoan parasite, is the cause of the most common 

parasitic zoonosis worldwide (Tenter et al., 2000). By estimation, at least one third of 

the world population has been infected and shows detectable levels of anti-T. gondii 

specific antibodies (Denkers and Gazzinelli, 1998; Montoya and Liesenfeld, 2004). 

Livestock animals are a potential risk for transmission of T. gondii infection to humans. 

Consumption of raw or undercooked meat has been regarded as a major route of 

infection in many countries (Cook et al., 2000; Kijlstra and Jongert, 2008). Although the 

seroprevalence in pigs is very low in European countries (Kijlstra et al., 2004; Guo et al., 
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2015b), pork still remains an important source of foodborne toxoplasmosis. The reason 

for this statement is derived from the fact that pork is often consumed undercooked 

or processed into different products, reaching even a broader range of potential 

consumers.  

Following oral ingestion of oocysts or tissue cysts, the parasite can establish a chronic 

infection in animals and humans. There, the parasite transforms into tachyzoites, which 

invade the small intestine and rapidly replicate in the epithelial cells. Simultaneously, 

tachyzoites successfully spread to other gut associated tissues. This is accompanied 

with the induction of cellular and humoral immune responses. The involvement of both 

the innate and adaptive immune system has been broadly described (Miller et al., 2009; 

Gazzinelli et al., 2014; Sturge and Yarovinsky, 2014). Briefly, cellular responses are 

initially associated with local and systemic IFN-γ production by Natural Killer cells, 

immediately followed by the release of IL-2 by T-lymphocytes and IL-12 by dendritic 

cells (DC’s). In the subacute and chronic phase of the infection the IFN-γ production is 

taken over by the CD4+ and CD8+ T-lymphocytes. These T-cell responses have a dual 

function: they are necessary for the host to control the infection and survive from acute 

toxoplasmosis, and as the result the tachyzoites undergo a stage conversion towards 

the bradyzoites, which successfully escape the immune system and persists in a cyst 

form in the host tissues (Denkers and Gazzinelli, 1998). On average, tissue cysts appear 

7–10 days (d) post infection in visceral organs such as lungs, liver and kidneys, and 

predominantly in the central nervous system and heart and skeletal muscle tissues, 

where they persist for the entire host’s life (Black and Boothroyd, 2000). 

Since the parasite becomes undetectable in most intestinal and systemic lymphoid 

tissues around 3 weeks post infection (wpi), Verhelst et al., (2014) postulated that this 

is the result of clearance of the parasite from these tissues by an immune response. 

Additionally, previous study has shown that the majority of the skeletal muscles shows 

a decreased viability of the cysts, and a diminished amount of the parasitic DNA 6 
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months post infection (mpi), as compared to a group of animals sampled at 6 wpi 

(Verhelst et al., 2011).  

The objectives of the present study were to determine the distribution of the parasite 

in different tissues at 6 wpi, and to assess the status of the adaptive immune response 

in the subacute phase at 2–6 wpi, which is shortly after the parasite left the intestinal 

tissues. Furthermore, we focused on the cytokine production profile and interaction 

with different antigens to obtain information on the optimal antigen target(s) for 

serological diagnosis of the infection in pigs.  

5.3 Material and methods 

5.3.1. T. gondii strains 

T. gondii IPB-Gangji (IPB-G) and RH strains are routinely maintained in the National 

Reference Laboratory for Toxoplasmosis (Scientific Institute for Public Health, Brussels, 

Belgium) by passage in Swiss female mice, as approved by the Ethical Committee (nr 

20140704-01) and conform the European legislation (2010/63/EU). The strain IPB-G, 

originally isolated from the placenta of a congenitally infected baby and was named 

after its family name, belongs to a mixed I-II type and shows a high virulence in mice 

(Vercammen et al., 1998; Ajzenberg et al., 2002). The tissue cysts of T. gondii were 

harvested from the brains of chronically infected Swiss mice and counted under a 

contrast-phase microscope. The brain tissue homogenates were diluted in PBS at a 

concentration of 300 cysts/ml and were used as inoculum for the infection experiments 

in pigs. 

The RH is a highly virulent type I strain, causing acute toxoplasmosis in Swiss mice. The 

strain is maintained by passage every 3-5 days by the collection of the ascites 

containing tachyzoites from the intraperitoneal cavity. T. gondii total lysate antigen 

(TLA) from tachyzoites of the RH-strain was prepared as previously described (Jongert 

et al., 2007). Briefly, the tachyzoites suspension in PBS was subsequently washed, 
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centrifuged and filtrated through a 5 µm syringe filter (MilleX®SV, Merck KGaA, 

Darmstadt, Germany), followed by lysis via alternating sonication with cooling cycles 

using an Ultrasonic disintegrator (MSE, Leicester, United Kingdom). The protein content 

of the lysate was determined with the bicinchoninic acid (BCA) reaction (Thermo 

Scientific Pierce BCA protein Assay Kit, Erembodegem, Belgium) and the TLA aliquots 

were stored at -20°C until further use.  

 

5.3.2. Animals 

Six indoor-born Belgian Landrace pigs were weaned at 21 d and housed in isolation 

units (Biosafety permit nr: AMV/11062013/SBB219.2013/0145) at the Faculty of 

Veterinary Medicine, Ghent University, Belgium. The animals were T. gondii-specific IgM 

and IgG negative, as determined by IFA. Five animals were orally inoculated at 4 weeks 

of age with 3000 tissue cysts of the IPB-G strain. The remaining pig served as negative 

control and was given orally a brain homogenate from a non-infected mouse. All pigs 

were bled weekly from infection till euthanasia at 6 wpi. Euthanasia was performed by 

intravenous injection of an overdose sodium pentobarbital 20% (Kela, Hoogstraten, 

Belgium). Animal experimentation was performed with the prior approval of the Animal 

Ethical Committee of the faculties Veterinary Medicine and Bioscience Engineering at 

Ghent University (EC2007/103). 

 

5.3.3 Detection of parasites by bio-assay and real-time quantitative PCR (qPCR) 

In order to quantify and compare the presence of the parasite in the tissues of the 

infected animals, the number of bradyzoites was determined by real-time quantitative 

PCR (qPCR) in brain, heart, M. gastrocnemius and M. longissimus dorsi. After 

euthanasia of the pigs, 100 g samples of each tissue were collected from each animal 

for detection of parasites by bioassay and quantification by qPCR. Hereto, the tissues 

were homogenized in 15 ml 0.9% NaCl, and the suspensions were incubated 1–2 h in 
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a 250 ml acidic pepsin solution (0.8 g l−1pepsin and 7 ml l−1HCl) at 37°C. Thereafter 

the suspensions were filtered, centrifuged at 1180 × g during 20 min, and the pellets 

were resuspended in 5 ml PBS with 0.04% gentamicin. A small aliquot (200 µl) of the 

pellet was collected for the qPCR, while the rest was used for the bioassay. For the 

latter, 5 mice were intraperitoneally inoculated with 1 ml tissue suspension to evaluate 

the infectivity of the tissues. Lungs and brains of mice that died from acute 

toxoplasmosis were examined for T. gondii cysts by phase-contrast microscopy and for 

the parasitic DNA by qPCR (Verhelst et al., 2011). From the surviving mice, serum was 

collected at day 45 pi for T. gondii-specific antibody detection with the IFA. Their brain 

tissues were sampled and processed for demonstrating T. gondii infection by qPCR as 

described by Kijlstra et al. (2008) and Rosenberg et al. (2009). For qPCR, DNA was 

extracted with the QIAamp DNAMini kit (Qiagen GMBH, Hilden, Germany) from 85 µl 

of tissue suspension, according to manufacturer’s instructions. As a reference for the 

quantification of T. gondii parasites, two standard lines of 10-fold dilutions were used: 

one with a counted number of RH-strain tachyzoites, and one with a counted number 

of cultured pig kidney cells (SK-6) as described previously (Rosenberg et al., 2009). DNA 

was tested by duplex Taqman-based qPCR on a BioRad iCycler (Biorad, Hercules, CA) 

using the T. gondii repeat element (AF146527) as the first target. The second target was 

based on the ribosomal 18S rDNA of the host cells. The reaction was performed as 

described by Kijlstra et al. (2008). 

 

5.3.4 Indirect immunofluorescence assay 

The presence of IgM and IgG antibodies against T. gondii in sera of the weaned piglets 

was evaluated by the IFA. Fifty  microliter of a 1/50 in PBS diluted serum sample was 

applied for 30 min at 37°C on a slide coated with formalin-treated tachyzoites from the 

RH-strain (Toxo-Spot IF, Bio-Mérieux, Marcy-l’Etoile, France). Subsequently, the slides 

were washed with PBS and incubated for 30 min at 37°C with 30 µl of 1/50 in PBS-
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Evans Blue diluted fluorescein isothiocyanate (FITC) conjugated anti-pig IgM or anti-

pig IgG (KPL, MD, USA). After washing with PBS and distilled water, and drying at 37°C, 

the slides were read with a fluorescence microscope (Carl Zeiss, Germany). The cut-off 

read-out of the fluorescence test was established with T. gondii seronegative and 

seropositive porcine reference sera at 1/50 dilution. For detection of seroconversion in 

the mouse bio-assay, sera from these mice were tested at a 1/25 dilution, and a 

secondary Alexa 488 anti-mouse IgG antibody (Invitrogen, Merelbeke, Belgium) (1/500) 

was used as the conjugate. 

 

5.3.5 Purification of recombinant antigens 

Recombinant GRA1, rGRA7 and rEC2 were purified as described previously (Bivas-

Benita et al., 2003; Jongert et al., 2007 and 2008). The mic3234–307 fragment was amplified 

from pcEC2 with the forward primer: 5’ GCGCGGATCCCTCCCCCAGGATGCCATT 3’and 

the reverse primer: 5’ GCGCGGATCCAGGACTGGATGTCATGCC 3’. The amplicon was 

purified with the PCR purification kit (QIAGEN GmbH, Hilden, Germany) and digested 

overnight with the enzymes BamHI and HindIII. Further, it was ligated into pQE80 

expression vector (QIAGEN GmbH, Hilden, Germany). A clone was identified by colony 

PCR using the same primers, and sequencing confirmed the presence of mic3234–307. 

Additionally, the expression of rMIC3234–307 was also confirmed by SDS-PAGE and 

Western blot with serum from infected mice. The his-tagged rMIC3234–307 was produced 

at large scale and purified according to a protocol described previously by Bivas-Benita 

et al. (2003). 

 

5.3.6 Antibody ELISA 

Simultaneously, the total antigen-specific IgM and IgG antibodies were detected via 

ELISA. Hereto, Nunc Polysorb™ immunoplates (Life Technologies, Ghent, Belgium) 
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were coated for 2 h at 37°C with TLA, rGRA1, rGRA7, rEC2 or MIC3 at a concentration 

of 10 µg ml/ml coating bicarbonate buffer (pH 9.7). 

In subsequent steps, plates were blocked overnight at 4°C in PBS supplemented with 

0.2% Tween®80; further, they were incubated for 1 h at 37°C with porcine serum 

diluted 1/50 in PBS and for 1 h at 37°C with HRP-conjugated rabbit anti-porcine 

gamma heavy chain antibodies (IgG; 1/1000) (Serotec, Belgium). Between each step, 

plates were thoroughly washed with PBS 0.2% Tween®20. Finally, a substrate o-

phenylenediamine dihydrochloride tablet (Sigma Fast; Sigma) in H2O2 solution was 

added. The reaction was stopped by addition of 2 N sulfuric acid (H2SO4), and the 

absorbance was read at 450 nm in aniMARK Microplate reader (Biorad, Nazareth, 

Belgium). Positive and negative control sera were included on each plate. The cut-off 

value was calculated from the pre-immune sera (day 0) at a 1/50 dilution, with as cut-

off value the mean of the optical density OD450 + 3 × standard deviation (SD). The so 

obtained cut-off values were as follows: TLA: 0.095; rGRA1: 0.123; rGRA7: 0.146; 

rMIC3234–307: 0.136; rEC2: 0.07. 

 

5.3.7 Real-time quantitative PCR for porcine cytokines 

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 

centrifugation using Lymphoprep (Nycomed, Brussels, Belgium). Porcine lymphocytes 

were counted and resuspended at a concentration of 5 × 106 cells/ml, and kept at -

80°C in RLT buffer (Qiagen, Nazareth, Belgium) for later isolation of cytokine mRNA. 

mRNA was extracted using an RNeasy kit (Qiagen GMBH, Hilden, Germany). Reverse 

transcription into total cDNA was performed with the iScript kit (Biorad, Nazareth, 

Belgium), following the manufacturer’s protocol. The obtained single-stranded cDNA 

was diluted 100 times for amplification in qPCR. The qPCRs were set up in 96-well 

optical microtitre plates with 25 µl mixture of iQ SYBR Green Supermix (Bio-Rad, 
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Hercules, CA). The oligonucleotide primers used for the detection of IL-4, IL-10, IFN-γ, 

and the three housekeeping genes (glyceraldehyde 3-phosphate dehydrogenase or  

 

Table 5.1 : Oligonucleotide primers used in cytokine qPCR. 

Target Sequence 

IL-10 F: CCTGGGTTGCCAAGCCTT 

R: GCTTTGTAGACACCCCTCTCTT 
 

IL-4 F: CTGGTCTGCTTACTGGYATGTA 

 R: CTGTCAAGTCCGCYCAGGA  

   

IFN-γ 
F: GAGCCAAATTGTCTCCTTCTACTT 

R: CTGACTTCTCTTCCGCTTTCT 

   

GAPDH 
F: CCATCACTGCCACCCAGAA 

R: CAGGGATGACCTTGCCCA 

   

Β-actin 
F: GGCATCCTGACCCTCAAGTA 

R: GCCTCGGTCAGCAGCA 

  

r18S 
F: GTTGATTAAGTCCCTGCCCTTT 

R: GATAGTCAAGTTCGACCGTCTT 

  

 

GAPDH, β-actin and 18S rDNA) are presented in Table 5.1. Each sample of cDNA was 

tested in duplicate, and non-template reactions were included in the runs as an internal 

control. For each sample, the target gene was amplified in parallel with the three 

housekeeping control genes in separate wells. Amplification conditions were identical 

for all genes: a first activating cycle of the Taq polymerase of 95°C for 2 min, followed 

by 45 cycles of 2 steps: 95°C for 15 sec and 60°C for 30 sec. qPCR data were analyzed 

using a mathematical model described by Vandesompele et al. (2002), based on the 

qPCR efficiencies and the mean threshold value (Ct) deviation between the sample and 

control group. The normalization was done relative to the geometric average of 

GADPH, r18S rDNA and β-actin genes, and data is represented as the normalized 
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cytokine gene expression compared to the geometric mean number of the 

housekeeping genes. 

 

5.3.8 Statistical analysis 

Statistical analysis of the parasite load, and antibody and cytokine response was 

performed using a one-way ANOVA Friedman test (GraphPad Prism). A p-value <0.05 

was considered statistically significant. 

5.4 Results 

5.4.1 Isolation of parasites by bio-assay and detection of bradyzoites by qPCR. 

The viable parasites were isolated by bio-assay from all tested tissues from all the 

inoculated animals at the time point 6 wpi, except from the M. gastrocnemius of one 

pig (Table 5.2). These results were confirmed by qPCR on the heart tissue, but detection 

of parasite DNA seems to be less sensitive than bio-assay, since 1, 2 and 2 out of 5 

animals were found negative for brain, M. gastrocnemius and M. longissimus dorsi, 

respectively. 

 

Table 5.2 : Infectivity of porcine tissues, determined by bio-assay and detection of 

bradyzoites by qPCR.   

 

Tissues brain heart M. gastrocnemius M. longissimus dorsi 

Assay 

(positives/tested) 
 

   

bio-assay 5/5    5/5 4/5 5/5 

qPCR  4/5    5/5 3/5 3/5 

* positives/number of tested tissues 
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5.4.2 Quantification of the parasite load in tissues at euthanasia 

In the euthanized pigs at 6 wpi the parasite load was determined in the positive animals 

in the diminishing order as follows: M. longissimus dorsi: 112.7 ± 79.9, brain: 80.8 ± 

51.3 and heart 64.1 ± 36.0 bradyzoites per 108 porcine cells (Figure 5.1). The parasites 

were clearly less prominent in the M. gastrocnemius, with the parasite load of only 12.0 

± 6.2 bradyzoites per 108 cells. The negative control animals remained T. gondii-free in 

all tissues (data not shown). 

 

 
 

 

Figure 5.1 : Bradyzoite load in tissues of pigs orally infected with T. gondii IPB-G strain, 

determined by qPCR. The number of bradyzoites per 108 porcine cells is presented in 

the following tissues: brain (Br), heart (Ha), M. gastrocnemius (Ga), M. longissimus dorsi 

(LD). 

 

5.4.3 Humoral response after infection 

In IFA, all infected pigs were found seropositive from 2 wpi for both IgG and IgM. Then 

a gradual decline in IgM positive animals was observed (Table 5.3). The IgM 

disappeared by week 6 pi, while the IgG still clearly persisted in all infected animals.  
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Table 5.3 : Detection of T. gondii specific IgM and IgG by IFA in pigs experimentally 

infected with the IPB-G strain. 

 

Weeks pi (wpi)  0 1 2 3 4 5 6 

  
   

IgM 0/5 nd 5/5 4/5 3/5 2/5 0/5 

IgG  0/5 nd 5/5 3/3 4/5 5/5 5/5 

nd: not determined 

By indirect antigen ELISA, the profile of the humoral responses against the different 

recombinant antigens and TLA were followed (Figure 5.2). The IgG against rGRA7 was 

detected in three animals at 2 wpi. This initially moderate antibody response gradually 

increased so that all animals seroconverted against rGRA7 at 4 wpi. The rGRA7-specific 

OD value showed a moderate decline at 5 wpi, followed by a significant increase at the 

next time point. For the other antigens either no (TLA and rEC2) or a temporary early 

but very weak response was observed (in 2 out of 5 at 2 wpi for rMIC3234–307; in 1 out of 

5 pigs at 2 wpi for rGRA1). In general, at 6 wpi, a tendency for an increase in the 

antibody production against the majority of the antigens (rGRA7, TLA, rMIC3234–307) 

could be seen, except for rGRA1, even though values mostly remained below the cut-

off. 
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Figure 5.2 : Kinetics of the antibody responses against TLA, rGRA1, rGRA7, rEC2 and 

rMIC3234–307 presented as OD-values for each experimentally infected pig with T. gondii 

IPB-G strain. The solid lines present the mean OD-value at each time point. The dashed 

lines indicate the cut-off values defined with the average + 3x SD of the pre-immune 

sera. ** and *** present significance differences at P<0.01 and P<0.001, respectively, in 

comparison with the pre-immune sera. 

 

 

A control pig infected orally with T. gondii negative brain tissue did not become 

seropositive in IFA or the ELISAs at any time (data not shown). 
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5.4.4 Kinetics of cytokine responses in peripheral blood mononuclear cells 

In order to evaluate whether a T. gondii infection could increase IFN-γ, IL-10 and/or IL-

4 mRNA expression levels in the blood, the PBMCs were isolated on a weekly basis until 

5 wpi. Relative normalized IFN-γ, IL-10 and IL-4 mRNA levels were determined by qPCR. 

The cytokine levels of the control animal remained stable during the whole study 

period and served as a reference. 

Based on the obtained results, IFN-γ expression clearly increased in a time-dependent 

manner starting from 2 wpi. The altitude of this response and the number of 

responding animals gradually increased from 1 out of 5 IFA-seropositive animals at 2 

wpi to 4 out of 5 seropositive animals at 4 wpi. Thereafter, the IFN-γ mRNA expression 

declined in most animals but remained above the initial level at 2 wpi in 4 of 5 animals.  

Opposite to IFN-γ, no gradual increase in IL-10 and IL-4 mRNA levels occurred, 

however, the expression of both cytokines was already higher at the first time point 2 

wpi than for IFN-γ. Overall, the IL-10 mRNA levels tended to decrease in amount and 

in number of animals, after a temporary elevation in 2-3 out of 5 animals at 3 wpi. 

Interleukine-4, on the other hand, showed a rather stable expression, when comparing 

the group averages per time point, but a significant higher amount of cytokine mRNA 

was measured in 1 out of 5 animals at all time points.   
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Figure 5.3 : Relative normalized IL-10, IFN-gamma and IL-4 cytokine expression by 

PBMCs from pigs orally infected with T. gondii IPB-G are presented in scatter dot plots. 

* presents significant differences at P<0.05 in comparison with values at 2 wpi. 

 

5.5 Discussion 

Antibodies to T. gondii have been found in nearly all mammal and avian species 

worldwide (Dubey, 2010). The infection rate in humans can be as high as >80%, 

depending on the geographical location, and is strictly associated with the prevalence 

of this parasite in domestic animals and livestock. Corresponding to that, different 

species can serve as the source of the foodborne infection for humans, among which 

pigs (Guo et al., 2015a and 2015b). Although a low to moderate (0.0 - 36%) prevalence 

was estimated on conventional pig farms in Europe and USA, the exact transmission 

rate is difficult to estimate (Kijlstra et al., 2004; Bartova et al., 2011; Guo et al., 2015a). 

Consequently, a vaccine that could prevent infection in livestock would not only have 
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a high economical value for some species such as small ruminants, but it could also 

diminish the risk of the infection in humans, reducing the short- and long- term effects 

for human health.   

Therefore, we studied previously different immune parameters in 5-week-old 

seronegative pigs upon infection with 3000 tissue cysts of T. gondii IPB-G strain, and 

the corresponding infectivity and parasite load in different edible tissues (Verhelst et 

al., 2011). One group of five animals was maintained for 6 weeks and the second group 

of three pigs for 6 months. All pigs were sampled weekly until the euthanasia at 6 wpi 

or 6 mpi, respectively. The cytokine mRNA expression in the blood, and antibody 

responses against recombinant T. gondii GRA1, GRA7, MIC3 proteins and a chimeric 

antigen EC2 encoding MIC2–MIC3–SAG1 were investigated. We observed that starting 

from 14 dpi an IFN-γ response was detected in the blood, with a comparable kinetic 

profile as the GRA7 antibody response. The latter occurred in both groups of infected 

animals and seemed to be indicative for the presence of the viable parasite in some 

tissues at euthanasia 6 mpi, as demonstrated by bio-assay. Strikingly, two of the 

sampled skeletal muscle tissues (M. gastrocnemius and M. longissimus dorsi) were 

found negative of infectious parasites 6 mpi, while the parasite was still detectable in 

brain and heart. This apparent clearance of the infection in several porcine tissues in a 

chronic infection model could change the risk assessment of meat borne toxoplasmosis 

for human health. The diminishing presence of the tachyzoite stage and the gradual 

appearance of the bradyzoite stage in tissue cysts at the same time, when the host’s 

immunity appears to build up, were already described by Denkers and Gazzinelli (1998). 

Based on their findings and the newly obtained results, we hypothesize that the 

changes in the number and/or distribution of the parasite in the tissues are correlated 

with certain immune parameters within the host. Therefore, the aims of this experiment 

included the study of the parasite’s dissemination in systemic tissues upon oral 

ingestion of T. gondii cysts. Further, the investigation of the immune responses such 

as, expression of the cytokine mRNA and antibody production against different 
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antigens in relation to bradyzoites’ load and viability, would elucidate more in detail 

the mechanisms of the host’s defense against acute and chronic T. gondii infection.  

It was previously described that the parasite load is not evenly distributed across tissues 

(Denkers and Gazzinelli, 1998; Dubey et al., 1998c). Bradyzoites were predominantly 

found in the central nervous system and heart but – depending on the host – also other 

tissues such as liver, diaphragm and skeletal muscles were infected (Denkers and 

Gazzinelli, 1998; Dubey et al., 1998c). In the current study the parasites were detected 

by bioassay and qPCR in the heart, brain, M. gastrocnemius and M. longissimus dorsi 

of the majority of the animals. The average parasite load was the lowest in M. 

gastrocnemius, followed by heart, brain and M. longissimus dorsi. Heart was 

consistently positive in all 5 infected animals in qPCR and in bioassay. Therefore, this 

tissue seems to be the most relevant to demonstrate the parasite’s presence in this 

phase of the infection. 

Referring to the humoral immune response, rGRA7 was the only of the 5 antigen 

preparations, against which antibodies occurred in all animals and which persisted till 

the end of the study. This is in line with previous findings in pigs (Verhelst et al., 2011). 

It is known that both humoral and cellular immune responses contribute to the host’s 

immune defense against T. gondii. Sustaining strong T helper 1 (Th1)-mediated 

immunity, characterized by the production of IFN-γ by CD4+ and CD8+ T cells, is crucial 

in preventing the emergence of and disease by T. gondii (Gazzinelli et al., 1993; Denkers, 

1999). The production of IL-4 by Th2 lymphocytes, in addition to innate cells such as 

mast cells, eosinophils, basophils or macrophages, is associated with the progression 

of the infection and with a reactivation of latent disease (Hope et al., 2005; Wynn, 2015). 

Interleukin-10, expressed mainly by the cells of the innate rather than adaptive immune 

system, among which Th2 T cells and CD4+CD25+FoxP3+ Treg cells, has been shown to 

downregulate acute inflammatory responses against this intracellular parasite, and to 

inhibit the IFN-γ production by CD8+ lymphocytes (Appelberg et al.,1992; Denkers, 

1999, Saraiva and O’garra, 2010). In our study, looking at changes in IFN-γ mRNA 
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expression in PBMCs isolated directly from blood, a clear increase was seen at 2 wpi, 

which remained present until the last sampling 6 wpi. In contrast, the IL-10 and IL-4 

mRNA expression did not show a consistent increase in all animals. This is in line with 

the Th1 type of response already described in sheep (Innes et al., 1995) and mice 

(Roberts et al., 1996).  

In conclusion, the results in this study demonstrate that the parasite is present in brain, 

heart and skeletal muscles of pigs at 6 wpi. The parasite was most consistently 

demonstrated in heart tissue with bioassay and qPCR, however, a skeletal tissue 

showed a lower parasite load. Previously our lab described a reduction in load in 

skeletal muscles  during the chronic phase of infection and suggested that this might 

be due to a possible clearance mechanism (Verhelst et al., 2011). Interestingly, the 

antibody response could only be observed against rGRA7 and not towards other 

recombinant antigens included in the testing. Nevertheless, all animals showed a clear 

IFN-γ response starting from 14 dpi, which might contribute to the overall reduction in 

the parasite load and the viability of T. gondii. As a future perspective, it will be 

interesting to determine if this Th1-type response persists in the animals in a chronic 

infection model, and to investigate the strain and dose effect on the same parameters 

as described here.  
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6.1 Abstract 

Toxoplasma gondii is a worldwide prevalent parasite of humans and animals. The global 

infection burden exceeds yearly one million disability-adjusted life years (DALY’s) in 

infected individuals. Therefore, effective preventive measures should be taken to 

decrease the risk of infection in humans. Although human toxoplasmosis is 

predominantly foodborne by ingestion of tissue cysts in meat from domestic animals 

such as pigs, the incidence risk is difficult to estimate due to the lack of screening of 

animals for infection and insights in location and persistence of the parasite in the 

tissues. Hence, experimental infections in pigs can provide more information on the 

risk for zoonosis based on the parasite burden in hazardous meat products intended 

for human consumption and on the immune responses induced by infection. In the 

present study, homo- and heterologous infection experiments with two distinct T. 

gondii strains (IPB-LR and IPB-Gangji) were performed. The humoral and cellular 

immune responses, the presence of viable parasites and the parasite load in edible 

meat samples were evaluated. In homologous infection experiments the parasite 

persistence was clearly strain-dependent and inversely correlated with the infection 

dose. The results strongly indicate a change in the amount of parasite DNA and viable 

cysts in porcine tissues over time. Heterologous challenge infections demonstrated 

that IPB-G strain could considerably reduce the parasite burden in the subsequent IPB-

LR infection. A strong, however, not protective humoral response was observed against 

GRA7 and TLA antigens upon inoculation with both strains. The in vitro IFN-γ 

production by TLA-stimulated PBMCs was correlated with the infection dose and 

predominantly brought about by CD3+CD4-CD8αbright T-lymphocytes. The described 

adaptive cellular and humoral immune responses in pigs are in line with the induced 

or natural infections in mice and humans. Previous studies underscored the 

heterogeneity of T. gondii strains and the corresponding virulence factors. These 

findings suggest the potential of the IPB-G strain to elicit a partially protective immune 

response and to reduce the parasite burden upon a challenge infection. The IPB-G 
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strain could be used as a promising tool in limiting the number of viable parasites in 

edible tissues and, hence, in lowering the risk for human toxoplasmosis. 

6.2 Introduction 

Toxoplasmosis is a parasitic infection caused by the intracellular protozoa Toxoplasma 

gondii. This parasite has a complex lifecycle and affects its definitive host as well as 

various intermediate hosts, among which domestic and wild animals and humans 

(Dubey, 2010).   

Several infection routes have been described for the different hosts of T. gondii. In 

humans, foodborne toxoplasmosis mainly results from the consumption of raw or 

undercooked meat from infected animals, like domestic pigs. The global prevalence of 

this parasite includes one third of the human population and as such represents one 

of the most common parasitic zoonosis worldwide (Tenter et al., 2000; Ajzenberg et al., 

2002; Aspinall et al., 2002; Bosch- Driessen et al., 2002; Kijlstra and Jongert, 2008; Innes, 

2010; Robert-Gagneux and Dardé, 2012; Torgerson and Mastroiacovo, 2013). 

Consequently, infection in human has a severe short- and long-term impact, ranging 

from congenital or adult toxoplasmosis in healthy individuals to T. gondii-induced 

encephalitis in immune-compromised patients. Therefore, numerous preventive 

measures are recommended in terms of meat processing or preparation, in an attempt 

to decrease the global infection burden in the human population. Especially, pork is 

often consumed undercooked and is processed in many other meat products, reaching 

on average 300 consumers per pig (Fehlhaber et al., 2002; Belluco et al., 2016). The data 

on the prevalence of T. gondii infection in pigs are not uniform and may vary per 

country or the farm management. Nevertheless, the estimated average prevalence in 

the pig population seems to be very low in European countries (2.2%) and the USA 

(2.7%), presumably due to a shift from small and less strictly confined to large scale 

facilities, implementing all-in-all-out or farrow-to-finish models (Hill et al., 2008; EFSA 

report, 2012; Guo et al., 2015b). However, the recent rise of organic or free-range 
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farming in order to improve animal welfare seems to contribute to an increase in 

infection rate in pig livestock and, as such, to the incidence of foodborne human 

toxoplasmosis (Kijlstra et al., 2004; Dubey et al., 2012b; EFSA report, 2012). The risk for 

humans to become infected by consumption of undercooked or raw pork is also not 

clear. The knowledge of the parasite persistence in edible tissues of naturally infected 

pigs is limited, as are the role of strain or dose in the parasite survival in the host.  

Nevertheless, several experimental data in pigs reported reduction in parasite burden 

in infected and subsequently heterologous challenged pigs, in which the choice of the 

strain had an important effect on the viability of the parasite (Solano Aguilar et al., 

2001; Dawson et al., 2004; Kringel et al., 2004; Dawson et al., 2005, Garcia et al., 2005; 

Verhelst et al., 2011; Verhelst et al., 2015). Despite the active role the different 

components of the host’s immune system play in the early stage of T. gondii infection, 

it remains a subject of discussion and ongoing research, whether the intermediate host 

can clear the tissues from the cysts on long term. It is noteworthy, however, that several 

studies in pigs notified reduced or undetectable counts of the parasite DNA in multiple 

porcine tissues, and a decline in viability of the cysts, as tested by bioassay in mice 

(Jongert et al., 2008; Verhelst et al., 2011; Burrells et al., 2015; Verhelst et al., 2015). 

Taking into account the lack of an obligatory screening of pigs or pork meat to prevent 

transmission to humans, knowledge on the pig as an intermediate host for T. gondii, 

and in particular strategies to reduce the amount of viable parasites in tissues, may 

contribute to diminishing the risk of zoonosis by consumption of porcine meat (EFSA, 

2007; EFSA 2012; Opsteegh et al., 2016b). In light of these data, the aim of this study 

was to confirm differences between T. gondii strains in persistence of the parasite in 

tissues of experimentally infected pigs and to relate the dose and strain to the immune 

responses in the pigs upon a single infection or a heterologous challenge. 
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6.3 Material and methods 

6.3.1. T. gondii strains 

Two T. gondii strains were used for the experimental infections: the IPB-Gangji (IPB-G) 

strain and the IPB-LR strain. The first one was isolated from the placenta of a patient 

with congenital toxoplasmosis and is highly virulent in mice. It produces a large number 

of tissue cysts and has an atypical mixed type I and type II genotype (Ajzenberg et al., 

2002). The latter, with the code name referring to the pig farm where it was initially 

isolated, belongs to genotype II, which is less pathogenic and commonly present in the 

European pig population (Dubey, 2009b; Dubey et al., 2012b). Both strains are 

maintained at the National Reference Laboratory for Toxoplasmosis (Scientific Institute 

for Public Health, Brussels, Belgium) by passage in Swiss female mice, since there is no 

alternative available to obtain a sufficient number of tissue cysts for the inoculation 

experiments than via bioassay, as approved by the Ethical Committee (nr 20140704-

01) and conform the European legislation (2010/63/EU). Tissue cysts from both strains 

were isolated from homogenized brain tissue, counted by phase-contrast microscopy 

and suspended in 10 ml of sterile phosphate buffered saline (PBS) solution at the 

desired concentration (700 cysts for the low dose and 6000 for the high dose). The 

animals were inoculated within 8 hours after cysts isolation. The inoculum for the 

negative control group was prepared identically from naive Swiss mice.  

 

6.3.2 Animals and experimental design 

Two-week-old Belgian Landrace piglets were tested for the presence of anti-T. gondii 

serum antibodies (IgM and IgG) with an indirect immunofluorescence assay (IFA) as 

described previously (Verhelst et al., 2015). For the infection experiments, 3-week-old 

newly weaned, seronegative piglets were selected and randomly assigned to 10 groups 

of 3 animals (Table 6.1). These groups were housed in isolation units (Biosafety permit 

nr: AMV/11062013/SBB219.2013/0145) at the Faculty of Veterinary Medicine, Ghent 
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University, Belgium. All experiments were approved by the Ethical Committee of the 

faculties Veterinary Medicine and Bioscience Engineering at Ghent University (EC 

2009/149).  

In a first experiment we aimed to study the effect of a low or high infection dose of 

two different T. gondii strains on the humoral and cellular immune responses and tissue 

cyst persistence until 120 days after inoculation (Table 6.1). In a second experiment we 

focused on the effect of a subsequent challenge with a heterologous strain at 60 dpi 

and the persistence of the parasite in the tissues at 120 dpi (Table 6.1). In study 3 we 

compared kinetics of the IFN-γ producing porcine T cell subsets following infection 

with high doses of the IPB-G or the IPB-LR strain until 98 dpi (Table 6.1). In each 

experiment the peripheral blood monomorphonuclear cells (PBMCs) were sampled at 

regular intervals for the detection of cytokine mRNA by qPCR, and for the 

quantification of the IFN-γ producing T cell subsets, respectively. At euthanasia, PBMCs 

and lymphocytes from the peripheral lymph nodes and spleen were isolated for further 

in vitro assays, whereas heart, diaphragm, skeletal muscles and brain were collected to 

determine the parasite load as explained further. The experimental timeline presenting 

the collected samples and the sampling intervals is shown in Figure 6.1.  
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Table 6.1 : Experimental design: G: IPB-G strain; LR: IPB-LR strain. Groups: a single low 

or high dose of the IPB-G strain (Glow and Ghigh); a single low or high dose of the IPB-LR 

strain (LRlow and LRhigh); a high dose of the IPB-G strain, followed 60 dpi by a high dose 

of the IPB-LR strain (Ghigh/LRhigh); a high dose of the IPB-G strain (Ghigh1/2t) 60 dpi; a high 

dose of the IPB-LR strain, followed 60 dpi by a high dose of the IPB-G strain 

(LRhigh/Ghigh); a control group for both infected groups (G+LRcltr). 

 

 

Study n° Strain Dose of Group Number Duration Heterologous   

tissue cysts  of animals (dpi)   challenge (y/n) 

       

1 G 700 Glow 3 120 no 

 G 6000 Ghigh 3 120 no 

 LR 700 LRlow 3 120 no 

 LR 6000 LRhigh 3 120 no 

       

       

2 G 6000 Ghigh/ LRhigh 3 120 yes (at 60 dpi) 

 G 6000 Ghigh1/2t 3 60 no  

 LR 6000 LRhigh/ Ghigh 3 120 yes (at 60 dpi) 

       

       

3 G 6000 Ghigh 3 98 no 

 LR 6000 LRhigh 3 98 no 

       

       

Control    / 0 G+LRcltr* 7        120 no 

       

*IPB-Gangi and IPB-LR control group 
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Figure 6.1 : The timeline of the experiments from the inoculation (day 0 dpi) until 

euthanasia (day 120 dpi). Exp: experiment; ● serum for IFA, GRA- and TLA-ELISA; ▲ 

PBMCs for the quantification of IFN-γ+ T-lymphocytes by flow cytometry ■ PBMCs for 

IFN-γ mRNA detection by qPCR.  

 

 

6.3.3 Humoral immune response 

For each experiment the seroconversion was monitored during the first two weeks after 

inoculation (wpi) by daily and subsequently weekly blood collection from the vena 

jugularis until 120 days post infection (dpi).  

 

Antibody ELISA’s with recombinant GRA7 and native TLA antigens 

As dense granule protein 7 (GRA7) is considered as a marker of an active infection, 

being expressed by all T. gondii stages, recombinant GRA7 is frequently used to 

demonstrate the immune response during acute and chronic toxoplasmosis in humans 

and animals (Jacobs et al., 1999). GRA7 was prepared as previously described (Jongert 

et al., 2007). Briefly, GRA7 was produced as a His-tagged fusion protein by Escherichia 

coli (E. coli) TOP 10 cells (Life Technologies, Ghent, Belgium) and purified under 

denaturing conditions (8 M urea, 0.1% SDS) using nickel-nitrilotriacetic acid (Ni-NTA) 
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chelate affinity column chromatography (Ni-NTA Superflow, Qiagen, Venlo, The 

Netherlands). GRA7 was then eluted from the Ni-NTA column using 250 mM imidazole 

and further purified by sequential dialysis steps reducing the urea and SDS 

concentration to 0.1 M and 0.01%, respectively. 

T. gondii total lysate antigen (TLA) from tachyzoites of the RH-strain was prepared as 

previously described (Jongert et al., 2007) in the biosafety level 2 laboratory (Biosafety 

permit nr: 415240), as approved by the Ethical Committee (nr 20140704-01)  at the 

National Reference Laboratory for Toxoplasmosis (Scientific Institute for Public Health, 

Brussels, Belgium).  TLA-based assays show a high reactivity due to a broad range of 

antigens in the lysate, however, differences in the production method can affect the 

composition of the lysate (Gamble et al., 2005; Ferra et al., 2015). Concisely, tachyzoites 

were diluted with PBS and then purified by differential centrifugation and filtration 

through a 5 µm syringe filter (MilleX®SV, Merck KGaA, Darmstadt, Germany). The 

tachyzoite suspension was then lysed by alternating sonication with cooling cycles 

using an Ultrasonic disintegrator (MSE, Leicester, United Kingdom). To evaluate the 

protein content of the lysate, the bicinchoninic acid (BCA) reaction (Thermo Scientific 

Pierce BCA protein Assay Kit, Erembodegem, Belgium) was used. Finally, the TLA was 

aliquoted and stored at -20°C until further use.  

Both TLA and GRA7 were used in indirect Enzyme-Linked Immunosorbent Assays 

(ELISA’s) at 10 µg/ml to detect T. gondii-specific IgM and IgG antibodies in serum 

samples diluted 1/50 with the goat anti-pig IgM- and IgG-Horse Radish Peroxidase 

(HRP) conjugate (Bethyl Laboratories Inc., Montgomery, Texas, USA), respectively, and 

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) as substrate-

chromogen solution (Verhelst et al., 2015). On each plate previously collected sera from 

one positive and three negative control animals as established by IgM and IgG 

immunofluorescence assay (IFA) were included and diluted 1/50 in dilution buffer (0.05 

% Tween-20 in PBS). The absorbance was measured at 405 nm (TECAN Spectra Fluor, 

Tecan Group Ltd., Männedorf, Switzerland) and the obtained data were analysed in 
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Microsoft Excel. Serum samples from infected animals were considered positive when 

exceeding the cut-off value calculated using the formula: mean OD405 negative controls 

+ 3 x its standard deviation (SD).  

Immunofluorescence assay 

The presence of IgM and IgG antibodies against T. gondii was also evaluated by IFA 

using slides coated with formalin-fixed tachyzoites from the T. gondii RH-strain (Toxo-

Spot IF, Biomérieux, Marcy-l’Etoile, France). Briefly, serum samples, diluted 1/50 in PBS, 

were applied to the slides for 30 min at 37°C, followed by washing with PBS. After 

drying, a second incubation with fluorescein isothiocyanate (FITC)-conjugated goat 

anti-swine IgM(µ) or IgG (H+L) (KPL, Maryland, USA) antibody (diluted 1/25 in PBS with 

Evans Blue as counter dye) was performed for 30 min at 37°C. After washing, drying 

and mounting with PBS-buffered glycerol, the slides were observed by fluorescence 

microscopy (Carl Zeiss, Germany). The cut-off read-out was established with positive 

and negative reference sera at a 1/50 dilution.  

 

6.3.4 Detection of the cellular immune response 

PBMCs were isolated from 20 ml heparinized blood (LEO Pharma, Ballerup, Denmark) 

by density gradient centrifugation (800 × g at 18°C, 25 min) using LymphoprepTM 

(Axis-Shield, Oslo, Norway) (Sonck et al., 2010). Subsequently, the cell pellets were 

resuspended in leukocyte medium (RPMI-1640 (GIBCO BRL, Life Technologies, 

Merelbeke, Belgium), supplemented with fetal calf serum (10%) (Greiner, Bio-One, 

Merelbeke Belgium), non-essential amino acids (100 mM) (Gibco), Na-pyruvate 

(100 μg/ml), L-glutamine (292 μg/ml) (Gibco), penicillin (100 IU/ml) (Gibco), 

streptomycin (100 μg/ml) (Gibco) and kanamycin (100 μg/ml) (Gibco)). The cells 

(106 cells/well) were cultured for 6 and 72 h upon stimulation with either TLA (10 µg/ml) 

as a heterologous challenge or the mitogen concanavalin A (ConA, Sigma-Aldrich, USA; 

5 µg/ml) as a positive control.   
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Cytokine mRNA quantification by qPCR 

After 6 h of incubation with TLA, ConA or medium, the cells were lysed by adding 350 

μl of RLT-buffer (Qiagen) supplemented with 1 % β-mercaptoethanol (99%, Thermo 

Fisher Scientific, Aalst, Belgium) and stored at -80°C until RNA isolation. Total RNA 

extraction and conversion into cDNA was performed using the RNeasy kit (Qiagen) and 

the iScript kit (Biorad, Hercules, CA, USA), respectively. The purity of the RNA was 

assessed by an on-column DNase digestion step as recommended by the supplier. The 

amount of cytokine cDNA was then tested by quantitative polymerase chain reaction 

(qPCR). The qPCR reaction mix consisted of 12.5 μl iQ SYBR Green Supermix (Biorad), 

0.5 µl of each primer set at a concentration of 20 µM, 1.5 µl PCR grade water and 10 µl 

of the 1/100 diluted cDNA. Interleukin (IL)-10, IL-12A, IL-17A and interferon-gamma 

(IFN-γ) cDNA was amplified with the primer sets presented in Table 6.2. In order to 

normalize the cytokine expression, β-actin, glyceraldehyde phosphate dehydrogenase 

(GAPDH) and the ribosomal 18S gene were used as reference genes (Table 6.2). Special 

care was taken to choose a set of primers on different exons or spanning exon-exon 

junctions to exclude the amplification of genomic DNA. The qPCR amplification 

protocol consisted of an initial denaturation at 95°C for 3 min, followed by 45 cycles of 

95°C for 15 s and 61°C for 20 s. After each run, a melt curve analysis was performed to 

confirm the presence of the correct amplicon and to exclude false positives due to the 

formation of primer dimers. The cDNA was tested in duplicate for each cytokine and 

the three reference genes (GADPH, β-actin, r18S), showing a stable expression. The 

mRNA expression in PBMCs was calculated with the CFX96 Manager™ Software v3.1 

(Biorad), using a mathematical model (delta-delta Ct method). The mean value was 

determined for the target cytokines and normalized relative to the geometric mean of 

the reference genes (Verhelst et al., 2015). 
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Table 6.2 : List of primers for qPCR 

Target Sequence 
Length amplicon 

(bp) 

IL-10 F: CCTGGGTTGCCAAGCCTT 

R: GCTTTGTAGACACCCCTCTCTT 

240 

   

IL-12A 
F: ACCAGCACAGTGGAGGC 

R: CGAATGAGAGTTGCCTGGCT 
95 

   

IL-17A 
F: GGACAAGAACTTCCCTCAGCA 

R: CTCGTTGCGTTGGAGAGTC 
124 

   

IFN-γ 
F: GAGCCAAATTGTCTCCTTCTACTT 

R: CTGACTTCTCTTCCGCTTTCT 
262 

   

GAPDH 
F: CCATCACTGCCACCCAGAA 

R: CAGGGATGACCTTGCCCA 
130 

   

Β-actin 
F: GGCATCCTGACCCTCAAGTA 

R: GCCTCGGTCAGCAGCA 
137 

   

r18S 
F: GTTGATTAAGTCCCTGCCCTTT 

R: GATAGTCAAGTTCGACCGTCTT 
141 

 

Flow cytometric detection of IFN-γ production 

The flow cytometric detection of IFN-γ-producing proliferating lymphocytes was 

performed on cultured PBMCs 72 h after heterologous stimulation with TLA (10 µg/ml). 

First, the cell division marker Violet Proliferation Dye 450 (VPD450, BD Biosciences, 

Erembodegem, Belgium) was added to the isolated mononuclear cells, showing a 

diminishing fluorescence after each cell division. At the end of the incubation period, a 

protein transport inhibitor, Golgi PlugTM, was added and the cells were fixed and 

permeabilized using the Cytofix/CytopermTM kit (both from BD Biosciences). 

Subsequently, cells were stained using murine monoclonal antibodies (mab) against 
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CD3  (IgG1, clone PPT3), CD4 (IgG2b, clone 72–14-4) and CD8 (IgG2a, clone 11/295/33) 

and anti-isotype-specific conjugates (goat anti-mouse IgG1-PerCP-Cy5.5 (Santa Cruz 

Biotechnology, Dallas, Texas, USA), goat anti-mouse IgG2b-FITC (Southernbiotech, 

Birmingham, Alabama, USA) and goat anti-mouse IgG2a-Alexa Fluor®647 

(InvitrogenTM, Merelbeke, Belgium). Finally, phycoeryrthrin (PE)-conjugated mAb 

against porcine IFN-γ (Mouse IgG1, BD Biosciences) was added to identify the 

lymphocyte subsets producing IFN-γ. A minimum of 10,000 events was recorded within 

the proliferating cell gate (Appendix 1). The IFN-γ secretion in the different lymphocyte 

subsets was determined and compared with the results of the isotype-matched control 

(Mouse IgG1-PE, Abcam, Cambridge, UK) using a FACSAria III and FACSDIVA™ software 

(both from BD). The gating strategy is included in the supplementary data (Appendix 

1).  

Animals were euthanized at 98 dpi and the splenocytes and lymphocytes from the 

peripheral lymph nodes (mediastinal, mesenteric and popliteal) were isolated as 

previously described (Verhelst et al., 2011). Subsequently, the cells were stimulated with 

the same antigens as the PBMCs for 6 h and 72 h, whereafter the same staining 

occurred for flow cytometric analysis as for the PBMCs. 

 

6.3.5 Detection of the parasite: bioassay and qPCR  

In experiments 1 and 2, all animals were euthanized at 120 dpi and the parasite load 

was determined in brain (Br), heart (He), spleen, diaphragm (Di) and skeletal muscles 

(M. gastrocnemius (Mg), Mm. intercostales (Ic), M. longissimus dorsi (Ld) and M. psoas 

major (Mp) by qPCR and a bioassay. For this, 100 g of each tissue was homogenized in 

10 ml 0.85 % sodium chloride (NaCl) and digested with pepsin (0.8 g/l pepsin in 7 ml/l 

hydrogen chloride (HCl)) for 1 h for brain and 2 h for the other tissues, while stirring in 

a water bath at 37°C. The obtained suspension was filtered and centrifuged for 15 min 

at 1180 x g, the supernatant removed and the pellet resuspended in 10 ml PBS 

supplemented with 40 IU/ml gentamicin. For the bioassay, 1 ml of the tissue suspension 
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was inoculated intraperitoneally into 5 naive Swiss female mice. The mice were 

observed twice a day for the next 5 weeks and euthanized in respect to the human end 

points in case of acute toxoplasmosis associated with suffering or reduced welfare. The 

surviving mice were euthanized and tested serologically by immunofluorescence for 

the presence of T. gondii IgG antibodies. The parasite was demonstrated by qPCR in 

lungs and ascites of mice, which had to be euthanized for ethical reasons in case of 

acute toxoplasmosis. To determine the parasite load by qPCR DNA was extracted from 

the tissue suspensions with the QIAamp DNA Mini kit (Qiagen). A 10-fold serial dilution 

of T. gondii DNA prepared from RH-strain tachyzoite suspension containing 106 

parasites per ml was used as a standard, with a detection limit of 2-4 tissue cysts per 

100g of tissue. Real-Time PCR (RT-PCR) amplifying both the T. gondii repeat element 

(AF146527) and the ribosomal 18S rDNA of the host cells was performed as previously 

described (Rosenberg et al., 2009).  

 

6.3.6 Statistics  

The parasite-specific antibody and IFN-γ responses in different groups at different time 

points are presented as means ± SD. A one-way Analysis of Variance (ANOVA) was 

performed, followed by post hoc Bonferroni’s and Dunnett’s Multiple Comparison Tests 

for antibody production and cytokine response, respectively, to discriminate between 

infected and control groups (GraphPad Prism 5). A p-value <0.05 was considered 

statistically significant.  

6.4 Results 

6.4.1 Parasite burden and immune response after single inoculation with a low or 

a high infection dose of the IPB-G or IPB-LR strain  

GRA-7 and TLA-specific antibody response 
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The GRA7-specific IgM antibodies appeared approximately at the same time in the low 

and the high dose group (10 and 9 dpi, respectively) upon inoculation with the IPB-G 

strain and declined gradually from 14 and 11 dpi, respectively, until 91 dpi (Figure 6.2A). 

In contrast, in the IPB-LR infected group a pronounced IgM production was detected 

8 dpi in the low dose group and even a stronger response at 10 dpi in the high dose 

group (Figure 6.2B), but both declined to control levels around 12 dpi. GRA7-specific 

IgG antibodies were detected shortly after IgM, irrespective of the inoculation strain, 

and remained detectable until the end of the experiment (Figure 6.2C, 6.2D). 

Nevertheless, the high dose of the IPB-LR strain induced the highest levels of GRA7-

specific IgG.   

TLA-specific IgM occurred earlier than GRA7-specific IgM, namely 7 to 8 dpi in the Glow 

and Ghigh groups. In the latter, the IgM response remained present until the end of the 

experiment, slightly increasing in time, irrespective from the infection dose (Figure 

6.3A). On the contrary, for the LRlow and LRhigh groups the seroconversion to TLA-

specific IgM was prominently present until 21 to 28 dpi, showing again the highest 

concentration in the high dose group (Figure 6.3B). The TLA-specific IgG antibodies 

appeared approximately 14 dpi in both dose groups inoculated with the IPB-G strain 

(Figure 6.3C), but already at 8 dpi in animals infected with the IPB-LR strain. There, the 

antibodies increased significantly starting from 28 dpi and remained elevated until 120 

dpi (Figure 6.3D). In animals inoculated with the IPB-G strain no dose effect was neither 

seen for TLA-specific IgM nor for IgG production (Figure 6.3A and 6.3C), whereas the 

high dose induced a higher response for IgM and a similar response for IgG upon 

inoculation with the IPB-LR strain (Figure 6.3B and 6.3D). 

The IFA results confirmed the seroconversion from T. gondii - negative towards IgM 

positive animals and the persistence of the IgG antibodies in each infection experiment 

(data not shown).   
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Figure 6.2 : GRA7-specific IgM and IgG responses after inoculation with IPB-G or IPB-

LR T. gondii strain. IgM (A+B) and IgG (C+D) responses in animals inoculated with a 

low or a high dose of the IPB-G (A+C) or the IPB-LR (B+D) strain. Groups: Glow, Ghigh, 

LRlow, LRhigh. The horizontal dashed line indicates the cut-off value based on the mean 

of the negative animals. The results represent a mean of the infected group ± SD; * 

(low dose versus controls) or + (high dose versus controls) or x (low dose versus high 

dose) : P < 0.05, ** or ++ or xx: P < 0.01; *** or ++ or xxx: P < 0.001; ns: not significant. 
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Figure 6.3 : TLA-specific IgM and IgG responses after inoculation with IPB-G or IPB-LR 

T. gondii strain. IgM (A+B) and IgG (C+D) responses in animals inoculated with a low 

or a high dose of the IPB-G (A+C) or the IPB-LR (B+D) strain. Groups: Glow, Ghigh, LRlow, 

LRhigh. The horizontal dashed line indicates the cut-off value based on the mean of the 

negative animals. The results represent a mean of the infected group ± SD; * (low dose 

versus controls) or + (high dose versus controls) or x (low dose versus high dose) : P < 

0.05, ** or ++ or xx: P < 0.01; *** or ++ or xxx: P < 0.001, ns: not significant. 

 

TLA-specific IFN-γ mRNA responses in PMBCs 

PBMCs were restimulated in vitro with TLA for 6 hours, where after IL-10, IL-12A, IL-

17A and IFN-γ mRNA responses were determined. No detectable IL-10, IL-12 and IL-

17A mRNA production was observed (data not shown) in any infected group,  
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irrespective of the strain or infection dose. However, a substantial increase in IFN-γ 

mRNA production was observed from one month post infection (mpi) onwards in the 

majority of the inoculated animals as compared to the control animals. This response 

was least pronounced in the animals infected with the low dose of the IPB-G (not 

significant, p = 0.39) (Figure 6.4A), followed by a significant (p < 0.01) and highly 

significant (p < 0.001) increase in the high dose of the IPB-G strain group (Figure 6.4B). 

In the low dose of the IPB-LR group we noticed a steady though not significant (p = 

0.18) increase (Figure 6.4C). The highest IFN-γ production was observed in the animals 

infected with the high dose of the IPB-LR strain starting from 1 mpi (p < 0.01), which 

stayed high throughout the experiment, becoming highly significant (p < 0.001) at 2, 3 

and 4 mpi (Figure 6.4D). No detectable IFN-γ level was detected in splenocytes from 

IPB-G or IPB-LR infected animals (data not shown). 
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Figure 6.4 : Relative normalized IFN-γ expression in PBMCs after a single IPB-G or IPB-

LR inoculation. PBMCs were isolated monthly from pigs orally infected with (A) a low 

or (B) a high dose of the IPB-G strain (Glow and Ghigh) or (C) a low or (D) a high dose of 

the IPB-LR strain (LRlow and LRhigh). Cells were restimulated in vitro with TLA and IFN-γ 

mRNA was quantified with RT-PCR. The thick lines indicate the group mean. The significance 

level: * P < 0.05, ** P < 0.01; *** P < 0.001. 
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Parasite load in tissues 

At 120 dpi, the parasite load was determined in heart and striated skeletal muscles by 

qPCR and a bioassay, while in brain by qPCR only. In animals infected with the IPB-LR 

strain, the highest parasite load was found in brain followed by heart (Table 6.3). 

Interestingly, the inoculation dose did not prominently affect the distribution or load 

in the tissues as it was the case between both IPB-G groups. Besides brain and heart, 

also intercostal muscles and the longissimus dorsi were consistently positive in qPCR, 

whereas heart of all 6 animals was also positive in the bioassay.  

A different pattern was seen in pigs inoculated with the IPB-G strain (Table 6.3), where 

a clear effect of the inoculation dose on the parasite distribution and load in the tissues 

was found. When inoculated with the low dose, the parasite was present in more tissues 

and in higher amounts than when inoculated with the high dose. However, even when 

inoculated with the low dose, the longissimus dorsi and psoas major remained negative 

in all three animals in this group. Summarizing, animals inoculated with the high dose 

of IPB-G showed the lowest amount of T. gondii DNA in their tissues. Brain, 

gastrocnemius and the longissimus dorsi were negative, whereas for diaphragm and 

psoas major only one sample was positive in the bioassay and qPCR, respectively. These 

results strongly suggest a dose-dependent decreased burden of the IPB-G strain in the 

examined tissues following inoculation, pointing towards an immune-mediated 

reduction of the parasite load. 
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Table 6.3: Parasite load (number of bradyzoites per 1E+08 cells) by qPCR after 

inoculation with two T. gondii strains, in comparison with bioassay (number of 

positive/total tested). Groups: a single low or high dose of the IPB-G strain (Glow and 

Ghigh) 120 dpi; a single low or high dose of the IPB-LR strain (LRlow and LRhigh); a high 

dose of the IPB-G strain, followed 60 dpi by a high dose of the IPB-LR strain 

(Ghigh/LRhigh); a high dose of the IPB-G strain (Ghigh1/2t) 60 dpi; a high dose of the LR 

strain, followed 60 dpi by a high dose of the IPB-G strain (LRhigh/Ghigh). Tissues: Br 

(brain), Ha (heart), Di (diaphragm), Ic (intercostal m.), Mg (gastrocnemius m.), Ld (long. 

dorsi m.), Pm (psoas major m.). (nt = not tested). 

 

 

qPCR Bioassay 

Group Br Ha Di Ic Mg Ld Mp Br Ha Di Ic Mg Ld Mp 

Glow 2/3 2/3 2/3 3/3 2/3 0/3 0/3 nt 2/3 1/3 1/3 0/3 0/3 0/3 

average 1.1E+05 8.5 20.6 44.6 3.0 0.0 0.0        

SD 1.1E+05 8.4 29.9 13.4 2.7 0.0 0.0        

               

               

Ghigh 0/3 1/3 0/3 2/3 0/3 0/3 1/3 nt 2/3 1/3 0/3 0/3 0/3 0/3 

average 0.0 1.0 0.0 21.2 0.0 0.0 2.3        

SD 0.0 1.0 0.0 19.1 0.0 0.0 4.0        

               

LRlow 3/3 3/3 3/3 3/3 2/3 3/3 3/3 nt 3/3 3/3 1/3 0/3 0/3 0/3 

average 378.8 169.6 8.5 23.4 52.4 28.7 189.1        

SD 94.9 228.7 12.2 17.5 45.4 29.9 244.9        

               

               

LRhigh 3/3 3/3 2/3 3/3 3/3 3/3 2/3 nt 3/3 1/3 1/3 0/3 1/3 1/3 

average 1340.0 592.2 7.8 29.4 35.0 72.6 67.8        

SD 322.8 281.1 11.6 30.5 8.6 28.5 68.0        

               

Ghigh/LRhigh 3/3 3/3 3/3 2/3 1/3 0/3 2/3 nt 3/3 2/3 1/3 0/3 0/3 1/3 

average 489.1 70.7 19.2 16.7 8.1 0.0 66.3        

SD 614.0 51.0 17.9 22.3 14.1 0.0 102.2        

               

Ghigh 1/2t 2/3 3/3 1/3 0/3 1/3 1/3 0/3 nt 2/3 1/3 0/3 0/3 0/3 0/3 

average 1742.7 16.2 5.8 0.0 2.2 6.7 0.0        

SD 1570.9 26.1 10.1 0.0 3.9 11.6 0.0        

               

LRhigh/Ghigh 3/3 3/3 1/3 0/3 1/3 0/3 1/3 nt 2/3 1/3 0/3 1/3 0/3 1/3 

average 5950.5 105.3 1.67 0.0 0.8 0.0 1.6        

SD 8708.4 128.5 2.90 0.0 1.5 0.0 2.7        
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6.4.2 Parasite tissue load and immune response in a subsequent infection model 

with two T. gondii strains 

In order to assess if the low parasite load observed in some tissues after infection with 

the IPB-G strain was related to an immune response, in a second experiment animals 

were first infected with the high dose of one strain, followed 60 days later with the high 

dose of the other strain (Table 6.1). Since we hypothesized an effect of the inoculation 

with the IPB-G strain, an additional control group was included in the study inoculated 

with the high dose at 60 dpi and 60 days before euthanasia. 

 

GRA-7 and TLA-specific antibody response 

As in the first experiment, inoculation with the IPB-LR strain induced higher GRA7- and 

TLA-specific IgM production than with the IPB-G strain, independently from the order 

of inoculation (Figure 6.5A and 6.5B). This was most pronounced for the TLA-specific 

IgM response (Figure 6.5B). The presence of a clear TLA-specific IgM response after the 

second inoculation with the IPB-LR strain was remarkable and suggests differences in 

antigen expression between both strains (higher immunogenicity, different antigens or 

other reasons), leading to the induction of a primary immune response against various 

TLA antigens. Interestingly, the increase in TLA-specific IgM levels in the IPB-G infected 

animals upon initial inoculation at day 60 (Ghigh1/2t) was higher in comparison with Ghigh 

or Glow groups (Figure 6.3A), suggesting maturation of the immune system. Similar to 

our findings of the first experiment (Figure 6.2C, 6.2D; Figure 6.3C, 6.3D), the GRA7- 

and TLA-specific IgG antibodies appeared within two weeks following the primary 

inoculation with the IPB-G or IPB-LR strain (Figure 6.5C,D). A pronounced booster 

response against GRA7 occurred upon the heterologous challenge at 60 dpi in both 

re-infected groups, as evidenced by a much faster increase in IgG levels in contrast to 

animals from the Ghigh1/2t group (Figure 6.5C). The TLA IgG was not boosted following 

the heterologous infections in both challenged groups (Figure 6.5D). However, these 
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distinct IgG responses were more pronounced by the challenge with the IPB-LR strain 

than with the IPB-G strain. 

 

 

 

Figure 6.5 : GRA7- and TLA-specific IgM and IgG responses after inoculation with IPB-

G and IPB-LR T. gondii strains. IgM (A+B) and IgG (C+D) antibody response towards T. 

gondii GRA7 (A+C) and TLA (B+D) in animals after a consecutive infection with a high 

dose of IPB-G and IPB-LR strains. Groups: Ghigh/LRhigh, LRhigh/Ghigh. Piglets infected after 

60 days with a high dose IPB-G served as a control (Ghigh1/2t.)The horizontal dashed line 

indicates the cut-off value based on the mean of the negative animals, and the vertical 

one the time point of reinfection. The results represent a mean of the infected group 

± SD; * Ghigh/LRhigh versus controls, + LRhigh/Ghigh versus controls, x Ghigh1/2t versus 

controls, # Ghigh/LRhigh versus LRhigh/Ghigh, ‘ Ghigh/LRhigh versus Ghigh1/2t, ° LRhigh/Ghigh 

versus Ghigh1/2t : P < 0.05, ** or ++ or xx or ## or “ or °°: P < 0.01; *** or +++ or xxx or 

### or ’’’ or °°°: P < 0.001, ns: not significant. 
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TLA-specific IFN-γ mRNA responses in PMBCs and spleen 

IFN-γ responses after the initial inoculation with both T. gondii strains (Figure 6.6) were 

comparable with those in the first experiment (Figure 6.4). In two of the three animals 

receiving the IPB-G strain as a first inoculation (Ghigh/LRhigh), IFN-γ mRNA expression 

could not be detected 1 mpi in the PBMCs recall assay with TLA. However, from 2 mpi 

all three animals showed a significantly (p < 0.05) to highly significant (p < 0.001) 

increased IFN-γ mRNA level (Figure 6.6A), similarly to the expression seen in animals 

receiving the IPB-LR strain as a first inoculum (LRhigh/Ghigh) (Figure 6.6B), even though 

the latter showed a more homogenous response from 1 mpi onwards (p < 0.01). In 

both groups the IFN-γ mRNA expressions remained significantly elevated (p < 0.05 to 

p < 0.001) during the experiment and no additional increase was seen after inoculation 

with the heterologous strains. Slightly lower yet significant (p < 0.05) IFN-γ production 

was observed in group Ghigh1/2t, inoculated for the first time at 60 dpi (Figure 6.6C). 

While no detectable cytokine production was found at 120 dpi in the spleen of animals 

from both infection groups in the first experiment (data not shown), in the 

heterologous infection model significant IFN-γ transcript levels were detected 60 days 

after the second infection for the Ghigh/LRhigh (p < 0.05), Ghigh1/2t (p < 0.01) and 

LRhigh/Ghigh (p < 0.001) (Figure 6.7A and 6.7B). 
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Figure 6.6 : Relative normalized IFN-γ expression in PBMCs after a consecutive IPB-G 

and IPB-LR inoculation. PBMCs were isolated monthly from pigs orally infected with (A) 

a high dose of the IPB-G strain followed 60 days later by a high dose of the IPB-LR 

strain (Ghigh/LRhigh) or (B) reversed infection model (LRhigh/Ghigh). Piglets infected with a 

high dose of the IPB-G strain at day 60 served as a control (C) (Ghigh1/2t). Cells were 

restimulated in vitro with TLA and IFN-γ mRNA was quantified with RT-PCR. The thick 

lines indicate the group mean. The significance level: * P < 0.05, ** P < 0.01; *** P < 

0.001. 
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Figure 6.7 : Relative normalized IFN-γ expression in splenocytes after a single or 

consecutive IPB-G and IPB-LR inoculation. Splenocytes were isolated from pigs orally 

infected with (A) a low dose of the IPB-G strain (Glow), a high dose of the IPB-G strain 

(Ghigh), a high dose of the IPB-G strain followed 60 days later by a high dose of the IPB-

LR strain (Ghigh/LRhigh), a high dose of IPB-G at day 60 (Ghigh1/2t), or (B) a low dose of the 

IPB-LR strain (LRlow), a high dose of the IPB-LR strain (LRhigh) or a high dose of the IPB-

LR strain followed 60 days later by a high dose of the IPB-G strain reversed infection 

model (LRhigh/Ghigh). Cells were isolated at 2 mpi (group: Ghigh1/2t) or 4 mpi (groups: Glow, 

LRlow, Ghigh, LRhigh, Ghigh/LRhigh, LRhigh/Ghigh) and restimulated in vitro with TLA. IFN-γ 

mRNA was quantified with RT-PCR. The thick lines indicate the group mean. The 

significance level: * P < 0.05, ** P < 0.01; *** P < 0.001. 

 

 

Parasite load in tissues  

To assess the parasite load in tissues animals were euthanized 60 days after a first 

(Ghigh1/2t group) or second infection (Ghigh/LRhigh and LRhigh/Ghigh groups). Interestingly, 

animals receiving only the high dose of the IPB-G strain (Ghigh1/2t) showed a parasite 

distribution and load (14 tissue samples negative in a bioassay) in between those 
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observed at 120 dpi with the IPB-G low dose (10 tissue samples negative in a bioassay) 

and the high dose (17 samples negative) in the first experiment (Table 6.3). This could 

suggest that the reduction in parasite load induced by the IPB-G strain was already 

appearing at 60 dpi upon inoculation with the high dose. The tissue distribution at 120 

dpi in animals, which first received the IPB-LR high dose and 60 days later the IPB-G 

high dose, could also be explained by this phenomenon. At 120 dpi the animals showed 

a different parasite load and tissue distribution (12 samples negative) than in the first 

experiment (1 and 2 samples negative after infection with the low and the high dose, 

respectively). Animals receiving first the IPB-G high dose and 60 days later the IPB-LR 

high dose, showed a wider parasite tissue distribution and a higher parasite tissue load 

(7 samples negative), more comparable to animals receiving only the IPB-LR strain.  

 

6.4.2 The involvement of CD4+ and CD8+ T cells in the strain-dependent IFN-γ 

production  

Results of the above experiment supported our hypothesis that the IPB-G strain 

reduced the parasite burden. Since many studies suggested an important role for IFN-

γ responses in controlling T. gondii infections, in a next experiment we compared the 

kinetics of IFN-γ producing T cell subsets in blood, following infection with the high 

dose of both strains in an in vitro TLA recall assay. Depending on the T. gondii strain, 

differences in the kinetics of circulating IFN-γ producing T cell subpopulations were 

observed (Figure 6.8). The CD3+CD4+CD8α- and CD3+CD4+CD8αdim represent porcine 

T-helper cells, while CD3+CD4-CD8αbright cells are cytotoxic T cells (Gerner et al., 2015). 

Animals inoculated with the IPB-LR strain showed at 21 dpi a significant increase in the 

CD3+IFN-γ+ T cell subsets (CD4+CD8α-, CD4+CD8αdim and CD4-CD8αbright T cells), with 

the CD4+CD8α- T-helper cells (up to 22.2 ± 8.3 % of CD3+IFN-γ producing cells) being 

most prevalent (Figure 6.8A). This latter population remained stable, whereas the CD4-

CD8αbright population gradually increased from 9.3 ± 0.87 % of the IFN-γ+ producing 
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cells at 28 dpi to > 40 % (41.1 ± 17.4 %) at 98 dpi (Figure 6.8C). In contrast, the 

percentage CD4+CD8αdimIFN-γ+ cells gradually decreased from 16.4 ± 1.4 % to < 2.1 ± 

0.8 % at the end of the experiment (Figure 6.8B). In animals inoculated with the IPB-G 

strain, a similar increase in the percentage of CD4+CD8αdimIFN-γ+ cells at 21 dpi to 10.4 

± 0.4 %, and a subsequent gradual decrease to 2.2 ± 0.5 % was seen (Figure 6.8B). The 

IFN-γ+ within CD4+CD8α- and CD4-CD8αbright T cells gradually increased, reaching 

significantly higher levels  (22.6 ± 11.9 % and 18.7 ± 9.5 %, respectively) at 84 dpi as 

compared to 0 dpi (Figure 6.8A, 6.8C). Intriguingly, the increase of the latter T cell 

population was clearly less pronounced in the Ghigh (p < 0.05) than in the LRhigh group 

(p < 0.01).  

The difference in circulating CD4-CD8αbright T cell populations between both high dose 

groups seems to be reflected on the long term in the significantly higher (p < 0.05) 

percentage of CD4-CD8αbright IFN-γ+ T cells in the popliteal lymph nodes (LN) in the 

LRhigh group than in the Ghigh group at 98 dpi (Figure 6.9C). Additionally, a similar 

difference in the percentage of the same population between both groups can be 

detected in the mesenteric LN. However, in mediastinal LN, which drain heart and 

diaphragm, a higher percentage of CD4-CD8αbright IFN-γ+ T cells was found in the Ghigh 

group, although not significantly different from the LRhigh group. The distribution of 

the other T cell subpopulations in different lymphoid tissues shows a comparable 

pattern: a higher percentage of the CD4+CD8α-IFN-γ+ T was found in the mesenteric 

(p < 0.05) and popliteal (p > 0.05) LN of the LRhigh group than in the Ghigh group (Figure 

6.9A). Likewise for the CD4-CD8αbright T cells, a reverse situation was noticed in the 

mediastinal LN. Regarding the CD4+CD8αdimIFN-γ+ cells, relatively low percentages 

were detected in both infected groups. The highest counts were found in the 

mesenteric and popliteal LN in the LRhigh group, followed by the mesenteric LN in the 

Ghigh group, whereas they were nearly absent in the other sampled LN (Figure 6.9B).  

 

 



Experimental part  
 ______________________________________________________________________________________________________________  
 

172 

 

 

 

Figure 6.8 : The percentage of IFN-γ+ T lymphocyte subsets in PBMCs after a single 

IPB-G or IPB-LR inoculation. IFN-γ+ T lymphocyte subsets in PBMC’s of pigs after oral 

infection with a high dose of the IPB-G (Ghigh) or the IPB-LR strain (LRhigh). Cells were 

restimulated in vitro with TLA and demonstrated by flow cytometry following triple 

staining for IFN-γ, CD3, CD4 and CD8 (A). IFN-γ+ cell populations were identified as (A) 

CD3+CD4+CD8α-IFN-γ+, (B) CD3+CD4+CD8αdim IFN-γ+, (C) CD3+CD4-CD8brightIFN-γ+ 

lymphocytes. The results represent mean percentages ± SD for each group; * (IPB-G) 

or x (IPB-LR) : P < 0.05, ** or xx: P < 0.01; *** or xxx: P < 0.001 in comparison with day 

0. 
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Figure 6.9 : The percentage of IFN-γ+ T lymphocyte subsets from lymph nodes after a 

single IPB-G or IPB-LR inoculation. IFN-γ+ T lymphocyte subsets in leucocytes from 

peripheral lymph nodes of pigs 98 dpi with a high dose of the IPB-G (Ghigh) or the IPB-

LR strain (LRhigh). Cells were restimulated in vitro with TLA and demonstrated by flow 

cytometry following triple staining for IFN-γ, CD3, CD4 and CD8 (A). IFN-γ+ cell 

populations were identified as (A) CD3+CD4+CD8α-IFN-γ+, (B) CD3+CD4+CD8αdim IFN-

γ+ and (C) CD3+CD4-CD8brightIFN-γ+ lymphocytes. The results represent mean 

percentages ± SD for each group; * (IPB-G) or x (IPB-LR) : P < 0.05, ** or xx: P < 0.01; 

*** or xxx: P < 0.001 in comparison with day 0. 

6.5 Discussion 

In the performed experiments, we compared the single or subsequent infection in pigs 

inoculated with either a high or a low dose of the IPB-G and the IPB-LR strains for the 

tissue specific parasite load and the accompanying immune response. The IPB-G strain 

has a mixed type I/II genotype, while the IPB-LR strain has a classic type II genotype 

(Jongert et al., 2008; Dubey et al., 2012b). The antibody response against GRA7 and 

TLA, which are frequently used in serological assays in different species, was monitored 

until 120 dpi to confirm the successful inoculation and persistence of the infection 

(Figure 6.2 and 6.3). Overall, for both IgM and IgG, independent from the infection 

dose, the GRA7-specific antibodies were detected very soon after the initial infection, 

starting from 10 dpi (Figure 6.2). Similar to previous results (Verhelst et al., 2015), we 

detected a late TLA-specific IgG response from 28 to 35 dpi onwards (Figure 6.3). 

However, results of the present study demonstrated that strain and dose are important 

factors to consider, since primary GRA7- and TLA-specific antibody responses could be 

detected earlier during infection and were higher upon inoculation with a high dose of 

the IPB-LR strain as compared to the IPB-G strain. A low dose on the other hand 

resulted in a later and less prominent seroconversion. Interestingly, whereas primary 

antibody responses were comparable in the heterologous challenge model, a clear IgM 

response was seen after the challenge with the heterologous strains, indicating 

exposure to other antigens, presumably due to the genetic diversity of both strains 
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(Figure 6.5). Burrells et al. (2015) described a significant TLA-specific IgG increase after 

challenge of pigs with the heterologous strain M4 upon inoculation with the S48 strain. 

Strikingly, the challenge was performed with oocysts, after an initial inoculation with 

tachyzoites, stressing the expression of related or identical variability antigens in 

correlation to the parasite stage and the strain. 

Together with a robust humoral response following T. gondii infection, a strong innate 

and cellular immune reaction is well described in mouse and human models, involving 

several populations of immune cells as well as different activation pathways (Miller et 

al., 2009; Andrade et al., 2013; Gazzinelli et al., 2014; Sturge and Yarovinsky, 2014). To 

date, it is well known that innate immune cells (macrophages, dendritic cells (DC’s) and 

neutrophils) are involved in the acute stage of the infection by triggering the myeloid-

differentiation primary response protein 88 (MyD88) signalling pathway after uptake 

and intracellular recognition of the parasite by CC-receptor 5  (CCR5) or Toll-like 

receptor (TLR) 11 and 12 in mice; TLR7, 8 and 9 in human and TLR7 and 9 in other 

mammals like pigs (Miller et al., 2009; Andrade et al., 2013; Koblansky et al., 2013; 

Gazzinelli et al., 2014). In particular interferon regulatory factor 8 (IRF8)+ dendritic cells, 

activated by the uptake of the parasite’s protein profilin, are crucial for the induction 

of IL-12 secretion in mice. Human and porcine DCs and monocytes are activated by the 

recognition of the parasite’s ssRNA and DNA via TLR7 and TLR9, respectively, prior to 

their pro-inflammatory cytokine response (Uneishi et al., 2012; Andrade et al., 2013).  

Consequently and irrespective of the activated TLRs, the DC-driven IL-12 production 

leads to the activation of T-helper 1 cells and Natural Killer (NK) cells (Sturge and 

Yarovinsky, 2014). The latter massively produce IFN-γ, which not only continuously 

activates macrophages via a positive feedback mechanism, but also elicits the 

expression of the GTPases. The GTPases family includes four subfamilies: the very large 

inducible GTPases (VLIG), the Mx proteins, the immunity-related GTPases (IRGs) such 

as p47 or p65, and the guanylate-binding proteins (GBPs). The p47 IRG offers a robust 

protection against intracellular pathogens, being recruited to the parasite attachment 
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site at the host cell (MacMicking, 2004; Taylor et al., 2004; Liesenfeld et al., 2011). 

Subsequently, a lethal damage to the parasitophorus vacuole (PV) is induced, leading 

to the rupture of the infected cell and release of the parasite into the cytosol (Gazzinelli 

et al., 2014). The infected cell undergoes necrosis, simultaneously with an enhanced 

local immune response.  

Thus, the continuous production of IFN-γ seems to be necessary in maintaining a 

delicate balance between the host immune system and the parasite’s evasion 

strategies. Additionally, this cytokine plays a pivotal role in controlling both the acute 

and chronic phase of infection, as it facilitates stage conversion from the tachyzoite to 

the bradyzoite in acute toxoplasmosis and suppresses the opposite conversion during 

chronic infection (Denkers, 1999). Likewise, we detected a significant increased IFN-γ 

production by PBMC’s after inoculation with two different T. gondii strains (Figure 6.4), 

which corroborates our previous results when inoculating pigs with the IPB-G strain 

(Verhelst et al., 2015). Here, we demonstrated a time- and dose-dependent increase in 

IFN-γ mRNA expression upon infection with the IPB-G strain. Several studies focused 

on experimental infection in pigs reported a time-dependent increase of IFN-γ levels 

in serum, supernatant from cultured PBMCs and IFN-γ mRNA expression in PBMCs and 

intestinal lymphoid tissues (Solano Aguilar et al., 2001; Dawson et al., 2004; Dawson et 

al., 2005, Verhelst et al., 2015).  

On the contrary, the inoculation with the low dose of the IPB-LR strain was almost as 

potent in inducing a relatively fast and strong IFN-γ production by PBMCs as the high 

dose of the same strain, which resulted in high IFN-γ mRNA levels at already 2 mpi, 

that were maintained until 120 dpi. Interestingly, the IFN-γ mRNA production in the 

LRhigh dose group did not show any increase over time, implying reaching the maximum 

capacity from 1 mpi onwards. In line with our findings, IL-12 (IL-12p35 and IL-12p40) 

mRNA expression was not detected in PBMCs in the acute phase of the infection (7 and 

14 dpi) in an earlier study in pigs (Dawson et al., 2005). 
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Importantly, we conducted the studies in a homogenous pig population in order to 

exclude host diversity; however, as the strains are maintained by serial passage in mice, 

their virulence might be altered compared to the original isolate. Therefore, it is 

tempting to speculate that the high IFN-γ production together with the lower parasite 

counts in the porcine tissues originate from a coevolution towards host tolerance and 

reduced virulence, as suggested earlier by others (Gazzinelli et al., 2014). Furthermore, 

looking at the total IFN-γ expression following reinoculation with the heterologous 

T. gondii strain in the second experiment, no obvious difference between the groups 

could be observed (Figure 6.6). In the Ghigh/LRhigh group we detected an initial increase, 

which was followed by a steady decrease after the challenge. The IFN-γ production 

profile in the reversed infection model (LRhigh/Ghigh) supports our previous findings, 

showing a constant IFN-γ detection over time. Interestingly, in some animals basal or 

low level of cytokine mRNA were detected at 1mpi, followed by a substantial increase 

at the later time points, similar to the single infection experiment (Figure 6.4A and 6.6A). 

However, the final IFN-γ concentration at the end of the experiment upon a 

heterologous challenge was ten times lower than after a single high dose inoculation. 

We could speculate that the primary infection with a mixed genotype I/II strain, 

characterized by a high acute virulence and long-term STAT3 and STAT6 activation, 

partially modulates the immune response upon the challenge with genotype II strain. 

As the result, the initial impairment of the Th1 response after the challenge leads to a 

lower than in a single infection model IFN-γ production, and elimination of a certain 

fraction of the parasites. Consequently, a reduced amount of the tachyzoites 

disseminate to convert into bradyzoites. The latter has been shown by a lower parasite 

load 60 dpi challenge than in IPB-LR experiment (Table 6.3 and Figure 6.6). 

In regard to the involvement of immune cells in controlling the parasite’s dissemination 

to the tissues and the chronic phase of T. gondii infection, different populations seem 

to play a role. As described earlier and analogous to the acute infection stage, the 

production of IFN-γ is gradually taken over from the innate immune cells by T 
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lymphocytes (Guan et al., 2007). Experimental infections in mice (Jongert et al., 2010; 

Suzuki et al., 2012) demonstrated the importance of CD4+ and CD8+ IFN-γ producing 

T cells in maintaining a chronic T. gondii infection, but the exact contribution of each 

subset remains unknown. Miller et al. (2006) describes higher production of IFN-γ by 

murine CD4+ cells upon in vitro stimulation by infected macrophages or by TLA, but 

admits that the higher protective potential against dissemination of the parasite by 

CD8+ or CD4+ lymphocytes is not simply expressed by the amount of this cytokine. 

Indeed, it seems that IL-4 and IL-10 cytokines, produced by CD4+ lymphocytes in 

addition to IFN-γ, might down regulate this protective capacity against the parasite. In 

line with that, due to their IFN-γ-independent cytolytic activity, the role of primed CD8+ 

T cells in the host’s immunity during chronic toxoplasmosis has been widely 

acknowledged (Wang et al., 2005; Suzuki et al., 2012; Sa et al., 2013). In pigs, only a few 

experiments identified CD8+ and CD4+CD8+ cells in the acute phase of the infection as 

the major source of the IFN-γ production (Solano Aguilar et al., 2001; Dawson et al., 

2005). The additive or synergistic effect of CD4+ T cells on the activity of the CD8+ T cell 

population should not, however, remain neglected. In our study, regardless of the 

strain, the CD4-CD8αbright T cell subset contained the most IFN-γ positive cells, followed 

by the CD4+CD8α- subset, whereas the CD4+CD8αdim T cell subset showed very few 

IFN-γ positive cells (Figure 6.8). Additionally, the CD4-CD8αbright population showed a 

temporal increase in IFN-γ production in animals infected with IPB-LR, while the 

percentage of this subset was rather declining from 4 wpi onwards, when infected with 

the IPB-G. The IFN-γ production resulting from the induced toxoplasmosis in pigs and 

the involvement of the different lymphocyte populations are in line with other studies, 

where the in vitro cytokine profile was investigated until 14 (Dawson et al., 2005), 40 

(Solano Aguilar et al., 2001) or 56 dpi (Verhelst et al., 2011). However, opposite to the 

pig model, in murine experiments only two T lymphocyte subsets were differentiated 

(CD4+ and CD8+). Furthermore, the extent of the cellular response was positively 
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correlated with the infection dose and the time-interval from the inoculation, and was 

higher when induced by the strain with a greater tissue persistence.  

When considering the parasite load in the tissues and the viability of the cysts in the 

bioassay, a clear correlation was found between the amount of detected DNA and the 

dose of the used strain (Table 6.3). In general, we observed a decline in the 

concentration of the parasite’s DNA in animals when inoculated with a high dose of 

the IPB-G, but not the IPB-LR strain. This dose- and time-dependent decline is 

prominently present in different tissues in the Ghigh group in comparison with Glow and 

Ghigh1/2t groups, indicating that the effect of the high dose is particularly visible after a 

longer infection time. These results are in line with the findings of Verhelst et al. (2011), 

where neither parasite DNA nor viable parasites were detected in certain muscle tissues 

six months after initial infection with the IPB-G strain. In the same study, brain and heart 

of all animals remained infectious as determined by a bioassay and qPCR. However, 

these findings are opposite to results obtained in rats and cats, showing that 

inoculation with increasing amounts of tachyzoites or bradyzoites resulted in a 

decreased survival rate or in a higher number of tissue cysts, respectively (De Champs 

et al., 1998; Cornelissen et al., 2014). In addition and similar to our results, others 

reported a reduction in parasite burden in strain-vaccinated and challenged pigs 

(Kringel et al., 2004; Garcia et al., 2005; Jongert et al., 2008; Burrells et al., 2015). In these 

experiments vaccination with oligonucleotides, antigens or infection with attenuated 

strains can enhance Th1 responses to elicit sufficient protection during the acute phase 

of the infection, resulting in a lower parasite burden in comparison with the infected 

control animals. Referring to that, the strains used in our study differ greatly in terms 

of genetic background and associated virulence, both in mice and in pigs. Therefore, 

we have grounded scientific reasons to believe that the observed differences in the 

parasite load upon infection with both strains, especially in the heterologous co-

infection model, are not coincidental.  
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For most tissue samples this dose- and strain-dependent reduction in the number of 

the tissue cysts in qPCR is consistent with the bioassay in mice. It is noteworthy that a 

few qPCR-positive samples were negative in the bioassay, indicating that parasite DNA, 

but not viable parasites were present. Consequently, these results show a substantially 

higher sensitivity of the qPCR method used here above the bioassay, since it has been 

optimized and successfully applied for the detection of the parasite in various human 

or animal tissues, with a detection limit of 2-4 tissue cysts in 100 g of sample (De Craeye 

et al., 2011). Conversely, both techniques gave positive results on all samples derived 

from animals upon single inoculation with the IPB-LR strain. Therefore, we can assume 

that the reduced parasite load occurred due to the earlier infection with the IPB-G strain 

in the group Ghigh/LRhigh. This phenomenon does not seem to be limited to type II 

strains (Velmurugan et al., 2009; Suzuki et al., 2012), but is also common in type I strains 

(Burrells et al., 2015).  

Summarizing, the groups infected with the IPB-LR strain can serve as a classical model 

of T. gondii persistence in its intermediate host. The prominent production of parasite-

specific antibodies, consistent amounts of IFN-γ and activation of cytotoxic T 

lymphocytes on the one hand and well-distributed DNA concentration together with 

isolation of the viable parasite on the other hand, clearly prove an established balance 

between the host immunity and the pathogen’s activity. The parasite’s persistence 

appears to be beneficial for the two, under conditions that the immunocompetent host 

can resist the immunomodulation by T. gondii. On the contrary, as the partial or total 

removal of the tissue cysts was observed in the IPB-G infected animals together with 

the increasing IFN-γ production profile on both the mRNA and protein level, we 

propose that the IPB-G strain induces a robust immune reaction in the host in the early 

phase of the infection. This IFN-γ-mediated response in pigs can lead to the resistance 

of the host to parasite invasion by elimination of the tissue cysts during the chronic 

infection. Further experiments to unravel the nature of this resistance are warranted as 
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it could serve an important role in vaccination strategies and in the risk assessment for 

food safety and human health.  

6.6 Acknowledgements 

This study was granted by the Belgian Federal Public Service for Health, Food Chain 

Safety and Environment (grant RF 09/6213). The authors wish to thank A. Leremans for 

the technical assistance with the bioassay and M. Boutry for her excellence laboratory 

skills with qPCR and cytokine RT-PCR. We also wish to thank R. Cooman for the animal 

management.  B. Devriendt is supported by an FWO postdoctoral research grant. The 

Hercules Foundation supported the purchase of research equipment (AUGE035). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Chapter 7 Immune responses against antigen 

fractions in acute and chronic Toxoplasma 

gondii infection in pigs 

 

 

 

 

 

Adapted from: 

 

 

Jennes, M., Rahman, M., Nguyen, U., Algaba, I.A., De Craeye, S., Dierick, K., Dorny, P., 

Cox, E. Immune responses against antigen fractions in acute and chronic Toxoplasma 

gondii infection in pigs. (in preparation)  

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Immune responses and antigen recognition in acute and chronic infection 
 ______________________________________________________________________________________________________________  
 

185 
 

7.1 Abstract 

Toxoplasma gondii is an ubiquitous intracellular protozoan parasite, which infects one 

third of the global population. The consumption of raw or undercooked pork is 

considered as one of the main sources of disease in humans.  

The objective of this study was to investigate the in vitro activation of T-lymphocytes 

by fractionated T. gondii antigens, expressed as Interferon-γ (IFN-γ) production. The 

infection experiments were performed in seronegative pigs, which were orally 

inoculated with 6000 tissue cysts of IPB-Gangji (IPB-G) strain or IPB-LR strain. The 

PBMC’s were isolated from the infected and control animals on multiple time points 

during the acute and chronic phases of infection. Subsequently, PBMC’s were in vitro 

restimulated with native T. gondii antigens, fractionated prior to use by the continuous 

elution-electrophoresis and subdivided into 6 pools. The produced IFN-γ was 

quantified by ELISA in the cell culture supernatant of animals infected with IPB-G or 

IPB-LR, and showed reasonable differences between both infection groups. In general, 

there was a detectable IFN-γ concentration in the supernatant of the cultured PBMC’s 

and isolated lymphocytes from different tissues, produced by the animals from both 

groups upon stimulation with the TLA-pools. However, the animals infected with the 

IPB-LR strain produced in general much higher quantities of the cytokine than pigs 

inoculated with the IPB-G, except for the duodenal lymph nodes, and that after 

stimulation with each TLA-pool.  The muscles, heart and brain tissues collected from 

the animals at euthanasia were tested with a qPCR to investigate the parasite load with 

regard to the strains, the tissues and the time points in the infection course.  

This study demonstrates that the amount of the produced IFN-γ upon in vitro 

stimulation by TLA pools varies considerably between the groups infected with 

different strains of T. gondii and between the origin of the cells used in the antigen 

recall assay. This divergence is possibly correlated with the activation state of the 

PBMC’s in vivo, and, thus, the distribution and the persistence of the parasite within the 

host during acute and chronic toxoplasmosis.  
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7.2 Introduction 

Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite with a worldwide 

distribution among mammals and birds. According to global estimations, 30 to 50% of 

the world human population is infected by T. gondii and the main source of infection 

is foodborne (Tenter et al., 2000; Robert-Gangneux and Dardé, 2012, Flegr et al., 2014). 

The infection in humans is associated with severe to fatal clinical symptoms in 

newborns or immunocompromised patients, and the global infection burden in 

infected individuals is estimated to one million disability-adjusted life years (DALY’s) 

per year (Torgerson and Mastroiacovo, 2013). While certain animal species, such as 

sheep and goats, may develop severe clinical signs upon naturally infection, 

asymptomatic carriers such as pigs also contribute to the transmission from livestock 

towards humans.  

Nevertheless, even though a variety of diagnostic techniques exist as explained in the 

literature review (Chapter 2), these tests still cannot guarantee a reliable and fully 

efficient parasite detection (Opsteegh et al., 2016a; Algaba et al., 2017). The latter 

represents a considerable challenge for the food safety. Therefore, efforts should rather 

be directed towards prevention and elimination of the infection in meat-producing 

animals. Among the different preventive options, vaccination appears to be one of the 

most appealing methods. 

The majority of vaccination studies have been performed in mouse models, using a 

wide range of formulations and different combinations of recombinant or native 

parasitic antigens or DNA-vaccines (Vercammen et al., 2000; Letscher-Bru et al., 2003; 

Jongert et al., 2007; Dubey et al., 2012a; Wu et al., 2012; Cao et al., 2015; Wagner et al., 

2015; Yin et al., 2015). It appeared that the multivalent vaccines (Vercammen et al., 

2000; Li, et al., 2011; Wu et al., 2012; Cao et al., 2015; Yin et al., 2015) seemed to provide 

better protection against the challenge than monovalent (Letscher-Bru et al., 2003; 

Jongert et al., 2007). Consequently, focus moved to the identification of the highly 

immunogenic protein clusters within total lysate of antigens (TLA) or a crude extract 
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from the whole parasite. Recent findings indicated that a prolonged survival of T. gondii 

infected mice can be achieved upon a systemic priming and a subsequent challenge 

with TLA, together with a reduction of the parasite tissue cysts in murine brain (Wagner 

et al., 2015). These promising results made the assessment of the efficacy of TLA based 

vaccines in other species such as pigs very desirable.  

Considering the outcome of experimental vaccination studies in pigs, namely a 

reduction of T. gondii’s viability and/or decrease of the parasite DNA burden upon a 

vaccination and a challenge with a viable strain, the virulence and the strains’ genotype 

played a critical role (Dubey et al., 1991; Dubey et al., 1994; Kringel et al., 2004; Garcia 

et al., 2005; Jongert et al., 2008; Burrells et al., 2015). Irrespective from the study and 

the experimental conditions, a polarized Th1-immune response was induced in 

vaccinated animals, expressed as a predominant IFN-γ production, associated with a 

reduced cysts formation in the porcine tissues.  

Several infection studies in pigs revealed more insights into the early and chronic 

events following the infection, where a correlation was found between the intensity of 

the immune response during the in vitro exposure to the parasitic antigens and the 

persistence of the parasite within the host (Verhelst et al., 2011; Verhelst et al., 2015; 

Jennes et al., 2017).  

In the present study native T. gondii antigens were evaluated based on in vitro 

induction efficiency of IFN-γ production by pigs experimentally infected with two 

genotypically different strains. The TLA crude extract was fractionated prior to use by 

continuous elution-electrophoresis and subdivided into pools with increasing 

molecular weight. Each pool containing distinct proteins was applied in an antigen 

recall assay on mononuclear cells, isolated from blood or lymphoid tissues of infected 

pigs. The IFN-γ generated by the pools was assessed in the supernatant of the cultured 

cells by cytokine ELISA.  

Being the primary cytokine regulating and enhancing the pathogen’s survival, the 

amount of produced IFN-γ was related to the strain-dependent distribution and the 
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persistence of the parasite within the host’s tissues. The variability in the extent of the 

reaction towards the broad range of the parasitic antigens in several lymphoid tissues, 

as well as the use of two strains with a different genetic background, could possibly 

reveal the time-, tissue- and strain-dependent response of the host to the pathogen. 

7.3 Materials and methods 

7.3.1 Animals and experimental design 

Indoor-raised Belgian Landrace piglets were blood sampled at 2 weeks of age to test 

for the absence of anti-T. gondii serum antibodies (IgM and IgG) by indirect 

immunofluorescence assay (IFA), (Verhelst et al., 2015, Jennes et al., 2017). At weaning 

age (3w), 46 seronegative piglets were randomly assigned to the acute phase (n=36) 

and the chronic phase (n=10) experiments. During the experiments, all animals were 

housed in isolation units at the Faculty of Veterinary Medicine (UGent, Belgium) as 

approved by the Ethical Committee of the faculties Veterinary Medicine and Bioscience 

Engineering at Ghent University (EC 2015/102; Biosafety permit nr: 

AMV/11062013/SBB219.2013/0145).  

 

Acute phase experiment 

Thirty-six animals were divided into 10 groups of 3 animals each and one uninfected 

control group (n=6) (Table 7.1). Animals from five groups were orally inoculated at d 0 

with 6000 tissue cysts of T. gondii IPB-strain, while five other groups were inoculated 

with an equal dose of the IPB-LR strain. The six control animals received an inoculum 

prepared from the homogenized brains from naive mice. The animals were sampled at 

d 0 and subsequently euthanized at the following time points: 2, 4, 8, 14 and 28 days 

post infection (dpi) in order to evaluate in vitro IFN-γ production in a T. gondii antigen 

recall assay (Table 7.1). The control group was euthanized at 35 dpi to exclude the risk 

of cross-contamination during sample processing. The following samples were 
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collected and analyzed for both the cellular immune response (see 7.3.4 and 7.3.5) and 

the detection of the parasite DNA (see 7.3.6): PBMC’s, bone marrow, mediastinal and 

duodenal, jejunal and ileal mesenteric lymph nodes. 

 

Chronic phase experiment 

Eight animals were randomly assigned to one of 2 infection groups, of which one was 

orally inoculated with 6000 tissue cysts of the IPB-G strain (n=4), and to the other with 

the same dose of the IPB-LR strain (n=4); two animals served as uninfected controls. 

The humoral and cellular immune responses were monitored until 168 dpi by two-

weekly blood sampling in infected and control animals. The presence of T. gondii 

specific antibodies was detected by IFA, GRA7 ELISA and TLA ELISA. The in vitro 

cytokine production by the isolated and antigen stimulated PBMC’s was determined in 

supernatant of the cells by an IFN-γ ELISA. The T. gondii cyst persistence in the porcine 

tissues (M. psoas major, M. gastrocnemius, diaphragm, Mm. intercostales, M. 

longissimus dorsi, heart, brain) was evaluated at 168 dpi by qPCR.  

 

 

 

 

 

 

 

 

 



Experimental part  
 ______________________________________________________________________________________________________________  
 

190 
 

 

Table 7.1 : Experimental design of the acute phase and chronic phase T. gondii 

infection experiments.   

 

Study  Strain Dose Group Animals  

(n) 

Duration   

tissue cysts  (dpi) 

      

acute phase G 6000 G2 3 2 

  G4 3 4 

   G8 3 8 

   

G14 3 14 

G28 3 28 

      

 LR 6000 LR2 3 2 

   LR4 3 4 

   LR8 3 8 

   LR14 3 14 

   LR28 3 28 

      

 / / control 6 35 

      

chronic phase G 6000 G168 4 168 

 LR 6000 LR168 4 168 

      

 / / control 2 168 

G: IPB-G strain; LR: IPB-LR strain.  

Groups acute phase: G2, G4, G8, G14, G28 and LR2, LR4, LR8, LR14, LR28: pigs inoculated at d0 with 

6000 tissue cysts of the IPB-G or IPB-LR strain, respectively, and euthanized at 2, 4, 8, 14 and 

28 dpi.  

Groups chronic phase: G150 and LR150: pigs inoculated at d0 with 6000 tissue cysts of the IPB-G 

or IPB-LR strain, respectively, and euthanized at 150 dpi.  

Control groups: pigs inoculated at d0 with homogenized brain tissue of naive mice and 

euthanized at 35dpi (acute phase) and 150 dpi (chronic phase). 

 

7.3.2. T. gondii strains 

In the experiments the IPB-Gangji (IPB-G) and the IPB-LR T. gondii strains were used 

for the pigs inoculation, and the RH-strain for the preparation of the parasitic antigens 

(Jennes et al., 2017). The strains were maintained at the National Reference Laboratory 

for Toxoplasmosis (Scientific Institute for Public Health, Brussels, Belgium) by a serial 
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passage in Swiss mice, under approval from the Ethical Committee (nr 20140704-01) 

and the European regulation on the use of the laboratory animals (2010/63/EU). Tissue 

cysts were collected from the brain of IPB-G and IPB-LR T. gondii inoculated mice, in 

order to prepare the inoculum for the experimental study of pigs, as described further. 

The tachyzoites from the ascites of the RH-infected mice were harvested for the 

preparation of the parasitic antigens.  

 

T. gondii bradyzoites 

The strains of T. gondii were maintained in Swiss mice by peritoneal inoculation with 

pepsin-treated infectious material (such as placenta). The mice inoculated 6 weeks 

earlier were euthanized by cervical dislocation and the brains were collected from 

individual animals. The tissues were homogenized in PBS supplemented with 

penicillin/streptomycin (1%).  

The homogenized brain tissue was inspected using phase-contrast microscopy for the 

quantification of the tissue cysts. Subsequently, approximately 6000 cysts of each strain 

were suspended in 10 ml of sterile phosphate buffered saline (PBS) and used for the 

inoculation of the piglets within 8 hours after cysts isolation. The inoculum for the 

negative pigs was prepared from the brains of the naive mice. The infectious material 

was stored at 4°C until inoculation of the pigs.  

 

T. gondii tachyzoites lysate antigen (TLA) 

TLA or the total lysate antigen is a crude antigen mixture extracted from T. gondii 

tachyzoites of the RH strain (type I). The tachyzoites of the RH strain were maintained 

by serial passages of approximately 107 to 108 tachyzoites/ ml into the peritoneal cavity 

of female Swiss mice. Subsequently, the intra-peritoneal fluid containing the 

tachyzoites was collected and diluted (1:1) in sterile PBS containing penicillin-

streptomycin (1%). The suspension was first purified by differential centrifugation at 
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800g (Centrifuge Sigma®3-16K Fisher Bioblock Scientific, Newtown, United Kingdom), 

then filtrated through a 5µm syringe filter (MilleX®SV, Merck Millipore, Overijse, 

Belgium), and further sonicated (Ultrasonic disintegrator (MSE, Leicester, United 

Kingdom) on ice. Finally, the parasite extract was centrifuged to remove cell debris and 

the pellet was resuspended in PBS. After the determination of the protein content by 

bicinchoninic acid assay (BCA-assay), the lysate was used for antigen identification in 

SDS-PAGE and Western blot (chapter 7.3.3). 

 

7.3.3. Fractionation of T. gondii antigens 

SDS-PAGE electrophoresis and Western blot 

To distinguish the band pattern within the TLA-extracts, the lysate samples collected 

from RH-infected mice were diluted (1:1) in loading buffer, containing 5% v/v ß-

mercaptoethanol for the disulphide bonds reduction, denatured by heat treatment (5 

min, 95°C), and then run (Power PAC 300, Bio-Rad) on a 12% SDS-PAGE with a 4% 

stacking gel (10 min, 90 V, followed by 60 min, 130 V). For the visualization of the 

electrophoresis the gel was stained with Coomassie during 30 min at RT, while for the 

subsequent Western blotting the proteins were transferred on a polyvinylidene fluoride 

(PVDF) membrane (Millipore) at 130V for 1 h. The membrane after blotting and 

blocking overnight with 5% (w/v) BSA, 0.3% (v/v) Tween 80 in PBS, was incubated 

during 1 h at RT with a pooled porcine (IPB-G or IPB-LR infected) or murine (RH-

infected) serum sample diluted 1/100 in 0.5% (w/v) BSA in PBS, and developed with the 

horse radish peroxidase (HRP)-conjugated goat anti-pig IgG or goat anti-mouse IgG 

(Bethyl Laboratories Inc., Montgomery, USA), respectively at the dilution ratio 1/1000. 

Between each step, blots were washed three times for 5 min in 0.3% (v/v) Tween® 20 

while shaking. Finally, luminol enhancer solution (Pierce®ECL Western Blotting 

Substrate, Thermo Fisher Scientific, Gent, Belgium) was applied to visualize the bands 

by ChemiDOC TM MP Imaging System machine (Bio-Rad) for image processing (Image 
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Lab. 4.0.1, Bio-Rad). The protein bands on Coomassie-stained gels (Figure 7.1A) and 

the developed blots (Figure 7.1B) were identified, and their molecular weight (MW) was 

determined by the comparison with marker proteins of the known molecular size (All 

Blue Marker Precision Plus ProteinTM All Blue Standard (Bio – Rad) and MagicMark XP 

Western Protein standard (Thermo Fischer Scientific), respectively).   

 

A)                                               B)  
 

 

A)  

Figure 7.1 : TLA detection by A) SDS-PAGE (lane 1: marker; lane 2: TLA), and B) Western 

blot upon detection with porcine (IPB-G or IPB-LR infected) or murine (RH-infected) 

serum (lane 1: marker; lane 2: serum from IPB-LR infected pigs at 28 dpi; lane 3: serum 

from IPB-G infected pigs at 28 dpi; lane 4: serum from RH-infected mice at 3 dpi). The 

arrows indicate the bands assigned to T. gondii antigens.  

 

From the analysis of the pattern observed in the samples, the bands correspond 

presumably to the following proteins (according to the decreasing MW): myosin B of 

114 kD (Gómez de León et al., 2014), heat shock protein 82 (HSP90) of 82 kD (Hye-Jin 

et al., 2003), heat shock protein 70 (HSP70) of 70 kD (Miller et al., 2000), rhoptry 18 
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(ROP18) of 62.3 kD (Qu et al., 2013), coronin of 54 kD (Guang-Yuan et al., 2009), articulin 

of 47 kD (Gómez de León et al., 2014), surface antigen 3 (SAG3) of 43 kD (Amerizadeh 

et al., 2013), excreted-secreted antigen (ESA) of 41 kD (Nockeman et al., 1998), SAG-

related sequence 3 (SRS3) of 36.2 kD (Amerizadeh et al., 2013), rhoptry 9 (TgROP9-p36) 

of 36 kD (Reichmann et al., 2002), surface antigen 5 (SAG5) of 35 kD (Amerizadeh et al., 

2013), dense granules 7 (GRA7) of 29 kD (Neudeck et al., 2002), surface antigen 1 

(SAG1) of 28 kD (Marques et al., 2012), surface antigen 4 (SAG4) of 23 kD (Amerizadeh 

et al., 2013) and surface antigen 2 (SAG2) of 22 kD (Lau and Fong, 2008). However, the 

majority has been detected with the RH-murine serum, while only several with the 

porcine serum, namely: HSP90 (82 kD), HSP70 (70 kD), ROP18 (62.3 kD), coronin (54 

kD), SAG3 or ESA (41-43 kD), SRS3 or ROP9 OR SAG5 (35-36 kD), GRA7 or SAG1 (28-

29 kD). Since serum from the IPB-G infected animals revealed more bands than serum 

collected from the IPB-LR inoculated pigs, the pooled serum from the first group was 

used in the further steps.  

 

Continuous-elution electrophoresis 

Following the characterization of TLA lysate in SDS-PAGE and Western blot, 

continuous-elution electrophoresis (Model 491, Prep Cell, Bio-Rad) was performed to 

further identify antigens in the lysate. First, an optimal gel concentration for 

continuous-elution electrophoresis was selected by comparing in SDS-PAGE the 

separation of TLA lysate proteins using SDS gel concentrations from 5 to 12%. Next, 

the recognition pattern by Abs from sera from animals formerly infected with different 

T. gondii strains (IPB-LR and IPB-Gangji) was identified and compared in Western 

blotting (data not shown). Finally, we calculated the Rf (relative mobility) with a 

preferable value between 0.55 and 0.6, in order to determine the optimal separation 

conditions for TLA proteins, according to the formula:  
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Rf = 
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑦𝑒
 

 

Upon optimization, the continuous electrophoresis-elution was performed (300V, PAC 

300, Bio-Rad) on a TLA lysate (0.5 mg/ml) after dilution in loading buffer (1:1) 

containing 5% v/v ß-mercaptoethanol and a heat treatment (5 min, 95°C). During the 

electrophoresis a ring-shaped sample migrated down the gel through the frits and 

dialysis membrane (6 kD, Bio-Rad), to the elution tube in the centre of the cooling core. 

The subsequent samples were collected in separate liquid fractions (3 ml), and stored 

cooled at +4°C until further analysis with Western blot.  

Based upon the band pattern of TLA fractions collected by the continuous-elution 

electrophoresis and recognized in Western blotting by the T. gondii antibody positive 

porcine sera 6 distinct antigen pools were formed with the following MW ranges: 20-

40 kD (P1), 40-55 kD (P2), 55-65 kD (P3), 65-80 kD (P4), 80-100 kD (P5), 100-120 kD 

(P6) (Figure 7.2). Since pools 2 and 3 contained many fractions and multiple bands, they 

were subdivided into smaller fractions: P2A and P2B, and P3A, P3B and P3C, 

respectively, as in Figure 7.3. 
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Figure 7.2 : TLA fractionated in separate samples and assigned to pools (P1 - P6) after 

continuous- elution electrophoresis with Prep Cell, demonstrated by Western blot 

(detection with serum from IPB-Gangji infected animals at 28 dpi). Pools: P1 (20-40 kD), 

P2 (40-55 kD), P3 (55-65 kD), P4 (65-80 kD), P5 (80-100 kD), P6 (100-120 kD). 

 

Upon the identification of the proteins and assigning to the pools, the isolated fractions 

were dialyzed in ultra-pure water (UP) and concentrated, using Amicon Ultra filtration 

columns (10 kD cut-off; Merck-Millipore, Overijse, Belgium) during subsequent 

centrifugation steps. An aliquot of each fraction was collected for the SDS-PAGE 

analysis, which demonstrated a clear pattern of an increasing MW and multiple bands 

per pools, indicating various parasitic proteins per fraction (Figure 7.3). 
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Figure 7.3 : TLA fractionated in pools (P1 - P6) after continuous- elution electrophoresis 

with Prep Cell, demonstrated by SDS-PAGE. 

 

Finally, the pools were resuspended in culture medium, filtrated and used in the in vitro 

assay with the porcine PBMC’s and lymphocytes for the evaluation of their stimulating 

potential, assessed by the cytokine production. 

 

7.3.4. Detection of IFN-γ response in infected animals 

Isolation and stimulation of PBMC’s and lymphocytes 

PBMC’s (lymphocytes and monocytes) were separated from blood based on density 

gradient centrifugation (800 × g at 18°C, 25 min) with LymphoprepTM (Axis Shield, Olso, 

Norway; density: 1.077 ± 0.001 g/ml; osmolality: 290 ± 15 mOsm) and isolated as 

described previously (Jennes et al. 2017). Lymphocytes from the peripheral lymph 

nodes (mediastinal, duodenal, jejunal and ileal mesenteric lymph nodes) were isolated 

from the lymphoid tissue according to a previously optimized protocol (Verhelst et al., 

2011). Finally, all cell populations were resuspended at a concentration of 107 cells/ml 

in complete medium, supplemented with fetal calf serum (5%), non-essential amino 

acids (1%), Na-pyruvate (100 μg/ml), L-glutamine (292 μg/ml), penicillin (100 IU/ml), 
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streptomycin (100 μg/ml) and kanamycin (100 μg/ml)). Cells were cultured in a 96-wells 

culture plate (106 cells/well) for 72 h upon stimulation with the six isolated TLA pools 

(10 µg/ml) or the mitogen concanavalin A (ConA, Sigma-Aldrich, USA; 5 µg/ml) as a 

positive control. Complete medium without antigens or mitogen was the negative 

control.  

 

IFN-γ ELISA 

The supernatant collected after 72h incubation was transferred from the cultured cells 

to another empty 96-well culture plate for the detection and quantification of the 

produced IFN-γ in a sandwich-ELISA (Fisher Scientific, Erembodegem, Belgium). In 

brief, the plates were coated with mouse anti-pig IFN-γ monoclonal antibodies (mAbs), 

blocked with the assay buffer for 1 hour at RT, whereafter the prepared standards (2500 

pg starting concentration) or supernatant dilution (1/5) in assay buffer were pipetted 

in duplicate into the wells. Detection of the porcine IFN-γ was performed with biotin-

conjugated working Abs, followed by the subsequent addition of streptavidin-HRP 

solution, TMB substrate and stop solution to each well. The cytokine concentration 

(pg/ml) was calculated from the obtained OD-values measured at the absorbance 

450nm, using a 4-parameter curve fit with Delta Soft software.  

 

7.3.5 Humoral immune response 

The parasite-specific IgM and IgG production was evaluated by GRA7- and TLA-ELISA 

and by IFA, as described previously (Jennes et al., 2017). Blood was bi-weekly sampled 

from the jugular vene. For GRA7- and TLA-specific antibodies, serum was tested at a 

dilution of 1/50 on plates coated with 10 µg/ml of antigen. Antigen-specific IgM and 

IgG were detected with the goat anti-pig IgM- and IgG-HRP conjugate (Bethyl 

Laboratories Inc., Montgomery, Texas, USA), respectively, and 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid (ABTS) as substrate-chromogen solution 
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(Jennes et al., 2017; Verhelst et al., 2015). Previously determined sera from one positive 

and three negative control animals were included in the assay on each plate. The 

absorbance was measured at 405 nm (TECAN Spectra Fluor, Tecan Group Ltd., 

Männedorf, Switzerland) and the cut-off value was calculated as the mean OD405 of the 

negative controls + 3 x its standard deviation (SD).  

For IFA, the IgM and IgG antibodies against T. gondii were identified on slides coated 

with formalin-fixed tachyzoites (RH-strain) (Toxo-Spot IF, Biomérieux, Marcy-l’Etoile, 

France), incubated with a 1/50 dilution of serum samples and developed with a 

secondary fluorescein isothiocyanate (FITC)-conjugated goat anti-swine IgM(µ) or IgG 

(H+L) (KPL, Maryland, USA) as previously described (Jennes et al., 2017). Fluorescence 

of the stained tachyzoites was evaluated by fluorescence microscopy (Carl Zeiss, 

Germany), in comparison with positive and negative reference sera.  

 

7.3.6 Detection of parasite DNA in the tissues 

The tissues of the infected and control animals in the chronic phase experiment were 

tested for the detection of the parasite DNA by a highly sensitive MC-qPCR technique, 

recently optimized in the WIV-IPB institute on the samples from the former 

experiments of our research group (Algaba et al., in press). The model developed by 

Opsteegh et al. (2010) is further improved due to an increased sensitivity and efficiency, 

by the reduction of the incubation times, and, above all, it is suitable for the use in the 

diagnostic laboratories by the ISO validation (ISO 17025). Briefly, the recent method 

combines a specific DNA extraction and concentration step, by the hybridization of 

specific, biotin labelled probes to a T. gondii target sequence with a capture with 

streptavidin coated paramagnetic beads, in addition to co-capture of cellular r18S as a 

non-competitive PCR inhibition control. The release of the captured target DNA is 

processed upon UVb light (290-315nm, peak at 305nm) exposure during 5 min by 

designing the capture probes with a UVb cleavable spacer between the biotin and the 
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oligonucleotides (5' PC Biotin). The following tissues were collected and tested with 

this MC-qPCR: brain, heart, diaphragm, Mm. intercostales, M. gastrocnemius, M. 

longissimus dorsi and M. psoas major.  

The DNA samples from both experiments were tested in duplex (T. gondii and r18S) 

and in simplex (T. gondii) on Bio-Rad CFX 96 Thermocycler Detection System (Bio-Rad, 

Hercules, CA, USA), according to the following protocol: denaturation and activation of 

the Taq polymerase at 95°C for 3min, followed by 41 cycles at 95°C for 15 sec and 60°C 

for 20 sec. The obtained values of the crossing point (Cp) for each sample were 

analyzed with the CFX Manager Software, supplied with the device (Bio-Rad).  

 

7.3.7 Bioassay in mice 

In addition to the parasite DNA detection by MC-qPCR (see chapter 7.3.6), the viability 

of T. gondii in the tissue samples collected at the end of the chronic phase experiment 

was evaluated by the bioassay in mice, as performed earlier (Verhelst et al. 2011, Jennes 

et al., 2017). Hereto, homogenized samples (50 g for brain and 100 g for other tissues) 

underwent a trypsin (0.25%) digestion during 1h and 2h respectively, followed by 

filtration, washing with sterile physiological solution supplemented with gentamycin 

(0.4mg/ml) in order to remove the trypsin and resuspension in 10 ml of PBS 

supplemented with gentamycin. Finally, 1 ml of the suspension was injected 

intraperitoneally into 5 Swiss white female mice (Ethical Committee permit: 20140704-

02). Six weeks after the inoculation the blood from mice was tested by IFA for the 

presence of T. gondii IgG antibodies, or by qPCR in lungs and ascites in case of acute 

toxoplasmosis, when the bioassay was pre terminated due to reaching the human end 

points. The parasite DNA was then detected by qPCR as for the porcine samples (see 

chapter 7.3.6). 
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7.3.8 Statistics  

The IFN-γ concentration per pool at different time points, and the Cp value per tissue 

in the infected groups are presented as means ± SD. A one-way Analysis of Variance 

(ANOVA) and post hoc Bonferroni’s Multiple Comparison Tests were performed to 

discriminate between infected and control groups for cytokine response and the 

parasite load (GraphPad Prism 5). A p-value <0.05 was considered statistically 

significant.  

7.4 Results 

7.4.1. Kinetics of IFN-γ secretion by PBMC’s and peripheral lymphocytes of T 

gondii infected pigs upon in vitro restimulation with TLA pools and TLA. 

 

Acute phase experiment 

High IFN-γ concentrations could be detected already 8 and/or 14 dpi following in vitro 

restimulation of lymphocytes. This IFN-γ production dramatically decreased by 28 dpi.  

Regardless of the strain pigs were inoculated with, the highest peaks in the IFN-γ 

concentration were seen for PBMC’s (Figure 7.7) with values reaching 28800 pg/ml, 

followed by mediastinal (Figure 7.8), duodenal (Figure 7.4) jejunal (Figure 7.5) and ileal 

mesenteric (Figure 7.6) lymph node cells within the range of individual values between 

2400 and 6000 pg/ml, while the lowest (<1000 pg/ml) were notified for bone marrow 

(Figure 7.9). For most time points this IFN-γ concentration was even beyond the 

detection limit of the ELISA standard dilution. 

The pools inducing the strongest response in the PBMC’s were the fractions 1, 4, 6 and 

3. The response was more pronounced for the animals from the IPB-LR group (23650 

± 8920 pg/ml, 20300 ± 14740 pg/ml, 19890 ± 15430 pg/ml, 11620 ± 14930 pg/ml, 

respectively) than for the same pools in the IPB-G group (20200 ± 14890 pg/ml, 20260 
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± 14800 pg/ml, 15740 ± 14010 pg/ml, 19400 ± 16290 pg/ml, respectively). However, 

due to the excessive inter-animal variation within the same group, these differences 

were not significant.  

The IFN-γ induction profile for mediastinal lymphocytes by the TLA pools showed lower 

concentrations than for PBMC’s and a rather equal distribution of IFN-γ production. 

Although the maximum individual values reached above 6000 pg/ml for several TLA-

fractions at 8 dpi in both infected groups, the group averages were not higher than 

2500 pg/ml (2410 ± 3110 pg/ml, 2500 ± 3040 pg/ml, 2060 ± 3410 pg/ml, 2275 ± 3225 

pg/ml, 236 ± 320 pg/ml, 2040 ± 3430 pg/ml for the pools 1-6, respectively) in the IPB-

LR group, and only occasionally higher than 4000 pg/ml (2590 ± 2990 pg/ml, 4030 ± 

3405 pg/ml, 850 ± 720 pg/ml, 3890 ± 3260 pg/ml, 2200 ± 3290 pg/ml, 2270 ± 3250 

pg/ml for the pools 1-6, respectively) in the IPB-G group (Figure 7.8).  

Other alterations in reference to PBMCS’s were that TLA stimulation resulted in higher 

IFN-γ concentrations than the fractionated pools, and that IPB-LR infection induced 

similarly elevated IFN-γ concentrations at 8 and 14 dpi, with the exception of pools 5 

and 6 which peaked only at 14 dpi (2815 ± 3000 pg/ml and 4010 ± 3450 pg/ml, 

respectively). In the IPB-G group, as mentioned above, IFN-γ reach the highest value 

also at 8 dpi, whereafter the cytokine concentration dropped considerably. By the last 

sampling time point (28 dpi) the production was at a low level in all the infected 

animals, irrespective of the strain.  

The cytokine production levels in the antigen recall assay in the mesenteric lymph 

nodes showed another pattern in the distinct segments of the intestine (Figures 7.4 – 

7.6). In general, except for the duodenal lymph nodes, the responses were slightly or 

predominantly higher for the IPB-LR strain infected animals than for the IPB-G 

inoculated group. Referring to that, immune cells isolated and cultured from the jejunal 

and ileal mesenteric lymph nodes of IPB-LR group released the cytokine in up to 80 

times higher amounts than the IPB-G group (Figure 7.5 and Figure 7.6). The strongest 

responses were induced by the pools 1 (2040 ± 3430 pg/ml versus 28 ± 32 pg/ml) 2 
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(2050 ± 3420 pg/ml versus 35 ± 30 pg/ml), 4 (2065 ± 3410 pg/ml versus 40 ± 43 pg/ml), 

and 5 (2040 ± 3430 pg/ml versus 25 ± 27 pg/ml) at 14 dpi for the jejunal lymph nodes, 

and pools 1 (1240 ± 990 pg/ml versus 346 ± 503 pg/ml) and 2 (1460 ± 1030 pg/ml 

versus 255 ± 218 pg/ml) at 8 dpi for the ileal lymph nodes, both from IPB-LR animals 

in comparison with IPB-G animals, respectively.  

However, the lymphocytes activity observed in the duodenal mesenteric lymph nodes 

showed clearly an opposite trend, with a higher cytokine expression in the IPB-G 

infected animals (Figure 7.4). While all the pools seemed to induce a modest IFN-γ 

production (with a maximum of 2100 pg/ml) in the IPB-LR group at 14 dpi, in the IPB-

G infected animals several TLA fractions stimulated the cells to a more excessive 

cytokine levels until above 4000 pg/ml (pool 1: 3880 ± 3260 pg/ml; pool 2: 4005 ± 

3455 pg/ml; pool 3: 4060 ± 3360 pg/ml and pool 5: 4040 ± 3400 pg/ml). 

In addition, several other interesting observations were noticed, when considering the 

TLA pools and their stimulation capacity towards the distinct cell populations in the 

acute phase experiment. Hence, not only pool 3 but also other pools, such as pools 1, 

2 or 6 were involved in this early response. The total lysate (TLA) had a very clear IFN-

γ inducing capacity for the cells from mediastinal lymph nodes in animals from both 

infected groups, and to a lesser extent for the lymphocytes from jejunal and ileal 

mesenteric lymph nodes in IPB-G inoculated pigs. Surprisingly, most individual pools 

showed consequently a stronger activation than TLA, in particular in PBMC’s and 

duodenal lymph nodes. As mentioned earlier, cells isolated from the bone marrow did 

not show any noticeable pattern in terms of cytokine production.  

 

 

 

 

 

 

 



Experimental part  
 ______________________________________________________________________________________________________________  
 

204 
 

 

 

 

 

Figure 7.4 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of 

lymphocytes isolated from duodenal lymph nodes (Ln Duod) of T. gondii IPB-LR (upper 

panel) and IPB-G (lower panel) strain infected pigs after in vitro stimulation with TLA 

pools. 
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Figure 7.5 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of 

lymphocytes isolated from jejunal lymph nodes (Ln Jejunal) of T. gondii IPB-LR (upper 

panel) and IPB-G (lower panel) strain infected pigs after in vitro stimulation with TLA 

pools. 
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Figure 7.6 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of 

lymphocytes isolated from ileal lymph nodes (Ln Ileal) of T. gondii IPB-LR (upper panel) 

and IPB-G (lower panel) strain infected pigs after in vitro stimulation with TLA pools. 
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Figure 7.7 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of PBMC’s 

isolated from with T. gondii IPB-LR (upper panel) and IPB-G (lower panel) strain infected 

pigs after in vitro stimulation with TLA pools (acute phase experiment).  
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Figure 7.8 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of 

lymphocytes isolated from mediastinal lymph nodes (Ln Med) of T. gondii IPB-LR 

(upper panel) and IPB-G (lower panel) strain infected pigs after in vitro stimulation with 

TLA pools. 
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Figure 7.9 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of 

lymphocytes isolated from bone marrow (BM) of T. gondii IPB-LR (upper panel) and 

IPB-G (lower panel) strain infected pigs after in vitro stimulation with TLA pools. 
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Chronic phase experiment 

In this study pigs were followed until 168 dpi. As mentioned in material and methods, 

blood was two-weekly sampled and PBMC’s were restimulated in vitro with TLA pools 

to determine their IFN-gamma inducing effect. In the IPB-LR group, the cytokine 

concentration clearly increased between 42 and 70 dpi upon stimulation with pool 3 

until approximately 5000 pg/mL on 56 dpi, followed by a decrease to almost baseline 

values between 84 and 126 dpi (Figure 7.10 upper panel). For the other pools this first 

IFN-γ peak occurred later, was lower and of shorter duration. A second elevation in the 

detected cytokine concentration occurred at 140 dpi and was more pronounced for 

pools 1 and 5, whereas stimulation with pool 3 induced an intermediate increase.  

In the IPB-G group, the IFN-γ concentration started to increase 70 days post infection 

(dpi), which was clearly later than in the IPB-LR group and irregularly rose until 140 or 

154 dpi, depending on the pool used for stimulation (Figure 7.10 lower panel). In 

contrast to IPB-LR infected pigs, there was no dip in the IFN-gamma secretion between 

84 and 126 dpi.  

Although the re-stimulation with pool 3 induced a clear response and showed the 

highest concentration 168 dpi, higher values were seen for one or several of the other 

pools between 98 and 154 dpi.  

Since TLA pool 3 induced a high IFN-γ response, we subdivided pools 2 and 3 in several 

smaller fractions (P2A and P2B; P3A, P3B and P3C, respectively) to investigate whether 

the IFN-γ response could be further restricted to a certain molecular weight fraction. 

Stimulation assays were performed on selected animals from both infection groups 

between 168 and 182 dpi. Nevertheless, no significant differences in the antigen recall 

assay and the subsequent cytokine production was observed for these fractions at the 

later time points (data not shown). 
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Figure 7.10 : Kinetics of the IFN-γ concentration (pg/ml) in the supernatant of PBMC’s 

isolated from with T. gondii IPB-LR (upper panel) and IPB-G (lower panel) strain infected 

pigs after in vitro stimulation with TLA pools (chronic phase experiment).  
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7.4.2. Parasite load and viability in the porcine tissues 

At the euthanasia, the white blood cells isolated from blood, bone marrow and the 

lymphoid tissues (mediastinal lymph nodes, duodenal, jejunal and ileal mesenteric 

lymph nodes) were tested with the qPCR for the detection of the T. gondii DNA. The 

parasite load was calculated using Cp or the point at which the amplification curve 

crosses the vertical threshold line. The amplification data were expressed as ΔCp (delta 

crossing point) or the difference in Cp between the total number of the cycles (n=41) 

in the qPCR and the average number of cycles per sample in duplex and in simplex 

assessment. 

 

Chronic phase experiment 

From the results per group, the animals inoculated with the IPB-G strain of T. gondii 

showed on average a lower, however, not significant, parasite load in different tissues 

compared to the IPB-LR infected groups (Figure 7.11). The largest differences between 

both groups were notified for the M. gastrocnemius (ΔCp: 3.95 ± 3.81 for IPB-LR and 

ΔCp: 0.29 ± 0.57 for IPB-G) and the diaphragm (ΔCp: 5.9 ± 5.23 for IPB-LR and ΔCp: 

3.66 ± 3.3 for IPB-G).  
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Figure 7.11 : Average parasite load determined in the tissues of the pigs inoculated 

with IPB-LR and IPB-G in the chronic phase experiment. ΔCp (crossing point): 41 (total 

number of cycles) – average Cp per sample. Samples: PM: M. psoas major; Ga: M. 

gastrocnemius; Di: diaphragm; IC: Mm. intercostales; LD: longissimus dorsi; Ha: heart; 

Br: brain.   

 

 

Equally in both groups, the highest parasite load was detected in brains and hearts of 

the inoculated animals (Figure 7.11). The samples from the control pigs included in the 

study tested negative (data not shown).  

The results of the bioassay revealed the same trend, namely in the majority of the 

samples (83.4%; 15/18) collected from the IPB-LR inoculated pigs, the presence of the 

viable parasite was detected upon IFA or qPCR in murine samples (Table 7.2). Among 

the tissues derived from the IPB-G infected animals, 75% or 18/24 contained viable T. 

gondii bradyzoites, as evidenced by bioassay in mice. In the following samples in both 

inoculation groups no or a diminished number of viable parasites was detected: M. 

gastrocnemius, diaphragm, Mm. intercostales and M. longissimus dorsi. 
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 Table 7.2 : Bioassay and MC-qPCR results in the tissues of the pigs inoculated with 

IPB-LR (LR 1- LR 3) and IPB-G (G 1 – G 4) in the chronic phase experiment.  

 

IPB-LR  

  Bioassay MC-qPCR 
 

 PM Ga Di Ic LD Ha Br PM Ga Di Ic LD Ha Br  

                 
 

LR 1 5/5 5/5 2/5 5/5 5/5 5/5 np ++ ++ - ++ ++ +++ +++  

LR 2 5/5 5/5 2/5 1/5 1/5 5/5 np ++ + ++ + ++ +++ +++ 
 

LR 3 5/5 0 0 0 1/5 5/5 np ++ - ++ ++ + +++ +++  

                              
 

IPB-G 
 

 

 Bioassay MC-qPCR 
 

 PM Ga Di Ic LD Ha Br PM Ga Di Ic LD Ha Br  

                 
 

G 1 5/5 0 0 1/5 1/5 5/5 np ++ - - ++ + +++ ++ 
 

G 2 5/5 5/5 4/5 4/5 5/5 5/5 np ++ - + ++ ++ +++ +++ 
 

G 3 5/5 0 3/5 5/5 5/5 5/5 np ++ + + ++ ++ +++ +++ 
 

G 4 1/5 0 4/5 0 0 1/5 np - - ++ + + ++ ++ 
 

                              
 

 

PM: M. psoas major; Ga: M. gastrocnemius; Di: diaphragm; IC: Mm. intercostales; LD: 

longissimus dorsi; Ha: heart; Br: brain. Bioassay: + : positive; - : negative; MC-qPCR: + : ΔCp < 

5; ++ : 5 < ΔCp < 10; +++ : ΔCp > 10; - : Cp = 0; np: not performed.  

(one animal from IPB-LR group was euthanized before the end of the experiment due to animal 

welfare reasons and the bioassay and MC-qPCR data were therefore withdrawn from the IPB-

LR group results). 

 

However, the data from the individual animals showed even a more pronounced 

divergence between the two strains. Apart from the three samples in the animal LR3, 

where no viable parasites were detected in any of the assayed mice, there were also 

other samples (1 in LR1 and 3 in LR2) with a decreased number of mice showing T. 

gondii specific antibodies (2/5 and 1-2/5, respectively).  When considering the bioassay 

from the IPB-G pigs, the number of samples showing a reduced amount of the viable 

parasites is considerably expanded: 25% (3/24) showed no viable bradyzoites, another 
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8 samples (or 33.3%) had a reduced number of mice positive in IFA or in qPCR. The 

most noticeable bio-assay results in this group were observed for the animal G4, where 

for none of the tissues all 5 injected mice showed seroconversion (Table 7.2).  

In contrast with the group’s averages per tissue (Figure 7.11), the data of MC-qPCR per 

single animal confirmed the main findings of the bioassay in mice (Table 7.2). Not only 

more samples collected from the IPB-G group (5/24, 21% against 2/24, 8.3% in IPB-LR) 

showed no amplification of the 529 bp DNA fragment of T. gondii, while the house-

keeping gene performed well, excluding by this the failure of the assay; similarly, the 

ΔCp values were also within the lowest range (ΔCp < 5) in 6 (25%) tissues of the IPB-G 

group, while in 3 (16.7%) samples in the IPB-LR group. Surprisingly, even the heart and 

brain tissues did not show the highest ΔCp in some IPB-G infected animals, while it was 

evidently the case in the opposite group.  

7.5 Discussion 

The diagnosis of T. gondii infection in an intermediate host can be made by a variety 

of indirect and direct techniques, with their specific characteristics to investigate the 

immune responses of the host towards the parasite. The most convenient as well as 

the most frequently used techniques are the serological assays for the detection of the 

T. gondii-specific antibodies (Chapter 2). Despite the numerous advantages of antibody 

detection, this humoral response plays just a partial role in the resistance against the 

parasite and, as such, does not reflect the complexity of the immune mechanisms upon 

a natural or experimental infection. Hence, multiple parameters associated with 

toxoplasmosis should be evaluated to obtain a full insight of the immune reactions. As 

highlighted in Chapter 2, the first line of the host’s defense relies on the cells of the 

innate immune system such as DC’s, NK’s and macrophages. In the further stage of the 

infection also the cells from the acquired immune system are involved, namely different 

subpopulations of the T-lymphocytes and the B-cells (Filisetti and Candolfi, 2004; 
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Murphy et al., 2008; Miller et al., 2009; Denkers, 2010; Cohen and Denkers, 2014; Sturge 

and Yarovinsky, 2014). 

Hereto, in the present study we detected and monitored IFN-γ production by the 

lymphocytes in the acute and chronic T. gondii infection model in experimentally 

infected pigs, in response to the in vitro native antigen stimulation. In accordance with 

the earlier studies in pigs (Verhelst et al., 2011, Verhelst et al., 2015; Jennes et al., 2017), 

we focused on the TLA from the tachyzoites of the RH-strain as the source of the 

parasite antigens in the recall assay.  

It is well known that the complex antigenic composition of T. gondii varies strongly 

depending on the strain and the developmental stage of the parasite (Kotresha and 

Noordin, 2010; Khammari et al., 2014). Certain antigens have clearly a stage-specific 

expression pattern, while others are common during each developmental stage. The 

most frequently used T. gondii proteins for diagnostic or experimental purposes are 

either tachyzoite-derived, as in our study, or recombinantly produced surface antigens 

(SAGs), electrodense secretory organelles such as matrix antigen (MAG), microneme 

proteins (MICs), rhoptry proteins (ROPs), and dense granule (GRAs) (Kotresha and 

Noordin, 2010). Among others, SAG1 is a membrane-associated antigen, while MAG1 

is present in both stages: tachyzoite and bradyzoite. The GRA proteins (GRA2, GRA6, 

GRA7 and GRA8) are not related to the stage but rather to the time-interval, namely 

they are expressed in the acute phase of the infection, except for GRA1, which is 

reported to be a marker of the chronic stage (Kotresha and Noordin, 2010).  

Further, we quantified the IFN-γ production as the major cytokine associated with 

toxoplasmosis in an intermediate host, upon identification of the antigens by one-

dimensional SDS-PAGE and Western blot. Other studies have shown the utility of these 

techniques for testing of human and animal serum samples and identification of the 

most immunodominant parasitic antigens (Hafid et al., 1991; Marcolino et al., 2000; 

Fatoohi et al., 2004; Kotresha and Noordin, 2010; Khammari et al., 2014).  
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However, it has been proven that the induction of the cytokine production in vitro is in 

a relation to the strains used, due to the antigenic variation among the strains (Rodgers 

et al., 2005). In our study we used TLA prepared from tachyzoites of the RH-strain in a 

heterologous antigen recall assay. However, it is challenging to predict the magnitude 

of the divergence between the inoculation (IPB-G and IPB-LR) and restimulation strain 

(RH) without performing a genetic analysis, since we expect different expression of the 

same antigens and/or variability of the present epitopes. Nonetheless, as detected 

cytokine is the product of collateral recognition of multiple epitopes, the previous 

application of the lysate in a comparable experimental setup resulted in a strong 

immune response, as determined via IFN-γ mRNA expression by qPCR and via the 

intracellular IFN-γ detection by flow cytometry, irrespective from the strain (Verhelst et 

al., 2011, Verhelst et al., 2015; Jennes et al., 2017).  

To better understand which molecular fraction of the highly heterogeneous crude 

extract has the highest potential to elicit a robust immune response, we applied 

continuous-elution electrophoresis to separate TLA proteins in an SDS-PAGE on MW 

and as such to collect different MW ranges.  The subsequent application of these TLA 

pools in in vitro antigen stimulation of the PBMC’s and isolated mononuclear cells 

(lymphocytes and antigen-presenting cells) allowed to test the full repertoire of the 

parasite proteins, comparable to a mutual use of the membrane and the soluble 

antigens, but without any prior selection of the targets, when using recombinant 

antigens (Kotresha and Noordin, 2010; Khammari et al., 2014). One of the restrictions 

of the continuous-elution electrophoresis technique, apart from the denaturing 

conditions prior to the SDS-PAGE and the manipulation of the sample, is that a partial 

mixing of one extract into the other is nearly inevitable; in that way the cells are exposed 

to a broader spectrum of proteins than strictly the MW range of a pool (Hafid et al., 

1991; Marcolino et al., 2000; Fatoohi et al., 2004; Kotresha and Noordin, 2010; 

Khammari et al., 2014).  
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Based on the IFN-γ responses during the acute phase of the infection, we can 

hypothesize that the highly activated PBMC’s, producing the foremost largest amounts 

of the cytokine, origin presumably from the systemic lymphocytes activation in the 

acute phase of the infection. The ingested bradyzoites initiate a local innate immune 

response in the intestines, but upon their conversion to tachyzoites, they disseminate 

in blood and are taken up by, among others, macrophages and dendritic cells. These 

populations will migrate to the lymphoid organs and present antigens to lymphocytes, 

so that a more systemic immune reaction can be expected. Consequently, the highest 

activation of PBMC’s was demonstrated at 8 dpi, while immediately after this 

stimulation is passed on to the lymphocytes from the mediastinal, jejunal and ileal 

mesenteric lymph nodes, but to a much lesser extent. As the tachyzoites eventually 

reach the peripheral tissues and convert back to the bradyzoites, cyst formation 

obviously attracts primed immune cells to target the parasitic antigens (Filisetti and 

Candolfi, 2004; Murphy et al., 2008; Miller et al., 2009; Denkers, 2010; Cohen and 

Denkers, 2014; Sturge en Yarovinsky, 2014). 

The results from the intestinal lymphoid tissue gave an indication that the duodenum 

might be the most preferable site of the T. gondii IPB-G strain for the initial host tissue 

invasion. Consequently, the concentration of the detected IFN-γ for the IPB-G was 

clearly higher in the duodenum draining lymph nodes than for the IPB-LR strain (Figure 

7.4). Macroscopically, duodenum in IPB-G infected group was surrounded by massively 

inflamed lymph nodes at 8 and 14 dpi, as compared to jejunum and ileum (data not 

shown). On the contrary, in the IPB-LR infected group the lymph nodes in the 

duodenum area were less enlarged than in the jejunum and ileum as from 8 dpi. Apart 

from these findings, the cytokine production in other mesenteric lymph nodes was very 

comparable between those draining distinct segments of the intestine, and repeatedly 

higher for the IPB-LR strain infected animals than for the IPB-G inoculated group 

(Figures 7.5 – 7.6).  
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The acute phase of the infection seemed to involve the majority of  fractionated 

proteins, namely the pools 1, 2, 4, 5 and 6. The highest cellular responses were initiated, 

although with some inter-strain variations by the pools 1, 4 and 6 in PBMC’s, 2, 4 and 

6 in mediastinal lymph nodes, 1, 2, 4, and 6 in duodenal lymph nodes, 1 and 4 in jejunal 

lymph nodes, and 1 and 2 in ileal lymph nodes. On the contrary, in the chronic phase 

experiment throughout the whole study pool 3 was the most immunodominant 

fraction in inducing IFN-γ stimulation in PBMC’s. These preliminary data do not allow 

to identifying separated proteins, included within the molecular size ranges for the 

pools (20-40, 55-65 and 80-100 kDa respectively). Based on the published data and the 

band pattern obtained during the SDS-PAGE and Western blot, we can, however 

attribute these ranges to some parasitic antigens such as: heat shock protein 82 

(HSP90) of 82 kDa (Hye-Jin et al., 2003), rhoptry 18 (ROP18) of 62.3 kDa (Qu et al., 

2013), coronin protein of 54 kDa (Guang-Yuan et al., 2009), excreted-secreted antigen 

(ESA) of 41 kDa (Nockeman et al., 1998), SAG- related sequence 3 (SRS3) of 36.2 kDa 

(Amerizadeh et al., 2013); rhoptry 9 (TgROP9-p36) of 36 kDa (Reichmann et al., 2002), 

surface antigen 5 (SAG5) of 35 kDa (Amerizadeh et al., 2013), dense granules 7 (GRA7) 

of 29 kDa (Hiszczyńska-Sawicka et al., 2010), surface antigen 1 (SAG1) of 28 kDa 

(Marques et al., 2012), surface antigen 4 (SAG4) of 23 kDa (Amerizadeh et al., 2013) and 

surface antigen 2 (SAG2) of 22 kDa (Lau and Fong, 2008). 

The majority of the listed antigens was applied in the experimental vaccination studies 

in different species (Jongert et al., 2007; Jongert et al., 2008; Li et al., 2011; Wu et al., 

2012; Yin et al., 2015, Hu et al., 2017; Zhu et al., 2017). However, to date, no vaccine 

based on the use of a single protein or DNA target has been proven to prevent the 

intermediate host from T. gondii infection. Nevertheless, some successful attempts 

have been undertaken to partially or fully clear the parasite from the tissues of the 

infected animals upon immunization and challenge with a heterologous strain (Katzer 

et al., 2014; Burrells et al., 2015). Having in mind that the native antigens more 

efficiently mimic the immune response in a naturally infected host, immunization of 
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naïve piglets with isolated fractions from the viable parasite, and subsequently followed 

by a challenge with one of the previously applied strains, will be performed as a future 

prospect of this study.  

Additionally, the pigs infected with IPB-LR showed an earlier elevated IFN-γ response 

than pigs infected with IPB-G. Due to intermittent cytotoxic activity of CD8+ and 

macrophages towards the tissue cysts during a chronic infection, as postulated by 

others (Kim, 2015), a continuous antigen exposure activates the memory cells within 

the PBMC’s, what results in a gradual increase in the concentration of the detected IFN-

γ in both infection groups, as determined by the cytokine ELISA (Figures 7.10).  

Summarizing, it is without any doubt that IFN-γ plays a crucial role in the survival of 

the parasite in the intermediate host; therefore, the observed differences in the potency 

of the immune response in time and between the strains could perhaps be correlated 

with the tissue distribution and parasite load, as earlier described (Jennes et al., 2017).  

In the course of a common oral inoculation the parasite undergoes a stage 

conversion and intense multiplication in the intestinal tissues, followed by 

dissemination and encysting in the systemic tissues. In the earlier studies of a chronic 

T. gondii infection in pigs we investigated the parasite’s distribution in brain, heart, 

diaphragm, intercostal and several skeletal muscles (Verhelst et al., 2011, Verhelst et 

al., 2015; Jennes et al., 2017). In a parallel study of an acute infection in sheep the 

parasites seemed to diminish in the intestinal tissues and appear in the systemic 

(lymphoid) tissues, while the heart tested positive in all inoculated animals and was, 

thus, the most reliable sample for demonstrating the presence of the parasite (Verhelst 

et al., 2015).  

In our chronic infection study, the presence of parasitic DNA was detected in the 

majority of the tissues in the IPB-LR and IPB-G infected animals. However, we clearly 

noticed an inter-strain difference, when considering the parasite load (ΔCp values) in 

the distinct tissues. Although the group averages were rather similar due to the 

substantial SD values, the individual results showed more prominent divergences in the 
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amount of the detected parasite DNA. The trend of parasite reduction in the tissues of 

the IPB-G inoculated pigs, previously investigated and described by our research group 

(Verhelst et al., 2011; Jennes et al., 2017), was here confirmed, but this time by a more 

sensitive detection method.  

In the earlier studies T. gondii detection was performed with the qPCR assay, 

characterized by the detection limit of 2-4 tissue cysts in 100 g of the tissue sample (De 

Craeye et al., 2011); opposite to that, the here applied MC-qPCR was optimized to 

detect 1 single cyst in 100 g of a tissue (Algaba et al., 2017). Even though several 

hundreds of bradyzoites are normally present per tissue cyst, the optimized technique 

reaches as few as 65 tachyzoites per tissue sample, highlighting the diagnostic value 

of this assay.  

When comparing the most recent data of the MC-qPCR with the results of the bio-

assay in mice, a similar conclusion can be drawn about the presence of the viable 

parasites upon inoculation of pigs with both strains: nearly 60% of the sampled tissues 

showed a reduced viability of the parasites of the IPB-G strain, as compared to 44% for 

the IPB-LR inoculated animals. Additionally, these findings were in agreement with the 

results of the MC-qPCR for the particular tissues, where none or few parasites were 

detected, resulting in the low ΔCp value. Overall, the results of both techniques showed 

a 100% specificity, but the sensitivity of MC-qPCR was slightly higher: 94.12% (80.32 - 

99.28 95% CI), as compared to the bioassay: 86.49% (71.23 - 95.46 95% CI) (Algaba et 

al., in press). This could explain the higher detection rate of the parasite DNA in the 

tissues samples, which were considered negative or weak positive in bioassay (0-4/5 

mice). However, it is noteworthy that among these samples, numerous (8 for the IPB-

G and 3 for the IPB-LR) showed a low ΔCp value in addition to a reduced number of 

seropositive mice.  

We would like to remark that despite these interesting results, it remains a subject of 

discussion, whether the isolated cells, especially these collected in the early stage of 

the infection, were still under the influence of the in vivo activation by the parasite, or 
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rather became reactivated by the exposure to the fractionated TLA. Indeed, at some of 

the early time-points (≤ 8 days) no memory cells will yet be developed. Furthermore, 

the exposure of the cells to TLA of a heterologous strain than the originally inoculated 

might decrease the efficiency of the stimulation (Rodgers et al., 2005).  

As a future recommendation, in order to compare the activation status of the cells 

stimulated in vitro and in vivo, the cells from the same tissues and time points after 

infection but under non-stimulated conditions, should be analyzed by in a gene 

expression study such as RNAseq to fully understand tissue- and strain-specific 

immune mechanisms within the host.  
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8.1 Introduction 

The objective of this doctoral thesis was to estimate the prevalence of T. gondii in pigs 

in Belgian herds and to gain novel insights into the molecular and immunological 

interactions between the porcine host and the pathogen in an experimental infection 

model.  

To address and investigate these aspects, the setup of this thesis was divided into four 

main aims: (1) estimation of the true prevalence of T. gondii infection in Belgian swine; 

2) evaluation of the strain and dose effects on the host’s immune response and the 

parasite burden and viability; 3) investigation of the effect of reinfection with a 

heterologous strain on the immune responses and the parasite burden; 4) initial 

assessment of a potential vaccine candidates out of Total Lysate Antigen fractions by 

in vitro IFN-γ induction.  

8.2 True prevalence and risk factors associated with porcine T. gondii infection 

As mentioned in the literature review, nearly half (30-63%) of human foodborne 

toxoplasmosis originates from consumption of meat from infected livestock or game 

(Kijlstra and Jongert, 2008; Batz et al., 2012; Robert-Gangneux and Dardé, 2012; 

Opsteegh et al., 2016b). The incidence could be estimated as odds ratio or an 

approximate risk in a retrospective case-control study and the information obtained 

via a questionnaire, by identifying the potential risk factors among the subjects of the 

study. Hence, it should theoretically be possible to quantify the incidence rate of the 

foodborne toxoplasmosis by well-defined inclusion criteria and exclusion of the cases 

of CT, organ or blood transplants (Torgerson and Mastroiacovo, 2013). 

Among domestic animal species worldwide, pork is indicated as one of the major meat 

sources associated with human foodborne T. gondii infection (Havelaar et al., 2015; 

Scallan et al., 2015). Therefore, the assessment of the infection rate in pigs is important 

for the development of prevention strategies of this zoonosis via pork.  
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Despite the numerous serological and molecular studies addressing T. gondii 

prevalence in multiple species, and pigs in particular (Dubey, 2009b; Guo et al., 2015b), 

along with the recommendations of the food safety institutions on the foodborne 

transmission mode of the infection (EFSA report 2007, Hill et al., 2008; Opsteegh et al., 

2016b), no standardized approach has been developed so far for the implementation 

on national or international level. One of the difficulties is the impressive range of the 

available diagnostic techniques and of the targeted parasitic antigens, each with their 

own advantages and drawbacks in terms of sensitivity, specificity, and the practical 

implications. Nonetheless, the detection of T. gondii-specific antibodies against single, 

chimeric or multiple, native or recombinant parasitic antigens in serological assays 

could be a first, relatively fast, affordable and feasible indication for a recent or former 

exposure of the host to the parasite (Mancianti et al., 2010; Bhattacharyya et al., 2013). 

Despite these obvious benefits, the currently available serological assays still could be 

improved, as any of the systemic (e.g. sampling strategy), technical (e.g., assay 

procedure, antigen used) or biological factors (genetic strain, dose, viability of the 

pathogen, host’s diversity) may have a substantial impact on the test outcome (Greiner 

and Gardner, 2000; EFSA, 2011). 

In Chapter 4 we provided a first estimation of the true and apparent prevalence of T. 

gondii infection in the porcine population in Belgium. To our knowledge, no earlier 

report on the number of T. gondii infected pigs had been made for Belgian herds. In 

our study we described the presence of the parasite-specific IgG in the Flemish and 

Walloon regions, using a recombinant and a native antigen.  

When considering the choice of the antigens applied in this study, the combined use 

of multiple parasitic antigens (TLA), next to a single recombinant GRA7 protein, should 

increase the chance of T. gondii antibody detection, and therefore, provide a more 

reliable result (Bokken et al., 2015). Indeed, whereas the TLA-ELISA detected more 

frequently T. gondii-specific antibodies than the GRA7-ELISA, also some of the GRA7-

seropositive animals were TLA-seronegative. Although GRA7-ELISA achieves 
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satisfactory sensitivity and specificity on animal sera, it also may yield false positive 

results from the cross-reaction with other species of the Sarcocystidae. accidentally 

ingested by pigs (Jacobs et al., 1999; Terkawi et al., 2013; Gondim et al., 2017). However, 

this reported cross-reaction might equally contribute to a higher detection rate in TLA-

ELISA.  

Yet, none of the two applied tests could serve as a gold standard, thus, false positive 

or false negative results cannot be excluded, when determining the apparent 

prevalence in the selected populations. Indeed, despite the obvious practical benefits, 

the currently available serological assays still could be improved. Although all the 

samples were collected, stored and processed in the same way, still a certain grade of 

variation was possible, affecting the final outcome of the assays. As mentioned earlier, 

any of the systemic (e.g. sampling strategy), technical (e.g., assay procedure, antigen 

used, operator) or biological factors (genetic strain, dose, viability of the pathogen, 

host’s diversity) may have a substantial impact on the test outcome (Greiner and 

Gardner, 2000; EFSA, 2011). Having this in mind, to refrain from the imperfectness of 

the serological tests in general, and from the limitations of the use of a recombinant 

or a native antigen in this particular case, we performed a Bayesian statistical analysis 

to estimate the true prevalence.  

This model requires prior information, derived from expert knowledge or previously 

published diagnostic data, to estimate the probability of two (or more) assays for a 

given disease, namely, the sensitivity and specificity of the applied tests, and correlation 

between the outcome of the assays in infected and non-infected animals (Branscum et 

al., 2004; Berkvens et al., 2006; Basso et al., 2013; Bokken et al., 2015). The statistical 

model developed by Branscum (2004) was adapted to fit into our study by not taking 

into consideration the conditional probability but to apply covariances between the 

two tests for infected and non-infected animals; as both assays used in our study reflect 

an equivalent information on the humoral immune response towards T. gondii, and 

both rely on the recognition of the proteins expressed by the same infectious stage 
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(tachyzoites), the results show possibly a certain degree of correlation. Additionally, the 

prior information about the tests’ sensitivity and specificity, included in the adapted 

model, is derived from naturally infected individuals, therefore we could assume that 

the estimated true prevalence may be considered as accurate when applied on a 

population which also undergoes a natural infection, as in our study. 

Our results demonstrated a significantly higher total, between-herd and within-herd 

apparent prevalence of anti-T. gondii IgG in Wallonia than in Flanders (P < 0.001) in 

both tests. Likewise, the estimated true prevalence confirmed our apparent findings 

across all data. Although the number of the sampled herds and animals within farms 

was limited, especially for the Walloon region, we have reasons to believe that the 

obtained results are a realistic estimation of the seroprevalence of T. gondii in the 

Belgian pig population. The type of farm management and its impact on the prevalence 

is strictly correlated with the extent of the outdoor access and the presence of the cats 

on farm, as clearly demonstrated by the studies in The Netherlands (Kijlstra et al., 2004; 

Meerburg et al., 2006; van der Giessen et al., 2007; Kijlstra et al., 2008). Here, only 0.0-

0.4% of conventionally raised pigs tested positive, as opposed to 1.2-10.9% of the 

organic and 4.7-5.6% of free-range animals. Since the management type for the 

collected samples in our study is not confirmed, we can only speculate on the possible 

reason for the substantial discrepancies in the seroprevalence between both regions.  

Summarizing, we described here the first results on the prevalence of T. gondii in 

Belgian pigs. Furthermore, the apparent prevalence and the specificity of both 

serological assays used in our study differed significantly between two sampled 

regions. These findings imply that serological tests are a valuable tool for indications 

on the infection status of animals, especially in large-scale populations, but due to their 

limitations, the statistical models such as Bayesian analysis could be a better alternative 

(Basso et al. 2013; Bokken et al., 2015). The non-equal distribution of the samples on 

Flemish farms, a substantial difference in the number of the included farms between 

Flanders and Wallonia, and no exact background data on the farms’ management type 
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should be considered as drawbacks of this study. Moreover, the serological assays in 

general, despite their advantages in terms of feasibility, do not demonstrate the 

presence and the distribution of the parasite within the tissues. Referring to that, as the 

parasite was successfully isolated from seronegative animals (Opsteegh et al., 2016a 

and 2016b), we can hypothesize that antibodies can be beyond the detection level, do 

not persist life-long in domestic animals as in humans, or not all the infections in certain 

species (such as cows and horses) lead to developing antibodies against the pathogen 

(Opsteegh et al., 2011, Opsteegh et al., 2016a and 2016b). On the other hand, 

antibodies could be produced as a result of the exposure to the parasite but without 

establishment of an infection, or, as discussed further, the humoral response persist, 

while the clearance of the cysts in the host’s tissues might occur. This implies that the 

number of the infected animals could be easily under- or overestimated, which might 

increase the risk on the transmission of the zoonosis to the consumer or exclude 

seropositive animals from the food chain, respectively. Consequently, the detection of 

T. gondii DNA or the viable parasites in the tissues of farm animals is more valuable for 

the prediction of the human infection’s risk than serological methods. We elaborated 

further on this in Chapter 5, Chapter 6 and Chapter 7.  

8.3 Parasite burden and tissue distribution in the acute and chronic infection 

model 

As postulated in Chapter 4 and in 8.2, serology on its own has a high diagnostic value 

for the detection of the ongoing infection within the herd, irrespective of the use in the 

apparent or true prevalence calculation. However, the presence (or absence) of T. 

gondii-specific antibodies does not provide sufficient information on the strain 

virulence, the distribution within the host and the parasite load per tissue. Moreover, a 

poor correlation between the serological status of pigs determined by ELISA and the 

direct parasite’s detection via bioassay or molecular techniques is not unusual, as 

demonstrated by Belgian research group (Verhelst et al., 2011) and recently confirmed 



Experimental part 
 ______________________________________________________________________________________________________________  
 

230 
 

in an EFSA report (Opsteegh et al., 2016b). Since the incidence of naturally acquired 

porcine toxoplasmosis is difficult to predict and distinguish, due to the lack of clear 

clinical symptoms, we performed a series of inoculation experiments in weaned 

Toxoplasmanaïve piglets to perform a multi-parameter analysis on both the parasite’s 

distribution and viability, as well as on the induced immune responses of the host (see 

8.4). The findings of these studies, addressing the second and third aim of this doctoral 

thesis, were described in Chapter 5, Chapter 6 and Chapter 7. 

The first investigation of T. gondii dissemination upon experimental infection with the 

IPB-G strain was focused on the comparison of the parasite load obtained by qPCR 

between several porcine tissues and the viability of the parasite at 6 wpi, as highlighted 

in Chapter 5. The results of the former studies revealed a significantly diminishing 

amount of the parasite DNA to undetectable levels in the skeletal muscles at 6 mpi, 

and the persistence of the cysts exclusively in brain and heart tissues (Verhelst et al., 

2011; Verhelst et al., 2015). While the results of the bioassay were consistent with the 

qPCR in the chronic infection model, showing a substantial decrease in the infectious 

capacity over time, the outcome of the bioassay from samples collected at 6 wpi 

indicated a higher sensitivity of the bioassay above qPCR. Earlier studies have already 

mentioned the interference of porcine DNA with the qPCR’s sensitivity, and a better 

performance of the bioassay (Garcia et al., 2006, Hill et al., 2006). Interestingly, heart 

and brain tested consistently positive in both techniques at the acute and chronic 

stages of the infection. Therefore, these tissues seem to be a reliable indicator to 

demonstrate the parasite’s presence upon T. gondii infection in pigs. Although the 

heart consists of relatively limited amount of muscle tissue, it showed a reasonable 

concentration of the parasite in comparison with the bigger muscles. As observed in 

the subsequent studies, the amount of parasite DNA was clearly higher in the heart 

tissue of animals from the latter experiments (Chapter 6 and Chapter 7) than from the 

former study (Chapter 5) due to the 2-fold difference in the inoculation dose (6000 

versus 3000 tissue cysts, respectively). This is in line with the recently published EFSA 
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report, investigating the predilection sites in multiple species of livestock (Opsteegh et 

al., 2016b). Based on these novel findings, a hypothesis of the clearance of parasite 

infection from the edible tissues was formulated, which was further evaluated in the 

subsequent experiments. Additionally, we aimed to compare the surprising results 

obtained with the IPB-G strain with a genetically different IPB-LR strain to fully address 

the predefined second aim of the thesis. Hereto, we performed a study of each 

infection group in parallel, investigating both the inoculation dose and the strain effect 

on the final infectious capacity of the edible tissues in pigs at 4 mpi. Chapter 6 

describes the experimental setup and the major findings of the performed research. 

The obtained results emphasize the dose and strain-dependent parasite burden of T. 

gondii in the porcine tissues. Importantly, a clear correlation was found between the 

amount of detected DNA and a nearly 10-fold difference in the inoculation dose. 

However, this correlation was reversed when inoculated with a high dose of the IPB-G, 

since an absence or a strong decline in the parasite load was detected in the porcine 

tissues, which is of pivotal importance for the estimation of the parasite burden, and, 

hence, for the risk for human infection. On the contrary, upon inoculation with a low 

dose, the parasite was more prominent in terms of predilection sites and the DNA 

concentration. Yet, still some muscle tissues remained negative at 4 mpi, indicating the 

exceptional characteristics of the IPB-G strain even with the minimum inoculation dose. 

Reversely for the IPB-LR, the inoculated animals presented the highest parasite load in 

heart and brain, and no alteration of the distribution or load in the tissues in qPCR, as 

expected. Further, in the next experiment we investigated the effect of a heterologous 

challenge on the same parameters (Ghigh/LRhigh and LRhigh/Ghigh groups). Here we 

described the effect of the prior infection on the outcome of the subsequent challenge: 

as shown in the LRhigh/Ghigh group, the animals, which were first inoculated with the 

IPB-LR strain, followed by the challenge with the IPB-G strain, showed a much lower 

parasite tissue distribution than observed after a single IPB-LR strain infection. These 

observations seem to be crucial for the understanding of the mechanisms of chronic T. 
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gondii infection in pigs, since they underscore the impact of the native antigens in the 

induction of the efficient immune response. The parasite distribution among the tissues 

and the amount of the detected DNA was much lower, yet not significantly different as 

with the IPB-LR strain alone. This striking observation has not been exclusively 

described for genotype II strains (Velmurugan et al., 2009; Suzuki et al., 2012), but also 

for type I strains (Burrells et al., 2015). 

In parallel to the qPCR, the infectious capacity of the tissues from the single inoculation 

and heterologous challenge was evaluated by bioassay in mice. Interestingly, as 

described in Chapter 6, the detected reduction in parasite load in qPCR was in full 

agreement with the results of the bioassay. In contrast to the earlier study (Verhelst et 

al., 2011), the results proved a substantially higher sensitivity of the qPCR method than 

of the bioassay. The qPCR is a direct detection technique with many advantages, as it 

is very sensitive and specific, amplifying a parasite-specific DNA fragment, but also fast 

and relatively easy to perform and interpret (Homan et al., 2000). The here applied 

qPCR technique has been further optimized for the diagnosis of the parasite in human 

or animal tissues, with a detection limit of 2-4 tissue cysts per 100 g of sample (De 

Craeye et al., 2011). Nevertheless, we are aware that further reducing this threshold is 

desirable, as the dissemination of the tissue cysts per sample varies but is mainly very 

low. Additionally, the cysts are slowly replicating and encysted intracellularly, by which 

their detection might even be more difficult. As one tissue cyst contains on average 

hundreds to thousand(s) of single bradyzoites, the acute toxoplasmosis resulting from 

the cysts’ reactivation and release, or the ingestion of the infected meat, has an 

exponentially increasing severity. Therefore, efforts have been made by the 

collaborating research group to further optimize the existing Magnetic Capture-qPCR 

technique for the isolation and enrichment of the tissue cysts from animal samples 

(Opsteegh et al., 2010). The recently optimized novel technique has a proven increased 

sensitivity in comparison with the bioassay and the conventional qPCR, reaching to 65 

tachyzoites or a single tissue cyst per 100g of the sample (Algaba et al., 2017). The first 
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application of this assay on experimentally infected porcine tissues has been depicted 

in Chapter 7, describing the latest performed inoculation study in this dissertation. 

Unlike in the earlier studies, nearly all the tissues from the chronically IPB-G infected 

animals (168 dpi) tested positive for the presence of T. gondii DNA, similar to the IPB-

LR infected group. The reason for that is the considerably increased sensitivity of the 

applied detection assay. However, the main findings concerning the parasite load and 

tissue distribution are in both groups in concordance with the previously observed 

trend, showing that the highest parasite load was detected in brains and hearts of 

inoculated animals from both groups. Strikingly, the individual results of the ΔCp values 

and the bioassay in mice, although with a certain variation among the animals and the 

tissues, confirmed our hypothesis that the IPB-G infected animals have a lower parasite 

load and a decreased infectious capacity of the tissues upon inoculation than the IPB-

LR group (Verhelst et al., 2011, Verhelst et al., 2015, Algaba et al., 2017; Jennes et al., 

2017).  

As a confirmation of our results, others have described a reduction in parasite burden 

in pigs in vaccination and challenge experiments (Kringel et al., 2004; Garcia et al., 2005; 

Jongert et al., 2008; Burrells et al., 2015). In those studies, similar to our findings, an 

enhanced Th1 immune response seems to initiate host’s protection mechanism, 

resulting in an elimination of the parasite. The immunological aspects associated with 

this crucial difference between the strains are further discussed (Chapter 6, Chapter 7 

and 8.4). 

8.4 Strain dependent immune responses in the acute and chronic infection model 

As illustrated by the qPCR results and the bioassay data on the parasite load and T. 

gondii viability in the examined tissues from the experimentally infected animals 

(Chapter 5, Chapter 6 and Chapter 7), our results strongly suggest a dose-dependent 

decrease of the IPB-G strain burden in tissues following inoculation, pointing towards 

immune-mediated mechanisms. To address this assumption, we investigated different 
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immunological parameters along with the infectious capacity of the tissues. In each set 

of the experiments, humoral and cellular responses were evaluated via the detection 

of T. gondii-specific antibodies (IgM and IgG), and the quantification of the major 

cytokine (IFN-γ), expressed as mRNA or synthetized protein. For this, we focused on 

the systemic responses in serum and the in vitro activation of PBMC’s or isolated 

lymphocytes upon stimulation with the parasitic antigens.  

The involvement of the innate and acquired immune system was previously observed 

in several experimental infections in pigs, dominated by antibody production against 

the parasitic antigens, and by a Th1-type immune response (Solano Aguilar et al., 2001; 

Dawson et al., 2004; Kringel et al., 2004; Dawson et al., 2005, Garcia et al., 2005; Jongert 

et al., 2008; Verhelst et al., 2011; Verhelst et al., 2015). Our studies confirmed these 

findings, since irrespective from the strain and the infection dose, an early IgM and IgG 

GRA7-specific antibody production was initiated. In contrast with that, the TLA-

response remained delayed in all the experiments, but this was compensated by the 

longer persistence of the elevated IgG titers against the lysate antigens. Novel 

information from our research included the dose and the strain effects on the primary 

GRA7- and TLA-specific antibody responses, which were detected earlier for the first 

and had a higher extent for the latter.  

In addition to the enhanced humoral immunity, a polarized Th1-immune response is 

predominant during acute and chronic T. gondii infection in different hosts. Briefly, as 

extensively described in Chapter 2, the uptake of the parasite by antigen presenting 

cells (DC’s or macrophages) leads via IL-12 and TNF-α secretion to the activation of 

other cell populations (Suss-Toby et al., 1996; Carruthers, 2002; Kasper et al., 2004; 

Gregg et al., 2013; Cohen and Denkers, 2014). Activation of this pro-inflammatory 

pathway requires interactions of PRR’s, among which TLR’s, on immune cells with 

parasite ligands (Miller et al., 2009; Andrade et al., 2013; Koblansky et al., 2013; 

Gazzinelli et al., 2014). From here, DC dependent IL-12 production activates Th1 and 

NK cells, which are responsible for the massive IFN-γ release (Sturge and Yarovinsky, 
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2014). The subsequent cytokine-dependent expression of GTPases leads to the 

recruitement of immunity-related GTPases (IRG’s) and guanylate-binding proteins 

(GBP’s) (Yarovinsky, 2014). These effector proteins target the parasite attachment site 

at the host cell and are directly involved in lethal damage to the parasitophorus vacuole 

(PV), causing the release and elimination of the parasite of the parasite (MacMicking, 

2004; Taylor et al., 2004; Liesenfeld et al., 2011; Gazzinelli et al., 2014).  

It is important to mention that IFN-γ-inducible IRG’s are well studied in murine models, 

where 23 different genes have been identified to date. The data on the identification 

of porcine GTPases are scarce, but a high similarity to the human IRG’s is mentioned 

(MacMicking, 2004). Only two porcine GBP’s have been reported until now: GBP1 and 

GBP2, whereas in humans 7 different GBP’s have been identified (MacMicking et al., 

2004; Li et al., 2016). However, several IRG’s have been found using Affymetrix 

GeneChip® Porcine Genome Array but a detailed study in pigs is lacking (Fossum et al., 

2014).   

Followed by the innate immune responses as the first defense line against the parasite’s 

invasion, T-cells of the acquired immunity take over the IFN-γ production during the 

sub-acute and chronic infection stage. Experimental infections in mice (Jongert et al., 

2010; Suzuki et al., 2012) demonstrated the importance of CD4+ and CD8+ IFN-γ 

producing T cells in maintaining a chronic T. gondii infection, but the exact contribution 

of each subset remains unknown. In line with that, due to their IFN-γ-independent 

cytolytic activity, the role of primed CD8+ T cells in the host’s immunity during chronic 

toxoplasmosis has been widely acknowledged (Wang et al., 2005; Suzuki et al., 2012; 

Sa et al., 2013). In pigs, only a few experiments identified CD8+ and CD4+CD8+ cells in 

the acute phase of the infection as the major source of the IFN-γ production (Solano 

Aguilar et al., 2001; Dawson et al., 2005). Our data provide the first insights into the 

immune response during a chronic infection model in pigs and indicate the CD8+ T cell 

subset with the highest percentage of IFN-γ positive cells, followed by the Th1 CD4+ 

subset.   
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In perspective of future experiments in pigs, it would be desirable to focus on other 

immune cells, involved in the responses throughout the infection process such as, the 

immunosuppressive T regulatory (Treg) or Th17 cells. As recently shown in mice, the 

robust immune reaction expressed by the high IFN-γ levels in the acute phase of the 

infection severely reduces the activity of Tregs in an IL-2 dependent and IL-10 

independent manner (Tenorio et al., 2011; Olguin et al., 2015). In a longitudinal clinical 

case study of human acquired cerebral toxoplasmosis a dual function of the Treg 

population was described, by simultaneous down regulation of CD4+ and activation of 

pathogen-specific CD8+ T lymphocytes (Rb-Silva et al., 2017). In human congenital 

infections not only the CD4+ Treg cell population seems to be involved in the immune 

reaction triggered by T. gondii, but also a different subset of CD4+ or CD8+, namely 

Th17. The activity of this population is independent from IFN-γ, IL-4 and perforin 

activation, as their migration to the inflammation sites in initiated by certain 

chemokines. Interestingly, the results of the in vitro PBMC’s stimulation with tachyzoites 

showed a higher percentage of CD4+ IL17 producing cells above the CD8+ (Silva et al., 

2014). By investigating the fluctuations of the activity of Tregs and Th17 cells during 

the acute and chronic phase of the infection in a porcine model, along with the sensitive 

parasite detection in the tissues, we might determine whether these populations are 

also involved in the persistent immunity towards the parasite.  

In the single-strain inoculation experiments of pigs performed by others (Solano 

Aguilar et al., 2001; Dawson et al., 2004; Dawson et al., 2005; Jongert et al., 2008; 

Verhelst et al., 2015), the significantly increased IFN-γ in serum and supernatant from 

cultured PBMCs, or expressed as IFN-γ mRNA in PBMCs and intestinal lymphoid tissues, 

was clearly correlated with the duration of the experiments. Likewise, we successfully 

demonstrated a time- and dose-dependent increase in IFN-γ mRNA expression upon 

infection with the IPB-G strain; the inoculation with the IPB-LR strain, led immediately 

to a strong and persistent IFN-γ production by PBMCs, regardless of the inoculation 

dose. When considering the cell or tissue specific IFN-γ responses shortly after the 



                                                                                     Chapter 8: General discussion and future prospects 
 ______________________________________________________________________________________________________________  
 

237 

 

inoculation, we can conclude that PBMCs were activated to a much higher extent than 

other investigated cell populations isolated from the lymphoid tissues (Chapter 6 and 

Chapter 7). However, we postulate that these systemic responses arose from an initial 

T-cell activation within the peripheral lymphoid organs, upon parasitic antigen uptake 

and presentation by cells of the innate immune system. Consequently, the activated T-

cells migrate through homing process via blood to multiple sites, and as such, were 

included in our PBMC’s population. This hypothesis was confirmed by the results from 

the mediastinal lymph nodes, draining heart in the mediastinum and the posterior 

surface of diaphragm, where a higher IFN-γ concentration was detected, in comparison 

with the intestinal lymphoid tissues. As shown by the parasite detection via qPCR in 

our experiments (see 8.3) and by others (Opsteegh et al., 2016b), heart has been 

declared as one of the major predilection sites with substantially high parasite load, 

but it is still impacted by the inoculation dose, as clearly demonstrated in our studies. 

In addition, negligible cytokine levels were found in bone marrow in the first four weeks 

following the infection, implying that no or only few parasites migrate to the bone 

marrow.  

The chronic infection model involved memory cells within the PBMC’s, which are 

activated by re-exposure to antigens slowly released from the tissue cysts in the later 

phase of the infection. That could explain the gradual increase in the concentration of 

IFN-γ in both infection groups, as determined by ELISA and the qPCR (Chapter 6 and 

Chapter 7). 

Data obtained from the intestines revealed that the initial host tissue invasion 

presumably takes place in the proximal part of the gut (Chapter 7). These findings are 

in line with the parasite DNA detection in acute infections in sheep (Verhelst et al., 

2014), where a gradual decrease in parasite load was observed from the proximal to 

distal segments of the intestines, in the early phase of the infection. Other experimental 

infections with a genotype III-strain (VEG) in pigs (Dawson et al., 2005) showed a 

significant expression of IFN-γ mRNA in the majority of the intestinal tissues at 7 dpi, 
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irrespective of the anatomical location, as compared to control animals. In line with our 

findings, one week later none of the intestinal tissues still contained increased cytokine 

mRNA, proving a partial resolution or redistribution of the infection from mucosal to 

systemic sites. Together with the clear cytokine profile in the acute infection model, 

also the high expression of the CD3 was observed, implying the involvement of the T-

cells in this early response. Likewise, in our infection experiments (Chapter 6) we 

detected significantly increased CD3+ IFN-γ+, Th1 CD4+ IFN-γ+ and CD8+ IFN-γ+ 

lymphocytes in both infection groups in the early phase of the infection.  

However, further research is desirable to reveal the populations and pathways involved 

in the early immune response against T. gondii. To start with, the innate regulation 

mechanisms and signalling pathways of the IFN-γ-expression, such as STAT1, MYD88, 

IRF1 or IRF8 should be elucidated in experimental models via RNAseq technology. 

These genes modulate the immune responses leading directly or indirectly to IFN-γ 

production by T-cells, and, by this, to resistance against the parasite (Denkers, 2003; 

Szabo et al., 2003, Hou et al., 2011; Yarovinsky, 2014). However, the mutual relations 

between these pathways are still not fully discovered.  

Finally, the potency of several native fractions of antigens to trigger the immune 

response in vitro was investigated in the last experimental study (Chapter 7). By 

addressing the last aim of the thesis, first steps were taken towards the search for a 

potential vaccine candidate among the isolated protein fractions. Although in the acute 

phase of the infection the majority of the fractionated proteins induced in vitro cytokine 

production by PBMC’s, in the chronic phase mainly pools 1, 3 and 5 were the foremost 

immunogenic fractions). Yet, performing future immunization and challenge studies on 

the selected fractions and the detailed analysis of the immunogenic epitopes would 

significantly contribute to the understanding of the mechanisms of the host-pathogen 

interactions on molecular level, and could serve as a diagnostic tool or a potential 

vaccine candidate for porcine toxoplasmosis. 
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Based on the mutual results of the detection of IFN-γ and the parasite DNA in tissues 

(Chapter 6 and Chapter 7), we could speculate about maintaining a balance between 

the host defense mechanisms and the invasion of the parasite. Upon inoculation with 

the IPB-LR strain, the high IFN-γ production during the infection was associated with 

high counts of parasite DNA in the porcine tissues. On the contrary, in the IPB-G groups 

IFN-γ production was elevated in a later phase of the infection and resulted in a very 

low to undetectable parasite load in some tissues, implying that high IFN-γ levels can 

tip the balance in favour of the host. Intriguingly, based on our observations and 

unpublished data from the acute infection model with the same strains (Jennes et al., 

in preparation), we speculate that exposure to a high dose of the IPB-G strain is more 

effective in activating innate immunity at the primary sites of infection than the low 

dose of the same strain or the inoculation with the IPB-LR strain. The strain-dependent 

differences in the IFN-γ production profile may result from the genetic and thus, 

biological features of the used strains, indicating expression of variable virulence 

factors towards the intermediate host.  

In our opinion and according to others (Hunter and Sibley, 2012), the IPB-LR as 

genotype II strain, activates another pathway than the IPB-G strain, which is an atypical 

genotype (mixed genotype I and II). The virulence factors initiating a pathway would 

be GRA15 (via NF-κB) for the former, and ROP18 (via STAT3/STAT6 pathway) for the 

latter. Consequently, the IPB-LR induces Th1 type of protective immunity and remains 

persistent in the chronic phase. In our view, the IPB-LR strain does not show an acute 

virulence but it is adapted to persist within the intermediate host and, as such, increase 

own survival. To support these speculations, we observed a much milder macroscopic 

manifestation upon inoculation with the IPB-LR strain (Jennes et al., in preparation).  

We further hypothesize that resistance to the chronic infection in the IPB-G model 

results from the high acute virulence and the subsequent fast elimination of the 

tachyzoites before they can successfully multiply and disseminate. Consequently, fewer 
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parasites can survive the initial parasitaemia, which eventually will lead to reduced 

numbers of cysts in the tissues. 

8.5 Conclusions and future prospects 

This doctoral dissertation describes various aspects of the interactions between T. 

gondii and the pig as an intermediate host. In the quest of searching for answers to the 

scientific questions included in the aims of this study, we provided data on the apparent 

and true prevalence of porcine T. gondii infection in Belgium. Further, we elucidated 

and quantified the parasite dissemination in a series of experimental infections, and 

compared the detection of T. gondii DNA with the results on the viability of the parasite 

in the edible tissues via bioassay in mice. In the last experimental chapter we applied 

the recently developed detection technique, which is proven to be suitable for the 

diagnosis of human or animal toxoplasmosis. Moreover, we investigated various 

immune responses of the host towards the pathogen, in correlation with the infection 

dose, strain and time upon inoculation. We could identify the major cellular players, 

contributing to the massive IFN-γ production in the acute and chronic infection model. 

Finally, we identified the fractionated parasite-derived antigens, which will be evaluated 

for their immunogenic potential in the upcoming vaccination and challenge 

experiment.  Although the results of the present work have added new insights into 

the host-pathogen interactions to extend our understanding of many aspects of 

porcine toxoplasmosis, further studies are needed to fill in the missing gaps in the 

knowledge gained.  

First, the prevalence study underscored the potential impact of the farm characteristics 

on the prevalence of T. gondii among pigs, such as geographical location, distribution, 

amount and density of the animals, the size of the herd or the management type. In 

the ongoing study within our research group different parameters on herd level, 

including a questionnaire on biosafety regulations and seroprevalence status of the 

sampled animals are being investigated in relation to the risk for T. gondii infection in 
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the finisher pigs. Further investigation is, however, necessary to draw any conclusions 

on the risk factors and the transmission modes for T. gondii into the pig population in 

Belgium.  

Secondly, as we demonstrated the involvement of phenotypically different T-cell 

populations in the cellular response following the infection, we would like to postulate 

to study these and other cell populations more in detail. The involvement of the cells 

of the innate immune system such as NK’s cells, together with the T-cells classification 

in terms of MHC class or T-cell receptor (TCR), combined with the identification of the 

epitopes for the parasite recognition via epitope mapping technique, could help us 

better understand the acute events following the inoculation. On top of that, the 

expression of the genes, up- or downregulating the immune cells’ activation at the 

predilection sites, should be analyzed by the gene expression study such as RNAseq.  

Thirdly, we described the important differences between the strains used in this study. 

Based on our data we propose that the IPB-G strain has the capacity to induce a robust 

immune reaction in the host in the early phase of the infection. This IFN-γ-mediated 

response in pigs may potentially lead to elimination of the tissue cysts during the 

chronic infection. The obtained resistance against T. gondii infection by vaccination 

would greatly contribute to the decrease of infection risk for food safety and human 

health.  
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Toxoplasma gondii is an ubiquitous parasite with a significant impact on human’s health 

and livestock production. The infection in humans is mainly subclinical but it may lead 

to severe or fatal clinical symptoms in newborns and immunocompromised patients, 

while toxoplasmosis in domestic animals remains important due to a high rate of loss 

in animal production. The parasite has a complex life cycle, with three distinct 

developmental stages: tachyzoites, bradyzoites enclosed in the tissue cysts and the 

oocyst with sporozoites. Human toxoplasmosis is predominantly foodborne and 

originates from the consumption of raw or undercooked meat containing tissue cysts 

or from eating raw vegetables contaminated with oocysts.  

Pork is an important source of toxoplasmosis due to the frequent consumption of fresh 

or poorly processed porcine meat products, a high susceptibility of pigs to the 

infection, and the numerous risk factors, contributing to the persistent prevalence of 

toxoplasmosis in the pig population. Therefore, an efficient control of T. gondii by 

prevention of the transmission via infected pork is strongly recommended. However, 

knowledge on the prevalence of porcine toxoplasmosis, the parasite burden in the 

edible tissues and immunological parameters indicating an acute or chronic infection, 

is incomplete.  

Determining the T. gondii seroprevalence is a first step in estimating the risk related to 

consumption of pork. Following infection, the innate and adaptive immune responses 

do not prevent development of the tissue cysts, which are accepted to persist lifelong 

in a dormant state within muscles and brains of most intermediate hosts. Nevertheless 

experimental vaccination can considerably decrease the parasite burden in tissues. 

Therefore, the knowledge of the mechanisms regulating the interactions between the 

parasite and the porcine immune system in both the early and later stage of the 

infection, as well as the estimation of the parasite’s persistence in porcine tissues on 

the long term, could substantially contribute to a better control and prevention of 

infection in pigs. Consequently, it could play a pivotal role for global food safety and 

human health by diminishing the risk of foodborne toxoplasmosis.  
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Part I of this thesis provides a comprehensive overview of the current literature on T. 

gondii as a successful and underdiagnosed parasite of humans and animals 

worldwide.  

Chapter 1 describes the biology and the transmission routes of T. gondii towards the 

intermediate hosts. Attention was given to the zoonotic aspects of the infection, in 

particular the clinical symptoms and severe consequences in humans. Furthermore, the 

diagnostic methods were widely presented with their advantages and limitations, along 

with the therapeutic and preventive options.  

Chapter 2 extensively highlights all the crucial players of the innate and adaptive 

immune responses, involved in the early and late immunity against the parasite. In 

order to gain insight in the host’s defense mechanisms, the general pathogenesis was 

first depicted, followed by the subsequent immunological events in the acute, subacute 

and chronic phases of the infection.  

In Chapter 3 the role of the pig as the natural intermediate host for T. gondii and as 

the source of the zoonosis for humans is fully explained, together with the details on 

the infection’s prevalence in various countries. Importantly, the risk factors contributing 

to the parasite’s persistence in the pig population are listed, followed by recommended 

preventive measures to decrease the risk of the transmission towards humans.  

 

Part II includes the aims of the experimental work that was performed during this PhD 

study. The focus of this thesis was to estimate the infection rate with T. gondii of the 

porcine population in Belgium, and to investigate the immune responses in pigs upon 

an experimental infection in relation to the parasite burden and its viability in edible 

tissues. Special attention was also given to the parasite antigens with the highest 

immunogenic potential in in vitro assays, as possible candidates for a porcine vaccine 

against T. gondii.  
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Part III describes in detail the experimental studies in order to meet the objectives of 

the study, and provides new insights in the host-parasite interaction in pigs in the acute 

and chronic infection model.  

In Chapter 4 we provide a first estimation of the apparent prevalence of porcine 

toxoplasmosis in Belgium, based on two serological assays (GRA7- and TLA-ELISA) and 

applied on 2263 serum samples from 251 conventional herds with intensive 

management system. Surprisingly, the results of both tests showed a significantly 

higher total, between-herd and within-herd apparent prevalence of anti-T. gondii IgG 

in Wallonia than in Flanders. Additionally, we employed a Bayesian model to assess the 

true within-herd and between-herd prevalence based on the results of both diagnostic 

tests to correct for the limitations of the serological assays in biological samples. The 

total true prevalence across all herds, the true between-herd prevalence reached and 

the true within-herd prevalence of infected farms were significantly higher in Wallonia 

than in Flanders. Further, based on the estimation of the assays’ characteristics, the 

specificities of the serological tests were significantly higher in Flanders, and for the 

GRA7-ELISA in particular, while the sensitivities of both ELISA’s were not significantly 

higher in Wallonia. This study is the first epidemiologic report on T. gondii infection 

seroprevalence in Belgium, with specific focus on a high burden in Wallonia.  

In Chapter 5 the major findings of the first experimental infection with T. gondii in pigs 

are presented. The cytokine expression in blood mononuclear cells and the antibody 

production were followed in seronegative piglets upon inoculation with the IPB-Gangji 

strain. Among the studied cytokines (IFN-γ, IL-4 and IL-10) only the expression of IFN-

γ was elevated in comparison with the control animals or day 0. The serum antibody 

responses against native (Toxoplasma gondii total lysate antigen) or recombinant 

(rGRA1, rGRA7, rMIC3 and rEC2) parasitic proteins showed a clear rGRA7-reaction, 

while remaining beyond the detection level for other antigens. The parasite burden 

and viability was demonstrated via qPCR and bio-assay in all the sampled porcine 

tissues. However, in comparison with an earlier study, these findings are important in 
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relation to the parasite persistence in the tissues over time, and motivate the 

hypothesis of the parasite clearance in a chronic model of IPB-Gangji strain infection 

in pigs.  

Chapter 6 follows the previous study but provides more information on the strain- and 

dose dependent outcome of the experimental infections in pigs. Here we performed 

homo- and heterologous infection experiments with two distinct T. gondii strains (IPB-

LR and IPB-Gangji), and evaluated several parameters, such as the host’s immune 

response on the one hand, and the parasite burden on the other hand. First, an 

extensive humoral response was observed against GRA7 and TLA antigens upon 

inoculation with both strains. For both IgM and IgG, the GRA7-specific antibodies were 

detected very soon after the initial infection, while the TLA-specific IgM and IgG 

appeared later but persisted longer and at high titers in the course of the infection. 

Second, the in vitro IFN-γ production by TLA-stimulated blood mononuclear cells was 

directly correlated with the infection dose of both strains. As investigated by flow 

cytometry upon intracellular staining of isolated blood mononuclear cells, CD3+CD4-

CD8αbright T-lymphocytes were predominantly involved in the production of IFN-γ. 

Finally, in homologous infection experiments we demonstrated a strain-dependent 

parasite persistence in the tissues that was inversely correlated with the infection dose. 

In the heterologous challenge experiment, consisting of a primary infection with the 

IPB-LR strain, followed by a challenge with the IPB-Gangji strain, a remarkable 

reduction of the parasite burden was observed. Therefore, our results strongly indicate 

a reduction in the amount of parasite DNA and viable cysts in porcine tissues over time 

due to the potential of the IPB-Gangji strain to elicit a strong immune response in the 

host.  

In Chapter 7 we proceeded with further investigating the host-parasite interactions 

upon acute and chronic experimental infections with the IPB-LR and IPB-Gangji strains, 

and with studying the direct effect on immunological parameters and parasite load. 

Based on the promising results of the former study and the substantial TLA-stimulation 
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of the blood mononuclear cells, we investigated the in vitro activation of T-lymphocytes 

by T. gondii antigens, fractionated prior to use by continuous elution-electrophoresis 

and subdivided into 6 pools. Induction of IFN-γ was determined by ELISA in 

supernatant of the stimulated blood mononuclear cells or lymphocytes isolated from 

the lymphoid tissues. In general, although not for all tissues, the animals infected with 

the IPB-LR strain produced higher quantities of IFN-γ than pigs inoculated with the 

IPB-Gangji, and that after stimulation with each TLA-fraction. Referring to that, the cells 

isolated from the mediastinal lymph nodes and duodenum in the IPB-Gangji infected 

group showed an opposite trend. This study demonstrated that the amount of the 

produced IFN-γ upon in vitro stimulation by TLA pools varies considerably between the 

groups infected with different strains of T. gondii and between cells isolated from 

different tissues.  

Chapter 8 provides a general discussion, highlighting the main findings of each 

experimental study, as well as the conclusions and future perspectives for further 

research. This thesis describes the first estimation of the true and apparent prevalence 

of porcine toxoplasmosis in Belgian herds and the considerable differences between 

the two regions. However, as the information on the farm management is lacking, a 

follow-up study is recommended to take this constraint into account and elaborate 

further on the risk factors contributing to T. gondii prevalence in the porcine 

population.  

The subsequent experimental studies in pigs provided novel information on the strain-

, dose- and time-dependent outcome of infections in terms of the parasite distribution 

and viability, in relation to the parameters defining the host’s immunity. The general 

findings from these studies confirmed our initial hypothesis, proving that the IPB-

Gangji strain, by eliciting a potent immune response, can induce a substantial reduction 

of the parasite distribution in the tissues.  

We therefore postulate that the IPB-Gangji strain could be used as a promising tool in 

lowering the risk for human toxoplasmosis. To achieve that, more insights should be 
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gained in regulation of the innate and adaptive immune responses of the host. It is 

beyond doubt, however, that the mechanisms up- and downregulating the porcine 

immune responses against the parasite are as complex as in mice or humans. 

Additionally, attention should be given to the parasitic antigens, generating the 

strongest humoral and cellular immune responses in the host, to identify the best 

candidate to be included into a potential vaccine in pigs. Therefore, further research is 

warranted to elucidate these aspects and to contribute to a better understanding of 

the underlying host-pathogen interactions.  
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Toxoplasma gondii is een wereldwijd verspreide parasiet met een significante impact 

op de gezondheid van mens en dier. De infectie bij mensen verloopt meestal 

subklinisch maar kan  geassocieerd worden met ernstige tot fatale klinische 

symptomen bij pasgeborenen of bij patiënten met een verzwakt immuunsysteem, 

terwijl toxoplasmose bij huisdieren belangrijk blijft omwille van de hoge verliezen in de 

dierlijke productie. De parasiet heeft een zeer complexe levenscylus met drie 

opeenvolgende ontwikkelingsstadia: tachyzoïten, bradyzoïten in de weefselcysten en 

de oöcysten met sporozoïten. Humane toxoplasmose wordt overwegend door voedsel 

overgedragen en zeer frequent door consumptie van rauw of onvoldoende 

doorbakken vlees. 

Varkensvlees is hierbij een belangrijke bron van toxoplasmose door de uitgebreide 

consumptie van verse of onverwerkte varkensvleesproducten, een hoge gevoeligheid 

van varkens voor de infectie en de talrijke risicofactoren die bijdragen tot een blijvende 

prevalentie van toxoplasmose in de varkenspopulatie. Een efficiënte controle van de T. 

gondii infectie bij het varken kan dan ook de overdracht via besmet varkensvlees sterk 

reduceren. Hiertoe is goede kennis vereist van de prevalentie van toxoplasmose bij 

varkens, van de verspreiding van de parasiet in de varkensweefsels bestemd voor de 

consumptie en van de immunologische parameters die indicatief zijn voor een acute 

of chronische infectie essentieel. 

 

Deel I van dit proefschrift geeft een uitgebreid overzicht van de huidige literatuur over 

T. gondii als een succesvolle en onderdiagnosticeerde parasiet van mens en dier. 

Hoofdstuk 1 beschrijft de biologie en de transmissieroutes van T. gondii naar de 

intermediaire gastheren. Aandacht werd gegeven aan de zoönotische aspecten van de 

infectie, met name de klinische symptomen en ernstige gevolgen voor de mens. 

Bovendien werden de diagnostische methoden uitgebreid besproken met hun 

voordelen en beperkingen, samen met de therapeutische en preventieve interventies. 
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Hoofdstuk 2 beklemtoont alle belangrijke spelers van de aangeboren en adaptieve 

immuunresponsen, die betrokken zijn bij de vroege en late immuniteit tegen de 

parasiet. Om inzicht te krijgen in de afweer van de gastheer, werd eerst de algemene 

pathogenese besproken, gevolgd door immunologische responsen in de acute, 

subacute en chronische fase van de infectie. 

In Hoofdstuk 3 worden de rol van het varken als intermediaire gastheer voor T. gondii 

en als bron van zoönose voor mensen volledig behandeld, samen met de prevalentie 

van de infectie bij varkens in verschillende landen. De risicofactoren die bijdragen aan 

de persistentie van de parasiet in de varkenspopulatie worden opgesomd, gevolgd 

door de aanbevolen preventieve maatregelen om het risico van de overdracht naar de 

mens te verminderen. 

 

Deel II beschrijft de doelstellingen van het experimentele werk dat tijdens dit doctoraat 

werd uitgevoerd. De focus van dit proefschrift lag op het onderzoek van de T. gondii 

prevalentie in de varkenspopulatie in België en de studie van de immuunresponsen bij 

varkens na een experimentele infectie, rekening houdend met de spreiding van de 

parasiet binnen de gastheer en het daaruitvolgend infectieus karakter van de weefsels. 

Er werd ook bijzondere aandacht besteed aan de parasietantigenen met het hoogste 

immunogene potentieel in in vitro testen, omdat deze mogelijke kandidaten kunnen 

zijn voor ontwikkeling van een vaccin tegen T. gondii bij varkens. 

 

Deel III beschrijft in detail de experimentele studies om de doelstellingen van dit 

doctoraat te bereiken, en biedt nieuwe inzichten in de gastheer-parasiet interactie bij 

varkens tijdens de acute en chronische fase van de infectie. 

In Hoofdstuk 4 geven we een schatting van de prevalentie van porciene toxoplasmose 

in België, gebaseerd op twee serologische testen (GRA7- en TLA-ELISA) en toegepast 

op 2263 serummonsters uit 251 conventionele bedrijven met een intensief 

managementsysteem. Verrassend genoeg toonden de resultaten van beide testen een 
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significant hogere tussen- en binnen-bedrijf prevalentie aan van anti-T. gondii IgG in 

Wallonië dan in Vlaanderen. Daarnaast hebben we een Bayesiaans model gebruikt om 

de echte binnen- en tussen-bedrijven prevalentie te beoordelen op basis van de 

resultaten van beide diagnostische testen, rekening houdend met de beperkingen van 

de serologische analyses in biologische monsters. De totale ware prevalentie over alle 

bedrijven, de ware prevalentie tussen de bedrijven en de ware prevalentie per 

indivudeel bedrijf waren eveneens significant hoger in Wallonië dan in Vlaanderen. 

Verder, op basis van een schatting van de karakteristieken van de testen, was de 

specificiteit van de serologische testen aanzienlijk hoger in Vlaanderen, en dit vooral 

voor de GRA7-ELISA, terwijl de gevoeligheid van beide ELISA's niet significant 

verschillend was in beide landsdelen. Deze studie is het eerste epidemiologische 

rapport van de seroprevalentie van T. gondii-infectie in België. 

In Hoofdstuk 5 worden de belangrijkste bevindingen van onze eerste experimentele 

infectie met T. gondii bij varkens gepresenteerd. Na inoculatie van seronegatieve 

biggen met de IPB-Gangji stam wordt de antilichaamproductie en de expressie van 

cytokine mRNA (IFN-y, IL-4 en IL-10) in bloed mononucleaire cellen gevolgd. Onder de 

bestudeerde cytokines, vertoonden alleen IFN-y mRNA een verhoogde expressie bij de 

geïnfecteerde in vergelijking met de controle dieren. De infectie induceerde ook een 

duidelijke serum antistoffenrespons tegen recombinant GRA7, terwijl geen respons 

werd waargenomen tegen natief Toxoplasma gondii totaal lysaat antigeen (TLA) of 

tegen rGRA1, rMIC3 en rEC2 parasitaire eiwitten. De verspreiding van de parasiet in 

verschillende weefsels, de hoeveelheid en de leefbaarheid van de parasiet in deze 

weefsels werden respectievelijk aangetoond met qPCR en bio-assay. Vergelijking met 

een eerdere studie deed vermoeden dat de IPB-Gangji T. gondii stam minder leefbaar 

werd naarmate biggen langer geïnfecteerd waren. Dit ondersteunde de hypothese van 

een “clearance” mechanisme in een chronisch model van de IPB-Gangji infectie bij 

varkens. 
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Hoofdstuk 6 geeft meer informatie over de stam- en dosisafhankelijke resultaten van 

experimentele infecties bij varkens. We hebben hier homo- en heterologe infectie-

experimenten uitgevoerd met twee verschillende T. gondii-stammen (IPB-LR en IPB-

Gangji) en vervolgens verschillende parameters geëvalueerd, zoals de gastheer- 

specifieke immuunrespons enerzijds, en de parasitaire hoeveelheiden in weefsels 

anderzijds. Ten eerste, na een inoculatie met beide stammen werd er een uitgebreide 

humorale reactie waargenomen tegen GRA7- en TLA-antigenen. Zowel GRA7-specifiek 

IgM als IgG werden zeer kort na de initiële infectie gedetecteerd, terwijl de TLA-

specifieke IgM en IgG later verschenen maar langer bleven en aan hogere titers 

aanwezig waren in de loop van de infectie. Ten tweede, de in vitro IFN-y-productie 

door TLA-gestimuleerde bloedmononucleaire cellen was direct gecorreleerd met de 

infectiedosis van beide stammen. Flowcytometrie na een intracellulaire kleuring van de 

geïsoleerde bloed mononucleaire cellen, toonde dat voornamelijk de CD8+ T-

lymfocyten verantwoordelijk waren voor de productie van IFN-y. Ten slotte, hebben we 

de aanwezigheid van parasieten in de weefsels in homologe infectie-experimenten 

onderzocht. Er bleek een omgekeerde correlatie te zijn met infectiedosis voor de IPB-

Gangji-stam, maar niet voor de IPB-LR stam. Een heterologe infectie met IPB-LR, 

gevolgd door de IPB-Gangji-stam, waarbij een opmerkelijke vermindering van het 

parasitaire DNA en de levensvatbare cysten in varkensweefsels werden waargenomen, 

toonden het potentieel van de IPB-Gangji stam om een sterke parasiet verwijderende 

immuunrespons in de gastheer op te wekken. Wij postuleren dat de IPB-Gangji stam 

gebruikt kan worden als een hulpmiddel om het aantal levensvatbare parasieten in 

eetbare weefsels te beperken en bijgevolg het risico op humane toxoplasmose te 

verlagen. 

In het laatste experimentele Hoofdstuk 7 werd verder gefocust op het onderzoek naar 

de interactie tussen gastheer en parasiet bij een acute en chronische experimentele 

infectie met de IPB-LR- en IPB-Gangji-stammen. Hierbij werd de relatie tussen IFN-y 

responsen en het aantal parasieten in weefsels geanalyseerd. Gebaseerd op de 
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veelbelovende resultaten van de vorige studie waarbij infectie met IPB-Gangji en niet 

met IPB-LR verwijdering van de parasiet induceerde en de substantiële IFN-y inductie 

in de mononucleaire cellen uit het bloed na herstimulatie met TLA, werd nagegaan of 

er meer immunogene TLA fracties konden geïdentificeerd worden. Hiervoor werden 

het totale TLA voorafgaand gefractioneerd met behulp van continue elutie-

elektroforese, en onderverdeeld in 6 fracties verschillend in moleculair gewicht, die dan 

gebruikt werden in restimulatie van bloed mononucleaire cellen of van lymfocyten, 

geïsoleerd uit de lymfoïde weefsels van geïnfecteerde dieren. In het algemeen, 

produceerden lymfocyten van de dieren geïnfecteerd met de IPB-LR-stam hogere 

hoeveelheden IFN-y dan deze geïnfecteerd met de IPB-Gangji en dat na stimulatie met 

elke TLA-fractie, met uitzondering van de cellen geïsoleerd uit de mediastinale 

lymfeklieren en duodenum. 

Deze studie toont aan dat de hoeveelheid geproduceerde IFN-y bij in vitro restimulatie 

door TLA fracties niet alleen aanzienlijk varieert tussen de groepen dieren die 

geïnfecteerd zijn met verschillende T. gondii stammen, maar ook tussen cellen 

geïsoleerd uit verschillende weefsels.  

Hoofdstuk 8 omvat de algemene discussie, waarbij de belangrijkste bevindingen van 

de experimentele studies worden besproken, evenals de conclusies en 

toekomstperspectieven voor verder onderzoek. De hoge prevalentie van toxoplasmose 

op Waalse varkensbedrijven dient verder onderzocht te worden om de bepalende 

risicofactoren te onderkennen en preventieve maatregelen te formuleren.  

De in deze thesis besproken verschillen tussen T. gondii stammen in immuunrespons 

en persistentie van de parasiet, bieden nieuwe inzichten in de infectie bij varkens. 

Daarnaast laat identificatie van de meest immunogene TLA fracties vervolgonderzoek 

toe naar het mechanisme dat de parasiet doet verdwijnen uit varkensweefsels.  

Uit het onderzoek postuleren we dat de IPB-Gangji stam gebruikt kan worden om de 

immuniteit bij varkens te versterken en zo het risico op humane toxoplasmose te 

verlagen. Hiertoe, moet er meer inzicht verworven worden in de aangeboren en 
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adaptieve immuniteit van de gastheer tegen de parasiet. Het is echter ongetwijfeld zo 

dat de mechanismen die de immuniteit tegen de parasiet stimuleren of inhiberen bij 

het varken, even complex zijn als bij muizen of mensen. Daarnaast moet de aandacht 

worden gevestigd op de parasitaire antigenen die de sterkste humorale en cellulaire 

immuunresponsen in de gastheer genereren, om de beste kandidaat te identificeren 

als een mogelijk vaccin bij varkens. Daarom is verder onderzoek aanbevolen om deze 

aspecten te verduidelijken en op die manier bij te dragen tot een betere inzichten in 

de onderliggende gastheer-pathogeen interacties. 
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curious for your daily adventures in the lab and in the field of veterinary microbiology. 

Good luck with your research and keep up the good spirit in the office and among 

laboratory members. Leen, I am confident you will be a great assistant; although I got 
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to know you only very short, I feel you have the right attitude and spirit! I am crossing 

my fingers for you in case it would be necessary but I doubt that .  

I would like to thank my Master students: Britt, Stefanie, Kjinta, Jessica and Mizan, 

who were challenging me with their questions and a healthy scientific curiosity. Thank 

you for all the practical help with animals and in the lab during the long and intensive 

experiments. Mizan, I guess it is now up to you to continue our Toxo-story. I hope that 

you can have a happy ending to it soon! You have been very helpful all the way, despite 

having a really hard time…I do not know if I could be able to take it all on my shoulders 

like you did…I hope it can only get better now and wish you a lot of success with the 

final lab work, data analysis and writing. I am crossing my fingers for you. Just focus on 

your two beautiful ladies waiting for you in Bangladesh to see their husband and daddy 

coming back with a PhD degree.  

Bert, having you as a post-doc was very valuable and we could learn tons on 

immunology from you. Having you as a colleague was also very enjoyable, especially 

on the parties . Thank you very much for your help with the paper, I should have 

listened to you earlier to aim higher than Vet Res. And look who is laughing now ;-) I 

do not have to wish you a successful scientific carrier because you are just having it; 

then I wish you to reach your personal goals and just be happy (bold and beautiful you 

can already scratch from the list too!). Hans, I have always admired your philosophical 

attitude to ups and downs in the lab. No ELISA plate is too green, no antigen-antibody 

binding in Biacore is too weak, you take it easy and make the best out of it! Good luck 

further! I would recommend to start working on your cooking skills to impress a 

potential girlfriend, just saying ;-) Raquel, the Spanish dancing queen in our lab, you 

have so many talents! I think you will do your PhD just ‘by the way’ and effortless, while 

living and enjoying your life in meantime. I think you are born under a lucky star so I 

am confident you will manage everything by yourself. If not, just use your beautiful 

smile and kill them by your kindness! Haixiu, the nice Chinese colleague, thank you for 

your kind help with the tissues in the cell lab, although you are so busy with your own 

research. I hope you will crack the cytokines PCR code and get the most fantastic 

pictures from confocal microscope for a publication! Steffi, matteke, you became very 

soon more than just a colleague for me. I really enjoyed jogging with you, you were 

the best mental coach I ever had! I am sure you will get there successfully with your 

critical mindset and hard work. I wish you a brilliant PhD to come and a positive 

feedback on your first paper! And there will be more to follow, I am sure! I wish you an 

exciting future with Kevin and a dream wedding one day! Cliff, I am jealous at your 

curly hair and the peaceful mind! You have been always so kind and helpful, even the 

biggest mess in the cell lab would not make you angry at your colleagues (as far as I 

know at least). Enjoy your perfect ‘huisje-bompje-kindje’ picture with Manou and Rune! 

You are such a lovely family!  Jochen, you obtained your degree just before me so 

we have a long history of starting-doing-finishing but then in an extended version, 

because ‘we could just not get enough of it‘ I guess! Congratulations with your very 

recent PhD, thank you for the tips and good luck in Beerse! Teach your new colleagues 
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how to drink the real stuff (=Starbucks coffie with whipped milk and caramel topping). 

Jonas and Robert, you are both very talented young researchers, make the 

immunology world unsafe! Nicolas, I did not have the opportunity to meet you yet but 

I am sure you will like it at Immunology like I did! Good luck boys!  

Annelies, your positive and cheerful spirit brings everyone to his ease-level. Your 

kindness and contagious laughter was more than welcome when I was just about to 

start with teaching and doing a PhD on my own. Your motivating and supporting mails 

this year were so powerful and helped me to go on to the end! Please do not ever 

change!  Michaela, you have been always a big example, when it comes to your 

efficiency and knowledge of molecular immunology. And apparently it is not only me 

who acknowledges you for these skills  I wish you a succesful future at DeLaval, so 

nice you are staying within animal area! Delfien, thank you for introducing me to the 

of world of T. gondii! Your research made a good base to start mine. Thank you for 

sharing your experience. I hope you are enjoying your current job! Sarah, where shall 

I start: I admire you as a mum of three, being professional on every level and so 

sportive! It is a pity you left Immunology at the end, but I am happy for you to explore 

new areas and take on new challenges. I wish you a successful carrier and lots of joy in 

your personal life! You can be proud of such a wonderful family of yours! Ann, you 

have always been so helpful in every possible way, with all the last-minute orders, 

tracing lost products, printing and other requests, no matter how busy you were or 

how little time you had. Thank you!!!! I hope you find a solution or at least a good 

treatment for your back problem, because even in pain you were always there with a 

smile on your face!  

I would like to thank Mieke and Marijke for all the administration work, Gert for the 

financial reports for my projects which were always perfect to finest detail, and Dirk for 

all the IT related issues and nice chats. I would like to mention colleagues who already 

left Immunology: Kris, Eva, Tine, Maaike, Marina, Phillippe, Marjolein, Pieter,  

Manon, Karen, Kim, Nina, Celine, Thary, Kevin, Korneel, Christophe and Maria. 

Thank you for many nice moments together and good luck with your professional and 

personal life!  

Nicky and Sabrina, it was definitely a pleasure to collaborate with you and a big fun 

with the rabbits! I wish you all the best and wonderful moments with you families!  

I would also like to mention my appreciation for the colleagues from WIV, Laboratory 

for Toxoplasmosis: Ignacio, Isabelle, Maïté, Francesca and Jurgen. Ignacio, we 

jumped on the same Toxo-train and will be finishing at almost the same time! So funny 

we both published the life-saving paper in the same week  I really enjoyed working 

with you and I am very happy with your research results! I realize like no other which 

odds you had to be beat to be where you are now. Good job! And the degree and 

future career will follow shortly! Isabelle, je vous félicite pour vos trois beaux enfants. 

Merci beaucoup pour toute l'assistance technique dans toutes ces années. Maïté, mon 

article principal est basé sur vos excellentes techniques de laboratoire. Merci et bonne 

chance avec votre double bonheur! Francisca, votre sens de l'humour nous a aidé à 
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survivre chaque fois avec le reste des cochons. Merci bien pour tout, profitez de vos 

filles et de votre vie! Jurgen, you will always remind me of Harvey Specter in a lab coat, 

rather than in a suit! Thank you for all your technical help and nice talks! I wish you 

many nice walks with your lovely dog and girlfriend!  

Brecht, you are really a fantastic researcher and a very nice person to work with! I wish 

we collaborated more intense during my PhD. Thank you for your feedback on the 

manuscripts and your thoughtful but so kind remarks. I wish you, Bimala and your cute 

daughter Maya the continuation of the beautiful life together that you live now. I see 

a great future for you, to me you are as smart and humble as Einstein with all your 

statistical formula’s that you play with. I hope we stay in touch even though my Toxo-

story has come to an end. 

My new Colleagues from BD, I am happy I could join the “Supporters” (read: “DIVAs” 

team), where I felt welcome from the very first day. This feeling has never left me since 

then and I am very happy I can now stay for good within the team or at least as long 

as flow cytometry will remain the core business of BD Biosciences! Nadine and Paola, 

thank you for your confidence in me and the opportunities I have been given. I will do 

my best to bring any troubleshooting to a good end and make any panel possible 

work! Paola, you are such a multitalented person: scientific wise, linguistic wise, 

management wise, sportive wise,…Probably I will still discover more of it! Thank you for 

giving me the warm welcome in your team and for keeping me in it  I wish you a lot 

of challenges in your climbing and sailing adventures and a happy life with Paolo!  

Luisa, your creativity and sparkling character make you so adorable! No dead silence 

or a boring moment when you are around! Thank you so much for all the cakes and 

love you share with us! I hope you get enough affection back because you are really 

such a generous and caring person! I love to have you around! I wish you the best of 

luck, love and happiness in life, wherever, with whomever and whenever, as long as it 

comes to you! Vesna, or Miss Multicolor, I am so happy we came across each other 

professionally again! I really enjoy working next to you (not only literally!) and learning 

from you. Thank you for sharing your knowledge, all the advices and the guidance, and 

the nice talks between the mails, phone calls, chats and the trainings  The lunch 

breaks are always way to short when working out together in the fitness! I will always 

associate “Thanks God it’s Friday!” and “What are we doing for lunch?” with you  I 

hope Baldr will not be too naughty but hey, better a stallion with an attitude, right?   

Sebastiaan, our charming Ryan Gosling lookalike! You can bring any Accuri to life with 

the ease you run a marathon! I wish you a bright future within BD and a wonderful life 

together with Ines. And if you need any advice or inspiration for the best circumstances 

to “pop up the question”, you know where to ask!!! Pieter, I really admire your 

knowledge on clinical applications but even more the pursuit of adventurous life. I can 

only dream of it but you simply make it happen…Although I have known you for the 

shortest time of everyone, you are the reason I am here. So, even if it was indirectly: 

thank you! Just don’t get too lyric… Heidi and Renée, thank you for your kindness, 

handy tips about anything you might need within BD and the nice walks and talks. 
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Heidi, your organizational skills are legendary, I wish you a happy life with Karel and 

Asbn in your dream house! Renée, enjoy the last weeks before you get married and 

don’t worry about the details, your big day will be just perfect because you are going 

to share it with the person you love the most! Maritza, I think your mantra for every 

day is “Always look at the bright side of life” or “Even if is bad today, it can still get 

worse tomorrow”…I have never heard your complaining, as overloaded as you can be 

with our requests…Your enthusiasm is contagious, I always feel better after having you 

on the phone. Keep up the good work at BD AS! You are really the leading lady between 

all the guys there! I would also like to thank the brilliant trainers Joerg (for the 

enjoyable lunch breaks) and Marta (for all the nice Polish moments with me, I really 

enjoy them a lot! dziękuje!), and the technical experts Els, Stijn, Mounir and Ivan for 

the nice atmosphere and their support (not only technical). Els and Stijn, when we start 

chatting about our kids, all the customers will probably hang up eventually  I really 

enjoy sharing the experiences and funny stories with you! Mounir, enjoy the beautiful 

women in your life, they are treasures! Ivan, good luck with your career at BD! If you 

want to learn some Polish words to enrich your extended and multilanguage 

vocabulary, just ask ;-) Morgane, although you are always on the run between Europe, 

Russia, Middle East or Africa, it is always nice to have you around in Erembodegem. I 

think it is clear how brilliant and committed application specialist you are, keep up the 

good work! Vanessa, what a pity you left the team so soon and I did not have the 

opportunity to know you longer. But still we had a good chemistry and I hope to see 

you now and then. Keep up the stamina and the perfectly trained body we are all 

jealous about  Ariane, my dear ex-colleague, so sad you left our team pursuing your 

dreams and hopes. I loved so much your warmth, generosity and the genuine kindness. 

I miss you (and your sometimes complicated life) every single day but I am happy for 

you that LOVE (or Zoli) finally has found you  Have a blessed and happy life together! 

If you feel like having a drink and a chat in Erembodegem, I am in anytime!  

I am enjoying so much this symphony of the nationalities, languages and cultures, 

which brings the best out of us every single day! The only thing I still need to say is: 

let’s make BD “bigger, better and bolder” together! And win next Ekiden run from the 

Experts again !!!   

 

Tine, Ellen, Dominique, Tessa and Bea, thank you for the lovely moments during our 

reunions. I am very happy to see you building houses, starting a practice, getting 

married, having children or pets…I hope we can stay in touch for the coming years!  

Ine, Nele, Josine and Annelies, thank you for supporting me all the way. Ine, we have 

known each other for more than a decade now and witnessed many heights and lows 

in each other’s lives. I will never forget your help when I was still ‘speachless’ or shall I 

rather say ‘Dutchless’ in the very beginning. It was so hard for me and you were really 

a blessing for me! Finding the right words to express my thoughts was not easy but we 

clearly understood the common language of friendship. I looked up at you many times 

in the past and I am sure I will still do it in future as well . Enjoy your beautiful family! 
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Josine, you were an example for me in the last intense months, when I was questioning 

myself whether it was all worth the efforts and nights spent working instead of sleeping. 

But you made it too, while having another job and that really pushed me through the 

most difficult moments. Thank you for being my inspiration! Nele and Annelies, I still 

remember our nice daily walks with the Beagles during the lunch breaks between the 

classes. I really admire your courage of running a practice on your own! Congratulations  

and at the same time I wish you many future customers to come!  

 

Ellen, thank you for the many cozy real-life talks and Whatsapp messages we 

exchanged as our children were growing. You are such a warm and kind person, 

supporting me for so long. I have really neglected you in the past months…I am sorry 

for that and I promise I will catch up more often from now on! I am looking forward to 

the moments we can share together!  

Inge, my BFF! I am so glad you, Nina and Tom are in our life! You have always been 

there for me during all these years. Your listening skills, your genuine friendship and 

endless support meant (and mean!) so much to me. I really appreciate you never got 

bored of the news about my experiments, deadlines, submissions and so much more. 

You have always been an example for me as a person and I cannot imagine a better 

godmother for Amelie! You are like a fairy for her with all your magical kindness and 

love. And if she becomes like Nina later, I will be more than proud! I am sorry for 

neglecting you due to my busy life and if I did not offer you back what I got from you, 

but I am looking forward to the moments together, whether it will be learning French, 

jogging, doing yoga or anything else as long as it is with you!  

 

My family in law or better to say: my second family! Thank you for all the help and 

warm acceptance from the beginning. These were maybe not really the most expected 

circumstances, but life is full of surprises, I already learned it on my own! Thank you all 

for taking me as I was, for supporting me in every way and for believing in us. Ria and 

Guy, Lia and Georges, Gaby and Jean, Nancy and Jan, Athina and Koen, Elyne and 

Dirk, Sylvie and Joeri, Valerie: I got so much love and support from you in all these 

years! I hope I can ever give it back in the same amount! I would also like to thank 

Annie, Patrick and Irith for the kind support and interest in my research. I enjoy 

meeting you on different occasions and really admire your professional careers.  

Mamo i Tato, bardzo dziekuje za kazdy rodzaj wsparcia, jaki od Was orzymalam od 

tylu lat, a zwlaszcza w tych bardzo decydujacych momentach studiow i doktoratu. 

Nigdy nie udaloby mi sie polaczyc wszystkich obowiazkow, zarowno w pracy jak i w 

domu, gdybym nie brala z Ciebie przykladu Mamo! Dziekuje! Mam nadzieje, ze Amelka 

pojdzie w nasze slady  Asia, you have been always my example, regardless of my age 

and circumstances. I was always looking up to you as my big sister and even now, 

watching you still studying for another medical specialization, I could put my own 

efforts in a better perspective. I hope, once we both finish studying, we will make more 

time for each other and our families. Darek, the life turned to be very harsh for you 
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lately…So unexpectedly tearing the plans and future in pieces…And still, as hopeless 

and scary the reality was, your determination to recover replaced the worst-case-

scenario by a more acceptable alternative. The future will show where you can 

eventually get but I have learned from your experience that we should not put limits 

on our plans but dream big and aim high. I am supporting you all the way!  

Simon, Mathias and Amelie, my three youngest supporters, I am sure you are as 

happy as I am I finally got to this point. You have never seen me doing anything else 

than studying or doing a PhD, what actually felt like exactly the same thing for you in 

all these years. I am very sorry I have never been the type of mum waiting for you every 

day at the school’s gate. But I am very grateful that you do not expect it from me either, 

because you know it is not the type of person your Mum really is. Maybe it is hard for 

you to understand that all I have done, I have done for you and because of you. I hope 

you are proud of me today as I am of you every single day. And I promise I will make 

up all the evenings and weekends I had to choose my work above spending time with 

you. I am excited and happy about all the fun and joyful moments to come!!! PS.: 

Mummy loves you to the moon and back but please choose another job, Mummy will 

not handle going through all of it again with you ;-) ♥ 

Krisie, I really hardly find words to thank you for everything we have been through 

together since my adventure with veterinary medicine and research started. You have 

been the most supportive, helpful and loving husband in the world, having an endless 

faith in me and my capabilities from the very beginning, even if I saw it differently 

sometimes. Your enthusiasm and motivation pushed me to the end and it is not an 

exaggeration if I say that I would not be here if you have not been there for me all 

these years. I am sorry for all the stressful/tearful/drama/no-end-story moments, I am 

glad I finally made it and I promise from the depth of my heart that I will not do this to 

you any more  I just want to say I have not just done my PhD along you but together 

with you and you fully deserve the co-authorship of this work. I think it is a good 

compromise to put at least your family name on it  You have never known me 

differently than studying, but this will change now, our ‘normal life’ can get started and 

I am so looking forward to it!  The only thing we need is time for each other and the 

kids. “Looks like we made it , look how far we’ve come my baby, I am glad we didn’t 

listen, look at what we would be missing…“. Even if we do not have it all together, 

together we have it all!  ♥ 

 

And tonight, with all the support, friendship and love around me I dare to say:  

I really have it all!  

 

Thank you all! Dziekuje wszystkim! Bedankt iedereen!   

 

Gosia  

3rd of October 2017 

Merelbeke, Belgium  


