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PRELUDE. vii

Prelude

Time to say thank you to everybody who helped me achieve this incredible
feat. So, thank you everybody!

No, of course, I’m just kidding. You people deserve far more than such a
simplistic short and immensely impersonal phlegmatic phrase. But where
to start?
Well, why not with the beginning? That means my dearest parents, the first
people I ever laid eyes upon and still my biggest support. I couldn’t have
wished for better parents than them, and, in fact, this thesis is a nice reflec-
tion of them both: my father, the mathematician, with his really analytical
and logical mind, and my mother, the psychologist and human resources
manager, with her holistic and intuitive mind. So it seems that the style of
this thesis was predestined. The next person I saw in my life was my sister,
the greatest sis in the whole world, although a bit peculiar and special at
times (well, let’s be honest, all the time). Although she told me that her very
first words as a 3-year old to me as a baby were not very nice (to say the
least), now, 27 years later, we are connected as if born as twins. Without
such a great family, I couldn’t have brought this to an end.
And then, of course, Bernard. A really great mentor. I was quite spoiled
in the beginning being his first and sole Ph.D. student. As a matter of fact,
I took up my term the same day he assumed his position as a professor.
Truly a superb start for a superb collaboration: two creative minds together,
both a bit out-of-this-world, but mine kept somewhat in measure by the ex-
perience of Bernard. He knew how to stimulate my interest by offering me
rather arduous and audacious challenges (the ultimate way to get me to
work: he actually succeeded in making me write my first article within the
first one month and a half). At the same time, he knew instinctively when to
grant me some more quiet moments, and to let me liberate myself from all
the rigmarole inextricably bound up with research. So, thank you... thank
you very much.
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What would I have been without my many precious and priceless friends?
They offered me so much support, directly with a helping hand, a listen-
ing ear and whole-hearted advice – sometimes a bit useless, but hey, it’s
the though that counts – while I overwhelmed them with all my blissful hap-
piness and endless sorrow, euphoria and frustration, in short, with all the
mood swings I was exposed to during the writing of this Ph.D (you’ll hear all
and more about those in the Interludes dispersed throughout this booklet).
Indirectly by just being there, by not complaining when I neglected and –
let’s be honest – altogether forget them during some long stressful periods
bursting with deadlines. Or by brightening up all the short and longer climb-
ing trips (I cannot help bringing up the sweet memory of the superb trip to
the Ardeche – O dddddear dear – and all those days in Fontainebleau). I
am not going to sum up everybody, that’s just too boring to read. Anyway,
they know who they are and most of them will be present at my defense,
and, of course... the after-party!

Gent, November 2003
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Interlude

WRITER’S RUSH

FRIDAY, MAY 16, 2003.Well people, this is it! Time for the final rush.
Yesterday evening, I went gallivanting with Ruben, ending up in the pub (the
“Hotsy Totsy”), and we were babbling about this and that, and at a certain
moment I said: “I have 6 weeks left, and about 9 chapters, that makes I
have to finish, euh... one and a half chapter a week.” That was the moment
it first struck me, the truth I had kept blocking from myself came swirling and
trusting upon me with a fiercer intensity than I could have hardly imagined:
time was definitely not on my side.
Now, back at home, I have just jotted down the general layout and found
10 chapters, rather than 9, making matters even worse. But a spark of light
soothes my mind: 2 of them are already close to being completed. On the
other hand, the remaining 8 are still frightening blank. Certainly chapters 6
and 7, because I had to rethink most of their contents due to some nasty
little (sic) problems I but discovered in April (see the Interlude on page 175).
I guess this marks the beginning of a forced reclusive period for me.

WEDNESDAY, MAY 28. Only 4 weeks to go, and still 7 chapters left (I just
completed Chapter 6). This night, I had a bad dream. It started out as
a very pleasant dream at first, I was really having fun, until at a certain
moment, someone started to sing “Happy birthday...” to somebody. Did I
forget a birthday? Yes, the answer came, it’s the 13th of June today. No
way. Yes, it is. No, it can’t be, I know it was yesterday the 28th of May1,
how can two weeks simply disappear? They didn’t. But how... And I could
see there annoyed faces, as if saying, hey, stop acting like a fool. Panick
crept onto me, how will I ever finish writing in time? And then I woke up, and
realised it was but a dream.
So, here I am again, frittering away my precious time writing a nonsensical
interlude. It’s all about setting priorities ;-) and I do draw strengt and courage
from them. Well, enough of this, let’s tackle Chapter 7!

SATURDAY, JUNE 14. No bad dreams anymore, I didn’t forget the birthday
and I didn’t loose two weeks. (Life is great, isn’t it?) Chapter 7 has been
wrapped up and is ready for review (well, except for the experiments and
some minor stuff), and I’m finishing Chapter 5. Only 2 weeks to go and
assuming number 5 will be concluded tomorrow – clearly an example of
wishful thinking – still 6 chapters left . Hey?? 7−2 =6?? Aha, it seems that
last time, I forgot to count in the “weka” chapter Bernard once asked me to

1Although it was a dream, this makes perfectly sense because I worked late yesterday night, so I saw
the date May 28 just before going to bed.
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write. Oh well, what is one chapter more or less... It’s 2:25 am, I guess I’m
simply to tired to care. Time to drag my sleepy slumbering self to my snug
and snoozy bed.

THURSDAY, JUNE 19. As expected, wishful thinking. I finished Chapter 5
only just now. Maybe it’s time for me to admit my deadline of June 30 is
not really feasible. Although, not yet... Let’s stay surrealistically optimistic
and foolishly confident in the positive outcome, against all down to earth
rationality. I already get enough of that in my thesis. So, I’ll just keep fooling
myself a little longer, and to make this dreamlike thought even more com-
plete, I’ll take the evening off to go to a puppet theater play (a mix of puppets
and actors) in Antwerp.

FRIDAY, JUNE 20. The play ( “Love in Babylon” by Froefroe) was superb,
I’m all excited about it and feel a sudden surge of thrilling inspiration for the
play I intend to create next year. But first things first, I still have to conclude
some unfinished business, like this thesis ;-)

WEDNESDAY, JUNE 25. I just entrusted the last words of Chapter 3 to
electronic paper! 5 days left, the final ultimate rush, and how many chapters
left? No time to count, work, work, work!!!

TUESDAY, JULY 1. Well, this is it. Unbelievable but true, I made it. Al-
though I have to admit with a silent sideways whisper that I kind of tricked
and cheated my way to the end: I condensed two chapters into shorter ap-
pendices (5−2 =3 ), and I completely erased what where meant to become
the two final chapters (3−2 =1 ), about a measure for rankings and about
the weka implementations. Anyway, in spite of the year of thinking and fret-
ting about the ranking measure, I am still not fully satisfied about it, so I
prefer not to include it. And the other chapter is not even essential to this
thesis (moreover, I was never really keen on putting it in). Also, I still need
to put together the first chapter (the appendix is finished though), but that’s
“just” – to put my conscience at ease – the introductory chapter.
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4 CHAPTER 1. PHILOSOPHY AND PROBLEM SETTING

1.1 Introduction

Telling a story is an art in itself. To each story, there are a multitude of possi-
ble viewing angles, each with their own characteristic shades, colours and accents.
Each tale has its share of characters and apt sceneries blending one into the other,
consists of different narrative threads skilfully interwoven to create some grand
tapestry that cannot be conceived of by simply laying these threads next to each
other. Each tale brings forth an accumulation of plots and twists and turns wired
together like beads on a string, ever tickling the imagination, ever leading to an even
larger and more intricate plot. And is a Ph.D. dissertation, this scientific concoc-
tion of thoughts, ideas, intuition and insight, not just a story? Characters become
notions, sceneries transform into frameworks, and all are interconnected and influ-
encing each other. And what else is the constructive working towards a result, if
not some plot unravelling?

Since I will be writing a story, there is no need to heed the chronological evolution
of the research I so painstakingly conducted during the past four years. Rather, I
will focus on following the natural flow, starting from elementary basics about per-
ception (semantics) and representation (syntax), moulding them into rudimentary
but solid building blocks (the framework) for our edifice, and gradually whittling
them into a finer shape (the algorithms) whilst continuing to pile and stack them one
upon the other. But in spite of this underlying coherent current so conspicuously
carving through the consecutive chapters, I strived to make each of these units as
self-contained as possible, standing alone in their connectedness as the islets and
islands of an archipel.

But before commencing this tale, I will unfold in this prologue chapter the basic
concepts and philosophy upon which all my research is founded. It is the source of
the river meandering through this thesis, the force sweeping away all obstacles and
leaving in its wake a fertile ground from which ideas can emerge. It feeds the bare,
desolate and fallow plains of unsolved problems, fostering them into rich arable
fields and forests dense with foliage.

1.2 Problem setting

The ultimate trigger to this thesis can be easily traced back to a bunch of articles
and reports by the hand of Greco, Słowiński and Mattarazo, proposing a method
to extend the principles behind rough set analysis from classification towards rank-
ing. Plunging into these papers, the question popped up whether a similar feat was
feasible for decision trees (since the first time I encountered these tree structures
during my studies, I never really lost my fondness of them). Little did I know such
extensions were already proposed in the literature during the last years. Maybe this
was but a fortunate trick of fate, since it allowed me to develop my own philosophy
and theories without any interfering thoughts gnawing at the back of my mind.
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The wordsranking, classification, rough set analysisanddecision treeshave been
spilled out on stage, so it is probably worth while to commence with a little back-
ground to enlighten these concepts.

1.2.1 Supervised ranking

What is supervised learning? Such a question is easily solved by grabbing some
explanatory dictionary and simply look it up. However, because it is not an entry
in the dictionary, we fall back on an encyclopedia:

supervised learning. Machine learning: Creating a function from
training data. The training data consists of pairs of input objects (typi-
cally vectors), and desired outputs. The output of the function can be a
continuous value (called regression), or can predict a class label of the
input object (called classification). The task of the supervised learner
is to predict the value of the function for any valid input object after
having seen only a small number of training examples (i.e. pairs of
input and target output). To achieve this, the learner has to generalise
from the presented data to unseen situations in a “reasonable” way.–
Wikipedia, the free encyclopedia.

The supervised learneris some computer algorithm, like decision trees(see Ap-

pendix 1.A), neural nets, nearest neighbours, methods based on the rough set ap-
proach(see Appendix 1.B), and many others... Most of these techniques exist both in
a classification-format and inregression-format. A small example of training data
and aclassifier(in this case a classification tree) induced from this data is given
in Figure 1.1.

(a) An example of training data.

c1 c2 c3 class label

a1 − − + A
a2 + − − B
a3 − + + C
a4 + + − B︸ ︷︷ ︸

object id
︸ ︷︷ ︸
input vectors

︸ ︷︷ ︸
desired
output

(b) Classification tree.

Figure 1.1: An example of supervised learning.
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What is ranking? This time, we are more lucky with consulting our dictionary,
finding as an explanation:

rank. Noun: A relative position or degree of value in a graded group.
Transitive verb:1. To place in a row or rows. 2. To give a particular
order or position to; classify. 3. To outrank or take precedence over.–
The American Heritager Dictionary of the English Language, Fourth
Edition.

We learn from this definition thatranking is a special form ofclassification, where
the concepts oforder andrelativeposition play an important role. Moreover, it is
strongly linked with the idea ofoutranking.

Putting it together. Melting these two concepts together is easy enough to under-
stand. Now the class label to be predicted is a relative position in a graded group,
where the grade of a group indicates which of the other groups are (or are not) pre-
ferred over it. So instead of class labels like “Red”, “Blue” and “Yellow”, we have
rank labels like “Bad”, “Moderate” and “Good”.
From a theoretical perspective, we may suspect that we will have to endeavour
the mingling of machine learning techniques and statistics with order theory and
preference modelling.

1.2.2 Problems of a monotone nature

mon·o·tone. Noun: Sameness or dull repetition in sound, style, man-
ner, or colour.Adjective: 1. Characterised by or uttered in a mono-
tone. 2. alsomon·o·ton·ic Mathematics:Designating sequences, the
successive members of which either consistently increase or decrease
but do not oscillate in relative value. Each member of a monotone in-
creasing sequence is greater than or equal to the preceding member;
each member of a monotone decreasing sequence is less than or equal
to the preceding member.– The American Heritager Dictionary of
the English Language, Fourth Edition.

Rankings differ from classifications in more than just the order on the label. As can
be seen from the above definitions, there is also a semantical component involved:
a higher ranked object is preferred over one with a lower rank. This characteristic
proper to rankings may lead to the following problem regarding monotonicity (in
the mathematical sense):

Example. Assume four candidates are applying for a job. They are evaluated
according to their working experience (little or much), their capacity for learning
(slow or fast), and their personal profile, i.e. how well they will fit into the group
they have to work with (bad or good). These criteria are denoted resp. byc1, c2

andc3, and their values are denoted by− and+. Finally, some committee gives
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the candidates a global evaluation (B(ad), M(oderate) orG(ood)). They do this
as follows: The first candidatea1 has little work experience, is a slow learner,
but fits perfectly in the group. So, this would be someone who won’t be able to
do much, and will be tattering and babbling to the others, keeping them too from
working. Obviously not the perfect candidate, and (s)he is evaluated asBad. The
second candidatea2 has ample work experience, but is not a keen learner and not
a very good team player. It is decided this candidate isModerately acceptable.
Candidatea3 has no work experience, but compensates this by being a fast learner,
and (s)he has the right personal profile. This seems to be aGood candidate. Lastly,
a4 has work experience and is a fast learner, but will be troublesome within the
group, aModerate candidate. Clearly, the labelling is understandable and intuitive,
but not very rigourous. These evaluations are summarised in Figure 1.2(a).

(a) Evaluation of candidates.

c1 c2 c3 rank

a1 − − + B(ad)
a2 + − − M(oderate)
a3 − + + G(ood)
a4 + + − M(oderate)

(b) Classification tree.

Figure 1.2: Candidate evaluations.

Remark this is just the same table as in Figure 1.1(a), which means we have again
the same classification tree, as shown in Figure 1.2(b). It turns out that the best
possible candidate, namely someone with a lot of working experience, who is a
fast learner and fits well in the group, in other words, a candidate with evaluations
(+,+,+), is evaluated as Moderate by this tree. However, another person who is
only capable of learning fast, but has no experience and will not get along with
his/her colleagues, thus having evaluations(−,+,−), ends up in the class labelled
Good. This is in contradiction with every fiber of intuition we possess about such
problems: we expect that the best candidate gets a higher rank than this other can-
didate, because the former one is obviously to be preferred over the latter one.
In general, we expect that a higher score on one or more of the criteria results in
a better or equal ranking. This is just stating that we expect amonotoneincrease
of the final evaluation w.r.t. to the partial evaluations. And this is the point where
classification trees (and other classification algorithms) fail: they cannot guarantee
that this property of monotonicity holds.
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1.2.3 Problems of an ordinal nature

or·di·nal. Adjective:Being of a specified position in a numbered se-
ries. – The American Heritager Dictionary of the English Language,
Fourth Edition.

Basic scales. The basic types of scales from the representational theory of mea-
surement are the same ones we encounter in the techniques for dealing with super-
vised learning. They are the nominal, ordinal, interval and ratio scales. In anominal
scale, the different values have no real relation between them, like{Yellow, Blue,
Red}. In anordinal scale, only the order between its values are known, for example
{Small, Average,Big}. In an interval scale, it is possible to compare differences
between values, i.e. there exists a unit to the scale. Finally, in aratio scale, two
values can be compared in an absolute manner, in other words, it is like an interval
scale but with some “true”1 zero. Frequently, the termnumerical scaleis employed
to denominate both interval and ratio scale.

Discreteness versus continuity. In this thesis, we will mainly bother about ordi-
nal scales because this is the type of scale we predominantly encounter in ranking
problems. This poses again some problems, because most of the previous work in
supervised learning is based on nominal scales or numerical ones. Although con-
verting an ordinal scale into a nominal one is possible in a mathematically sound
way, it results in a too important loss of information. On the other hand, we do not
have enough information to justify a sound transformation from an ordinal (dis-
crete) scale into a numerical (continuous) one. That is why a popular assumption
(typically coming from utility theory2, e.g. [57, 66] concerning ordinal classifica-
tion) is that an ordinal variable is the result of a coarsely measured latent continuous
variable, each value on the ordinal scale delineating an interval on the continuous
scale(see Section 3.5.1, p. 75 for more details). There is nothing wrong with this until you
start to add, subtract, multiply and divide these transformed figures, for example
by calculating their mean value. Consider the following simple example: assume
we are working with the ordinal scale{Bad,Ok, Perfect}. It seems acceptable to
allow a transformation into a numerical scale such that the mean ofBad andPerfect
results inOk. However, if we consider the extended scale{Bad,Ok, BetterThan
Ok, Good, Perfect}, you might reconsider this and even be of the opinion that it
is not possible to take the mean ofBad andPerfect because these values are too
extreme, that the idea of the mean of these values cannot be filled in meaningfully.

1“The distinctive feature of a ratio scale is that it has an origin defined by a dominating theory[110,
p. 25]”.

2See http://cepa.newschool.edu/het/essays/uncert/choiceref.htm for a selection of references.

http://cepa.newschool.edu/het/essays/uncert/choiceref.htm
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1.3 Problem solving

We already knowwhatwe want to achieve: creating learning algorithms for rank-
ing, the question that remains pending ishowwe will accomplish this. We could
start from scratch and endeavour the construction of a ranking algorithm without
regard of history and existing knowledge. This would undoubtedly be a very in-
structive approach, but the pitfall of reinventing the wheel and loosing precious
time is always lurking around during such attempts. Moreover, it is very likely
that the reinvented wheel will not roll as smoothly as the one chiselled by mankind
during past decades if not centuries. Another approach would be to start from exist-
ing classification algorithms, and mend, enhance or adapt them so they can handle
ranking problems. This demeanour is the most common one, but now, the risk is to
end up with some tinkered construction. You can always start with a wheel to cre-
ate a sphere, but wouldn’t it be better to shape a sphere from rudimentary material
by using the tools and knowledge gained during years of wheel-making?

1.3.1 Fundamental approach

Understanding a problem is often the first step toward solving it.

This is the creed every layer in this thesis complies with. Of course, you can indulge
in this quest for knowledge and understanding as far as you want. For example, we
already figured out that the main problem for supervised ranking lies in respect-
ing the monotonicity inherent to the ranking, so we could content ourselves with
somehow enforcing monotonicity upon the output of the classifier. However, we
succumbed to the call of the deeper fundamentals which are concealed well inside
the problem behind an elusive veil of symbols and mathematics. Evidently, a thesis
cannot pretend to be more than but one pebble in a larger heap. Therefore, we do
not divulge all philosophically tinted treatises that could be related to our topic of
interest, but merely skimmer across their surfaces and highlight the thoughts that
can be of help in our research.

Overseeing the whole. If we probe deeper into the being of induction methods
such as classification trees and the like, we find that they are based on a mathe-
matical model. The original harbour of the problem statement can be traced back
even further, to the real world that is represented by this model, see also Figure 1.3.
Thus, before meddling with the final stage, it would be more than interesting to in-
vestigate the real world problem statement and its representation in a mathematical
model.

Understanding the parts. To seize the whole, it is usually clarifying to under-
stand the parts from which it is built. Figure 1.3 embraces three main pillars: the
real world (e.g. what is meant by “classification”, what is meant be “learning”?),
its representation (how is this idea of classification and learning translated into a
mathematical framework?), and lastly the actual methods and algorithms.
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Figure 1.3: Overseeing the whole.

Comprehending the interactions. Because the whole is more than the sum of
its parts, we also need to have a clear view on the interactions between these parts.
We already saw that rankings are a kind of variation upon classifications, but what
are the effects of this on the representation, and how do these effects propagate to
the final learning methods? By our comprehension of the interactions between the
different parts, the consequences of altering a definition in one part become more
manageable in the other parts.

Grasping the reasons behind. Far more interesting and instructive than thehow
is thewhyof matters. Typically, in a mathematically oriented thesis, you expect to
find theorems and proofs. However, that is the “easy” part. It can be as horribly
simple to prove something as it can be horribly difficult, but what is ever tougher
and harder, is to understand why it can be proven. For example, it is relatively
simple to demonstrate that the earth is spherical, and it was done already in ancient
times (e.g. by Eratosthenes in 250 B.C. [70]). However, explaining why the earth
has a spherical shape is a whole other matter. You can not just understand why
the earth has a spherical form by only considering the earth as a singled out object
standing all by itself. Rather, you need to situate the earth in the universe, floating
along with other stellar bodies. You need to investigate the forces of nature, like
gravity, understand the concepts of mass and energy, until finally, it becomes self-
evident why the earth had to be spherical, why it could not have been otherwise.

Act non-invasive. In everything we do, we try to follow the non-invasive attitude
advocated in [45]. Taking on a very gingerly demeanour, we try not to make any
assumptions that can not be backed, or perform operations that do not come rolling
out of our understanding of the problem. Even if it may seem clear that something
needs to be done, we shun from doing it unless we can explain why it needs to
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be done and show what are the consequences of actually doing it3. This careful
attitude stems from the knowledge that even the sharpest intuition may prove wrong
in the end, and conducting a massive amount of experiments may still give a false
impression (though intuition and experiments form certainly important facets of
research).

1.3.2 Perception

Perception is the backbone of all our thoughts and actions.

Now we enter the realm of philosophical reflection and meditation. Our perception
of reality is usually cloaked in deceptive simplicity, and it is worth while to take a
moment to linger and ponder on it.

Epistemology. A classification should be viewed inside some epistemological
theory4. Basically there are four methods of classification based on the follow-
ing epistemological theories [60]: 1)empiricism: all knowledge comes from the
senses; 2)rationalism: all knowledge comes from thinking; 3)historicism: all
knowledge depends on biological, cultural, social and individual developed condi-
tions; 4)pragmatism: a variant of historicism claiming that the analyses of goals
and values must play an important role in the establishing of knowledge.
Supervised learning has historically been interested in the first two of these theories:
empiricism (like neural nets) and rationalism (symbolic methods). Multi-criteria
decision aid, is more keen on historicism (preference modelling) and pragmatism
(multi attribute utility theory).

Syntax, semantics and praxis. The study of human communication can be di-
vided into the three terrains ofsyntax, semanticsandpraxis[121]. The first terrain,
thesyntax, is concerned with the problems of information transmission, i.e. encod-
ing, noise, redundancy, etc. . . The meaning of the information symbols is of no
importance. Thesemanticsis primarily about meanings. For messages (syntac-
tically constructed sequences of symbols) to make sense, it is necessary to have
some convention about their meaning before the communication takes place. In
other words, besides semantics, there is no other correlation between a word and
what it stands for. Finally, communication influences behaviour.
Now consider the following phrase from the description of supervised learning:
“The training data consists of pairs of input objects (typically vectors), and desired
outputs.” This one sentence harbours quite some hidden layers. Firstly, the word
“object” obviously refers to some kind of entity or idea in the real world. However,
when put in some kind of data record, the “objects” in question are pinpointed by
means of so-calleddigital communication [121], i.e. bynamingthem. Names or

3Based on this point of view, Chapter 7 is called “The basics of ranking trees”, and not simply
“Ranking trees” because the final algorithm mentioned in that chapter is just a melting pot of the most
basic ideas and understandings concerning decision trees for the supervised ranking problem.

4Epistemology is a branch in philosophy concerning the theory of knowledge
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words are just arbitrary signs that are handled according to the logicalsyntaxof
the language. The fact that a word refers to some real world5 object is merely a
matter of asemanticalconvention of the language. Secondly, the remark“(typi-
cally vectors)”refers to some secondary representation of the objects, by means of
certain properties they possess. Again, syntax and semantics surge to the front, and
to make matters even more complicated, they go hand in hand with the representa-
tional theory of measurement. Indeed, there needs to be agreement about what is
meant by the describing properties (qi), and what is meant by the relation between
the symbols (xi, yi) used to describe the objects (see Table 1.1). On top of that,

propertyq1 propertyq2

objecto1 x1 x2

objecto2 y1 y2

Table 1.1: Syntax and semantics in the training data.

this small two word remark supposes that a scale is attached to these describing
symbols, in other words, that they are in fact measurements of some kind. Here we
see a first and obvious example of how different semantics are poured into different
mathematical models6. Also remark that the same is true for the“desired output”.
Clearly, the importance of semantics can hardly be overestimated. And because
the concept of ranking is rooted in multi-criteria decision aid which flirts with a
mathematics that is loaded with semantical ideas, we have to be twice as careful
in order to avoid nonsensical results and/or the mixing of incompatible semantical
ideas. Moreover, starting from a sound semantical foundation will also enable us
to understand more easily the “why” of matters.
One final word of caution is at place: the semantics of a notion should not be
confounded with the properties of this notion. A property can somehow be verified,
but semantics are purely a convention about meaning.

Objective and subjective reasoning. Closely related to the previous topics is the
discussion about objective and subjective information. Empiricism and rationalism
are schools embracing the principle of objectivity. On the other hand, historicism
and pragmatism stress the importance of subjective information, which may well
be in conflict with logical reasoning. Since we want to reconcile these approaches,
we need to make some choices. Our approach will be to incorporate ideas from
multi-criteria decision aid into machine learning. In doing so, we basically try
to reshape subjective information that leads apparently to logical inconsistencies

5We assume there exists something as a “real world”, although this is again a matter of philosophical
debate [73].

6In many cases, the semantics are based on the measurement scale used, but it may well happen that
the measurement scale is only an approximation of the intended semantics. For example measuring size
on a ratio scale, versus measuring quality (e.g. Poor, Acceptable, Decent, Good) on an ordinal scale. In
the first case, the proportion between the sizes is explained by the ratio scale, however, in the second
case, it is very likely that the ordinal scale is in fact a bit coarser than what is actually intended by the
enumeration Poor, Acceptable, Decent, Good.
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into an acceptable objective form. Moreover, in compliance with our non-invasive
approach, we choose to do so with the utmost respect for the given data.

1.4 How to read this thesis

All chapters are self-contained and can therefore be read independently from each
other. To achieve this goal, all necessary concepts are repeated in each chapter
before the sections they are used in. This is either done in a paragraph named “no-
tions and conventions”, or it is indicated in the margin. Moreover, all notions and
symbols are repeated in the margin,like this, when they first appear in each chap- LIKE THIS .

ter. This means you never need to thumb back very far in case you have forgotten
the meaning of one. It also helps you in skipping passages: if the notions in the
margin seem familiar, just jump to the next paragraph or subsection.
Even if all chapters can be read (more or less) individually, they do make up a
continued story. The outline of this thesis is depicted in Figure 1.4.

Figure 1.4: Outline of this thesis.

Of course, every thesis worthy of that name has some kind of a literature study, and
this one will not be the exception to this common rule. Chapter 3 fills in this gap
in the outline given above and tempts a summary review of existing approaches for
supervised ranking.
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APPENDIX

Learning algorithms for classification
Because we want this thesis to be self-contained, we add this appendix discussing
more at length decision tree algorithms and the rough set methodology. People
already familiar with these can therefore easily skip this chapter, although they
might want to read Appendix 1.C, since it consists of a more personal point of view
concerning how far we feel is the reach of rough sets and where do we draw the
imaginary line between methods based on rough sets and methods based on the
same philosophy underlying rough sets.

1.A Decision trees

Introduction. Creating a decision tree is usually done in two steps: first an overly
large tree is grown (Appendix 1.A.3), and afterwards, this tree is pruned to a smaller
size (Appendix 1.A.4). For a multi-disciplinary survey, see [79, 80].

1.A.1 History

Decision trees have had a quite long conception time starting in the late fifties by
the work of Hoveland and Hunt under the name CLS (Concept Learning Systems)
and in the early sixties with the AID (Automatic Interaction Detection) program of
Morgan and Sonquist for regression, and its successor THAID of Morgan and Mes-
senger in the early seventies for classification (TH refers to theta, a letter that was
used to indicate the proportion of correctly predicted cases for the entire (training
or test) set). Decision trees were then rediscovered and studied by several peo-
ple in diverse disciplines. The standard algorithms resulting from these efforts are
CART (Classification and Regression Trees, [23]) coming from statistics and ID3
(Induction of Decision Trees, [92]) which originated from the discipline of machine
learning, together with its successor C4.5 [93].
From that moment on, a multitude of adaptations and new decision tree algorithms
were suggested, including faster algorithms [71], scalable algorithms [62, 82], and
algorithms capable of dealing with relational information [63, 64, 67, 69].

1.A.2 The decision algorithm

The easiness to understand a decision tree is one of its most appealing trumps.
Consider for example the “student”-tree in Figure 1.5. The meaning of it is self-
explaining: if an object needs to be classified, just answer the question at the top
of the tree, and follow the branch that contains the right answer. Continue like this
with the next questions and answers, until finally, it is stated to which class the
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object belongs. So, a decision tree is just a representation of a set of rules that form
a hierarchical partition of the data.

Notions and conventions. A tree T consists of a series ofnodes andbranches. TREE.
NODE.

BRANCH.
End-nodes are calledleaves, the other ones are calledinner nodes. The branches

LEAF.
INNER NODE.

connect the nodes. Inner nodes are labelled with asplit question. The branches

SPLIT.
are labelled with the possible answers to these questions. A leaft is labelled with
the response that is associated to all the objects falling intot. This response can
be a class label and/or a distribution over the different class labels, or, in the case a
continuous function is learned, it can be a real number. The set of leaves of a treeT
is denoted bỹT . The subtree ofT starting at the nodet is denoted byTt. See also T̃

TtFigure 1.5, where also the notions ofroot, parentandchildrenare explained.

Figure 1.5: Terminology of decision trees.

Because a node in a classification tree gathers a set of objects, it is possible to
define a probability distribution over the class labels for each node. For a leaft, we
denotep(t) the estimated probability that an object falls into the leaft, and, if we p(t)

denote the set of classes byL = {1, . . . , k}, then we denote byp(i|t) the estimated p(i|t)
probability that an object falling intot belongs to classi.

1.A.3 Model selection: growing the tree

Growing a tree consists of the recursive splitting of the tree, i.e. finding appropriate
split questions from a set of possible split questions. Usually, a greedy heuristic
is followed: the best split for each node is taken without taking into considera-
tion possible splits of the resulting children. Obviously, a greedy heuristic cannot
guarantee to find the optimal tree, but it has been experimentally ascertained that it
delivers near-optimal results [79].
There exist several measures to gauge the power of a split question on the given
data, with a background ranging from information theory to statistics. The most
widely used measures for classification trees are the so-called impurity measures.
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Impurity measures. An impurity measure is a non-negative functionφn fromIMPURITY

MEASURE. the set of probability distributions over the class labelsL = {1, . . . , k} to R such
that

• φn reaches its maximum in( 1
n , . . . , 1

n ), i.e. the objects are distributed as
heterogeneous as possible over the classes;

• φn is zero if there is no uncertainty, i.e. all objects belong to the same class:

φn(1, 0, . . . , 0) = φn(0, 1, 0, . . . , 0) = φn(0, . . . , 0, 1) = 0 ;

• φn is symmetric: for all permutationsσ of {1, . . . , n}, we have

φn(p1, . . . , pn) = φn(pσ(1), . . . , pσ(n)) .

Applied to a node of a tree, this becomes

φ(t) := φn(p(1|t), . . . , p(n|t)) .

The impurity of the whole treeT is then defined as the weighted sum of all leaf-
impurities:

φ(T ) =
∑
t∈T̃

p(t)φ(t) .

In order to obtain a higher discrimination power with dropping uncertainty, some-
times the condition of strict concavity is added:

φ′′n(p1, . . . , pn) < 0 .

The most frequently used impurity measures, theShannon entropyand theGiniSHANNON

ENTROPYH .
GINI DIVERSITY

INDEX G.

diversity index

H(t) = −
∑

i

p(i|t) log2 p(i|t) and G(t) =
∑
i 6=j

p(i|t)p(j|t) ,

oblige this last condition. Their graph is shown in Figure 1.6 for the case of two
classes only.

1.A.4 Model selection: pruning the tree

Overfitting. The idea of pruning (the opposite of splitting) is to avoid the problem
of overfitting the problem. When the tree gets larger and larger, the leaves contain
less and less learning objects. As a consequence, the global impurity of the tree
may drop, but the number of representant objects inside the leaves becomes too
small to lead to a well-founded conclusion about the class distribution inside the
leaves. So, while the error on the learning sample may be very low, the error on an
independent test sample may be quite high. The pruning strategy is to first grow an
overly large tree, and then to remove certain splits, hence producing smaller trees
with leaves taking up larger portions of the data. Remark however that Shaffer [98]
made clear that there are no“statistical reasons for believing that these overfitting
avoidance strategies do increase accuracy”. Nevertheless, smaller trees are at least
easier to interpret.
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(a) Entropy (b) Gini

Figure 1.6: Shannon entropy and Gini diversity index, 2-class problem.

Pruning methods. There are two types of pruning strategies: pre- and post prun-
ing. Pre-pruning curtails the tender growing of a tree, while post-pruning first
grows a large treeTmax, which is afterwards pruned carefully into shape. There
are two types of post-pruning strategies, (i) single-step: run through the nodes (ei-
ther bottom-up or top-down), and decide at each node whether to prune it, or (ii)
two-step: first generate a set of pruned trees, and then select one of them. For an
overview of these methods, see for example [24, 113].

1.B Rough set methodology

1.B.1 History

The introduction of rough sets in 1982 [85] can be attributed to one person, namely
Pawlak. However, the date 1982 only refers to the moment the name “rough set”
was jotted down. The very beginning can be traced back to the late sixties (Salton’s
Automatic Information Organisation and Retrieval), and the early seventies where
Pawlak (later together with Marek) published a mathematical model for attribute
based information systems. The work done by the Information System Group in
Warsaw on this model, finally led to the paper [84] where most of the ideas under-
lying rough sets are exhibited (but without the terminology proper to the rough set
methodology).
Note that decision trees were originally conceived to deal with prediction, but later
on, also also applications in information retrieval (e.g. [6]) have been found. On
the other hand, RSDA started as a method for information retrieval [84], and has
only afterwards been extended to deal with prediction.
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1.B.2 Rough sets

Notions and conventions. An equivalence relationis a reflexive, symmetric andEQUIVALENCE

RELATION. transitive relation.

Approximation space. The input data are represented by aninformation sys-INFORMATION

SYSTEM

I =
〈
Ω, Q,XQ, ϕ

〉
.

tem [84] I = 〈Ω, Q,XQ, ϕ〉, whereΩ is a finite set of objects,Q = {q1, . . . , qn} a
finite set of attribute names, where eachq ∈ Q has an associated set of valuesXq,
XQ =

⋃
q∈Q Xq, andϕ : Ω×Q→ XQ such thatϕ(a, q) ∈ Xq.

What is interesting to these notations, is that they make explicit the human interfer-
ence when dealing with the real world: the objects as well as their representation
are kept clearly visible. This helps in avoiding making mistakes such as identifying
an objecta with its representationa = (ϕ(a, q1), . . . , ϕ(a, qn)) ∈ X =

∏n
i=1 Xqi .

To alleviate notations, we revert to the less cumbersome notationsI = 〈Ω, Q〉,
andq(a) := ϕ(q, a). The basic observation underlying RSDA is that objects may
be indiscernible due to the limited availability of information. This leads to theINDISCERNIBLE.

introduction of theindiscernibility relation I ⊆ Ω× Ω asINDISCERNIBILITY

RELATION I .

aIb ⇐⇒ (∀q ∈ Q)(q(a) = q(b)) .

If aIb, then the objectsa andb are indiscernible from each other w.r.t. the attributes
from Q. We know by their names (a, b) that they are not one and the same object,
but we cannot tell them apart by merely considering their feature vectors (a,b)
in X .
A pair 〈Ω,Π〉, with Ω a finite set andΠ an equivalence relation, is called anap-
proximation space7. It is as if peering at the setΩ through a filter,Π, blurringAPPROXIMATION

SPACE. out some of the details. When looking ata ∈ Ω, we can only see it belongs to the
equivalence classΠ(a) = {b ∈ Ω | aΠb}, without being able to actually single out
the objecta itself. It is clear that the indiscernibility relationI is an equivalence
relation and therefore defines an approximation space. The induced equivalence
classes are called(information) granules in this context. Remark that each granule(INFORMATION)

GRANULES. is determined by exactly one feature vector in the measurement spaceX (although
not every vector ofX needs to corresponds to a granule because the image ofΩ
underλ may be only a subset ofX ).
For each subset of attributesP ⊆ Q, a new information systemIP = 〈Ω, P 〉 can
be devised with associated indiscernibility relationIP :IP , IP

aIP b ⇐⇒ (∀q ∈ P )(q(a) = q(b)) .

So, eachP ⊆ Q also defines an approximation space〈Ω, IP 〉. The partitioning of
the measurement spaceX induced from such an indiscernibility relation is nothing
else but a grid partitioning and corresponds to

∏
q∈P Xq. Therefore, with some

abuse of language, we will call an approximation space of the type〈Ω, IP 〉 simply
agrid .GRID.

7Sometimes this is called the Pawlak approach to rough set theory, a treatise of how it links with
abstract approximation spacescan be found in [28].
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“Standard” rough sets. The granularity of information accounts for the fact that
class boundaries (remember that classes are essentially subsets of the object space)
in the training sampleS cannot be determined sharply. Instead, through the blurry
spectacles of the indiscernibility relation, we can only pinpoint the so-calledlower
andupper approximationsof the classes, containing respectively the objects fromS
that we can distinguish as certainly belonging to a class, and the objects that only
possibly belong to it, i.e. not containing the objects that certainly do not belong to
the class. More formally, let〈S,Π〉 be an approximation space with associated set
of granulesXΠ, andA ⊆ S, then

AΠ =
⋃
{a ∈ S | Π(a) ⊆ A}

is called thelower approximation of A, and LOWER

APPROXIMATION

AΠ .
A

Π
=
⋃
{a ∈ S | Π(a) ∩A 6= ∅}

theupper approximation of A. See also Figure 1.7. UPPER

APPROXIMATION

A
Π

.

Figure 1.7: lower and upper approximation.

If Π is understood, we usually omit the subscript (superscript). In general,Π corre-
sponds toIP for some subset of attributesP ⊆ Q. In that case, we also writeAP

andA
P

. A rough set(w.r.t. the approximation space〈S,Π〉) is a pair
〈
A,A

〉
. The ROUGH SET.

two following properties are essential:

(i) rough set property:A ⊆ A ⊆ A ,

(ii) complementarity property:S \A = S \A andS \A = S \A ,

where (i) explains the nameslower andupper approximationandrough set.
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The variable precision rough sets model. In [126], a different and more flexible
scheme for defining upper and lower approximations was proposed. The core idea
was to extend the inclusion relation present in the lower approximation.
It is based on the following inclusion function:

c(X, Y ) =

{
|X∩Y |
|X| , if |X| > 0

1 , if |X| = 0 .

For some0 ≤ β < 0.5, the lower and upper approximation are now defined as

AΠ = {a ∈ S | c(Π(a), A) ≥ 1− β} and A
Π

= {a ∈ S | c(Π(a), A) ≥ β} .

If β = 0, these expressions result back into the “standard” definitions of lower and
upper approximation.

1.B.3 The decision algorithm.

For easier reading, we will identify the granulesΠ(a) ⊆ S with their counterparts
in X , and we do the same for the lower and upper approximations that are built
from these granules.
There are two approaches:

(i) The decisions are made directly based on the blocksXΠ(a) ∈ XΠ induced by
the granulesΠ(a) defining the lower an upper approximations, e.g. [36, 45]:

(a) b = (q1(b), . . . , qn(b)) ∈ Π(a) ⊆ A for somea ∈ S implies thatb
certainlybelongs toA,

(b) b ∈ Π(a) ⊆ A for somea ∈ S implies thatb possiblybelongs toA.

(c) b ∈ S \A implies thatb doescertainly notbelong toA,

Remark that, ifΠ corresponds toIP for subset ofP = {q1, . . . , qk} ⊆ Q,
then“if b ∈ Π(a)” can be rewritten as“if q1(b) = vq1 and . . . andqn(b) =
vqk

” , with vq ∈ Xq.

(ii) A set of rules is generated from the lower and upper approximations, leading
to certain and possible rules e.g. [29, 109]. However, in contrast with the
above approach, certain rules may overlap each other.

To conclude, remark that
⋃

i∈L Ci may not cover the universeS, in which case
non-determinism occurs, while on the other hand we always have

⋃
i∈L Ci = S.

The generalised decision. Assume we are given a decision system, i.e. an infor-
mation system〈S, Q〉 and a decision functiond : S → L. It is possible to replaced
by a new functionδQ : S → 2L, called thegeneralised decision, such that the re-GENERALISED

DECISION. sulting decision system becomes deterministic, meaning|δQ(x)| = 1 for all x ∈ S,
by definingδQ(x) = {i ∈ L | (∃x′ ∈ S)(xIQx′ ∧ d(x′) = i}. The objects fromS
can now be partitioned into subsets, each containing objects described by the same
value of the generalised decision function.
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1.B.4 Model selection: the standard rough set approach

The core idea is to find an approximation space, more particular a grid〈S, IP 〉,
using the least possible attributes while still maintaining the sameapproximation
quality as with the approximation space〈S, I〉. This is done in a bottom-up (i.e.
specific to general) search through the space of possible grids. It has to be men-
tioned that a greedy bottom-up search did not lead to satisfactory results, and there-
fore other heuristics have been investigated.
The most common definition of areduct is the one based on a measure called the
quality of approximation defined as QUALITY OF

APPROXIMATION

γP .
γP (S, d) :=

∑
i∈L

∣∣CiP

∣∣
|S|

,

i.e. the proportion of the number of correctly reclassified sample objects and the
total number of samples. Areduct is any (non-empty) subset of attributesP ⊆ Q REDUCT.

that such thatγP (S, d) = γQ(S, d). A minimal reduct has the additional propertyMINIMAL REDUCT .

thatγP ′(S, d) < γQ(S, d) for any (non-empty)P ′ ⊆ P . Once a reduct has been
chosen, it is used to define the partitionΠ onS used in the decision algorithm.
It is known that such reducts are not very good at predicting the class of new un-
seen objects (overfitting). Therefore, alternatives are proposed, such asdynamic
reducts[7].

A simple example. Consider the data shown in Figure 1.8.

(a) Table.

q1 q2 d

a1 1 1 A
a2 1 1 A
a3 1 2 A
a4 2 1 A
a5 2 1 B

q1 q2 d

a6 2 1 A
a7 2 2 B
a8 2 2 A
a9 3 1 B
a10 3 2 B

(b) Approximation space.

Figure 1.8: A simple example.

We have thatγ{q1,q2}(S, d) = 2
10 + 1

10 + 1
10 + 1

10 = 1
2 , γ{q1}(S, d) = 3

10 + 2
10 = 1

2 ,

andγ{q2}(S, d) = 0. So, we find that{q1} is a reduct, and that it is a minimal one.
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1.C A note on rough set methodology

1.C.1 What is the rough set approach?

What is therough (set) approach? This seems a difficult question to me. If you
ask “What are decision trees, what are neural nets, what are nearest neighbour
methods?”, the answers are clear and straightforward. The same is true if one asks
“What is fuzzy set theory, what is nonstandard analysis,. . . ?”.
In general, it seems that a publication is catalogued as dealing with rough sets if it
elaborates on either the subject of granularity, lower and upper approximations, or,
in the context of data mining, searching the space of possible grids8. Of course, an
enumeration of all subjects of “rough set articles” does not provide a suitable reply
to the question posed above.
Maybe it could be put as follows: the rough set approach is any approach based on
rough set theory. This answer naturally brings forth a second question: “What is
rough set theory?”

Granularity and approximations. The notion of an approximation space is one
of the fundamental concepts in rough set theory. It is usually defined as a couple
(Ω, R), whereR is just a relation (mostly theindiscernibility relation (see p. 18))
on the setΩ. The setsR(a) are called granules and we denoteΩR = {R(a) |
a ∈ Ω}. However, we feel that a distinction should be made between granular
spaces and approximation spaces. Agranular spaceshould be defined as the pre-GRANULAR SPACE.

vious mentioned couple(Ω, R), while anapproximation spaceis a granular spaceAPPROXIMATION

SPACE. together with two mappings on the powerset ofΩ, an inner approximation map-
INNER

APPROXIMATION

MAPPING.

ping i : 2Ω → ΩR and anouter approximation mapping o : 2Ω → ΩR such that

OUTER

APPROXIMATION

MAPPING.

i(A) ⊆ A ⊆ o(A) for anyA ⊆ Ω. For a more formal and concise definition of
(and elaboration on) the notion of abstract approximation spaces, see [28] . Rough
set theory is then the theory of abstract approximation spaces and its concrete real-
isations.
In short, working with granules is not enough to characterise a method as following
the rough set approach, not even if it deals with the “classificatory analysis of data
tables [65]”, since clearly decision trees fit such a description. To earn the label
rough set methodology, some notion of inner (=lower) and/or outer (=upper) ap-
proximation must be involved, either directly or within some statistic used, such as
thequality of approximation(see p. 21). However, the rough set community should
be accredited for stressing the importance of granulation which lies at the core of
their work.

Grids. A grid can be viewed as a granular space. The merit of meticulous inves-
tigation of the search space of grids [95] in classification problems is certainly to

8This enumeration is not exhaustive, but suffices for our present needs.
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be attributed to the development of rough set theory. Still, if there is no reference
to the concepts of inner/outer approximations, we see no reason to say it is part of
the rough set approach. Rather, it is possible to use arough versionof the method,
for example by defining the notion of reduct using the quality of approximation.
The search of the space of possible grids lies at the same level as the search of the
space of possible decision trees. The former is a bottom-up approach, while the
latter is a top-down version of the same idea. Both can be turned into rules and
further investigated using the same techniques. Both can be based on measures
stemming from rough set theory [65, 82], but also from information theory [93,
106].

1.C.2 Conclusion

We feel that the namerough set approachis used a bit too easily. Comparable to
some extent to the way that some people call something fuzzy as soon as the real
interval [0, 1] is used, while in fact one also needs that one of the three semantics
of fuzzy sets (similarity, incompleteness (or vagueness), preference) is applicable.
Likewise, rough sets is not just granularity, it needs a specific use of this granularity:
identifying inner/outer approximations. Still, the rough set methodology was the
first to stress the importance of granularity.
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Interlude

TRANSLATIONS

Let me issue a small warning: “Do not be too diligent!”

THE FRENCH CONFERENCE. What a marvellous idea it seemed at the time
I saw the announcement for some French conference. Yes, I thought to
myself, why not practice my French writing a bit and submit an article in the
native language of the conference? So, this chapter was originally written
in French as a submission to this conference. I typed the paper and got
some very nice assistance of Céline, who took the effort of correcting my
sometimes awkward French constructions9.

THE ENGLISH THESIS. What a silly idea to write a text in French! How
could I have been so foolish? Now I have to translate the whole darn thing
back into English. And I did not even get accepted to the conference!

The moral to this story: “Do not be too diligent!”

9Céline, thank you again :o)
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2.1 Introduction

As we mentioned in Section 1.3.1, it is essential to understand the basics to their
full extent before we should even consider building on their foundations, further
embellishing and ornamenting them. That is why we will probe deeper into the
fundamentals of classification (within the context of supervised learning). Nothing
shockingly new will come about, in the end, all we do is analyse the whole, break it
down in different parts, name them, and put them together again, restating what is
(or at least seems) obvious, while extending some other parts. Still, this approach
will enable us to put decision trees and rough set analysis in a slightly different
perspective which will be useful in the second part of this thesis.
The first section rephrases the essential setup needed to mathematically grasp (rep-
resent) the idea of classification and supervised learning. The core idea can be
traced back to what is called thegeneralised decision(see p. 20), but translated into
our proper setting. The subsequent Section 2.3 is bent on extending the previous
ideas towards reflexive relations. Emphasis is put on the consequences of different
semantics for the same syntax. The influence of this extension on information mea-
sures is the object of study of Section 2.4. Finally, Section 2.5 and Appendix 2.B
discuss rough sets and decision trees from the point of view of the preceding sec-
tions. Appendix 2.A puts all classifiers into a perspective of partition-based reason-
ing.
To begin with, we let our attention swirl towards the notion of classification and
the very straightforward portal between the real world and its mathematical coun-
terpart.

2.2 Elementary granulation

2.2.1 Introduction

Notions and conventions. We denote the power set of a setX, i.e. the set of all
subsets ofX, by 2X . The cardinality of a setX is denoted by|X|.2X

|X| Given a functiong : X → Y , with finite Y , we can conceive of several ways to
defineg(A) for a subsetA ⊆ X. First we can focus on the set-characteristics ofA:

g(A) =

{⋃
a∈A{g(a)} , if A 6= ∅ ,

∅(= unknown, no information) , ifA = ∅ .
(2.2.1)

We call this theset interpretation. Another track is to emphasise the distributionalSET

INTERPRETATION. properties. IfA is finite, we can observe the frequency distribution overY :

g(A) : Y → N ,

y 7→ g(A, y) = |{a ∈ A | g(a) = y}| .
(2.2.2)
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If A is infinite (or finite), we can work with a conditional probability distribution
(or an estimation of it) overY :

g(A) : Y → [0, 1] ,
y 7→ g(A, y) = P(y | A) ,

(2.2.3)

whereP(y | A) stands short forP(g(a) = y | a ∈ A). This is thedistribution DISTRIBUTION

INTERPRETATION.interpretation .
It should be clear that the first interpretation ofg(A) is included in the other two:
indeed, taking the support of the frequency or probability distribution results back
into (2.2.1). Therefore, if we refer tog(A) as a set, we either refer to (2.2.1) or
to the support of the other two interpretations. Other possibilities will not be dealt
with in this chapter.

2.2.2 Structuring the objects

The real world and our perception.

clas·si·fy. Transitive verb:To arrange or organise according to class or
category.– The American Heritager Dictionary of the English Lan-
guage, Fourth Edition.

This is how classification is perceived in everyday life. We tag the objects that at-
tract our attention and say they belong to this or that class. We can easily formalise
this labelling process as a functionλ from some set of objectsΩ, which we call the
object space1, to some set of labelsL: OBJECT SPACE.

λ : Ω→ L .

The set of labelsL is intangible and part of our conception of the objects under
consideration. So, the classification provides us with a link between the real world
and some perception of it.
If we assumeL to be finite,λ is called aclassification. Each label̀ ∈ L defines a CLASSIFICATION.

classor conceptC` = λ−1(`) in Ω. CLASS.
CONCEPT.

Supervised learning. In the learning paradigm, we lack full awareness of the
classificationλ, and are only allowed a mere glimpse of it. We are only granted
access toλ on a finite subsetS ⊆ Ω, also referred to as thesample space. This SAMPLE SPACE.

limited viewλ|S will be denoted asd : S → L, and is called thedecision function. DECISION

FUNCTION.The coupleΛ = (S, d) is called alearning sample. The whole intention is to
LEARNING SAMPLE

Λ.induce the unknownλ as good as possible fromd = λ|S . To accomplish such a
feat, we obviously need some more structural knowledge about the objects ofΩ.

1Other names can be found in the literature, such asuniverse of discourse
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Figure 2.1: Elementary portals.

The mathematical world.

class. Noun: A set, collection, group, or configuration containing
members regarded as having certain attributes or traits in common; a
kind or category.– The American Heritager Dictionary of the English
Language, Fourth Edition.

We cannot manipulate the objects fromΩ themselves, but we can play with our
knowledge about them. In our learning context, we suppose, as usual, that our
primary information about the individuals inΩ is embodied by a finite setQ =
{q1, . . . , qn} of descriptor variables (attributes) q : Ω → Xq. Consequently, eachATTRIBUTES.

object is intertwined with a specific vector within thedata spaceX =
∏

q∈Q XqDATA SPACE.

by thedescriptive representationDESCRIPTIVE

REPRESENTATION.

ρQ : Ω → ΩX ⊆ X ,
a 7→ (q1(a), . . . , qn(a)) .

If the context leaves no doubt concerning the setQ, we simply writeρ instead
of ρQ. To keep notations manageable, we sometimes write the representation of
an objecta ∈ Ω in the data spaceX asa, in other wordsρ(a) = a ∈ X . If
we mention elements ofX without reference to an object ofΩ, we use boldface
charactersx,y, . . .

This simple functionρ creates a gateway between the real world and a mathematical
representation of it. In doing so, the objects ofΩ are grouped intoelementaryELEMENTARY

(INFORMATION)
GRANULES.

(information) granules: each vectorx of X wraps the set of objectsρ−1(x) (if
x 6∈ ΩX , thenρ−1(x) = ∅).
Up to this point we have just formalised the typical information that is contained in
a basic entry for supervised learning.
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2.2.3 Elementary representation of the decision function

The next step is to create a mathematical counterpart of the classification or de-
cision function, where the domain is now the data spaceX rather than the object
spaceΩ. We don’t have many options to pull this off, with the limited building
blocks we dispose of. Since we want to transfer the information ofλ from Ω toX ,
we have to rely on our only link between these two spaces, namely the descriptive
representation.

Definition 2.2.1

• Theelementary representation of a classificationλ (w.r.t. to a fixed finite ELEMENTARY

REPRESENTATION

OF A

CLASSIFICATION.

set of attributes) is defined by

λ̂ = λ ◦ ρ−1

• Theelementary representation of a decision functiond = λ|S is defined ELEMENTARY

REPRESENTATION

OF A DECISION

FUNCTION.

by

d̂ = d ◦ ρ−1
|S

It should be clear that althoughd = λ|S , we may have that̂d 6= λ̂|ρ(S)
. Let us

make these definitions more concrete. For allx ∈ X , we havêλ(x) = λ(ρ−1(x)).
But sinceρ−1(x) ⊆ X , we already need to make a choice between (2.2.1), (2.2.2)
and (2.2.3).

Representation based on sets.Applying the set interpretation (2.2.1), we arrive
at

λ̂(x) = λ(ρ−1(x)) =
⋃

a∈ρ−1(x)

{f(a)}

= {` ∈ L | (∃a ∈ Ω)(ρ(a) = x ∧ λ(a) = `)} .

Note that this means thatλ̂ : X → 2L. Thus, the representation of a classification is
again a classification, but now in the spaceX , with classeŝλ−1(L), whereL ∈ 2L.
Moreover, if the object space and the data space are isomorphic,Ω ∼= X , then
λ̂ ∼= λ. The setsCL := ρ−1(λ̂−1(L)) ⊆ Ω (we write C{`} shortly asC`) are
sometimes called thedecision regions. They constitute the view on the classesDECISION REGIONS.

of Ω as seen through the mathematical model. It is clear that a minimal condition
for the existence of doubt betweena andb is that they belong to the same decision
region derived from a setL ⊆ L with |L| > 1.
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Figure 2.2: Doubt introduced by modellingλ.

This representation introduces the notion ofdoubt2 between objectsa, b ∈ ΩDOUBT.

wheneverρ(a) = ρ(b), butλ(a) 6= λ(b). In that case, it holds that|λ̂(ρ(a))| > 1.
We only consider doubt that arises by the modelling ofλ as depicted in Figure 2.2.
Similarly, we find for the representation ofd = λ|S that

d̂(x) = d(ρ−1
|S (x))

= {` ∈ L | (∃a ∈ S)(ρ(a) = x ∧ λ(a) = `)} .

Representation based on distributions. If we narrow our view only to sets, we
neglect quite some of the available information. While this might be interesting
in order not to drown in too many details and retain the general impressionistic
picture, it may not be sufficient in other situations. In the latter case, we can add
detail by using (2.2.2), to keep track of the number of objects within one infor-
mation granule that are mapped onto each label, or (2.2.3) to retain the relative
frequencies.

Returning to the objects. If we want to apply the previous models (representa-
tions) directly to an objecta ∈ Ω, we first need to transform it into its descriptive
representationρ(a). So, obviously, there is nothing to prevent us from deriving the
twin functionλ̂∗ onΩ throughρ asλ̂∗ = λ̂ ◦ ρ, i.e. fora ∈ Ω

λ̂∗(a) = λ̂(a) .

Within the limitations imposed by our representation ofΩ byX and our choice of
interpretation ofλ(A) for A ⊆ Ω, the model̂λ∗ is the best approximation ofλ :
Ω→ L we may possibly conceive of.

2The literature harbours other terminology indicating the same phenomenon, such asinconsistency
(indiscernible objects with different labels). In Chapter 4 it will become clear why we opted for a
different name.
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Remark that, following the representation based on sets, the decision regions can
be written in function of̂λ∗ as follows:CL = ρ−1(λ̂−1(L)) = (λ̂∗)−1(L).
We can also derive such a twin function3 d̂∗ for d. Remark how this simple exten-
sion has already initiated the learning process: in contrast withd which is restricted
to the finite set of samplesS ⊆ Ω, its twin d̂∗ is defined on wholeΩ (even if it may
still map a lot of objects to the empty set). Remark that whiled̂∗ becomes the best
operational approximation ofd, it is not necessarily a good approximation ofλ.

2.2.4 Summary

• The objectsa ∈ Ω are represented by their descriptionρQ(a) ∈ X , inducing
an elementary granulation ofΩ.

• Using either the set or the distribution interpretation, the classificationλ :
Ω→ L can be represented by the mappingλ̂ onX :

λ̂ = λ ◦ ρ−1 .

• Doubtarises if two objects have the same elementary representation accord-
ing toQ, but belong to different classes according toλ:

ρQ(a) = ρQ(b) and λ(a) 6= λ(b) .

2.3 Relational granulation

Notions and conventions. If we speak about a relationR ⊆ X × Y , we always
refer to a binary relation, and denoteR(a) = {b ∈ Y | aRb}. In this way,R can be R(a)

seen as a mapping fromX to 2Y , and can therefore be extended towards a mapping
from 2X to 2Y in the way of (2.2.1), i.e.

R(A) =
⋃
a∈A

R(a) = {b ∈ Y | (∃a ∈ A)(aRb)} .

Also, the relational compositionR1 ◦R2 has to be read as “R1 follows R2”. How- R1 ◦R2

ever, if we speak of the inverseR−1 of a relation, we do not interpret it as a func- R−1

tion, but simply mean thatbR−1a ⇐⇒ aRb. With a relationR on X, we
meanR ⊆ X ×X. A relationR is said to be embedded in another relationR′ if
aRb⇒ aR′b, or equivalently, if for alla ∈ X it holds thatR(a) ⊆ R′(a).
A partition Π of a setX is a set of non-empty, pairwise disjoint subsetsπ of X PARTITION.

such that
⋃

π∈Π π = X. The elementsπ of a partitionΠ are calledblocks. Parti- BLOCKS.

3This function is also known as thegeneralised decision(see p. 20).
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tions onX stand in one-to-one correspondence withequivalence relationson XEQUIVALENCE

RELATIONS. (relations that are reflexive, symmetric and transitive). The blocks correspond to the
equivalence classes. Usually, we skip back and forth between partitions and equiv-
alence relations without changing the notation, e.g. we take a partitionΠ onX and
then consider it as a mapping:X → 2X .
There exist quite a number of different definitions for asimilarity relation S in theSIMILARITY

RELATION. literature, referring to mathematically different concepts. Still, all these definitions
have at least two things in common: a syntax demanding (at least) reflexivity, and
a semantics demanding thataSb can be meaningfully read as “a is similar to/is like
b”. We take this largest common divisor as the definition of a similarity relation4.

2.3.1 Introduction

Without any effort, some primal learning has already been achieved through the
function d̂∗. The granularity introduced inΩ by its mathematical representationX
lies at the very heart of this matter. Indeed, if fora ∈ Ω it holds thatρ−1(ρ(a)) ∩
S 6= ∅, then d̂∗(a) 6= ∅. In human language this translates to: if we have one
(or more) sample object(s) with the same description as the objecta, we can say
something meaningful about the classification of the objecta. The granule around
an objecta functions as a kind of recipient of information that can be applied toa.
This brings us to the idea of enlarging the granules inΩ by relating more objects to
each other. The most intuitive and natural way to achieve this, would be to relate
resembling objects to one another, objects that share specific characteristics, or have
similar characteristics. Since in the present context5, the objects’ characteristics
are captured by their vector representation inX , we will consider the impact of
incorporating similarity relations onX into the representations.

2.3.2 Restructuring the objects

The objects are initially structured by the descriptive representationρ. The in-
verseρ−1 induces an equivalence relation onΩ, corresponding with the minimal
reflexive relation1 that can be defined onX : we havex1y if and only ifx = y. So,
we can rewrite an elementary granule ofΩ as the result of the mappingρ−1 ◦1 ◦ ρ.
Consider any equivalence relation (partition)Π onΩ. All objects inside one block
are then considered equivalent, and therefore treated the same. Hence, instead of
keeping the focus on the individual objects, we could simply classify the blocksπ ∈
Π, using either a set or distribution interpretation forλ̂(π). Afterwards we can state
that an objecta is classified the same asΠ(a).
A more general way of achieving the same is noticing that1 ⊆ Π, whereΠ now
stands for an equivalence relation onX . Without any difficulties we can now
broaden the elementary granules into new – and possibly more informative – gran-
ules delimited byρ−1 ◦Π◦ρ. These granules will still partition the object spaceΩ.

4In many papers, also symmetry is required in the syntax, but in [114], a discussion can be found
about abandoning the symmetry requirement.

5We do not mingle with relational data bases.
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However, we do not have to limit ourselves to equivalence relations, any reflexive
relationR will do, as long as we can interpret (as for example in the case of a
similarity relation, see below) the resulting granules

ρ−1 ◦R ◦ ρ

We denote the granule arounda ∈ Ω as[a]R = ρ−1(R(ρ(a))). [a]R

For example, if two objects belong to the same granule w.r.t. to some equivalence
relationΠ, then these two objects may be considered equivalent w.r.t. toΠ. How-
ever, we may also consider a similarity relationS, and investigate the granules
ρ−1 ◦ S ◦ ρ. Now the granules may intersect each other and more attention must
be paid to their interpretation. Indeed, the fact thata and b belong to the same
granule does not mean they are similar, since there is not necessarily symmetry and
transitivity. We come back to this in the following section.

2.3.3 Relational representation of the decision function

We may now applyλ andd on the new granules derived from a reflexive rela-
tion R and define therelational representation of a classificationλ as (see also RELATIONAL

REPRESENTATION

OF A

CLASSIFICATION.

λ̂∗R

Figure 2.3):
λ̂∗R = λ ◦ ρ−1 ◦R ◦ ρ , (2.3.1)

and therelational representation of a decision functiond as:
RELATIONAL

REPRESENTATION

OF A DECISION

FUNCTION.

d̂∗R

d̂∗R = d ◦ ρ−1
|S ◦R ◦ ρ . (2.3.2)

(a) ρ (b) R ◦ ρ

(c) ρ−1 ◦R ◦ ρ (d) λ̂∗R = λ ◦ ρ−1 ◦R ◦ ρ

Figure 2.3: Relational representation.
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Within the set representation, the notions of doubt and decision regions are readily
extended towards the context of partitions. There isdoubt between objectsa andb
whenR(ρ(a)) = R(ρ(b)), but f(a) 6= f(b), in which casêλ∗R(a) = λ̂∗R(b) and
|λ̂∗R(a)| > 1. Decision regions are just the sets(λ̂∗R)−1(L) with L ⊆ 2L.

Lemma 2.3.1. A sufficient condition for̂d∗R : Ω → 2L never to attain the value∅
is

(∀x ∈ X )(R(x) ∩ ρ(Ω) 6= ∅ ⇒ R(x) ∩ ρ(S) 6= ∅) .

In many cases, it is assumed thatρ(Ω) = X , which simplifies the previous condi-
tion to (∀x ∈ X )(R(x) ∩ ρ(S) 6= ∅). If R is an equivalence relation (partition)Π,
we obtain the condition:

(∀π ∈ Π)(π ∩ ρ(S) 6= ∅) .

Decision trees typically investigate partitions for which this condition holds.

Interpretation of granules. As can be seen, the information fora now comes
from all objects related to it. Using equivalence relations just means that

(i) reflexivity: each objecta is informative for itself,

(ii) symmetry: if the information ona can be used forb, then the information
on b can also be used fora,

(iii) transitivity: if a is considered informative forb, andb for c, thana is also
considered informative forc.

Obviously, of these three properties, only reflexivity is a conditio sine qua non.
This means that any relation that may seem interesting can be used, as long as the
reflexive closure6 is considered.
Similarity relationsS are a special kind of reflexive relations. Their only non-
discussable mathematical requirement is reflexivity. However, in addition they also
need to follow some semantics (i.e. not every reflexive relation is a similarity rela-
tion): xSy should mean thatx is similar toy. In this way, a granule[a]S is readily
interpreted as the set of objectsa resembles to. Therefore it is meaningful to use
the information of the objects in[a]S as additional information fora. On the other
hand,a is not necessarily informative to the other objects in[a]S : a simple situation
in a small firm may resemble a complex situation in a large firm and therefore the
small firm can benefit from how the situation was handled in the large firm, the
other way around is however less obvious. As a consequence, it is not useful to
consider granules based onS−1 for this interpretation ofS.
To clarify the previous even more, letX consist of one single axis derived from the
attribute “size”. Now defineS as: xSy if |x− y| ≤ 10% ofy, or translated to
the objects:a is related tob if |size(a)− size(b)| ≤ 10% of size(b). Now we can
interpret this relation in two different ways:

6Thereflexive closure of a relationR onX is the minimal reflexive relationR′ onX that containsR.
So,aR′a for all a ∈ X andaR′b (with a 6= b) if and only ifaRb.
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(i) In the first case,S represents the fact that there may exist an error of 10% on
the measurements. SinceS is defined relatively w.r.t. its second argument,
we have that for a givenx, the set of valuesy within a 10% error bound
w.r.t. x is given byS−1(x), the set of ally such that|x− y| ≤ 10% of y.
However, when observingx, we are only interested inS(x): assume we
observex and that the correct value is in facty, since the observationx may
differ up to 10% from the actual valuey, we havexSy. This is a so-called
disjunctiveinterpretation: we observeρ(a) = a for some objecta, but are
only certain that the (unique) correct measurement ofa belongs to one of
the values inS(a). In fact, the role ofS is that of animprecision relation IMPRECISION

RELATION.relation [38], and not of a similarity relation.

(ii) In the second case, the measurements are precise (or at least assumed to be),
but we want to take into account the resemblances between objects. For
example, we are capable of perfectly measuring the size of objects, yet we
have reasons to state that distinguishing an objecta from another objectb is
meaningless if the size ofa is not at least 10% smaller or larger than the size
of b, i.e. if b ∈ S(a) = {x ∈ X | aSx}. This is aconjunctiveinterpretation:
from the viewpoint ofx, no distinction is made between any of the vectors
in S(x). HereS fulfills its role of a similarity relation.

From this example it becomes clear that applying the functions (2.3.1) or (2.3.2)
without considering the interpretation ofR can be very dangerous. Indeed, in the
previous example, ifS is seen as a similarity relation, we implicitly agree on the
fact that all the objects in[a]S add useful information to the classification ofa (why
should we otherwise bother considering similarity relations in this context?). On
the other hand, interpretingS as an imprecision relation does not imply such an
agreement, therefore compromising the use of the proposed relational representa-
tions. Indeed, knowing that one of the measurements inS(a) is the correct one,
only implies that some of the objects in[a]S are useful for the classification ofa.
When deriving expressions for measuring the amount of information a granule con-
tains, this distinction will again play an important role (see Section 2.4).
If all the objects in a granule around an objecta impart their information ona, we
call this granule aninformation granule . Although we do not consider it, it is INFORMATION

GRANULE.interesting to remark that graded/fuzzy relations can lead to a kind of graded/fuzzy
information granules.

Combining relations. So far, we have focussed on two kinds of relations for
enlarging the elementary granules: equivalence relations and similarity relations.
They differ substantially from each other in that the former only needs to satisfy a
specific syntax to result in information granules, while the latter are dependent of an
additional semantics. As a consequence, the equivalence relations can be produced
by computer, but similarity relations must be furnished by human interaction.
Now the question arises how we can deal with problems that combine both kind of
relations? For example to keep the smooth running machinery of decision trees, but
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with the conviction that we should not distinguish between measurements within a
certain neighbourhood7, which can be modelled by imposing a similarity relation
onX .

As soon as you realise that any relation on the data spaceX takes the finest equiva-
lence relation1 into consideration, the solution starts dawning. Each granuleR(x)
(in X ) is “centered” around an equivalence class of1. The granuleR(x) arises as
if by looking at this equivalence class (that contains butx) through a set of glasses
covered with someR-coating: while scrutinising the elements of the equivalence
class, we see some additional vectors in the corner of our eyes, namely the vec-
torsy such thatxRy. The same idea applies for larger equivalence classesπ: a
granule is then centered around a setπ of vectors, and covers theR-vision of π.
Since we can behold just one vector at a time usingR, we let our eye skim overπ
vector by vector:

R(π) =
⋃
x∈π

R(x) = {z ∈ X | (∃x ∈ π)(xRz)} .

Hence, the resulting granules originate from the compositionR ◦Π:

x(R ◦Π)z ⇐⇒ (∃y ∈ X )(xΠy ∧ yRz) .

Sincez affectsy, andy andx are treated the same,z also affectsx.

As before we can applyλ andd on these new granules, or, amounting to the same,
use Equations (2.3.1) and (2.3.2) withR ◦Π as reflexive relation.

2.3.4 Summary

• The elementary granulation ofΩ can be coarsened by a reflexive relationR.

• The resulting granules[a]R = ρ−1(R(ρ(a))) are called information granules
if the information about the objects inside the granule[a]R can be used as
information abouta.

• If R leads to information granules, either the set or the distribution interpre-
tation can be used to represent the classificationλ : Ω → L by the mapping
λ̂∗R onΩ:

λ̂∗R = λ ◦ ρ−1 ◦R ◦ ρ .

7Mark the distinction with measurement noise which can be handled by assigning an object to an
equivalence class with a certain probability [93].
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2.4 Corollary 1: Impurity measures in supervised
learning

2.4.1 Introduction

A next step is to measure the information in the presence of all these different
relations. In the case we only have the descriptive representation or, more gener-
ally, when confronted with an equivalence relation, this problem has several known
solutions based on impurity measures [23]. Animpurity measure (see p. 16)is a IMPURITY

MEASURE.non-negative functionφn from the set of probability distributions over the class
labelsL = {1, . . . , k} to R such that

• φn reaches its maximum in( 1
n , . . . , 1

n );

• φn is zero if there is no uncertainty:

φn(1, 0, . . . , 0) = φn(0, 1, 0, . . . , 0) = φn(0, . . . , 0, 1) = 0 ;

• φn is symmetric: for all permutationsσ of {1, . . . , n}, we have

φn(p1, . . . , pn) = φn(pσ(1), . . . , pσ(n)) .

In order to obtain a higher discrimination power with dropping uncertainty, also the
condition of strict concavity must be added:

φ′′n(p1, . . . , pn) < 0 .

The most frequently used impurity measures, the Shannon entropy [101] and the
Gini diversity index, oblige this last condition. This section deals in depth with
these two measures, which will enable us to extend their scope quite easily in the
next section.

2.4.2 Some specific impurity measures

The Hartley information. The Shannon entropy finds its origin in the Hartley
information [55]. Hartley indicated that when one element is chosen from a finite
setS of equally likely choices then the number of possible choices or any mono-
tonic function of this number can be regarded as a measure of information. He ad-
ditionally pointed out that the logarithmic function is the most “natural” measure,
and so he definedI(S) := log2(|S|). The conditional Hartley informationI(U |S),
whereU ⊆ S, boils down to the comparison of the a priori informationI(S) with
the a posteriori informationI(U). Hence,

I(U |S) := I(S)− I(U) = log2

(
|S|
|U |

)
= − log2

(
|U |
|S|

)
.
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The Shannon entropy. In a probabilistic setting, where the probability of choos-
ing s ∈ S is defined asP(s) = 1/|S|, the Hartley information represents the
information we have if the state of a random variableX (taking values inS) is
known, or the uncertainty if it is unknown. More general, letX be a random
variable with a finite domaindom(X), and letP(X = x) denote the probabil-
ity that X takes on the valuex. If the P(X = x) are rational numbers8, we can
think of the following experiment: a blind pick of an element of a setS containing
for eachx ∈ dom(X) a proportionP(X = x) of elements with labelx. After
the execution of this experiment, we hold an element with labelx, so we posses
the informationI(Ux|S), whereUx ⊆ S corresponds to the subset of elements
with labelx. In this experiment, the probability of grabbing an element ofUx is
P(X = x) = |U |/|S|, and the information we wield whenX = x is defined
asH(X = x) = I(Ux|S) = − log2 P(X = x). (also known as the Wiener en-
tropy [123]). The uniqueness of this function can be demonstrated under the condi-
tion that it is non-negativity, additive and normalised (see [1]). The probability of
obtaining this information in such an experiment (i.e. the probability of stumbling
upon an element ofUx) is P(X = x). Each time we repeat this experiment, it re-
sults in some informationH(X = x). The information of the random variableX
is then defined as the average information resulting from a draw, in other words,
the weighted arithmetical mean

H(X) =
∑

x∈dom(X)

P(X =x) ·H(X =x) = −
∑

x∈dom(X)

P(x) · log2 P(x) ,

whereP (x) = P (X = x) and 0 log2 0 := 0. This expression is nothing else
but theShannon entropy (plenty of characterisations can be found in [1]). TheSHANNON

ENTROPY. conditional Shannon entropyof a variableY if the variableX is known, is also
CONDITIONAL

SHANNON

ENTROPY.

founded on the same principle:

H(Y |X) =
∑

x∈dom(X)

P(X =x) ·H(Y |X =x)

=
∑

x∈dom(X)

P(x) ·

−∑
y∈dom(Y )

P(y|x) log2 P(y|x)

 ,

whereP(y|x) = P(Y = y|X = x) represents the conditional probability condi-
tionelle thatY = y if we known that the variableX takes the valuex. In fact, it
is possible to defineH(Y |X) starting from the natural conditionHmn(X, Y ) =
Hm(X) + Hn(Y |X), where|dom| (X) = m and |dom| (Y ) = n ([1]): the in-
formation expected from two experiments corresponds to the information expected
from the first experiment plus the conditional information of the second experiment
w.r.t. the first one.

8When the probabilities are real numbers, one has to consider the non-atomic Kolmogorov algebras
(see [94]).
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The Shannon entropy in supervised learning. The information that carries away
our interest is the one linked with the classificationλ. In the lottery experiment, the
elements (objects) are then labelled byλ. More particular, we are inquisitive about
the the information contained in the random variableY with dom(Y ) = L, and this
in the presence of the information contained in the equivalence relation9 Π. The lat-
ter corresponds to the information from the random variableX with dom(X) = Π
(picking an object fromΩ labelled byΠ ◦ ρ). In other words, there are two ex-
periments in the run: first of all the drawing of an object fromΩ to determine the
equivalence classπ ∈ Π, and next the (conditional) drawing of an object fromπ to
determine the label inL. Together, this amounts to

H(Y |X) =
∑
π∈Π

P(π) ·

(
−
∑
i∈L
P(i|π) log2 P (i|π)

)
. (2.4.1)

Remark thatP(i|π) = λ̂(π, i), if we follow (2.2.3).
In supervised learning, we only dispose of estimatesp (obtained fromΛ) of the
probabilitiesP needed in this formula. Plugging these estimates into this formula
leads to the information contained in the learning sampleΛ, denoted byH(Λ|Π).

The Gini diversity index. The origins of the diversity index can be traced back
to statistics, and more specifically to the analysis of variances. For each blockπ
of Π, it is defined as

G(Λ|π) =
∑

(i,j)∈L2

i 6=j

p(i|π) p(j|π) = 1−
∑
i∈L

p2(i|π) .

This expression can be interpreted as a variance of dichotomous classifications, or
still, as the probability of assigning a wrong class label to an object ofπ when this
is done by assigning it the label of an object drawn from the setρ−1(π). As was
the case for the Shannon entropy, the information w.r.t. the partitionΠ is again a
probabilistic average:

G(Λ|Π) =
∑
π∈Π

p(π) ·G(Λ|π) . (2.4.2)

This expression can also be interpreted as the (estimated) probability of attaching
an incorrect class label to an object ofΩ in the presence of the relationΠ.

2.4.3 Information in the presence of a similarity relation

Introduction. To construct an information measure that incorporates a similarity
relation, we only need to gain an understanding of how this relation interacts with
the probabilities encountered in the expressions (2.4.1) and (2.4.2).
Concerning imprecision relation, this problem has been discussed in [59]. Next,
we tackle the problem of including a similarity relation.

9If Π is the identity relation, thenΠ ∼= X using the isomorphism{x} ↔ x.
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The Shannon entropy. First, we rewrite the expression (2.4.1) in its most ele-
mentary form, i.e. for the special caseΠ = 1:

H(Λ|1) :=
∑
x∈X

p(x) ·H(Λ|x) . (2.4.3)

Now imagine again the blind picking of an object fromΩ. This object determines
a blockρ(a) = a in X , and the (estimated) information about the classification
linked to this blocka is justH(Λ|a). The previous formula conveys the average
information we receive from such an experiment about the classification (w.r.t. the
identity relation).
Now, the only thing we want to do, is to express the average information obtained
from such an experiment in the presence ofΠ and a similarity relationS. This
situation differs from the previous one only in the information connected to the
granules inX . In the presence ofS, we agree on the principle that all objects of
[a]S deliver useful information about the classification of objects represented byx.
Indeed, this constitutes the foundation of our reasoning during the construction of
the relational representation̂d∗S of λ. Hence, the information linked to the granulex
becomesH(Λ|S(x)). We emphasise on the fact that we did not change anything
in our experimental settings, and therefore also the associated probabilities remain
unchanged. The expression (2.4.3) is transformed into

H(Λ|S) = H(Λ|S ◦ 1) :=
∑
x∈X

p(x) ·H(Λ|S(x)) .

It is now easy to conceive of the modifications needed to deal with the combined
presence ofS ◦Π:

H(Λ|S ◦Π) :=
∑
π∈Π

p(π) ·H(Λ|S(π))

=
∑
π∈Π

p(π) ·

(
−
∑
i∈L

p(i|S(π)) log2 p(i|S(π))

)
.

The Gini diversity index. We can treat the Gini diversity index in the same way,
which results in

G(Λ|S ◦Π) =
∑

π∈XΠ

p(π) ·G(Λ|S(π)) .

Moreover, this expression keeps its probabilistic interpretation of assigning an in-
correct class label to an object ofΩ when considering bothΠ andS. Indeed, the
original labelling rule consisted of a drawing from the setρ−1(π) to obtain the la-
bel. In the present context, the information comes from all objects ofρ−1(S(π)),
and not just from the objects ofρ−1(π).
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2.5 Corollary 2: A partial reformulation of rough set
methodology

2.5.1 Introduction

In this section, we approach the rough set methodology from a slightly different
perspective than usual, shifting the center of gravity away from the notions of lower
and upper approximation towards decision regions and doubt.
Rough set theory starts with narrowing its focus to the sample spaceS and the
decision functiond. No reference is made toΩ andλ. This is due to the origin of
the theory in Information Systems [84] where the main goal was to represent and
store data efficiently for easy retrieval. The idea of using rough sets in learning was
only initiated in a second stage. Therefore, we may as well proceed our discussion
with the assumption thatS = Ω (finite!), and consequently thatd = λ.

2.5.2 Lower and upper approximations

Notions and conventions. For any subsetA ⊆ X, the characteristic function CHARACTERISTIC

FUNCTION χA .χA : X → {0, 1} is defined by

χA(a) =
{

1 , if a ∈ A ,

0 , if a 6∈ A .

Let R be any relation onΩ, andA ⊆ Ω. In “standard” rough set terminology, the
lower approximation(see p. 19)of A is defined as

AR =
⋃
{a ∈ S | R(a) ⊆ A} ,

and theupper approximation(see p. 19)of A as

A
R

=
⋃
{a ∈ S | R(a) ∩A 6= ∅} .

Granules and relations. In the previous sections, we always considered rela-
tionsR onX and granules[a]R = ρ−1 ◦R◦ρ(a). However, the rough set literature
will always refer directly to relationsR on Ω. A granule[a]R is then defined im-
mediately asR(a). To stay closer to the rough set literature, we will also formulate
the propositions initially using relations defined directly onΩ.

“Standard” approximations. This section focusses on the lower and upper ap-
proximations of classesC` ⊆ Ω derived from a classificationλ : Ω → L, i.e.
C` = λ−1(`) = {a ∈ Ω | λ(a) = `} with ` ∈ L. However, all results can be
rewritten for arbitrary subsetsA ⊆ Ω instead of classesC`. Just replaceλ by the
characteristic functionχA, and the corresponding classesC1 andC0 by A and the
complement ofA respectively.
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The following proposition shows that the standard rough set methodology is based
on the set interpretation (2.2.1) of the extension of a functiong : X → Y to
g : 2X → Y .

Proposition 2.5.1. Let λ : Ω → L be a classification and letR be a reflexive

relation onΩ. The lower approximationC`R
and upper approximationC`

R
of C`

w.r.t. R are characterised by

a ∈ C`R
⇐⇒ λR(a) = {`} and a ∈ C`

R ⇐⇒ ` ∈ λR(a) ,

whereλR := λ ◦R.

Proof.
Define the setA = {a ∈ Ω | λR(a) = {`}}. We have

a ∈ A ⇐⇒ λ(R(a)) = {`}
⇐⇒ (∀b ∈ Ω)(b ∈ R(a)⇒ λ(b) = `)
⇐⇒ R(a) ⊆ f−1(`) = C` ,

and thus,A = {a ∈ Ω | R(a) ⊆ C`}. The information granule arounda is
justR(a), whenceR(a) = [a]R. This means thatA = C`R

.
Now define the setB = {a ∈ Ω | ` ∈ λR(a)}. We have

a ∈ B ⇐⇒ (∃b ∈ Ω)(b ∈ R(a) ∧ λ(b) = `}
⇐⇒ R(a) ∩ C` 6= ∅ ,

and thus,B = C`
R

. 2

Remark that, for a relationR onΩ

a ∈ C`
R ⇐⇒ (∃b ∈ Ω)(b ∈ R(a) ∧ f(b) = `}
⇐⇒ (∃b ∈ Ω)(a ∈ R−1(b) ∧ b ∈ C`} ,

which impliesC`
R

=
⋃

b∈C`
R−1(b). This is exactly the formula proposed in [107,

108].

Next, we assumeR ⊆ X×X , now the granules[a]R are of the formρ−1(R(ρ(a))).

Corollary 2.5.2. Letλ : Ω→ L be a classification and letR be a reflexive relation

onX . The lower approximationC`R
and upper approximationC`

R
of C` w.r.t. R

are characterised by

a ∈ C`R
⇐⇒ λ̂∗R(a) = {`} and a ∈ C`

R ⇐⇒ ` ∈ λ̂∗R(a) .

Proof.
The compositionρ−1 ◦R ◦ ρ defines a reflexive relation onΩ with granules of the
form ρ−1(R(ρ(a))), whence we can apply the previous proposition. The fact that
λρ−1◦R◦ρ(a) = λ̂∗R(a) proves the corollary. 2

In this case, we will findC`
R

=
⋃

b∈C`
ρ−1(R−1(ρ(b))).
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Variable precision rough sets model. Another popular model is a probabilis-
tic extension of rough sets, called thevariable precision model[126] (see also Ap-

pendix 1.B.2, p. 20). It is worthwhile to notice that the variable precision model was
only defined for equivalence relations. The following proposition shows that the
variable precision model is based on the distributional interpretation (2.2.3) of the
extension of a functiong : X → Y to g : 2X → Y .

Proposition 2.5.3. Let λ : Ω → L be a classification and letR be a reflexive

relation onΩ. Let AR andA
R

denote the lower and upper approximations w.r.t.
R in the variable precision rough sets model of a subsetA ⊆ Ω, with 0 ≤ β < 0.5.
We have for each̀∈ L that

a ∈ C`R
⇐⇒ λR(a, `) ≥ 1− β and a ∈ C`

R ⇐⇒ λR(a, `) > β .

Proof.
For alla ∈ Ω, and all` ∈ L, it holds that

λR(a, `) ≥ 1− β ⇐⇒ λ(R(a), `) ≥ 1− β

⇐⇒ P(` | R(a)) =
|{a ∈ A | λ(a) = `}|

|R(a)|
≥ 1− β

⇐⇒ |R(a) ∩ C`|
|R(a)|

≥ 1− β ,

precisely the condition demanded of an objecta to belong to the lower approxima-
tion of C` in the variable precision model. 2

Of course, we can state a similar proposition in caseR is a relation onX .

Decision regions. From the previous propositions, it can be seen that the basic
notions of lower and upper approximation from the rough set methodology can be
recreated in the framework presented in Sections 2.2 and 2.3. However, these ap-
proximations constitute but two different states of a single concept, namely whether
the representation̂λ∗R corresponds to a singleton or not. In fact, decision regions
play a much more important role than lower and upper approximations since they
are (within the set interpretation (2.2.1)) forλ̂∗R what the classes are forλ. More-
over, as Proposition 2.5.1 indicates, the lower and upper approximations can be
expressed in terms of decision regions:

C`R
= C` and C`

R
=
⋃
L3`

CL .

Remark that decision regions are more elementary since it is possible to define
lower and upper approximation as a union of decision regions, while in the other
direction, intersections are needed10.

10This may seem a futile difference, but it is not: in fact, in the article [84] just preceding the article
in which the name rough sets was introduced, Pawlak made a point of eliminating the need to perform
intersections because of computational expensiveness of this operation.
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Also remember that the decision algorithm in rough set data analysis is primar-
ily based on the decision regions, rather than the lower and upper approximations
(see Section 1.B.3), even though this is never really stressed in papers/books about
rough sets.

Doubt. We can put things in a still slightly different perspective: the (standard)
lower approximations can be typified by the non-occurrence of doubt w.r.t. to the
labelling, while the upper approximations do allow doubt: i.e.C` is the set of ob-
jects that are classified as` without any doubt, andC` is the set of objects for
which there is doubt concerning the exact classification, but we know` is a pos-
sibility. This shows that the notion of doubt plays an intrinsic role in rough set
methodology.

2.5.3 Model selection

Reducts. The usual approach in defining reducts is to safe-guard the quality of
approximation(see Section 1.B.4, p. 21). Such reducts only take into account the lower

approximation via the quality of approximation measure
∑

`∈L
|C`R
|

|Ω| . However,
this measure fails to grasp some data patterns. Consider for example the infor-
mation depicted in Table 2.1 and Figure 2.4. While the data is nicely grouped,

a1 a2 a3 a4 a5 a6 a7 a8

q 1 1 2 2 3 3 4 4
λ 2 3 2 3 1 4 1 4

Table 2.1: Obvious data pattern, but empty lower approximations.

Figure 2.4: Obvious data pattern, but empty lower approximations.

the quality of approximation is zero. The same scheme is imaginable with more at-
tributes, i.e. quality of approximation equal to zero, which would lead to the same0
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for all subsets of these attributes. Any measure based solely on lower approxima-
tions will exhibit the same problems.
An obvious alternative would be to demand that a reduct keeps the same lower
and upper approximations of the classesC`. It is easy to see that two relationsR1

andR2 lead to the same approximations if and only if they lead to the same decision
regions, i.e. λ̂∗R1

= λ̂∗R2
(using the set interpretation (2.2.1)). These decision

regions form a partition ofΩ, and it is this partition which should remain the same.

A measure for doubt. We can also shift our point of view a bit, and rather stress
on the notion of doubt instead of the approximations and decision regions. We
can for example measure the amount of doubt present w.r.t. a reflexive relationR.
Therefore we define adoubt relation DA on an information granuleA ⊆ Ω be- DOUBT RELATION.

tween all the objects inA introducing doubt as

DA = {(a, b) ∈ A2 | λ(a) 6= λ(b)} ,

and define the measure
γD(A) = |DA| .

First assume we have a partitionΠ onΩ. We already saw that in this context, doubt
may arise within the blocksπ, so we can count the (number of couples leading to)
doubt in each block:

γD(π) = |Dπ| =
∑
i 6=j

Ni(π)Nj(π) ,

whereNi(π) = |{a ∈ π | λ(a) = i}|. For easier comparison, we should rather
create a relative measure, resulting in a figure between 0 and 1. This can, for ex-
ample, be obtained by dividing the number of couples leading to doubt by the total
number of possible couples that can be formed. IfN(π) = |π|, we haveN(π)2

possible couples in the blockπ and find

γD(π)
N(π)2

=
∑
i 6=j

Ni(π)Nj(π)
N(π)N(π)

=
∑
i 6=j

p(i|π)p(j|π)

= G(Λ|π) ,

which is exactly the Gini diversity index, one of the most popular measures used in
growing decision trees!

2.6 Future research

It would be interesting to extend the whole framework towards graded and fuzzy
relations.
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APPENDIX

2.A Classifiers and partitions

The following proposition is a very simple one, but it sometimes helps to put things
into another perspective. Moreover, it was also the offset for starting to think about
what has become Chapter 2.

Proposition 2.A.1. Consider any classification algorithm that contains no random
component. The decision algorithm of the resulting classifier is always partition
based.

Proof.
That the classification algorithm contains no random component just means that its
behaviour is totally predictable given the input data. First assume that the algorithm
is static, meaning that once the input data has been processed, no further modifica-
tions are made to the classifier. As a consequence, the output for any object fromΩ
is totally determined based upon the initial training parameters (including the train-
ing set, and other parameters that have to be fixed in advance). This means that the
classifier partitionsΩ into different decision regions (output regions), whether this
is done explicitly or implicitly.
A non-static algorithm can always be regarded as static at each fixed moment in
time t, i.e. we know exactly how it will behave at timet because we know its
history until t. Therefore, the decision algorithm at any point in time is partition
based, even though the partition may shift in time. 2

The previous proposition just says that classification algorithms only work with
representations (whether these are flat-line, hierarchical, relational, ...) of objects,
not on the objects themselves.

Corollary 2.A.2. Consider any classifierλcl : Ω→ λcl(Ω). At any momentt, there
exists a partitionΠ of Ω such that for alla ∈ Ω it holds that(∀b ∈ Π(a))(λcl(b) =
λcl(a)).

Some examples.
NEAREST NEIGHBOURS. Consider the Nearest Neighbour algorithm using Eu-

clidean distanced and assumeX is 2-dimensional. As soon as the classifier is
built, all reference points that can act as a nearest neighbour are fixed inX . Now
create a Delaunay triangulation[99] of these points inX and for each triangleT ,
denote byMT the center of the circumscribed circle. Now leta, b, c be the ver-
tices ofT and letMab,Mbc,Mac be the midpoints of the sidesab, bc, ac. We can
now divide eachT into three zonesZa, Zb, Zc such that(∀x ∈ Za)(d(x, a) ≤
min{d(x, b), d(x, c)}), see Figure 2.5. These zones obviously form the partition
of the decision algorithm. Similar reasonings are valid for higher dimensions and
other distances.
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Figure 2.5: Nearest Neighbour partitioning.

RULE BASE. Consider a rule based system. When an object is to be classified, a
number of different rules may fire. The outcome of the classification will then de-
pend upon the conflict resolution scheme that is imbedded in the rule based system.
But, any time the same vector is prompted to the system, the same rules will fire,
and the same conflict resolution system will apply, resulting every time in the same
classification (as long as the algorithm is free of random functions).

2.B Decision trees in the classification framework

Introduction. Decision trees are probably about the most characteristic examples
of partition-based supervised learning. With their recursive partitioning scheme,
they satisfy11 Lemma 2.3.1(see p. 36).
Algorithms for the induction of decision trees contain the following more or less
interacting ingredients: 1) a splitting rule, 2) a stopping or a pruning rule, and 3) a
labelling rule. In this section we will talk about the first and third component.

The splitting rule. There exist a multitude of different splitting rules, but the
most popular ones are based on the Shannon entropy and the Gini diversity index.

Extension of the splitting rule towards similarity relations. In Section 2.4.3,
we have shown how the Shannon entropy and Gini diversity index can be adapted to
deal with similarity relations. It is straightforward to incorporate these changes into
splitting rules for tree growing, allowing to soften the usually strict splits. We do
not investigate this idea further in this specific context, but we applied this principle
in [27] in the context of ranking.
For completeness, we mention the work done in [59]. Work on fuzzy trees (with
soft splits) can be found in [3, 21, 100, 111, 119]. Finally, when we talk about in-
cluding relational information in decision trees, we cannot omit references towards
trees in the context of relational databases, e.g. [63, 64, 67, 69].

11ID3 is an exception, since it allows “empty” blocks to occur. However, if some blockt is empty,
the first blockt′ higher in the recursive scheme that containst is necessarily non-empty, and ID3 states
thatt inherits the characteristics oft′.
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The labelling rule and decision regions. There exist mainly two types of deci-
sion trees: the ones that assign one specific label to each leaf, and the so-called
class probability trees that assign a probability distribution to each leaf. A common
practice (but not always) to generate the first kind of tree is to start with a class
probability tree and just keep the class with highest probability of occurrence in
each leaf.
A class probability tree uses the distribution interpretation (2.2.3) ofλ̂∗Π, whereΠ is
of course the partition induced by the tree. This observation implies that we could
instead opt for the set interpretation, as is done in the rough set methodology. The
tree would then define some decision regions, which in turn can be used to define
lower and upper approximations (whether or not this is useful).
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Lay-out of this chapter. Here we present a detailed overview and description
of the existing techniques that can be found in the literature. However, because of
the complexity of the ranking problem, the descriptions of the different methods are
very condense, making this chapter maybe a bit more harder to digest in comparison
to the others.

This chapter is divided into two main parts. In the first four sections, we discuss
specific methods for the problem of learning a complete ranking, where mono-
tonicity plays a crucial role. The last section deals with the problem of ordinal
classification (ordinal regression), which has a somewhat longer history.

Notions and conventions. A partition (see p. 33)Π of X is a set of non-empty,
pairwise disjoint subsetsπ of X such that

⋃
π∈Π π = X . The elementsπ of a

partition Π are calledblocks. The unique block containingx ∈ X is denoted
by Π(x).

ORDERS AND MONOTONICITY. An order (relation) [33] ≤ on a setX is aORDER (RELATION)
≤. binary relation that isreflexive(a ≤ a), antisymmetric(if a ≤ b andb ≤ a, then

a = b) and transitive (if a ≤ b andb ≤ c, thena ≤ c). As usual, the order≤
decomposes into astrict order< and an equality relation=. The couple(X,≤) is
called aposet(partially ordered set). An order is calledcompleteif for all x1, x2 ∈POSET.

COMPLETE. X eitherx1 ≤ x2 or x2 ≤ x1.

A functionf : (X,≤X)→ (Y,≤Y ) between two posets is calledmonotoneif forMONOTONE

FUNCTION. all x1, x2 ∈ X it holds that

x1 ≤X x2 ⇒ f(x1) ≤Y f(x2) .

Two elementsx1, x2 ∈ X are said to be monotone w.r.t.f if they comply with
this rule. By extension, two (input-output) couples〈x1, y1〉, 〈x2, y2〉 ∈ X × Y are
monotonew.r.t. each other if the functionf : {x1, x2} → {y1, y2} with f(xi) :=MONOTONE

(INPUT-OUTPUT)
COUPLES.

yi is monotone.

DATA . The object spaceΩ is a collection of objects that are described by a finite
set ofattributesQ = {qi : Ω → Xqi

| i ∈ N = {1, . . . , n}}. Therefore, an object
can be represented by a vectorρ(a) = a = (q1(a), . . . , qn(a)) ∈ X =

∏n
i=1 Xqi .ρ,Xq ,X

A learning sampleis a coupleΛ = (S, d) where thesample setS is a subset of theLEARNING SAMPLE

Λ.
SAMPLE SETS .

object spaceΩ, andd : S → L a function that assigns a class label to the elements
of S. A couple〈a, d(a)〉 with a ∈ S is called anexample. In practice, the learning

EXAMPLE.
sampleΛ is represented by a set of (input-output) couplesΛX = {〈a, d(a)〉 | a ∈
S}. We will also use the notationSX = ρ(S) = {a | a ∈ S} ⊆ X . The learningΛX , SX
sampleΛX is calledmonotone if all its elements are monotone w.r.t. each other.MONOTONE

LEARNING SAMPLE. Remark that this also implies that if two objectsa, b ∈ S have the same vector
representationa = b, then it should hold thatd(a) = d(b).
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THE COMPLETE RANKING PROBLEM. In an ordinal classification problem, the
aim is to construct a classifierλ : X → L based on a learning sample(S, d),
whered is a mapping onto a completely ordered finite set(L,≤L), i.e. d : S →
(L,≤L). A detailed discussion about the complete ranking problem can be found
in Section 4.2.2(see p. 89)and Section 4.5(see p. 97). For the present chapter, it is
sufficient to know that the complete ranking problem is in fact a monotone ordinal
classification problem, i.e. the classifierλ should be monotone. Also, in a complete
ranking problem, we do no longer speak of attributes, but rather ofcriteria (see p. 98), CRITERION.

these are functionsci : Ω → (Xci
,≤ci

). They induce aproduct order ≤X onX : PRODUCT ORDER

≤X .x ≤X y if and only if xi ≤ci
yi for all i ∈ N .

STATISTICS. The rank correlation coefficientKendall’s τ1 is defined by KENDALL’ S τ .

τ =
P −Q

P + Q
∈ [−1, 1] ,

whereP is the number of concordant pairs2 (a, b) ∈ Stest×Stest, andQ is the number
of discordant pairs (rank reversal). This statistic can be interpreted as follows:“If RANK REVERSAL.

a pair of objects is sampled at random, the probability that the classifier will rank
these objects in the same order isτ higher than the probability that it will rank
them in the reverse order.”

3.1 Instance-based methods

3.1.1 The approach of Ben-David, OLM

The Ordinal Learning Model was introduced already in 1989 [11], and slightly
adapted in 1992 [9].

The general idea. The algorithm consists of a kind of simple conflict resolution
scheme w.r.t. non-monotonicity to create a “rule base”B consisting of monotone
examples〈x, v〉, with v ∈ [1, k] ⊂ R if L = {1, . . . , k}. Afterwards, OLM assigns
a new objecta to the highest output value of the vectors smaller thanρ(a) = a, i.e.
λ̂OLM(a) = max{v ∈ R | 〈x, v〉 ∈ B ∧ x ≤X a}.
The construction of the monotone rule baseB is essentially based on the following
scheme (see [10]): a first example is chosen at random, declared monotone and
stored in the rule baseB. Afterwards, another example is picked out at random.
If this example is monotone w.r.t. the examples already inB, it is also declared
monotone and stored inB, otherwise the example is discarded. This procedure

1Note that Spearman’s rank correlation (treating the ranks as scores and calculating the correlation
between the two sets of ranks) is a more widely used measure of rank correlation because of its easier
computation. The main advantages of using Kendall’s tau are that the distribution of this statistic has
slightly better statistical properties and there is a direct interpretation of Kendall’s tau in terms of prob-
abilities of observing concordant and discordant pairs. Mostly, these two statistics are very close, and
lead to the same conclusions.

2A pair (a, b) is called concordant if the order betweend(a) and d(b) is maintained between
predicted(a) and predicted(b).
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is maintained for all examples in the learning setΛ, resulting in a monotone rule
baseB.

Building the rule base.
REDUNDANT RULES can occur because of the labelling strategy: if〈x, v〉 be-

longs to the data base, then any〈y, v〉 with x ≤X y does not affect the labelling of
new instancesz, as can be seen in Figure 3.1(a).

-
c1

6c2

q
〈x, 2〉

q〈y, 2〉

qz

(a) Building the rule base:
redundancy.

-
c1

6c2

q
〈y, 3〉

q〈x, 2〉

(b) Building the rule base:
non-monotonicity.

Figure 3.1: Redundancy and monotonicity in OLM.

In the somewhat more involved algorithm described in [9], the construction of the
rule baseB is divided into two phases.

IN THE FIRST PHASE, all doubt is removed from the data by averaging over the
classes to which they are assigned, i.e. the new learning setB′ is given by the set3

of 〈a, v〉 with a ∈ S and wherev is the average of thed(b) with b = a. Remark
that taking the mean is not an ordinal operation since it interprets the ordinal scale
as an interval scale.

THE SECOND PHASEis initiated with ordering the examples inB′ in decreasing
output order. Then, the rule baseB is constructed by going over the couples of the
setB′ and by deciding how they influence the rule baseB. The first example is
added toB. The next example〈x, v〉 is then taken fromB′.

(a) If the example is redundant with an example inB, it is simply rejected.

(b) Else, if the example makes an example〈y, w〉 in B redundant, then it is
checked whether replacing〈y, w〉 by 〈x, v〉 causes conflict inB (B is said to
beconflict-freeif it is monotone and there are no redundant rules). If there
are no problems, the replacement is done, otherwise the example〈x, v〉 is
rejected.

3in the notations of Chapter 2,B = {〈x, E[d̂(x)]〉 | x ∈ SX }, using the distribution interpreta-
tion (2.2.3)
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(c) Else, if the example〈x, v〉 is non-monotone w.r.t. a rule〈y, w〉 in B, and
v < w (as shown in Figure 3.1(b)), then the same procedure as in (b) is
carried out. This step favours lower labels.

(d) Otherwise, add〈x, v〉 to the rule base.

Assignment of labels. As mentioned higher, the labelling of an unseen object
a ∈ Ω is done byλ̂OLM(a) = max{v | 〈x, v〉 ∈ B ∧ x ≤X a}. However, if there
are no rules〈x, v〉 in B with x ≤X a, then a non-ordinal process is initiated4:
the nearest rule (in Euclidean distance whereXc = {1, . . . , kc} for all criteriac) is
fired, or, if this results in more than one rule, the average is taken of the outputs of all
these rules. The aim is to prevent very small rule bases from being too conservative.

Open ends.
RANDOMNESS. Of course, this procedure cannot guarantee to produce the same

results when repeated on the same data set since it heavily relies upon the order
of processing the examples, which happens partially at random: the examples are
ordered in decreasing output order, but it is nowhere mentioned how the examples
with the same output should be ordered. Consider for example the following subset
of examples,x = (2, 4),y = (4, 5), z = (1, 2), all assigned to the same class
labelled2. See Figure 3.2.

• Processing order:〈x, 2〉, 〈y, 2〉, 〈z, 2〉, then〈x, 2〉, 〈y, 2〉 ∈ B.
Indeed,〈z, 2〉 makes〈x, 2〉 redundant, so it is checked whether replacing
〈x, 2〉 by 〈z, 2〉 results in a conflict-free data base. This is not the case be-
cause〈y, 2〉 is also redundant w.r.t.〈z, 2〉. Therefore,〈z, 2〉 is rejected.

• Processing order:〈x, 2〉, 〈z, 2〉, 〈y, 2〉, then〈z, 2〉 ∈ B.

6c2

-
c1

0

1

2
3

4

0 1 2 3 4

r〈x, 2〉 r
〈y, 2〉r

〈z, 2〉

Figure 3.2: Processing order.

NON-MONOTONE RESULTSare possible following the nearest rule classification
scheme. Consider the following rule baseB = {〈z1, 2〉, 〈z2, 1〉}, with z1 = (1, 5)
andz2 = (4, 1). In Figure 3.3, it is clearly shown thatx = (1, 3) will be classified
as2, while y = (4, 3) will be labelled as1.

4The author mentioned that“this averaging default rule-of-thumb was rarely used [in this experi-
ment].”
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6c2

-
c1

1

2

3

4

1 2 3 4

2

x y

1

(a) The rule base, andx
andy.

6c2

-
c1

1

2

3

4

1 2 3 4

1.5 1 1 1

2 1.5 1 1

2 2 1.5 1

1

2 2 2 1.5

(b) Labelling by OLM.

Figure 3.3: Non-monotone labelling of OLM.

So, while the goal to prevent very small rule bases from being too conservative may
be achieved, it seems that the price to pay is the introduction of non-monotonicity
in the classifier.
If monotonicity is sacred, then the more conservative approach should be taken: if
the rule baseB does not contain an example〈minX , v〉, then add〈minX ,minL〉
to B. In that case, the nearest neighbour rule is no longer fired, and the results are
guaranteed to be monotone.

Conclusion. Of course, any method can be criticised, and it has to be said that the
very simple OLM does deliver very good results in experiments (see Section 5.4
(see p. 130)).

3.2 Decision tree methods

For a short treatise on classification trees, see Appendix 1.A,p. 14.
We start with a global overview of the different methods for learning a ranking by
means of decision trees that can be found in the literature. Afterwards, we discuss
these methods a bit more in depth.

Notions and conventions.
MONOTONE TREES. LetX1 andX2 be two disjoint subsets of a partially ordered

set(X,≤X), andy1, y2 ∈ (Y,≤Y ), then it is said that〈X1, y1〉 and〈X2, y2〉 are
monotone w.r.t. each other if the input-output couples〈x1, y1〉 and 〈x2, y2〉 are
monotone w.r.t. each other for allx1 ∈ X1 and allx2 ∈ X2.
A tree T induces an equivalence relation (a partition) on the data spaceX , and
the leavest of a tree correspond to the equivalence classes (blocks) denoted bytX .tX

Therefore, the previous definition of monotone disjoint subsets can be applied to the
leaves of a tree. Remark that this definition requires a labelling rule that specifiesMONOTONE

LEAVES. for each tree how the leaves are to be labelled. A tree is calledmonotoneif all its
MONOTONE TREE. leaves are monotone w.r.t. each other.

A function f : (X,≤X) → (Y,≤Y ) is calledquasi-monotone[74] w.r.t. a subsetQUASI-MONOTONE

FUNCTION.
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S ⊆ X if for all x, x′ ∈ X it holds that

(x ≤X x′) ∧ ([x, x′] ∩ S 6= ∅)⇒ f(x) ≤Y f(x′) .

In other words, all elementsx ∈ X must be monotone w.r.t. all elementss ∈ S.
As a consequence, we obviously have thatf|S must be monotone, and ifs ∈ S is
in between two elementsx ≤X y are separated by an (i.e.x ≤X s ≤X y) thenx
andy are also monotone w.r.t. each other (because of the transitivity of≤X and
≤Y ). See also Figure 3.4.

6c2

-
c1

q
〈s1, 1〉

q
〈s2, 2〉 q

〈s3, 2〉

qx1

qx2

qx3

qx4

qx5

f(x1) = 1 ≤ f(s1)
f(x2) = 2 ∈ [f(s1), f(s3)]
f(x3) = 1 ∈ [f(s1), f(s3)]
f(x4) = 3 ≥ f(s1)
f(x5) = 2 ≥ f(s2)

Figure 3.4: Quasi-monotonicity off w.r.t. S = {s1, s2, s3}. Conditions on the
sequencex1 ≤X x2 ≤X x3 ≤X x4 ≤X x5.

3.2.1 Global overview

Methods. The method MID, Monotone Induction of Decision trees [10] was in
1995 the first tree algorithm specifically designed for ranking problems. In 1996,
the methods for the binary ranking problem P-DT and QP-DT, Positive Decision
Trees and Quasi Positive Decision Trees, saw the light on a symposium, and they
were slightly revised in 1999 [74]. Immediately after, in a technical report of 1997,
the algorithm MDT, Monotone Decision Trees, was devised as a generalisation of
P-DT for thek-class ranking problem [89, 90]. And soon after, also the algorithm
QMDT, Quasi Monotone Decision Trees [90, 91], was born as a generalisation of
QP-DT.

Characteristics. Classification trees are based on local splitting procedures: the
split of each leaf is only based on the data that fall into the leaf. Monotonicity, on
the other hand, is a typical global demand. So, to be able to deal with rankings,
this global requirement must somehow be incorporated into the local splitting pro-
cedure of decision trees. Each of the above mentioned methods has its own way
of achieving this: either by altering theimpurity measure (see p. 16)(as used for
classification trees) directly, and/or by affecting it indirectly by adding new data to
the training sample during the growing phase.
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In Table 3.1, the general characteristics of these methods are put together. In the last
column, a reference to the characteristics of standard classification tree algorithms
is added.

RANKING CLASSIFICATION

MID P-DT QP-DT MDT QMDT C4.5, CART,...

1995 1996-1999 1997-2002

monotone tree X X
(†) non-monotone data X (∗) X

pruning X (∗) X
visualisation ± ± ± ± ± XW

H
A

T

# classes ≥ 2 2 2 ≥ 2 ≥ 2 ≥ 2
accuracy on training data ? 100% 100% 100% 100% ?

alter measure X X X
add artificial data X X X X

H
O

W

parameterised X

(†) non-monotone data also includes stochastic data.

(∗) Very recently, adaptations of this algorithm have been proposed to be able to deal
with these problems [17, 18, 87].

Table 3.1: Characteristics (WHAT) of decision tree algorithms for ranking prob-
lems, and HOW this is achieved. MID [10], P-DT and QP-DT [74], MDT and
QMDT [90].

Overall discussion.
RANKING VERSUS CLASSIFICATION. The ultimate tree algorithm for ranking

problems should have the same characteristics as classification trees, and on top
of that, be monotone. If we look at Table 3.1, we see that none of the proposed
methods satisfies this demand. We can distinguish two approaches:

• MID tries to keep all the characteristics of classification trees while forcing
the tree on to a more monotone road by adding a monotone component to the
impurity measure used for splitting.

• QP-DT and QMDT focus on the exact monotone ranking of the training data.
This is achieved by generating and adding additional artificial data during the
growing phase. Like this, the global monotonicity constraint is more or less
incorporated into the local environment of the leaves. P-DT and MDT con-
tinue this effort, and add artificial data that will finally ensure fully monotone
trees.

PRODUCING MONOTONE TREESis not a sinecure: only two of the methods (P-
DT and MDT) deliver actual monotone trees. The others have a very good tendency
towards monotonicity, measured by some degree of tree monotonicity (proportions
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of monotone couples of leaves w.r.t. the number of couples of leaves). See however
our discussion in Section 5.4.3(see p. 132)were we argue that the performance on
some measure for monotonicity has no direct value (except maybe for the modeler
him/herself because (s)he might find a correlation between the degree of mono-
tonicity and the performance on some other measure for the problem at hand).

CONCERNING THE VISUALISATION, it is clear that all the methods can be repre-
sented as a tree. However, where this is sufficient to get a comprehensive overview
of the rules for classification, this is no longer true for ranking. Indeed, for clas-
sification, all rules can be viewed independent from each other, but for rankings
the rules must be viewed as a whole because of the monotonicity between them.
A tree representation alone is not capable of grasping and bringing out this inter-
relatedness of the rules (that is, of the leaves). Because their ease of interpretation
is one of the most important trumps of decision trees, we sense the lacking of a
visualisation of monotonicity as a deficit.

THE SPLIT CRITERION, i.e. the measure for ordering the possible splits, is one
of the most essential components in tree growing. For classification trees, a lot
of studies on different types of these measure and their properties have been con-
ducted, e.g. [23, 71, 105]. However, the directly adapted or indirectly affected5

measures used in the present five methods for ranking were never subjected to such
a scrutinising study. There is no framework in which they reside, no profound in-
terpretation of these methods is known. And without an interpretation, no in-depth
analysis of a ranking problem is possible. (Can we regard the ordering of the possi-
ble splits as an ordering of importance6? Or does it only put the best split in front,
while no conclusions should be drawn from the position of the remaining splits7?).

A FEW COMPARISON EXPERIMENTSwere made in [10, 74]8. From these, it be-
came clear that the ranking algorithms outperformed the classification algorithms
on accuracy, but in general the resulting trees were more complex (even if the clas-
sification trees were not even pruned in these comparisons). Also, there are almost
no comparisons on real world domain data, because in practice, data sets are usu-
ally not monotone (see also Section 7.1.3(see p. 184)). Only for MID did we find
a report of comparative tests on several real data sets [10], probably because it is
the only one capable of handling non-monotone data sets. MID resulted in a lower
tree monotonicity degree than C4.5, while maintaining the same performance on
the mean square error.

ANOTHER APPROACH, suggested in [91], is to generate a multitude of different
classification trees, e.g. via bootstrapping, and check afterwards if they are mono-
tone. A definite plus for this approach is that it can deal with non-monotone data.
Of course, it is not guaranteed that a monotone tree will be found.

5The addition of data will influence the measure.
6If the answer is positive, we could consider the second-best split if for some reason, we would want

to disregard the best split. For example in recruitment, it would be too costly to send all applicants to an
assessment center, even if this leads to an immediate correct classification.

7This question is of particular importance when new data is added to the training set. This new data
may be such that a specific kind of split is favoured, but the effect on other splits may be unknown.

8Obviously, in [10], the article of 1995 introducing MID, only MID is tested, and in [74], the article
on (Q)P-DT, only binary problems are investigated (but all methods are used in the comparison).
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3.2.2 The approach of Ben-David, MID

This information-theoretic approach [10] is based on a splitting rule governed by
a measure that is the sum of an impurity measure (theconditional Shannon en-
tropy (see p. 40)) and a measure of (non-)monotonicity between the leaves.

The measure. At the core of MID, Monotone Induction of Decision trees, lies a
new splitting measure, called the total-ambiguity-score, which is constructed as
the sum of the conditional Shannon entropyH and a new measure, the order-
ambiguity-score, which punishes the degree of non-monotonicity of the tree.
The order-ambiguity-score is a function of thenon-monotonicity indexI which is
defined as the ratio of all non-monotonic couples of leaves to the maximum number
of all couples of leaves that could be non-monotonic. So, if the treeT hask leaves,
we have

I(T ) =

∑
i,j mij(T )
k2 − k

,

wheremij(T ) = mji(T ) = 1 if the couple of leaves(ti, tj) is non-monotone,
otherwisemij(T ) = 0.
Remark that the value ofmij(T ), and henceI(T ) depends on the labelling rule
that is used in the treeT . Theorder-ambiguity-scoreis now defined as

O(T ) =


0 , if I(T ) = 0

− 1
log2 I(T ) , if 0 < I(T ) < 1
+∞ , if I(T ) = 1 .

Finally, thetotal-ambiguity-scoreis defined as the sum of this score and the condi-
tional Shannon entropyH

ΓMID(T ) = H(T ) + r ·O(T ) ,

wherer ≥ 0 is a parameter that tries to capture the relative importance of mono-
tonicity relative to the inductive accuracy in a given problem. This measure is to be
minimised.

Interpretation. In [10] it is stated that the use of the logarithmic scale in the
definition ofO(T ) is natural becauseH(T ) is logarithmic. However, the measure
O(T ) has nothing to do with the probabilistic information-theoretic settings of the
Shannon entropy(see Section 2.4.2, p. 40). Using the logarithmic scale does not resolve
this problem. Therefore, while both measures can be interpreted independently
from each other, their addition has no other interpretation besides that it is evidently
an aggregation.

Properties. It is clear that non-monotone trees are punished by adding up a score
that becomes higher with increasing non-monotonicity. However, the basic as-
sumption for this measure is that impurity and monotonicity are independent con-
cepts, which is not true. These concepts are related in a very subtle, yet definite
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manner. We will now give some examples of behaviour of the total-ambiguity-
scoreΓMID that is not (or less) acceptable, and this independent of the choice of the
parameterr. We adopt the usual majority rule as labelling rule, but any other rule
will lead to similar problems:

a) ΓMID(00022|111)9 = ΓMID(000|11122), because both trees are monotone
according to the majority labelling rule, whenceΓMID(T ) = H(T ) in both
cases,

b) ΓMID(00022|1111) = 0.133 < ΓMID(000|111122) = 0.148 ,

c) ΓMID(000|111|222) < ΓMID(001|011|222) <

< ΓMID(111|000|222) < ΓMID(011|001|222) .

Note that all these examples only look at the simplest case of the split of the root
node, where the leaves are ordered according to a simple linear order. These exam-
ples show that the measure may not behave as would be expected. For a) we would
expectΓ(00022|111) > Γ(000|11122), for b) Γ(00022|1111) > Γ(000|111122),
and for c) we would expectΓ(000|111|222) < Γ(001|011|222) < Γ(011|001|222)
< Γ(111|000|222). (In [27] we probed a bit deeper into the expected behaviour of
measures for a ranking.)

Assignment of labels. As is usual in decision trees.

Input-output. A good property of MID is that it is capable of dealing with non-
monotone data sets, which is a big advantage in practice. It also makes sure that
all available data is taken into account, i.e. one does not need to eliminate some
examples from the data setΛ = (S, d) in order to renderΛX = {〈a, d(a)〉 | a ∈ S}
monotone. This also leads to more flexibility, since it is possible to run MID using
any subset of criteria one might be interested in for further investigation (even if
this subset does not guarantee the monotonicity of the learning sample). However,
the resulting tree is not guaranteed to be monotone, not even when the learning
sample is monotone.

Some remarks. In Chapter 7, Section 7.4.1(see p. 200), we will show how we
can find a monotone labelling for any tree, therefore also for MID. Nevertheless,
it should be noted that this mending strategy does not guarantee good results be-
cause the underlying philosophy behind it is different from the one underlying MID
(the latter regards impurity and non-monotonicity as independent, and assumes
that there is a trade-off possible between these two concepts, while the former
is based on the opposite idea, focussing on the interaction between impurity and
non-monotonicity.)

9This should be read as: a split of the root node in two childrentL and tR, wheretL contains
3 class-0 objects, and 2 class-2 objects, andtR contains 3 class-1 objects. Similarly,(000|111|222)
denotes a split of the root node into 3 children.
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3.2.3 The approaches of Makino et al., (Q)P-DT,
and of Potharst and Bioch, (Q)MDT

In Japan, Makino et al. [74] looked deeper into the most basic situation of the rank-
ing problem: build binary decision trees that represent (quasi-)monotone functions
that are discriminating for the learning sampleS (i.e. they correctly reclassify all
objects inS) when there are only two classes. In the two-class problem, mono-
tone functions are also called positive functions, hence the name (Quasi-)Positive
Decision Tree, or short (Q)P-DT, for their method.
A bit later, on the other side of the world in the Netherlands, these methods were
(non-trivially) adapted to handlen-ary trees for thek-class problem by Potharst
and Bioch [88, 89, 90, 91]. They baptised their method (Q)MDT, short for (Quasi-
)Monotone Trees. Both approaches, (Q)P-DT and (Q)MDT, are based on known
impurity measures, but rather than significantly altering the measure itself to incor-
porate monotonicity, they useupdating rulesduring the growing phase to ensure
the (quasi-)monotonicity of the final tree. These updating rules alter the original
learning sample by adding to it specific objects with well-chosen labels.

The measure. The most obvious difference between both approaches concerns
the impurity measure that is used. (Q)P-DT uses a slightly modified version of the
(binary) Shannon entropy, namely

H+(p1, p2) =
{

1 , if p1 < p2

H(p1, p2) , otherwise ,
(3.2.1)

and, if tL andtR denote the two children of a nodet after a splitci ≤ci
v, the split

of t (among the splits with monotone children10 if these exist, among all possible
splits otherwise) that minimises

ΓPDT(tL, tR) = p̂ (tL) ·H+(p̂ (1|tL), p̂ (2|tL)) + p̂ (tR) ·H+(p̂ (2|tR), p̂ (1|tR))

is taken. They also tested some other measuresI instead ofH+, all defined accord-
ing toI(p, 1− p) := I ′(p) whereI ′ is non-increasing and satisfiesI ′(0.5) = 1 and
I ′(1) = 0.
(Q)MDT, on the other hand, sticks to the tree impurity measures known from clas-
sification problems and minimises directly among all splits. It should be remarked
that, indeed, it would be an extremely difficult task to generalise (3.2.1) towardsk
classes in a meaningful and useful manner.
Remark that these measures are still only locally defined, and that the main engine
driving towards monotonicity consists of the updating rules that gradually add data
to the learning sample:

10If (L,≤L) = {1 ≤ 2}, they define two children as monotone if eithertL does not contain class-2
examples, or iftR does not contain class-1 examples.

http://www-sflab.sys.es.osaka-u.ac.jp/~makino/makinoe.html
http://www.few.eur.nl/few/people/potharst/
http://www.few.eur.nl/few/people/bioch/
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Cornering and bordering: the updating rules. At the core of these methods are
the updating rules, that enter new examples into the learning sample. There are two
different techniques, one is calledcorneringin [89], the other one could be called
bordering. They can be executed separately or together as shown in Table 3.2. From
this table, it can be seen that bordering leads to quasi-monotonicity, and cornering
to monotonicity.

QP-DT P-DT QMDT MDT

bordering X X X
cornering X X

Table 3.2: Cornering and bordering.

BORDERING. Let ΛX (t) be the subset of learning examples that fall into the
leaf t. Now perform a univariate binary splitci ≤ci

v on t, resulting in the chil-
drentL andtR. Instead of simply continuing splitting using the sets of examples
ΛX (tL) andΛX (tR), some additional examples are added to these sets: assuming
L = {1, . . . , k}

• examples to add toΛX (tL): the projection of “current data intR with associ-
ated label<L k” along “the axisci” onto “the border of the block(tL)X ⊂ X
determined by the planeci = v” (see Figure 3.5). These vectorsx are la-
belled with the lowest valueλmin(x) that still ensures the monotonicity of λmin

the new data set, i.e.λmin(x) = max{d(a) | a ∈ S ∧ a ≤X x}, or 1 if the
set{a ∈ S ∧ a ≤X x} is empty.

(a) Tree.

6c2

-
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tL tR

c1 =2
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(b) Bordering fortL when the leaftR initially
contains the 4 examples
〈a, G〉, 〈b, M〉, 〈c, G〉, 〈d, B〉 after the splitting
of t.

Figure 3.5: Bordering for the left childtL. L = {B(ad) <L M(oderate)<L
G(ood)}.
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• examples to add toΛX (tR): the projection of “current data intL with asso-
ciated label>L 1” along “the axisci” onto “the operational border oftR, i.e.
the intersection of(tR)X with the planeci = v+”, wherev+ := min{w ∈
Xci
| (∃a ∈ SX )(ai = w) ∧ (w >ci

v)}. These vectorsx are labelled
with the highest valueλmax(x) that still ensures monotonicity of the newλmax

data set, i.e.λmax(x) = min{d(a) | a ∈ S ∧ a ≥X x}, or k if the set
{a ∈ S ∧ a ≥X x} is empty.

Figure 3.5 makes it clear why the bordering method leads to quasi-monotone trees:
if splitting is continued until all examples in the leafs belong to the same class, then
these projections guarantee the monotonicity w.r.t. to samplesSX .

CORNERING. To create fully monotone trees, another approach is needed. As-
sume thatX is finite (the continuous case is considered in the footnotes). In [90]
it was proven that every blocktX corresponds to an interval11 [min tX ,max tX ] =
[a(t), b(t)] ⊆ X .
Now, these corner vectors12 of the blockstX are added to the samplesSX (t) falling
into t because these vectors affect all vectors insidetX . The minimal vectora(t)
is labelled with the maximal labelλmax(a(t)) that ensures monotonicity in the
new data set, and the maximal vectorb(t) is labelled likewise with the minimal
labelλmin(b(t)) (see Figure 3.6). Like this, the range of possible labels within a
node is kept to its strict minimum while assuring monotonicity.

-
c1

6c2

q
〈a, λmax(a)〉

q〈b, λmin(b)〉

t

Figure 3.6: Cornering of a leaft.

REMARK . Although some techniques for adding generated data have already
proven useful for classification purposes, e.g. [22], it is not clear what are the side
effects – besides monotonicity – of the updating rules in the framework of ranking.
One such an effect has been described in [18, 87] when applied to non-monotone
data (see also the remark at the end of this section): they remark that the updated
data set grows exponentially, a property directly linked to the tree size.

Properties. In the test setting of [74], P-DT and QP-DT delivered in general bet-
ter results than MID on monotone learning samples (but do not forget that MID

11In the continuous case,tX =]a(t), b(t)].
12In the continuous case, the operational minimal vectora′(t) must be taken instead ofa(t).
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can also deal with non-monotone data sets). It was however remarked that MID
produced smaller trees.
In general, we found that the updating rules (both cornering and bordering) may
sometimes lead to more or lessblind splits, i.e. the choice must be made between
a number of splits that lead to the same value on the splitting measure (see Ap-
pendix 3.A (see p. 80)). In our experiments, we found that this could cause MDT,
which only uses cornering, to produce extremely large trees even for small train-
ing samples (experimental results can be found in Appendix 3.B(see p. 80)). It has
not yet been tested if and how much of this is alleviated by adding the bordering
procedure.

Interpretation. Although the methods deliver good results, so far, there is no
interpretation of the impurity measures in combination with an updating rule.

Assignment of labels. The algorithm only stops when all leafs are pure (after
updating the samples). This makes the assignment of labels to the leafs self-evident.

Input-output. These methods demand a monotone data set to start with. The
final tree is either monotone, or quasi-monotone, depending on the algorithm used.
As for MID, the relabelling technique of Section 7.4.1(see p. 200)can be used to
transform a quasi-monotone tree into a monotone one.

Some remarks.
NON-MONOTONE DATA. Parallel with our own research on monotone learning

algorithms (described in the next four chapters), Popova and Bioch revised the cor-
nering technique to make the algorithm MDT capable of processing non-monotone
data. In fact, the algorithm stays exactly as described above, but whereas in the
monotone case, the original training data is left unchanged, this is no longer true
in the non-monotone case: the corner vectorsa(t) and b(t) are always labelled
with resp.λmax(a(t)) andλmin(b(t)), even if this implies reassigning the labels of
existing examples.

LABELLING AND PRUNING. At the same time, they proposed a pre- and post-
pruning technique for monotone trees based on monotone labelling techniques. We
come back to these in Section 7.4(see p. 200).

3.3 Rough set methods

For a short treatise on rough sets, see Appendix 1.B,p. 17.

Notions and conventions. Let Q = {qi : Ω → Xi | i ∈ N = {1, . . . , n}} be a
finite set of attributes, and letI ⊆ N . DenoteXI =

∏
i∈I Xi. XI

Based on the granules[a]XI
= {x ∈ X | b =XI

a}, theupperandlower approxi-

mations(see p. 19)of a subsetA ⊆ S w.r.t.I are denoted byA
I

=
⋃

a∈A ρ−1
|S ([a]XI

), A
I
, AI
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andAI =
⋃

a∈A ρ−1
|S ({[a]XI

| [a]XI
⊆ ρ(A)}), respectively grouping the objects

that possibly or certainly belong toA. The associatedboundary regionis denoted

by δI(A) = A
I \AI .δI(A)

In the supervised learning context, the classes13 C` = {a ∈ S | d(a) = `} areC`
(altered

definition ofC`

for this section!)

approximated. A sample objecta ∈ S is said to beconsistentw.r.t. I if does
not belong to one of the boundary regionsδI(C`), these objects can be correctly
reclassified based on the set of attributes{qi | i ∈ I}. Thequality of approxima-
tion γI (see p. 21)is then defined as the ratio of consistent sample objects w.r.t. all
sample objects, or equivalently,γI = |C`I

|/|S|.

General remark. There is no literature in which the following rough set adap-
tations are extensively compared with each other or with any other method. Only
in [48], DBRS (Dominance-based Rough Set approach) and OO (Ordinal-Ordinal)
are compared on one very small data set14: 15 objects and 4 criteria.

3.3.1 The approach of Greco et al., DBRS

From 1995 on, Greco et al. [50, 51, 52, 53] pursued the adaption of the rough set
approach towards ranking problems. They ground their philosophy in multi-criteria
decision aid (MCDA) [97] and preference modelling in order to deal with examples
that are inconsistent with the monotonicity requirement.
We will eliminate references towards MCDA and preference modelling in our
overview of their method, and tell the story more in line with the general ideas
of Chapter 2. However, Greco et al. should get credit for the idea of blending these
fields with rough sets methodology for supervised learning. In fact, the idea of in-
corporating the philosophy of MCDA within machine learning formed the seedling
for all our work on the supervised learning of a ranking.

The approximations. Instead of approximating the classesC` = {a ∈ S |
d(a) = `} based on the partial equality relation=XI

(i.e. based on the gran-
ules [a]XI

⊆ X ), they consider the approximation of cumulative classesC≥` :=⋃
i≥L` Ci andC≤` :=

⋃
i≤L` Ci based on the partial order relation≥XI

with gran-
ules of the form[a)XI

= {b ∈ X | b ≥XI
a}, and(a]XI

= {b ∈ X | b ≤XI
a}.

They define (see Figure 3.7)

C≥`
I

=
⋃

a∈C≥`

ρ−1
|S

(
[a)XI

)
,

C≥`
I

=
⋃

a∈C≥`

ρ−1
|S

({
[a)XI

| [a)XI
⊆ ρ(C≥`)

})
,

13In order to avoid notational conflicts, we should writeC` ∩ S, because in other chapters, we have
maintained the notationC` = {a ∈ Ω | d(a) = `}. However, this would burden the notation too
much, so we ask the reader to keep in mind this altered notation in this section.

14The contraception data set from [31], see also Table 7.3.3, p. 197.
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and likewise,

C≤`
I

=
⋃

a∈C≤`

ρ−1
|S

(
(a]XI

)
,

C≤`
I

=
⋃

a∈C≤`

ρ−1
|S

({
(a]XI

| [a)XI
⊆ ρ(C≤`)

})
.

Figure 3.7: Upper and lower approximations in DBRS.

A sample objecta ∈ S is calledconsistentif it does not belong to one of the
boundary regions, i.e. if

a 6∈ δI(S, d) :=
⋃
`∈L

δI(C≥`) ∪
⋃
`∈L

δI(C≤`) .

From these approximations, they then derive aquality of sortingγDBRS
I as the ratio

of consistent sample objects w.r.t. all sample objects, i.e.

γDBRS
I (S, d) :=

|S \ δI(S, d)|
|S|

.

The rules. Based on this quality of sorting, reducts can be defined, and from
these reducts, rules can be generated as described in [52]. They resort to five type
of rules, with the following three basic types (let us call theminequality rules): INEQUALITY

RULES.
(i) if ci1(a) ≤ci1

v1 and. . . andcis
(a) ≤cis

vs, thenλ′(a) ≤L ` ,

(ii) if ci1(a) ≥ci1
v1 and. . . andcis(a) ≥cis

vs, thenλ′(a) ≥L ` ,

(iii) if ci1(a) ≤ci1
v1 and. . . andcis

(a) ≤cis
vs and

ci1(a) ≥cj1
w1 and. . . andcis(a) ≥cjt

wt, thenλ′(a) ∈ [`1, `2] ,
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where[`1, `2] is an interval in(L,≤L). Depending on which kind of approximation
of C≤` is used, the first two types are divided incertain(lower approximation) and
possible(upper approximation) rules.
Only one basic type of inequality rules may be used at a time in a rule base to make
sure there are no monotonicity problems. However, when generatingminimal15 sets
of rules, the authors generate rule sets comprising all these types of rules together
(at least in their examples).

Assignment of labels. When only one type of rule is applied, the following
scheme is suggested in [51]: if an objecta ∈ Ω matches several rules of

• type (i): thena is assigned to the minimum of the corresponding labels.

• type (ii): thena is assigned to the maximum of the corresponding labels.

• type (iii): thena is assigned to the union of the intervals.

Open ends. Even though they consider rule sets gathering rules of different types,
it is not discussed how possible conflicts between them can be resolved. For exam-
ple, what happens if an objecta is classified asλDBRS(a) ≤L 2 by one rule, and as
λDBRS(a) ≥L 4 by another?
Moreover, they do neither prove nor contradict the monotonicity of such a mixed
rule base. Purely based on the different types of rules, it is possible to define a
non-monotone mixed rule base:

• if c1(x) ≤c1 2, thenλ′(x) ≤L 4,

• if c2(x) ≥c2 3, thenλ′(x) ≤L 2.

If we apply the assignment rules mentioned above, then the objectsa, b, with
c1(a) = 1, c2(a) = 2 andc1(b) = 3, c2(b) = 3 lead toλ′(a) = 4 ≥L λ′(b) = 2,
while a ≤X b. It should be shown whether the algorithms exclude this kind of
configurations, and if not, it would be interesting to look for different algorithms
and/or conflict resolution schemes to remedy this.

Remarks.
AN ALTERNATIVE TO THE APPROXIMATIONS. The framework we will develop

in Chapter 4 leads to an alternative that is closer to the original rough set descrip-
tion: replace the relational representation in Corollary 2.5.2 by the consistent in-
terval representation (based on the set interpretation(2.2.1)) as defined in Theo-
rem 4.6.3. This leads to

a ∈ C`I
⇐⇒ d̃∗ΠI

(a) = {`} and a ∈ C`
I ⇐⇒ ` ∈ d̃∗ΠI

(a) .

The resulting ratio between consistent sample objects (i.e. objectsa ∈ S with
|d̃∗ΠI

(a)| = 1) and all sample objects then just coincides withγDBRS
I .

15A set of rules is minimal if it reclassifies all consistent examples correctly and inconsistent objects
are classified to clusters of classes referring to this inconsistency. Moreover, removing one rule makes
the previous condition false.
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CONCERNING THE QUALITY OF SORTING. Gediga and D̈untsch in [48] formu-
lated a serious deficit in the combined action of the quality of sortingγDBRS

I and the
three basic types of inequality rules that are sought after. They give as an example
Table 3.3.

(a) Learning sample.

a1 a2 a3 a4 a5 a6

c 2 1 4 3 6 5
d 1 2 3 4 5 6

(b) The mappingd has an obvious pattern, but all objects
are inconsistent.

6d

-
c

1

2

3

4

5

6

1 2 3 4 5 6

a2

a1

a4

a3

a6

a5

Table 3.3: Disassociation ofγDBRS
I and the inequality rules.

We find thatγDBRS
I (S, d) = 0, while there are clearly several rules valid on this

learning sample:

c(x) ≤c 2⇒ d(x) ≤L 2 , c(x) ≤c 4⇒ d(x) ≤L 4 ,

c(x) ≥c 3⇒ d(x) ≥L 3 , c(x) ≥c 5⇒ d(x) ≥L 5 .

In the next section, we summarise the alternative proposed in [48]. But let us first
have a closer look at this remark.

The problem lies in the wrong extension of the conceptinconsistencyw.r.t. inequal-
ity rules. In fact, Greco et al. have rather extended the concept of inconsistency
w.r.t. equality rules (ifci1(a) = v1 and . . . and cis(a) = vs, thenλ′(a) = `),
a statement that is supported by the previous remark about the alternative defini-
tions of upper and lower approximations. Seen from this angle, this example just
lays bare a default of the original definition of quality of approximation, as already
pointed out in Section 2.5.3, with the example in Table 2.1 and Figure 2.4(see p. 46).
Nevertheless, it also shows thatcertain (as opposed topossible) equality rules are
harder to satisfy for ranking problems than for classification problems, and this
seems to indicate that for the ranking problem, focussing on this kind of certain
equality rules is probably not a good path to follow, at least not when the learning
sample is allowed to be non-monotone.

http://people.freenet.de/gediga/
http://www.infj.ulst.ac.uk/~cccz23/
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3.3.2 The approach of Gediga and D̈untsch, OO

The method OO, Ordinal-Ordinal [48]16, was a reaction of Gediga and Düntsch
on the previous method. More precisely, it proposes another measure:quality of
sorting rules, stressing the relation between the measure and the inequality rules
sought after. However, these rules are a bit more restricted in that the left-hand
side of one rule base is always based on the evaluations of all criteriaci within a
fixed setI ⊆ N . In terms of the classification problem, this means that each block
in X induced byXI represents a rule, so there is no second step of rule generation
involved anymore. In other words, the rules are of the form“if c1(a) = vc1 and. . .
andck(a) = vck

, thenλ′(a) = `” , or equivalently,“if a ∈ [x]XI
, thenλ′(a) = `” ,

with x ∈ X .
Beside introducing a new measure, they also proposed some statistical techniques,
within the framework for rough sets they developed in [46, 47], to analyse the
significance of the obtained reducts. This is more or less in the same spirit as the
idea of dynamic reducts [7], except that some parameters need to be set to calculate
dynamic reducts.

The measure.
CLASSIFICATION. If in the usual rough set approach, equality rules of the form

“if ci1(a) = v1 and . . . andcis
(a) = vs, thenλ′(a) = `” are used, as discussed

above, then it can be observed that the standard quality of approximation can be
interpreted as a two-step aggregation of such rules:

(i) for fixed ` ∈ L, an aggregation of the covering degree of all certain rules of
type “if ci1(a) = v1 and . . . andcis

(a) = vs, thenλ′(a) = `” , leading to a
quality of “then λ′(a) = `” -rules.

(ii) an aggregation over all` ∈ L of the quality of“then λ′(a) = `” -rules.

The covering degree of a rule“if left-hand side is true, then right-hand side is true”
is simply the proportion of the number of sample objects that satisfy both left-hand
side and right-hand side to the number of sample objects that satisfy the right-hand
side. In the particular setting of OO, this means

γ′I(a ∈ [x]XI
⇒ λ′(a)= i) :=

|{a ∈ Ci | a ∈ [x]XI
}|

|Ci|
.

The aggregation (i) of these qualities is a simple addition, but only of thecertain
rules, i.e. all objects that satisfy the left-hand side must also satisfy the right-hand
side. Hence we obtain for fixed̀∈ L

γ′I(Ci) :=
∑

[x]XI
:[x]XI

⊆ρ(Ci)

γ′(a ∈ [x]XI
⇒ λ′(a)= i) .

16The method OO is in fact part of NOO, Nominal-Ordinal-Ordinal, that also allows nominal at-
tributes.

http://people.freenet.de/gediga/
http://www.infj.ulst.ac.uk/~cccz23/
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The second aggregation (ii) is a weighted sum, where the weights are the weights
of the classesC` w.r.t. all classes. It is not that hard to see that the final result just
corresponds to the standard quality of approximation

γI(S, d) =
∑
i∈L

|Ci|∑
j∈L |Cj |

× γ′I(Ci) =
∑
i∈L

∣∣CiI

∣∣
|S|

.

RANKING . The idea is now to apply the previous to inequality rules of type (i),
≤⇒≤, and of type (ii),≥⇒≥, using the cumulative classesC≤` andC≥`. Denot-
ingL = {1, . . . , k}, this results in

γ′I(a ∈ [x)XI
⇒ λ′(a)≥L i) :=

|{a ∈ C≥i | a ∈ [x)XI
}|

|C≥i|
,

γ′I(C≥i) :=
∑

[x)XI
:[x)XI

⊆ρ(C≥i)

γ′(a ∈ [x)XI
⇒ λ′(a)≥ i) ,

γ(≥,≥)

I (S, d) :=
k∑

i=2

|C≥i|∑k
j=2 |C≥j |

× γ′I(C≥i) ,

wherei = 1 is not included in the summation because satisfying the right-hand
side “thenλ(a) ≥ 1” does not add any knowledge.
Likewise, γ(≤,≤)

I can be defined. If we now writeγ(≥,≥)

I (S, d) = A/B and
γ(≤,≤)

I (S, d) = C/D, then the measureγOO
I is finally defined as a mean of the

previous two measures:

γOO
I :=

A + C

B + D
.

Statistical issues. Based on random permutations and bootstrap simulations, they
devise a way to gauge the “real prediction effect”. They also demonstrate that1+τ

2 ,
whereτ is Kendall’s tau, forms an upper bound of bothγ(≤,≤)

I andγ(≥,≥)

I .

3.3.3 The approach of Bioch and Popova, MRSA

A radically different approach, MRSA (Monotone Rough Set Approach), is ad-
vocated by Bioch and Popova in [15, 16, 87]. Their theory focusses on boolean
reasoning based on the use of the discernibility matrices and discernibility func-
tions in rough set theory. For classification, the approach based on the quality of
approximation and the approach based on discernibility matrices and functions co-
incide.

Monotone reducts. Starting from a monotone learning sample(S, d) with S =
{a1, . . . , am}, and a set of criteriaC, themonotone discernibility matrixM(S, d)
is defined as

Mij =

{
{c ∈ C | c(ai) >c c(aj)} for i, j : d(ai) >L d(aj)
∅ otherwise.

http://www.few.eur.nl/few/people/bioch/
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In the same manner the discernibility function is derived from the discernibility
matrix [65], themonotone discernibility functioncan be derived from the monotone
discernibility matrix. Themonotone reductsare then the minimal transversals of the
entries of the monotone discernibility matrix. (For more details and explanations,
see [15, 16, 87]).

Rule generation. They propose two alternatives: producing monotone minimal
covers for a certain monotone reduct, leading to certain inequality rules of type (i)
and (ii), or producing a set of monotone rules (with equality for the class value)
describing the maximal extensionλmax of the learning sample(SXI

, d), whereI
corresponds to the reduct under consideration.

3.4 Aggregation operator methods

Notions and conventions. An aggregation operatoris a bounded monotonen-AGGREGATION

OPERATOR. ary functionA : (X =
∏n

i=1 Xi,≤X)→ (Y,≤Y ). For example the minimum and
maximum operator, or the weighted sum with weights that sum up to one.
More flexible aggregation operators exist, like the Choquet integral [30], or its
ordinal counterpart, the Sugeno integral [112]. It would lead us too far to explain
these integrals in detail. It is enough to know that the Choquet integral can be
characterised very nicely [75], its properties are well known, that it is capable of
modelling several kinds of interaction like redundancy and synergy, and that it is
an extension of the minimum and maximum operator, and of the weighted mean
and the ordered weighted mean [125]. These integrals have2n − 2 parameters, but
by considering so-calledk-additive Choquet/k-maxitive Sugeno integrals [26, 49],
at most

∑k
i=1

(
n
i

)
parameters must be set. It should be noted that, as is the case

for the weighted sum, these parameters can be interpreted in the context of game
theory.
There exist plenty of other types of aggregation operators. Yet, it must be men-
tioned that in most cases, they demand the commensurability17 of the axes to be
aggregated, i.e. they are of the formA : [0, 1]n → [0, 1], and mostly, they are idem-
potent, i.e.A(x, . . . , x) = x. This makes that in general, aggregation operators
can not be deployed immediately as discriminant functions in supervised learning.
Some pre- and post-processing is usually needed, as described in Section 3.5.1.

3.4.1 The approach of Verkeyn et al.

In [116, 117], a specific data set from a large 3-fold survey on annoyance (noise,
odour and light, with the number of criteria ranging from 12 to 23, and with a total
of 3277 participants) is considered. The data is non-monotone, but in order to apply
the proposed method, it must first be made monotone.
The considered data set has the characteristics that all criteria take values in the
set{1, . . . , 5}, and alsoL = {1, . . . , 5}. Of course, this does not mean that these

17It is possible to compare values from one axis to values from another axis.
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values are commensurable, but in these papers, this assumption is implicitly made
by mapping these values equidistantly onto[0, 1] ⊂ R. The same for the labels. In
fact, both pre- and post-processing steps as described in Section 3.5.1 are applied.
They only consider1 and2-additive/maxitive integrals, the optimal parameter se-
lection is done by a genetic algorithm. In [116], they try out Choquet integrals,
in [117] Sugeno integrals are considered.
Only a comparison with the strongest component method (which is in fact just tak-
ing the maximum) is done, which is outperformed. Moreover, only the description
of the data is aimed at.

3.4.2 The approach of Roubens et al., TOMASO

TOMASO, Tool for Ordinal Multi-Attribute Sorting and Ordering [76, 96] is also
a very recent (2001-2002) method for learning a monotone ranking from a mono-
tone learning sample based on the Choquet integral. There are however quite some
differences with the previous approach. Instead of a direct aggregation, Roubens
proposed in [96] to first transform the partial evaluations in a meaningful way into
commensurable scales, in fact, he provides a technique to transform a ranking prob-
lem into a continuous aggregation problem. Then the parameters of ak-additive
Choquet integral are assessed by translating the problem into a linear constraint
satisfaction problem. Firstk = 1 is tried out, andk is increased until a satisfactory
solution is found.

Commensurable scales. For each criterionci, define thepartial net scoreas

Si(a) := |(a]Xi
| − |[a)Xi

| ,

for all a ∈ S, i.e. the difference of the number of objects with a lower18 partial
score thana on ci and the number of objects with a higher partial score onci. It
holds thatci(a) ≤ci

ci(b) ⇐⇒ Si(a) ≤ Si(b). These scores are then normalised
to

SN
i (a) :=

Si(a) + |S| − 1
2 |S| − 1

∈ [0, 1] .

They can now be put together into a vectorSN (a) = (SN
1 (a), . . . , SN

n (a)).

Assignment of labels. Within the set of sample objectsS, denote the set of ex-
amples labelledi bySi = {a ∈ S | d(a) = i}. In each of these sets, the subsetsPo

andPw of Pareto-optimal and Pareto-worst elements can be determined:

Po(i) = {a ∈ Si | (6∃ b ∈ Si)(b ≥X a)} ,

Pw(i) = {a ∈ Si | (6∃ b ∈ Si)(b ≤X a)} .

18We can say “lower” instead of at most as high because of the subtraction.

http://www.ulg.ac.be/stat-mqg/roubens_marc.htm
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These sets enable us to fix the boundaries in[0, 1] that enable the discriminant
function to assign objects to classes. IfA denotes the Choquet integral determined
as explained above, then the lower and upper boundaries for classi are set as

`i := min
b∈Pw(i)

A(SN (b)) and ri := max
b∈Po(i)

A(SN (b)) .

Since the linear constraint satisfaction problem for determining the Choquet in-
tegral is devised in such a way that it always holds thatri−1 < `i (in fact, the
distance betweenri−1 and`i is maximised), the labelling of a new instancea is
done as follows:

λTOMASO(a) =

{
i , if A(SN (a)) ∈ [`i, ri]
{i− 1, i} , if A(SN (a)) ∈ ]ri−1, `i[ .

Remarks. The authors themselves remark that the method can not always guaran-
tee a solution because the given problem may be incompatible with the assumption
that the discriminant function is a Choquet integral. Unfortunately, they did not
mention whether this situation is rare or not. If such a situation occurs, the user
of the software is demanded to adapt the data set by revising the definition of the
classes. It is however not mentioned how this can or should be done.
It should also be remarked that this approach bears some resemblances with sup-
port vector machines [25, 32]: both construct surfaces separating the classes via
a linear constraint optimisation problem. Both only consider support vectors (in
TOMASO, these are defined by the setsPo(i) andPw(i)) to define this optimisa-
tion problem. This might be an indication of how the TOMASO approach could be
extended to deal with non-separable (i.e. non-monotone) data by introducing posi-
tive slack variables in the constraints, turning the linear programming problem into
a quadratic one.
Comparison test with other approaches have not yet been undertaken.

3.5 Related methods: ordinal classification and re-
gression

There have been quite some efforts concerning the non-monotone version of the
supervised learning problem with ordinal class labels. Depending on the point of
view, this problem can be denominated as ordinal classification, where an order is
added to the class labels, or ordinal regression, where the numeric properties of
the labels are eliminated. Another distinction between these two names is that in
ordinal classification, the ordinal scale is handled as it is, while ordinal regression
makes the assumption that there is some latent continuous variable underlying the
ordinal variable.
It is also worth noticing that statistics is already active on this field for more than
two decades, while the interest of the machine learning community only really
emerged a couple of years ago.
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3.5.1 Basic approach

In many situations, it is assumed that an ordinal variable is the result of a coarsely
measured latent continuous variable. This is of course a quite rash assumption,
which might be true in some cases, but certainly not always.
If this approach is chosen nonetheless, then two steps can be taken:

(i) pre-processing: transforming the ordinal variable into a continuous one, see
Figure 3.8(a),

(ii) post-processing: transforming the final continuous result back into a value
from the ordinal scale of class labels, see Figure 3.8(b).

(a) Pre-processing.

-

RU(1) U(2) U(3)

-B -�M
-� G �VG

(b) Post-processing

Figure 3.8: Examples of pre- and post-processing.

Pre-processing. In some old handbooks, you can still find prescriptions for trans-
formations from ordinal to continuous variables. Of course, there does not exist
such a holy recipe that merely has to be followed. Instead, these transformations
should be dealt with case by case. One of the more advanced interactive methods
available nowadays is probably a procedure used in the decision aid tool MacBeth,
Measuring Attractiveness by a Categorical Based Evaluation Technique [5]. This
procedure interactively builds a transformation of the ordinal scale into an interval
or even a ratio scale.
It should be mentioned that, even if the ordinal scale is denoted by values such as
{1, 2, . . . , k}, using these values immediately in a continuous framework means
that some transformation has been executed. So there is always a form of pre-
processing (together with all its consequences), even if it is only implicitly.

Post-processing. Once the ordinal classification problem is altered to acontinu-
ousproblem, i.e. a regression, any regression procedure can be applied. Since the
outcome will be a real number, this number has to be transformed back into one of
the values of the ordinal scale. Denoting this scale by{1, . . . , k}, this means that
a strictly increasing (extended) real functionU : {0, 1, . . . , k} → R with U(0) =
−∞ andU(k) = +∞ needs to be defined. Any value in]U(` − 1), U(`)] is then
transformed into the label` ∈ {1, . . . , k}.

http://www.m-macbeth.com/Msite.html
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Clearly, if the ordinal scale{1, . . . , k} would be used as such, then the most log-
ical choice would be to round the result of the regression to the nearest value in
{1, . . . , k}, i.e.U(`) = (2` + 1)/2 for ` ∈ {1, . . . , k − 1}.

Examples. An example of this approach from the recent literature (2001) is the
application on the regression tree S-CART [66]. S-CART, Structural Classification
and Regression Trees [67], is a fully relational version (based on propositional
logic) of CART [23].
In [44], we can find this approach at work in an OSL (Ordinary Least Square)
regression. This article demonstrates that this approach is common practice, even
if, from a strict mathematical point of view, a transformation from a strictly ordinal
scale into a richer numerical scale has no meaning.

3.5.2 Cumulative models

In statistics, the ordinal regression problem was tackled by the pioneering work
of McCullagh in 1980 [77]. Bender and Benner [13] discuss how to use the most
popular up-to-date ordinal regression techniques.
Most models are essentially based on the cumulative grouping of classes. IfY is the
ordinal response variable taking values in{1, . . . , k}, then the grouped classesY ≥
i (orY ≤ i) are at the core of the ordinal regression models. Following [13], the two
most popular approaches can be distinguished based on the kind of probabilities
used in the generalised linear model [78]:

• Grouped continuous modelsbased on probabilitiesP(Y ≥ j | X = x) for
j = 2, . . . , k. (This group contains the proportional odds model.)

• Continuation ratio modelsbased on probabilities19P(Y =j | Y ≥ j,X =x)
for j = 2, . . . , k.

An alternative model that does not use a cumulative approach is theadjacent cate-
gories modelbased on probabilitiesP(Y = j + 1 | Y = j,X = x) [2].

Remarks.
THE LATENT VARIABLE . These models all“share the property that the cate-

gories can be thought of as contiguous intervals on some continuous scale. They
differ in their assumptions concerning the distributions of the latent variable [...].
It may be objected, in a particular example, that there is no sensible latent variable
and that these models are therefore irrelevant or unrealistic. However, the mod-
els [referring to the proportional odds model and the proportional hazards model]
make no reference to the existence of such a latent variable and its existence is not
required for model interpretation.[77]”

19Or on probabilitiesP(Y = j | Y ≤ j, X = x). It must be remarked that these two types of
probabilities yield different results.

http://galton.uchicago.edu/~pmcc/
http://wwwhomes.uni-bielefeld.de/rbender
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STOCHASTIC ORDERING. Thegrouped continuous modelsmake the assumption
that the data spaceX is stochastically ordered, i.e. for allx1,x2 ∈ X it holds that

P(Y ≥ j | X = x1) ≥ P(Y ≥ j | X = x2) for all j ∈ L , or

P(Y ≥ j | X = x1) ≤ P(Y ≥ j | X = x2) for all j ∈ L .

It is clear that this assumption is rather strong. Indeed the following configuration
shown in Table 3.4 is excluded by this assumption:

P(1 | x) P(2 | x) P(3 | x)
x1 0.2 0.6 0.2
x2 0.1 0.9 0.1

Table 3.4: Impossible configuration in stochastically order space.

Naive translation to machine learning. The idea of using such probabilities
P(Y ≥ j | X = x) was tried out very recently (2001) on a meta-heuristic for
supervised learners in [42]. However, they trainindependentlyk− 1 learners to es-
timate thek−1 dependentcumulative probabilities. As a result, negative probabil-
ities may arise, which are simply put to zero (see the WEKA [124] implementation
weka.classifiers.meta.OrdinalClassClassifier ).

3.5.3 The approach of Herbrich,
a distribution independent model

In 1998-2000, Herbrich developed a distribution independent model for ordinal
regression [56, 57, 58], as a response on the cumulative grouped models with
their distributional assumptions on the latent variable, and their assumption of the
stochastic ordering ofX . His approach is linked with preference learning (but, as
we did in Section 3.3.1, we will suppress any references to it.)

The basic idea. In classification, the Bayes-optimal model identifies the optimal
classifierλ∗ : Ω → L as the one defined byλ∗(a) = arg maxi∈L P(Y = i | X =
a), leading to the least misclassifications. Herbrich argues that for ordinal regres-
sion, the classifierλ∗pref (where the subscript refers to “preference”) that induces the
smallest number of rank reversals should be aimed at.

The risk functional. The optimal Bayesian solutionλ∗ minimises the risk func-
tional R(f) = E[`(f(a), λ(a)) | a ∈ Ω], whereλ is the unknown actual classifier
we try to discover, and̀ is the loss functioǹ (̂ı, i) = 1 if ı̂ = i, and0 otherwise.
DenotingL = {1, . . . , k}, the parameterised risk functional proposed for ordinal
regression is

Rs
pref(f) = E[`s

pref(f(a), f(b), λ(a), λ(b)) | (a, b) ∈ Ω2] ,

http://www.cs.waikato.ac.nz/ml/weka/
http://research.microsoft.com/users/Cambridge/rherb/
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with

`s
pref(̂ı, ̂, i, j) =


1 , if 0 < i− j ≤ s andı̂− ̂ ≥ 0 ,

1 , if 0 < j − i ≤ s and̂− ı̂ ≥ 0 ,

0 , otherwise.

The parameters “controls the amount of assumed variation ofP(Y = i | X =
x). This can be treated as an assumption on the concentration of this probability
around a “true” rank [56]”. The relation with Kendall’sτ is also furnished, as well
as bounds on the induced empirical risk (i.e. the risk on a learning sample). The
classifierλ∗pref minimisingRs

pref is then proven to be characterised by

λ∗pref(a) >L λ∗pref(b) ⇐⇒ P(λ(a) >L λ(b) | a,b) > P(λ(b) >L λ(a) | a,b) ,

λ∗pref(a) = λ∗pref(b) ⇐⇒ P(λ(a) >L λ(b) | a,b) = P(λ(b) >L λ(a) | a,b) ,

where

P(λ(a) >L λ(b) | a,b) =
k∑

i=1

P(i | a)
k∑

j=i+1

P(j | b) ,

P(λ(b) >L λ(a) | a,b) =
k∑

i=1

P(i | a)
i−1∑
j=1

P(j | b) .

Application. Based on a linear utility model20, a large margin principle algo-
rithm (i.e. a support vector machine) was built which incorporates the proposed
risk functional.

3.5.4 Support vector machines

Several adaptations of support vector machines were recently developed. We al-
ready mentioned Ralph Herbrich’s efforts on this terrain. Another approach sug-
gested in 2002 by Amnon Shashua and Anat Levin can be found in [104].
Finally, to be complete we mention the work of Thorsten Joachims [61]. He con-
structs a support vector machine for learning rankings. However, here the problem
is how to learn a ranking from a given set of rankings, i.e. the examples are of the
form 〈x, R〉, whereR is a weak order relation and the goal is to match a weak order
to any objecta ∈ Ω. An example of such a problem is the rankingR of documents
in order of relevance based on queryx. There can be found more literature on this
subject, in different domains, but this is out of our present scope.

20See http://cepa.newschool.edu/het/essays/uncert/choiceref.htm, for a selection of references on util-
ity theory.

http://research.microsoft.com/users/Cambridge/rherb/
http://www.cs.huji.ac.il/~shashua
http://www.vision.huji.ac.il/~alevin/
http://www.cs.cornell.edu/People/tj/
http://cepa.newschool.edu/het/essays/uncert/choiceref.htm
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3.5.5 Conclusion

The problem of supervised learning in a (monotone or not) ordinal context is still a
freshly opened playground. Not that many methods have been developed yet, and
there was made even less effort in investigating their theoretical frameworks, or in
simply comparing the methods.
The distinct problem of monotone classification or monotone regression totally
lacks any framework. All proposed solutions are very specific. Moreover, only
four methods, namely OLM, MID, DBRS and OO are capable of dealing with the
reality of non-monotone learning samples, but they are not all capable of rendering
a monotone classifier.
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APPENDIX

3.A Cornering (Makino/Potharst)

Note: This section of the appendix is more easily understood after reading
Chapter 7.

During our experiments, it became clear that MDT, Monotone Trees [89] performs
very good on classification accuracy, Kendall’s tau, MAE and MSE, e.g. the ex-
periments in Section 5.4.5(see p. 135), and Section 7.5.3(see p. 210). However, it also
leads to rather large trees as is shown in the experiments of Appendix 3.B and in
Table 7.8(see p. 213).
In this section of the appendix, we have a closer look at the main engine of MDT, a
process called “cornering”. The idea is to add the corner elements (i.e. the extrema)
of the intervals delineated by the leaves to the training data using some adequately
labelling(see Section 3.2.3, p. 62). We show that this strategy is not always able to avoid
the problem of so-calledblind splits(see p. 200).
Consider the table shown in Figure 3.9(a), and suppose that, for some reason, the
first split in the tree growing phase was determined asc1 ≤ 1. It is shown in Sec-
tion 7.3.3, more specifically the paragraph entitled “Blind splits”(see p. 200), that a
standard classification tree algorithm is unable to find the most appropriate split to
obtain a monotone tree. However, if we apply the cornering method, then the train-
ing data is adapted before calculating the splitting measure: the corner elements
to be added are shown in Figure 3.9(d). This means that the partitions pictured in
Figure 3.9(c) are transformed into the ones shown in Figure 3.9(e). Obviously, this
highlights the split based onc3 as the preferred choice.
However, consider now the situation in Figure 3.10, Table (a), again with first split
forced to bec1 ≤ 1. This time, cornering does no longer provide a full proof
answer: it would lead to the splitsc2 ≤ 1 on t1, andc2 ≤ 2 on t2. Necessitating at
least one other split to obtain a monotone tree.

3.B Tree size of MDT.

This section of the appendix harbours some experimental results concerning the
tree size (number of leaves) of MDT [89] compared to the tree size of C4.5 (both
pruned and unpruned). Several designs (see Table 3.5) are considered, varying
different parameters to gauge the effect they have on the tree size. The results are
depicted in Table 3.6, they are the means of the number of runs as mentioned in the
last column. In Appendix 3.A(see p. 80), we try to explain these results.
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(a) Table.

c1 c2 c3 d

a1 2 2 1 B
a2 1 1 2 G

(b) Forced
tree.

(c) Projection of the induced partitions for the
two possible splits oft1. (d) Added corner elements.

c1 c2 c3 d

a(t1) 1 1 1 B
b(t1) 1 2 2 G
a(t2) 2 1 1 B
b(t2) 2 2 2 G

(e) Induced partitions after cornering.

Figure 3.9: Cornering and blind splits (1).

(a) Table.

c1 c2 c3 d

a1 2 2 1 B
a2 1 3 2 G

(b) Induced partitions after cornering.

Figure 3.10: Cornering and blind splits (2).



82 CHAPTER 3. OVERVIEW OF EXISTING APPROACHES FOR RANKING
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|C| (# generated criteria) ∗ 8 * 7
|Xc| (# criterion values) 5 4 2 ∗
|L| (# labels) 4 ∗ 2 4
|S| (# learning instances) ∗ 100 100 100

Table 3.5: Characteristics of the different designs.

(a) design 1

|C| |S| C4.5 pruned C4.5 MDT runs

4 100 11±3.62 22.55±3.2 57.28±12.72 40
5 100 9.91±3.9 25.84±4.09 150.28±43.13 32
6 100 9.98±3.29 28.3±3.9 536.5±266.71 40
6 200 21.33 53.07 986.4 15

(b) design 2

labels C4.5 pruned C4.5 MDT runs

2 8.9 16.4 1579 10
3 9.1 29.8 2994 11
4 6.9 30.3 1555 7

(c) design 3

|C| C4.5 pruned C4.5 MDT runs

8 10 14.1 27.3 10
9 7.6 12.8 35.3 10
10 6.2 12 62 10
11 7.9 12.8 108 10
12 8.2 14.4 150 10
13 9.2 16.4 248 10
14 6.3 15.4 520 10
15 8.5 17.2 1025 10
16 7.4 15.9 1110 10
17 8.6 18.6 2377 10

(d) design 4

values C4.5 pruned C4.5 MDT runs

2 15.1 24.4 42.1 10
3 12.5 29 225 10
4 11.5 32.6 1040 10
5 10.5 36.5 4715 10
6 9.3 35.2 10037 10

Table 3.6: Comparison of the tree size.
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Interlude

GENESIS

The next chapter has probably the longest genesis of all, spread out over
nearly three and a half years, from early autumn 2000 when I first started
to work on the ranking problem, to the winter of 2003. Along the way, this
manuscript was subject to some drastic changes, both in layout and con-
tents. These changes were mostly inspired by the many referee reports I
received on it, some of them full of praise, others cataloguing it as rubbish.
I will let you decide for yourself.





Chapter
.............. ............. .............. .............. ............. .............. .............. ..............

.............
.............
..............
..............
.............
..............
..............
..............

.............
.........................................................................................................................

4

A framework for ranking: elementary granulation

4.1 Introduction 86
4.1.1 Aims 86

4.1.2 Problems with earlier proposals 87

4.2 Classification and ranking 88
4.2.1 Classification 88

4.2.2 Ranking 89

4.3 Representing a classification: sets 91
4.4 Representing a ranking: intervals 91

4.4.1 The image of a ranking 92

4.4.2 Ordering the image 93

4.5 The monotonicity constraint 97
4.5.1 Preliminaries 97

4.5.2 Multi-criteria decision aid (MCDA) 98

4.5.3 Monotonicity 99

4.6 Transforming reversed preference into doubt 101
4.6.1 Introduction 101

4.6.2 Sources of reversed preference 101

4.6.3 Dealing with reversed preference: intervals 103

4.7 Representing a ranking: distributions 106
4.7.1 Introduction 106

4.7.2 Stochastic dominance 106

4.7.3 Meaningful representations 107

4.7.4 Consistent representations 108

4.8 Summary 110



86 CHAPTER 4. A FRAMEWORK FOR RANKING: ELEMENTARY GRANULATION

In this chapter, we discuss how a proper definition of a ranking can be introduced
in the framework of supervised learning. We elaborate on its practical represen-
tation, and show how we can deal in a sound way with reversed preferences by
transforming them into uncertainties within the representation.

4.1 Introduction

4.1.1 Aims

We finally submerge in the profound and largely unexplored depths of ordinal rank-
ing problems. Lighted only by the beacon of classification, and with the help of the
torch of multi-criteria decision aid in our hands, we try to create some clarity in this
vast jungle of classes, orders and preferences.
Supervised learning has been studied by many research groups, largely coming
from statistics, machine learning and information (systems) science. In these stud-
ies, the problems of classification (discrete) and regression (continuous) have re-
ceived a lot of attention. More recently the problem of ranking gained at interest
because of the wide variety of applications it can be used for.
Ranking can be interpreted as monotone classification or monotone regression. The
addition of the word “monotone” to the definition is, however, less trivial than it
seems. And the problems this addition to the definition entails in the mathematical
model used to deal with classification or regression are even more persistent. In this
chapter (and in this thesis in general), we will mainly focus on discrete models, in
other words, we will discuss how we can deal with monotone classification, which
is equivalent to monotone ordinal regression.
Compared to classification, methods for solving ranking problems are only begin-
ning to emerge. The reason for this slow progress lies partly in the fact that a solid
framework for dealing with rankings in the supervised learning context has not yet
been developed. For example, not all methods can guarantee that the generated
classifier behaves monotonically, e.g. [10, 90]. Developing such a framework is
the main goal set forth in this chapter. To be more precise, the aim is to develop a
representation that can not be refuted based on semantical considerations. This is
a very important aspect for any tool in decision aid: if the proposed solutions are
not in line with the “common sense” (including semantical considerations such as
monotonicity) of the user, the user will not accept the tool, even if it would deliver
good performance on all kind of measures.
Another bare terrain in machine learning is that of working with ordinal data, e.g.
[42, 57, 104], even though“In measurement theory the raw data are typically pos-
tulated to be ordinal in nature[72]”. Mostly “. . . the question addressed is the
conditions under which the data structure exhibits numerical measures having cer-
tain properties”. However, we prefer to work directly on the ordinal nature of the
data itself, clearing ourselves of any conditions to be met.
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4.1.2 Problems with earlier proposals

The aim of supervised learning is to discover a functionλ : Ω→ L based on a finite
set of example pairs(a, λ(a)) with a ∈ Ω. If L is finite, thenλ is referred to as a
classification. Generally, the objectsa ∈ Ω are described by means of a finite set
Q = {q1, . . . , qn} of attributesq : Ω→ Xq. Therefore, to eacha ∈ Ω corresponds
a vectora = (q1(a), . . . , qn(a)) ∈ X =

∏
q∈Q Xq (called thedata space, also DATA SPACE.

known as measurement space), and the problem is then restated as learning the
functionλ based on examples(a, λ(a)) with a ∈ Ω. Although this new definition
is not less restrictive if handled with care, it does tend to encourage a more narrow
view, whereλ(a) is interpreted asλ(a). This may lead to conflicting situations,
since it is possible thata, b ∈ Ω, a = b but λ(a) 6= λ(b). We will use the term
doubtto refer to such a situation.

The problem of ranking is generally formulated as a classification problem in the
narrow view, with the additional restriction that it has to be monotone, i.e. for all
vectorsx,y ∈ X we must have thatx ≤X y implies λ(x) ≤L λ(y), where
(x1, . . . , xn) ≤X (y1, . . . , yn) if and only if xi ≤Xqi

yi for i = 1, . . . , n, and
the relations≤Xq

on Xq and≤L on L are complete orders. Again, conflicting
situations may arise, which we will refer to asreversed preference(see Section 4.5).
Some authors [74, 89] impose some additional restrictions, such as demanding the
training data to fulfill the monotonicity requirement, to ensure that these conflicts
do not occur. Others [9] propose a form of naive conflict resolution.

However, a fundamental flaw in this definition is that it is formulated as a restriction
not on the original definitionλ : Ω → L of a classification, but on its operational-
isationλ : X → L, which was introduced in function of the description of the
objects. Yet another problem is that ranking is not merely a restriction, but can
also be seen as a generalisation of classification, in which the equality relation is
replaced by an order relation. For example, in the formulation of a ranking given
above, we see that “x ≤X y impliesλ(x) ≤L λ(y)” is an extension of “x = y
implies λ(x) = λ(y)”. It is well known that different points of view on a basic
definition may lead to completely different extensions, so, if possible, the most in-
trinsic definition should be chosen. In our case, this means thatλ : Ω → L is
preferred.

It should be remarked that, while we focus in the first part of this chapter on a set-
based representation ofλ, there exists another strategy using cumulative models
coming from statistics (e.g. cumulative logit model [2]) and later on applied in
other learning schemes [42, 48, 53]. Instead ofλ, it considers a family(λi)i∈L,
where theλi : Ω→ {0, 1} are defined byλi(a) = 0 if λ(a) ≤L i, and1 otherwise,
in other words, the classes are grouped in sets of the form{` ≤L i | ` ∈ L}. In
the last two sections of this chapter, we will incorporate this cumulative model (a
probabilistic one) to construct a probabilistic representation ofλ.
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4.2 Classification and ranking

Notions and conventions. We will begin with some notions from lattice the-
ory [19] and continue by giving a short introduction to preference modelling (see
e.g. [41, 86, 118]).
As always in this thesis, we only consider binary relations. A relationR on X is
said to becompleteif for all a, b ∈ X it holds that eitheraRb or bRa (or both).COMPLETE.

An order (relation) ≤ on a setX is a binary relation that isreflexive(a ≥ a),ORDER

(RELATION). antisymmetric(if a ≥ b andb ≥ a, thena = b) andtransitive(if a ≥ b andb ≥ c,
thena ≥ c). As usual, the order≤ decomposes into astrict order< and an equality
relation=. The couple(X,≤) is called aposet(partially ordered set). If neitherPOSET.

a ≥ b nor b ≥ a, we writea ‖ b and calla andb incomparable. A chain is aINCOMPARABLE.
CHAIN . poset without incomparable elements. Remark that in the latter case, the order≥ is

a complete order.
A weak order≺ onX is a relation that isasymmetrical(a ≺ b implies notb ≺ a)WEAK ORDER.

andnegatively transitive(for all c, if a ≺ b thena ≺ c or c ≺ b)1. A strict order is
in particular a weak order.
A weak preference relation(also called alarge preference relation[118] S is aWEAK PREFERENCE

RELATION. reflexive relation where the expressionaSb stands for “a is at least as good asb” (it
is also said that “a outranks b”). A weak preference relation can be decomposedOUTRANKS.

into (and is totally defined by) three mutually exclusive relations: an asymmetric
relation (strict preference relation) P with aPb if and only if aSb and notbSa,STRICT

PREFERENCE

RELATION.
a reflexive and symmetric relation (indifference relation) I with aIb if and only

INDIFFERENCE

RELATION.

if aSb andbSa, and an irreflexive and symmetric relation (incomparability rela-

INCOMPARABILITY

RELATION.

tion) J with aJb if and only if notaSb and notbSa. Remark thatP, I andJ can
be seen as generalisations of<,= and‖.
A preorder is a reflexive and transitive relation. In other words, it has the same

PREORDER.
properties as an order, except for antisymmetry, whence the name preorder. In
this thesis, we will only consider complete preordersS. Given such anS, we can
interpret it as a weak preference relation (see Figure 4.1). We findS = P ∪ I,
with bothP andI transitive. Remark that in [86] it is shown thatS is a complete
preorder if and only ifP is a weak order.

Recapitulation
Section 2.2 4.2.1 Classification

A classificationλ in Ω is defined as the assignment of the objects belonging toΩ,
to some element, called aclass label, in a universeL of labels. IfL is a continuum,
λ is usually referred to as aregression. The class labels can be identified with their
inverse image in the object spaceΩ, where they constitute a partition. We will call
these inverse images(object) classes. For any class labeli ∈ L, we denote the
corresponding class byCi := λ−1(i), andCl := {Ci | i ∈ L}. So, the set of all
classifications inΩ stands in one-to-one correspondence to the set of all partitions
of Ω (which is equivalent to the set of all equivalence relations onΩ). Remark that

1Remark that negative transitivity and asymmetry imply transitivity.
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(a) A complete preorderS consist of an equivalence
relationI and a weak orderP that induces a strict
complete order on the equivalence classes.

(b) Detail of the corresponding weak
orderP .

Figure 4.1: Visual representations

we may assume thatλ is surjective by constrainingL to the image ofλ (this can be
done without loss of generality since by definition, we are only interested in objects
from Ω, which may well be infinite).

4.2.2 Ranking

Preliminaries. If we want to define a ranking based on the above definition of a
classification, it becomes clear that there is no room for a concept such as mono-
tonicity sinceΩ has no inherent structure such asX . Still, we have to plant the seeds
for it, such that monotonicity will appear naturally when the data spaceX is intro-
duced as a representation ofΩ. This can be done, following the ideas from [53, 97],
by returning to the semantics behind ranking, which declares that the higher an ob-
ject’s rank, the more it is preferred. We can model this preferential information by
a complete preorder.

Definition. In the MCDA (Multi-Criteria Decision Analysis) literature [97], the
term “sorting” is used to refer to a classification into a pre-defined finite set of
ordered classes. The best way to enlighten the meaning of words is to turn to a
dictionary. According to Webster’s Encyclopedia Unabridged Dictionary [122],
the meaning of “sort” is: “n. a particular kind, species, variety, class, or group,
distinguished by a common character or nature; v.t. to arrange according to sort,
kind or class”. On the other hand, looking up the word “rank” results in: “n. a
number of persons forming a separate class in a social hierarchy or in any graded
body; relative position or standing; v.t. to arrange in ranks or in regular formation”.
Therefore, we feel the term “ranking” would be better suited. More general, we
define a ranking as:
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Definition 4.2.1

A ranking in Ω is a classification/regressionλ : Ω → L, together with an orderRANKING .

≥L onL. We denote this ranking by(λ,≥L). Moreover, the order≥L defines a
weak preference relationS onΩ as follows:

aSb ⇐⇒ λ(a) ≥L λ(b) ,

or stated differently,aSb if and only if s ≥L r, for anya ∈ Cs andb ∈ Cr, with
Ci = λ−1(i) denoting the class associated with the labeli ∈ L.

In this thesis, we will only considercomplete rankings, where≥L is a completeCOMPLETE

RANKING . order onL, i.e. (L,≥L) is a chain. This is in line with most of the current prob-
lems considered in supervised learning. In this case, we have a specific preference
structure onΩ linked with the classes. Fora ∈ Cs andb ∈ Cr it holds that

aPb ⇐⇒ s >L r and aIb ⇐⇒ s = r .

So, the set of all rankings inΩ stands in one-to-one correspondence to the set of all
complete preordersS on Ω. The classes are formed by the indifference relationI
which is an equivalence relation (transitivity holds forI sinceS is a complete
preorder). Hence, the indifference relationI determines the classification.

Remarks. The foregoing definition of a ranking consists of two parts: first, a
classification/regression with an ordered image; second, the associated semantics
expressed by a weak preference relation. It is the second condition that ensures that
a (finite) ranking is not simply an ordinal classification. The difference between a
classification and a ranking is shown in Figure 4.2. A second point worth noting in

(a) Classification, possibly with
A ≤L B ≤L C.

(b) Ranking,c preferred tob
preferred toa

Figure 4.2: Classification and ranking

the definition is that the setL is not necessarily finite (the same is true in the defi-
nition of a classification). Still, in the remainder of this chapter, we will assumeL
to be finite. We will also assume thatX is finite to obtain a pure ordinal setting.
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Assumptions:X andL are finite,(L,≤L) is a chain.

People familiar with the internet usually link the term “ranking” with the results of
a search query (e.g. usingGoogle). In that case, a ranking is defined as a weak order
on Ω (see e.g. [61]). This corresponds to the special case whereS = P (i.e. there
are no indifferent objects because the relation is asymmetrical), and hence|L| =
|Ω|.

Recapitulation Section 2.24.3 Representing a classification: sets

The above definitions are not really useful in practice since they relate to a uni-
verseΩ that is in essence just an enumeration of all the objects. To access some
of the interesting properties of the objects, we fall back on a set of attributesQ. In
this way, we can represent each objecta ∈ Ω by a vectora = (q1(a), . . . , qn(a)) ∈
ΩX ⊆ X , whereΩX is the set of all measurement vectors corresponding to objects
in Ω. This also leads to a representationλ̂ of the classificationλ : Ω → L in the
following way:

λ̂ : ΩX → 2L ,

x 7→ λ̂(x) = {λ(a) | a ∈ Ω ∧ a = x} ,

where2L is the power set ofL, i.e. the set of all subsets ofL. Thus, the representa-
tion of a classification is again a classification, but now in the spaceΩX ⊆ X , with
classeŝλ−1(I), whereI ⊆ L. We may also define a classificationλ̂∗ : Ω→ 2L by
setting2 λ̂∗(a) = λ̂(a). The classes of̂λ∗ are denoted byCI = (λ̂∗)−1(I), these
are the so-calleddecision regionsof λ.
Remark thatΩ ∼= X (Ω is isomorphicto X ) implies thatλ̂ ∼= λ. This property
of isomorphism states that the representationλ̂ is a very natural one. We certainly
want to keep this property in the case of rankings. Moreover, the more general ob-
servation that representing a classification results again into a classification is also
a very desirable property. We know that the real problem is one of classification,
but we will work with a representation, so it would be against our intuition that
this representation would become something different from a classification. In the
same line of thinking, we would like this property, if possible, to hold for rankings
as well.

4.4 Representing a ranking: intervals

Notions and conventions. Let (X,≤) be a poset. The subset[a, b] = {x ∈ X | [a, b]

a ≤ x ≤ b} is called a(poset) interval in (X,≤). We will also consider thehalf (POSET) INTERVAL .
HALF OPEN

INTERVALS.
open intervals(a] = {x ∈ X | x ≤ a} and[a) = {x ∈ X | a ≤ x}.

(a], [a)2Sinceλ̂ andλ̂∗ both express the same idea, we will not restrain ourselves from mixing their usage.
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In this paper, the term “order” is used in its strict mathematical sense (i.e. a reflex-
ive, antisymmetric, transitive binary relation). The term “ordering”, however, is
used more freely, conveying a semantical idea rather than a mathematical one.

General notation. As mentioned above, we would like to have that ifΩ ∼= X ,
then a representation of a ranking(λ,≥L) should be a ranking once again. there-
fore, we will denote arepresentation of a rankingbyREPRESENTATION

OF A RANKING.

(λrepr,DIm)

whereDIm is some relation on the image ofλrepr that should be isomorphic to≥L if
Ω ∼= X .

4.4.1 The image of a ranking

Let (λ,≥L) be a (complete) ranking. A first remark concerns the range ofλ̂ when
we are dealing with rankings. Sinceλ stands for a classification, we could try
to defineλ̂ as the representation of this classification as in Section 4.3. How-
ever, imagine we have three classes, labelled Bad, Moderate or Good. Forx =
(x1, . . . , xn) ∈ ΩX , the assignment̂λ(x) = {Bad, Good} means that taking into
account the partial evaluations(x1, . . . , xn), x is globally evaluated as either Bad
or Good, but never as Moderate, although in going from Bad to Good, one must
pass through Moderate. So, the definition of the representation ofλ does not make
sense in the context of ranking. The solution for this example is obvious: redefine
λ̂(x) = {Bad, Moderate, Good}.

Example 4.4.1.Just think about an evaluation process: it would not make sense
to tell somebody“Based on the tests you passed so far, we must conclude you are
either a Good or a Bad candidate, but obviously, you are not a Moderate one. We
need you to undergo another test to get a definitive answer.”Do not confuse the
previous with a situation like“You are clearly a Good candidate. However, the
final assessment showed that your manner of handling things does not stroke with
our company’s culture, so we are sorry to inform you that...”Here the candidate is
evaluated as having a tendency towards Good until the last test, where it is decided
the candidate does not belong to the class of Good candidates.

In general, it is no longer useful to consider the entire power set2L as the range of
λ̂, because some assignments become meaningless as observed above. To get a bet-
ter understanding, it is clarifying to think of the notions of half open intervals3 in the
chain(L,≥L). Resuming our example, we haveL = {B(ad), M(oderate), G(ood)},
and B<L M <L G. An assignment to one of these classes makes sense, for ex-
ampleλ̂(x) = {B}. It is possible to express{B} in terms of intervals:{B} =
[B) ∩ (B] = [B, B]. An assignment to{M,G} is also meaningful, and we have

3In the dominance-based rough sets approach (see [53]) these notions are linked with the so-called
upwardanddownward unionof classes.
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{M,G} = [M) ∩ (G] = [M, G]. However, an assignment such as{B,G} is not
meaningful, and we have{B,G} 6= [B,G] = {B,M,G}.
This leads to the conclusion that only intervals in(L,≤L) make sense as possible
values forλ̂. Indeed, if there is doubt in rankingx ∈ ΩX , in other words, if there
are two different labelsr, s ∈ L such that{r, s} ⊆ λ̂(x), then also the intermediate
labels should belong to the assignment ofx, i.e. if r ≤L s then [r, s] ⊆ λ̂(x).
Remark that ifr >L s, then always[r, s] = ∅ ⊆ λ̂(x). Formally,

(∀x ∈ ΩX )(∀(r, s) ∈ L2)({r, s} ⊆ λ̂(x)⇒ [r, s] ⊆ λ̂(x)) .

This property characteriseŝλ(x) as a(n) (order) convex subset of the lattice(L,≥L
). Moreover, since(L,≥L) is a finite chain, this means thatλ̂(x) is an interval in
(L,≥L). Thus the range of̂λ, i.e. the actual decision space, is no longer2L, but
rather

L[2] = {[r, s] | (r, s) ∈ L2 ∧ r ≤L s}.

We may now definêλ in a meaningful way as follows:

λ̂ : ΩX → L[2] = {[r, r′] | (r, r′) ∈ L2 ∧ r ≤L r′} ,

x 7→ [λ̂`(x), λ̂r(x)] ,
(4.4.1)

where

λ̂`(x) = min{λ(a) | a ∈ Ω ∧ a = x} ,

λ̂r(x) = max{λ(a) | a ∈ Ω ∧ a = x} .

Remark that if we writeI ∈ L[2] as an interval[r, s], it holds by definition that

C[r,s] 6= ∅ =⇒ (∃a, b ∈ C[r,s])(a ∈ Cr ∧ b ∈ Cs) . (4.4.2)

4.4.2 Ordering the image

Notions and conventions. An interval order 4 S on a finite setΩ is a reflexive INTERVAL ORDER.

andFerrers5, whence complete, relation. An equivalent formulation expresses anFERRERS.

interval orderS as a reflexive relation together with two functionsl andr from Ω
to some chain(L,≥) associating to eacha ∈ Ω an interval[l(a), r(a)] such that
aSb⇔ r(a) ≥ l(b).

Conditions on the ordering. There are some intuitive conditions we want to
impose on the relationDIm. It should be (i) reflexive, to ensure that equal elements
of the image ofλrepr are also treated equally, (ii) an extension of≥L, as discussed

4In the sense of [86].
5A relationR onΩ is calledFerrers if (aRb ∧ cRd) ⇒ (aRd ∨ cRb), for anya, b, c, d ∈ Ω. .
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previously, and (iii) meaningful, just as≥L has a meaning in terms of a preference
relation. So, we would like to have an interpretation such as

λrepr(a) DIm λrepr(b) ⇐⇒ aŜb (4.4.3)

whereaŜb means:based on the information derived fromQ andλrepr, we conclude
thata is at least as good asb. Remark that condition (i) has an additional advantage
in this context, since it enables us to interpretDIm as a weak preference relation.
Lastly, closely related to the third condition, we would like that (iv)DIm does not
depend onλ. In other words, the relationDIm must be derived from(L,≥L). So,
if we have two rankings(λ1,≥L) and(λ2,≥L), then their representations should
be(λ̂1,DIm) and(λ̂2,DIm). This is a consequence of the following observation: the
order on the label set is the most intricate part of a ranking, first we have an ordered
label set, and afterwards we assign objects to these labels in accordance with the
semantics behind this order.
Next, we study a representation continuing withλrepr = λ̂ in the spirit of the pre-
vious section, i.e. using the set interpretation (2.2.1). Later on, in Section 4.7, we
will consider the distributional interpretation (2.2.3) forλrepr.

First attempts. Starting from (ii) and (iii), we will try to extend the semantics
behind≥L. Recall that we have by definition ofS derived from a ranking that

s ≥L r ⇐⇒ (∀a ∈ Cs)(∀b ∈ Cr)(aSb)
⇐⇒ (∃a ∈ Cs)(∃b ∈ Cr)(aSb) ,

where the second equivalence is due to the fact that the objects inside one class are
all considered to be indifferent to each other.
These expressions can easily be generalised by replacings ≥L r by I DIm I ′,
whereI, I ′ ∈ L[2], andCs (resp.Cr) by CI 6= ∅ (resp. byCI′ 6= ∅):

I D1
Im I ′ ⇐⇒ (∀a ∈ CI)(∀b ∈ CI′)(aSb) , (4.4.4)

and
I D2

Im I ′ ⇐⇒ (∃a ∈ CI)(∃b ∈ CI′)(aSb) . (4.4.5)

If we impose reflexivity, and writeI = [s1, s2], I ′ = [r1, r2], this finally results in
(using Expression (4.4.2))

[s1, s2] D1
Im [r1, r2] ⇐⇒ s1 ≥L r2 ,

for Expression (4.4.4), and

[s1, s2] D2
Im [r1, r2] ⇐⇒ s2 ≥L r1 ,

for Expression (4.4.5), see also Figure 4.3. RelationD1
Im is an order, and relationD2

Im

is an interval order.
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Figure 4.3: Visualisation ofE1
Im andE2

Im

It is clear that these two relations fulfill conditions (i), (ii) and (iv). However, in both
cases there are some problems with condition (iii). We have for instance that[1, 3]
and [1, 2] are incomparable w.r.t.D1

Im. However, we would prefer an object with
label [1, 3] over another with label[1, 2] if that is all we know about these objects.
Indeed, if an object is assigned to[1, 2], it may belong to either of the classesC1

andC2, whereas an object assigned to[1, 3] may also belong to the better classC3.
So, for two objectsa, b ∈ Ω, knowing onlyλ̂(a) = [1, 3] and λ̂(b) = [1, 2], we
would prefera over b, implying that we would like to have[1, 3] DIm [1, 2]. This
reasoning is in line with the semantics (4.4.3) we are pursuing. WhereasD1

Im proves
to be too restrictive, the relationD2

Im seems to be too permissive, being indifferent
between[1, 2] and[1, 3]. This means that we need to find something in between the
generalisations of (4.4.4) and (4.4.5).

Second attempt. There exist quite some different kinds of orders that could be
possible candidates forDIm, see e.g. [40]. Unfortunately, their known characterisa-
tions are not particularly helpful in pinpointing one or more of them in the present
context. We could simply check them all out and see whether they suit our purpose.
But at this point, it is more interesting to let us guide by the reasoning demonstrated
in the previous paragraph, and to first state the desired semantics and translate it af-
terwards into a suitable expression.
In that way we defineI DIm I ′ if and only if I is an improvement overI ′ or I ′ is a
deterioration compared toI. We will now translate this into mathematical expres-
sions. Assuming thatCI andCI′ are non-empty, we say thatI is animprovement IMPROVEMENT.

of I ′ if and only if {
(∃a ∈ CI)(∀b ∈ CI′)(aSb)

(∀a ∈ CI)(∃b ∈ CI′)(aSb) .
(4.4.6)

Likewise,I ′ is adeterioration of I if and only if DETERIORATION.{
(∃b ∈ CI′)(∀a ∈ CI)(aSb)

(∀b ∈ CI′)(∃a ∈ CI)(aSb) .
(4.4.7)
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Figure 4.4: The order≤[2] on2L with L = {1, 2, 3, 4} (Hasse diagram).

It immediately strikes that all of these expressions can be seen as intermediate to
the generalisations of (4.4.4) and (4.4.5). If we writeI = [s1, s2] andI ′ = [r1, r2],
it can be shown quite easily that (remember thatCI andCI′ are assumed to be
non-empty)

(4.4.6) ⇐⇒ (4.4.7) ⇐⇒ ((r1 ≤L s1) ∧ (r2 ≤L s2)) .

Hence, we find thatDIm is an order, which we will denote by≥[2], defined as fol-
lows:

Definition 4.4.1

Let I, I ′ ∈ L[2]. If we write I = [r1, r2] andI ′ = [s1, s2], we put

[r1, r2] ≤[2] [s1, s2] ⇐⇒ ((r1 ≤L s1) ∧ (r2 ≤L s2)) .

So, based on a semantical discourse, we arrived at the order≤[2], which is already
extensively studied and whose properties are well known [39], for example, it turns
(L[2],≤[2]) into a complete lattice6. An example onL = {1, 2, 3, 4} can be found
in Figure 4.4.

Some afterthoughts. It is clear that now all four conditions are met. It should
be noted that the order≤[2] was derived from the premise that we only have access
to intervals of values to reach a decision. If other information would be avail-
able, other orderings might prevail. For example, distributional information might
lead to a stochastic ordering (see Section 4.7), or if risk aversion underlies the

6Potharst [89] also introduced this order in the setting of rankings, however, without being aware of
its semantics in the context of ranking.
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decision, then we could consider the leximin7 order≤1. Consider for example
L = {1, 2, 3, 4}, then we have

1 ≤1 [1, 2] ≤1 [1, 3] ≤1 [1, 4] ≤1 2 ≤1 [2, 3] ≤1 [2, 4] ≤1 3 ≤1 [3, 4] ≤1 4 .

If risk would be favoured, the following order≤2 might be suitable:

1 ≤2 [1, 2] ≤2 2 ≤2 [1, 3] ≤2 [2, 3] ≤2 3 ≤2 [1, 4] ≤2 [2, 4] ≤2 [3, 4] ≤2 4 .

Note that both situations are in line with the order≤[2] just defined (≤[2]⊆≤i).
Even more, the order≤[2] is nothing else but the intersection of≤1 and≤2. This
also pleads for the non-invasive character of the order≤[2] (no presuppositions
about the preferences are imposed).

4.5 The monotonicity constraint

Up to now, we have given a definition of a (complete) ranking(λ,≥L) and have
shown a possible representation by the (not necessarily complete) ranking(λ̂,≥[2]).
Note that we did not need any form of monotonicity for the definition or this rep-
resentation. Monotonicity will arise in a natural way when taking into account
the attributes, or rather, the criteria (see below) used to describe the properties of
objects.

4.5.1 Preliminaries

Let us first turn back to classifications. Even if we assume a classificationλ to be
deterministic in the sense that any objecta ∈ Ω is assigned to exactly one class
with label inL, we still cannot guarantee that we have|λ̂∗(a)| = 1 for all a ∈ Ω.
This is a consequence of the possible occurrence ofdoubt(called “inconsistency”
in rough set theory [65, 109])

Definition 4.5.1 (see p. 32)

(i) There isdoubt between the classificationλ and the set of attributesQ if

(∃(a, b) ∈ Ω2)(a = b ∧ λ(a) 6= λ(b)) .

(ii) There isdoubt inside the representation̂λ if

(∃x ∈ ΩX )(|λ̂(x)| > 1) .

7The ordering as used in a dictionary.
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It is clear that these two notions of doubt coincide. In the case of doubt, the func-
tion λ̂∗ can assign a set of labels to an object, indicating that it is not possible to
label the object with one specific class label based on the associated vector. Remark
that the first definition emphasises the conflict between the vector representations
of the objects and the classificationλ (as discussed in Section 4.1.2), the second
definition stresses the ensuing idea of uncertainty. Also note that ifλ̂ is interpreted
as a classification, we have that there is never doubt between the classificationλ̂
and the (corresponding) set of attributesQ.

4.5.2 Multi-criteria decision aid (MCDA)

In the context of ranking, the attributes have a specific interpretation, and are usu-
ally referred to as criteria. Acriterion [97] is defined as a mappingc : Ω →CRITERION.

(Xc,≥c), where(Xc,≥c) is a chain, such that it appears meaningful to compare
two objectsa andb, according to a particular point of view, on the sole basis of
their evaluationsc(a) andc(b). This means that a criterion induces a weak pref-
erence relationSc on Ω. In this paper, we will only considertrue criteria [20],TRUE CRITERIA.

where the induced weak preference relation is a complete preorder defined by
aScb⇔ c(a) ≥c c(b). We assume to have a finite set of criteriaC = {c1, . . . , cn}
at our disposal.

Example 4.5.1. In Chapter 2, you did some classification of small animals like
dogs, cats and rabbits. After being around all those wonderful furry creatures, you
feel like taking in one yourself. So you do some very convincing pleading to your
(girl/boy)friend/husband/wife, and soon it is agreed a pet is more than welcome,
but: What kind of animal? It should certainly be not extremely big, not a horse or
a cow or anything alike, it should be an animal you can take inside, any animal
larger than 1,5 meter is not even an option (Bad). You prefer that it is not too
small either, you don’t want to come home a bit tired and accidentally step on your
hamster. And your companion would rather prefer that it is not of such a size that it
will trash your furniture whenever it is left alone for 5 minutes in your living room
(Satisfying). The not too small animals and the not too big animals are welcome
(Good), but you agree that ideally, the new house mate should be between 40 and
80 cm (Very Good).
A second criterion you agreed upon was that the breed should not be known to bear
dogs of a nervous nature, so no yappers or anything alike.

If we assume that all criteria are true criteria (see Section 6.2.3 for a more complete
discussion), then thedominance relation9 .C on Ω w.r.t. C is defined byDOMINANCE

RELATION.

a .C b ⇐⇒
{

(∀c ∈ C)(aScb)
(∃c ∈ C)(aPcb)

8For demonstration purposes, we have chosen an ordinal scale that corresponds to a coarsely mea-
sured numerical scale.

9In the literature, the dominance relation is usually denoted by∆C . Because of the symmetrical na-
ture of the symbol∆C , we feel it does not clearly denote its meaning and prefer to use the notation.C .
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Figure 4.5: Difference between attribute and criterion8.

for anya, b ∈ Ω. It is said thata dominatesb. We may also writeb /C a, saying DOMINATES.

that b is dominated by a. We say thata weakly dominatesb, a D b, if only IS DOMINATED BY.
WEAK DOMINANCE

RELATION.
(∀c ∈ C)(aScb). Since we are working with true criteria we have thata DC b is
equivalent witha ≥X b.

4.5.3 Monotonicity

A basic principle10 stemming from MCDA [97] is thata DC b ⇒ aSb. On the
other hand we have thataSb ⇐⇒ λ(a) ≥L λ(b). Merging all these expressions
we find in a natural way the monotonicity constraint

a ≥X b⇒ λ(a) ≥L λ(b) . (4.5.1)

Since this constraint advocatesa = b ⇒ λ(a) = λ(b), it does not tolerate the
presence of doubt, i.e. no uncertainty is allowed in the data, no errors. Thus, it is
too restrictive for applications in supervised learning. The reason for this lies in the
fact that we have adopted a principle from MCDA without considering its context:
build a ranking based on the setC of criteria. This is a different setting than for
supervised learning where we try toreconstructa ranking based on the setC. In
the former, the setC is aframework, in the latter, this same setC is arestriction.
We can solve this problem by applying the same principle but with the additional
demand that we restrict our knowledge to the information we can retrieve fromC.
In that case, we define the dominance relation onΩX ⊆ X , resulting inx D y
if and only if x ≥X y, and the principle becomesx D y ⇒ xŜy. Together
with (4.4.3), this finally leads to the elementary monotonicity constraint

x ≥X y⇒ λrepr(x) DIm λrepr(y) .

10For a more in depth treatise, see Section 6.2.3, p. 154.
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In this case, doubt is tolerated sincex = y⇒ λrepr(x) = λrepr(y) is a trivial demand.
This also means that theelementary monotonicity constraintreduces toELEMENTARY

MONOTONICITY

CONSTRAINT. x >X y⇒ λrepr(x) DIm λrepr(y) (4.5.2)

We can now adapt the two equivalent definitions of Definition 4.5.1, which leads
us to two different notions:

Definition 4.5.2

There are two different notions ofreversed preference:REVERSED

PREFERENCE.
(i) There isreversed preferencebetween the ranking(λ,≥L) and the set of

criteriaC if

(∃(a, b) ∈ Ω2)(a >X b ∧ λ(a) �L λ(b)) .

(ii) There isreversed preferenceinside the representation(λrepr,DIm) if

(∃(x,y) ∈ Ω2
X )(x >X y ∧ λrepr(x) 6DIm λrepr(y)) .

A representation of a ranking is said to beconsistentif there is no reversedCONSISTENT.

preference inside it.

The two notions of reversed preference in Definition 4.5.2 do not coincide, we must
make a clear distinction between the first definition that considers inconsistencies
in the ranking, and the second definition that considers inconsistencies in a repre-
sentation of a ranking.

About doubt and reversed preference. There is a major difference between the
existence of reversed preference in a ranking, and the existence of doubt. People
can accept doubt in a classification, but they will not accept reversed preference
in a ranking. For example, you might accept that it is difficult to choose between
two candidates, either because you feel you don’t have enough information about
them, or you feel they are too similar to differentiate, e.g. if athlete A wins the
first 5 challenges in a decathlon, and ends second in the other 5, while athlete B
ends second in the first 5, but wins the remaining 5. On the other hand, it is never
tolerated that the candidate with the lower marks ends up in a higher rank than the
candidate with the better marks, e.g. if athlete A always ends in the fourth or fifth
place, while athlete B is always among the first three, then it is unacceptable thatA
would end up in a higher position on the league table thanB.
This is nicely reflected in the definitions: there is never doubt between the clas-
sificationλ̂ and the corresponding set of attributesQ, but there can exist reversed
preference between the ranking(λ̂,≤[2]) and the corresponding set of criteriaC. It
is also the reason why we introduced the termconsistencyinstead ofmonotonicity.
While these two notions are clearly equivalent, “consistency” conveys the semanti-
cal idea behind the property of monotonicity of the representation.
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Example 4.5.2.Remember the pet we wanted to buy? Once arrived at the pet
shop, we snooped a bit around, and came across an Anatolian Shepherd Dog puppy
staring at us with his adorable puppy eyes, and you feel directly there is a bond
between you and this little fellow .... However, this puppy was destined to become
huge, not just big, but really huge! According to the shop owner, the puppy would
grow to a calm dog with an even temperament of approximately 74cm at the withers
and a good 60 kilos (certainly enough mass to qualify for a house demolition kind
of huge). Still, he was so adorable.... there you go, reversed preference w.r.t. the
criterion “size”.
You come home and tell your (girl/boy)friend/husbund/wife of this one puppy that
made your heart melt. However, your friend did not see the puppy, and only sees the
potential damage it can and will do in the future, once this adorable puppy starts
reaching bigger proportions. He/she cannot accept your decision that this puppy is
ranked higher than for example a Lakeland Terrier.

4.6 Transforming reversed preference into doubt

4.6.1 Introduction

As just mentioned, the occurrence of reversed preference inλ̂ is not satisfactory
(even unacceptable). This can be solved by redefiningλ (or in terms of supervised
learning, altering the training data) in such a way that the reversed preferences dis-
appear. A very drastic solution could be to demand thata <X b⇒ λ(a) ≤L λ(b)
for the training data. A less drastic one, is to find a maximally consistent subset by
eliminating some of the data. Another possibility (see below) is to redefineC un-
til the resultingλ̂ behaves monotonically according to (4.5.2). All these proposals
have an invasive character, and might even be unfeasible in certain circumstances.
We therefore propose another, non-invasive method, that uses all available infor-
mation, and results in the closest possible consistent representation by defining a
mappingλ̃ such that(λ̃,≤[2]) does no longer contain reversed preferences.

4.6.2 Sources of reversed preference

We begin this section by an enumeration of how reversed preferences can arise in
the ranking problem. In this case, the classificationλ on Ω (or rather on a finite
sampleS ⊆ Ω) and the order≤L onL are furnished by a Decision Maker (DM).
The DM also gives the set of criteriaC to be considered. We first focus on reversed
preference between the ranking(λ,≤L) in Ω and the set of criteriaC, i.e. there
exist objectsa, b ∈ S such that

a <X b ∧ λ(a) �L λ(b) .

Now assuming that reversed preference occurs, there are several scenarios possible
for how these reversed preferences came into being:
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(i) The DM has based his decisions on the set of criteriaC:

(a) The DM has used some additional information not present inC. A
solution could be to find the criteriac1, . . . , cr 6∈ C the DM uses and
add them toC.

(b) The DM has made an inconsistent decision. In this case, the mappingλ
might be redefined in a consistent way by the DM. If this is not a pos-
sibility (e.g. the DM has no time, the samples are taken from past deci-
sions, . . . ), bothC andλ must remain unchanged. We will show next
how we can deal with this case.

(c) It is agreed thatC is the final set of criteria to be considered. Again we
have to keepC and(λ,≤L), including the conflict between them.

(ii) The DM has made his decisions before the setC was defined11:

(a) Some meaningful criteriac1, . . . , cr 6∈ C were missed in the first at-
tempt to construct the setC, such that(∃c ∈ {c1, . . . , cr})(a¬Scb).
This means thata does no longer dominateb w.r.t. C ∪ {c1, . . . , cr}.

(b) It is agreed thatC is the final set of criteria to be considered. We are in
the same situation as case (i–c).

(iii) There is more than one DM involved, and they do not share the same prefer-
ences, and/or they used different information, and/or they made a mistake.

Example 4.6.1.Ok, so the puppy with the big eyes caused reversed preference.
This is clearly a case of (1a), there is some additional information not present in the
your first set of criteria that only contained “size” and “non-nervousness”. Once
the decision had to be made, in your mind you also added the criteria “adorable”
and “bonds with me”.

Since for practical purposes we use the representation of the ranking, it is not really
necessary to solve the problems just stated. Indeed, we must only take care of
reversed preference inside the representation(λ̂,≤[2]) because of the following
proposition:

Proposition 4.6.2. Substituting the ranking(λ,≤L) by its representation(λ̂,≤[2])

(i) might eliminate existing reversed preference (i.e. ifa <X b and λ(a) �L

λ(b), then it can happen that̂λ(a) ≤[2] λ̂(b).)

(ii) will never introduce new reversed preferences.

Proof.
We will illustrate the first obvious assertion with a little example. Consider a rank-
ing (λ,≤L) with L = {1, 2, 3}, 1 <L 2 <L 3, {a, b, c, d} ⊆ Ω anda = b = x <X

11This means that the DM could not have made an inconsistent decision, because there are no criteria
yet to be inconsistent with.
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c = d = y. Furthermore, assume thatλ(a) = 1, λ(b) = 3, λ(c) = 2, λ(d) = 3.
This meansb andc give rise to reversed preference. However, we haveλ̂(x) =
[1, 3] ≤[2] λ̂(y) = [2, 3] and thusx andy do not give rise to any reversed prefer-
ences.
To prove the second assertion, consider a ranking(λ,≤L). Fora1, a2, b1, b2 ∈ Ω,
we assume there is doubt:a1 = a2 = x andb1 = b2 = y. We putλ(a1) =
r1, λ(a2) = r2, λ(b1) = s1, λ(b2) = s2. Without restrictions we may assume
that r1 ≤L r2, s1 ≤L s2, x ≤X y, λ̂(x) = [r1, r2] and λ̂(y) = [s1, s2]. Now
suppose there is no reversed preference betweenx andy w.r.t. (λ,≤L) andC, i.e.
(∀a ∈ Ω)(a = x) and(∀b ∈ Ω)(b = y) we haveλ(a) ≤L λ(b). This means
we must have thatr2 ≤L s1, which automatically leads tôλ(x) = [r1, r2] ≤[2]

λ̂(y) = [s1, s2]. 2

4.6.3 Dealing with reversed preference: intervals

The above proposition implies that if there is reversed preference inside the repre-
sentation(λ̂,≤[2]), it must have its origins in one of the situations described above.
If bothλ andC should remain unchanged, as in cases (i–b), (i–c) and (ii–b), we may
transformλ̂ into a mapping̃λ such that(λ̃,≤[2]) does no longer contain reversed
preference. This transformation should stay as close as possible to the originalλ̂,
and if there is no reversed preference in(λ̂,≤[2]), thenλ̃ should be equal tôλ.
We will now show how this transformation can be done. Assume there is reversed
preference inside the representation(λ̂,≤[2]), meaning we can findx,y ∈ ΩX such
that

x ≤X y andλ̂(x) = [r1, r2] 6≤[2] λ̂(y) = [s1, s2] .

Because of expression (4.4.2), we can never make the interval[r1, r2] or [s1, s2]
smaller without removing an object from the sample space. This would result in
neglecting the information that does not fit our formalisation. Thus, removing ob-
jects cannot be defended. As a consequence, we may only enlarge the intervals in
order to remove the inconsistency. To stay as close as possible to the original (in-
consistent) information, we will enlarge the intervals in a minimal way to eliminate
the reversed preference. We have

[r1, r2] 6≤[2] [s1, s2] ⇐⇒ (r1 >L s1) ∨ (r2 >L s2) ,

and we must try to find intervals[r̃1, r̃2] ⊇ [r1, r2] and[s̃1, s̃2] ⊇ [s1, s2] such that
[r̃1, r̃2] ≤[2] [s̃1, s̃2] or still (r̃1 ≤L s̃1) ∧ (r̃2 ≤L s̃2).

(i) s1 <L r1. We may only resolve this by reducings1 to somes̃1 andr1 to
somer̃1. It is obvious that we can turn the inequality into an equality if we
put r̃1 := s1 and keep̃s1 := s1. Moreover, this is the smallest12 change
possible in order to obtaiñr1 ≤L s̃1 with r̃1 ≤L r1 ands̃1 ≤L s1.

12There is only one acceptable distance measure on an ordinal scale, namely the distance in the
underlying graph.
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(ii) s2 <L r2. The smallest possible change to obtainr̃2 ≤L s̃2 with r̃2 ≥L r2

ands̃2 ≥L s2, is puttingr̃2 := r2 ands̃2 := r2.

So, we may eliminate this reversed preference by subjectingλ̂ to the transforma-
tion t:

t(λ̂(x)) = t([λ̂`(x), λ̂r(x)]) := [min(λ̂`(x), λ̂`(y)), λ̂r(x)] ,

t(λ̂(y)) = t([λ̂`(y), λ̂r(y)]) := [λ̂`(y),max(λ̂r(x), λ̂r(y))] .

Moreover, if there was no reversed preference, this transformation would just yield

t(λ̂(x)) = λ̂(x) and t(λ̂(y)) = λ̂(y) .

It should be noted that this transformation may create new reversed preferences.
The previous procedure must therefore be repeated until no more reversed prefer-
ences exist. It is clear that in the present finite setting, there is convergence, in the
worst case we would end up with the constant mapping to[inf L, supL].

Theorem 4.6.3.Let (λ,≤L) be a ranking inΩ, and letC be a set of criteria. Now
define

λ̃ : ΩX → L[2],

x 7→ [miny∈[x) λ̂`(y),maxy∈(x] λ̂r(y)] ,

where[x) = {x′ ∈ ΩX | x ≤X x′} and (x] = {x′ ∈ ΩX | x′ ≤X x}. We have
that

(i) The representation(λ̃,≤[2]) is consistent withC.

(ii) For all x ∈ X , it holds thatλ̂(x) ⊆ λ̃(x), and if (λ̂,≤[2]) is consistent,
thenλ̃ = λ̂.

(iii) There exists no other representation(λ,≤[2]) consistent withC such that for
all x ∈ X , it holds thatλ̂(x) ⊆ λ(x) ⊆ λ̃(x).

Proof.
(i) First note thatminy∈[x) λ̂`(y) ≤L maxy∈(x] λ̂r(y) since[x)∩(x] = {x}. Now
considerx,y ∈ ΩX such thatx ≤X y. This implies thatx ∈ (y] andy ∈ [x), and
so(x] ⊆ (y] and[y) ⊆ [x) (see Figure 4.6). From this it immediately follows that

λ̃(x) = [min
z∈[x)

λ̂`(z), max
z∈(x]

λ̂r(z)] ≤[2] λ̃(y) = [min
z∈[y)

λ̂`(z), max
z∈(y]

λ̂r(z)] .

(ii) Self-evident.
(iii) Let λ(6= λ̃) be such that for allx ∈ X , it holds thatλ̂(x) ⊆ λ(x) ⊆ λ̃(x).
Remark that, because of (ii), this is only possible if(λ̂,≤[2]) is not consistent. We
have that there exists at least onex ∈ X such thatλ(x) = [l, r] ⊂ λ̃(x). Assume
that l > miny∈[x) λ̂`(y). Evidently, this implies there exist a non-empty setY
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Figure 4.6:x ≤X y

of y >X x such that̂λ`(y) = i <L λ̂`(x) = j. Let y∗ ∈ arg miny∈Y λ̂`(y),
and i∗ = λ̂`(y∗). Since(∀z ∈ X )(λ̂(z) ⊆ λ(z)), we have thatj ∈ λ(x) and
i∗ ∈ λ(y∗). If (λ̂,≤[2]) is to be consistent, it must hold thati∗ ∈ λ(x). By
construction, we have thati∗ = miny∈[x) λ̂`(y) < l, a contradiction. 2

Essentially, we have enlarged the intervals in a minimal way such that there are no
more violations against the monotonicity requirement (4.5.2). In other words, we
transform the unacceptable reversed preferences into acceptable doubt.

Example 4.6.4.Let us demonstrate this on a small example taken from [48]. As-
sume we haveΩ = {a1, . . . , a6}, a single criterionc : Ω → ({1, . . . , 6),≤) and
a ranking (λ,≤) with f : Ω → {1, . . . 6}, as shown in Table 4.1(see also p. 69).
There is no doubt, soΩ ∼= ΩX . Table 4.2 lists the consistent representation of this
ranking.

a1 a2 a3 a4 a5 a6

c 2 1 4 3 6 5
λ 1 2 3 4 5 6

Table 4.1: A simple ranking(λ,≤).

a2 ≤X a1 ≤X a4 ≤X a3 ≤X a6 ≤X a5

λ̂ 2 1 4 3 6 5

λ̃ [1, 2] ≤[2] [1, 2] ≤[2] [3, 4] ≤[2] [3, 4] ≤[2] [5, 6] ≤[2] [5, 6]

Table 4.2: The consistent representation(λ̃,≤[2]) of (λ,≤).
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4.7 Representing a ranking: distributions

4.7.1 Introduction

Up to now, we have focussed on classifiers (functions with domainΩX ) that return
the possible values that can be assigned to each object. In this section, we go one
step further and consider probabilistic classifiersλ̂prob assigning to each element
of ΩX a probability distribution over the labels. (In caseΩ is finite, this is easily
achieved by normalising the frequency distributions associated with the elements
of ΩX .) As stated in the framework of Chapter 2, we shift our view from theset
interpretationto thedistribution interpretation(see p. 29).

4.7.2 Stochastic dominance

As before, we need to establish an order on the setF(L) of all possible probabilityF(L)

distributions13 overL. In the present context, the ordering that comes immediately
to mind is the stochastic dominance ordering. LetfX , fY ∈ F(L), and denote their
cumulative distribution functions asFX andFY , i.e. FX(i) = P(X ≤ i). Weak
(first order) stochastic dominanceD(1) is defined bySTOCHASTIC

DOMINANCE.

fX D(1) fY ⇐⇒ (∀i ∈ L)(FX(i) ≤ FY (i)) .

Figure 4.7: Stochastic dominance (continuous case).

Remark that if we consider the support= {` ∈ L | f(`) > 0}, then

fX D(1) fY

⇓
[min,max] ≥[2] [min,max] .

Of course, the converse does not hold, e.g. forL = {1, 2, 3}, fX = (0.4, 0.4, 0.2)
andfY = (0.2, 0.8, 0).
Along the same line, we have the following lemma:

13If L = {1, . . . , k}, then we denote a distributionfX ∈ F(L) as a vector of dimensionk: fX =
(P(X = 1), . . . ,P(X = k)).
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Lemma 4.7.1. If we identify each interval ofL[2] with a uniform distribution func-
tions over this interval, the order≤[2] just coincides withE(1).

Proof.
This can be easily seen in Figure 4.8, where we consider 2 intervalsI1 and I2,
and the corresponding the cumulative uniform distributions functionsFi over the
intervalsIi (for i = 1, 2). The other configurations not depicted in the figure are
equally obvious.

Figure 4.8: Intervals and uniform distributions.

4.7.3 Meaningful representations

For a representation to be meaningful, it should at least make the second assertion
of Proposition 4.6.2 true. Because of its importance, we will look for a class of rep-
resentations that can guarantee this assertion. This can easily be done by imposing
a kind of minimal consistency on the representation(λrepr,EIm).

Definition 4.7.1

We say that the representation(λrepr,EIm) of (λ,≤L) is minimally consistent in MINIMALLY

CONSISTENT.U ⊆ X , if for all x,y ∈ U with x ≤X y, it holds that

λ̂r(x) ≤L λ̂`(y) =⇒ λrepr(x) EIm λrepr(y) .

Obviously, any consistent representation is also minimally consistent. Similar to
Proposition 4.6.2 we can prove that

Proposition 4.7.2. Substituting the ranking(λ,≤L) by a representation(λrepr,EIm)
that is minimally consistent inΩX will never introduce new reversed preferences.

It is clear that(λ̂prob,E(1)) satisfies Definition 4.7.1. Moreover, also the first part of
Proposition 4.6.2 can be kept using the same proof, but this cannot be generalised
for all (λrepr,EIm).
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4.7.4 Consistent representations

In this new setting, we aim once more at finding a representation without reversed
preferences, and preferably without reducing the support of the distributions (which
is equivalent to not removing any objects as advocated in Section 4.6). Consider
an x ∈ ΩX , with λ̂prob(x) = fx. We know that for ally ≤X x (and of course
y ∈ ΩX ), it should hold thatfy E(1) fx or Fy(i) ≥ Fx(i), and therefore

Fx(i) ≤ min
y∈(x]

Fy(i) .

At the same time, for ally ≥X x, it should hold thatfx E(1) fy, or

Fx(i) ≥ max
y∈[x)

Fy(i) .

However, it may very well happen (if(λ̂prob,E(1)) contains reversed preferences)
thatminy∈(x] Fy(i) < maxy∈[x) Fy(i). For example, withΩX = {x,y}, x ≤X
y, L = {1, 2}, fx = (0, 1) andfy = (1, 0), we find the constraintsFx(1) ≤ 0 and
Fx(1) ≥ 1.

Theorem 4.7.3.Let (λ,≤L) be a ranking onΩ. For all y ∈ ΩX , we denote
λ̂prob(y) = fy. Lets ∈ [0, 1]. For all x ∈ ΩX , for all i ∈ L, we define:

F̃x(i) := (1− s) · Fm(x, i) + s · FM (x, i)

where

Fm(x, i) = min
y∈(x]

Fy(i) , with (x] = {x′ ∈ ΩX | x′ ≤X x} ,

FM (x, i) = max
y∈[x)

Fy(i) , with [x) = {x′ ∈ ΩX | x ≤X x′} .

If we set̃λprob(x) = f̃x, then we have that

(i) (λ̃prob,E(1)) is consistent.

(ii) If (λ̂prob,E(1)) is consistent, theñfx = λ̂prob(x), for all x ∈ ΩX .

Proof.
Firstly, remark thatF̃x may indeed be regarded as a cumulative distribution func-
tion. Indeed, sincei ≤L j ⇒ (∀y ∈ ΩX )(Fy(i) ≤ Fy(j)), we find thatFm(x, ·)
andFM (x, ·) are non-decreasing (in their second argument), and hence alsoF̃x.
ClearlyF̃x(maxL) = 1.

(i) Now considerx,y ∈ ΩX , with x ≤X y. We need to prove that̃fx E(1) f̃y.
We know that(x] ⊆ (y] and[x) ⊇ [y). Let i ∈ L. We have

min
z∈(x]

Fz(i) ≥ min
z∈(y]

Fz(i) ,

max
z∈[x)

Fz(i) ≥ max
z∈[y)

Fz(i) ,
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i.e.Fm(·, i) andFM (·, i) are non-increasing (in their first argument). Hence
F̃x(i) ≥ F̃y(i).

(ii) When(λ̂prob,E(1)) is consistent, we have thatFm(x, i) = miny∈(x] Fy(i) =
Fx(i) andFM (x, i) = maxy∈[x) Fy(i) = Fx(i). 2

The proposed family of solutions to the problem is certainly not the sole one. This
in severe contrast with the unique solution put forward in Theorem 4.6.3. Also
notice that the support is not reduced fors ∈ ]0, 1[.

Example 4.7.4.A small example demonstrating the above proposition is given in
Table 4.3.

x1 ≤X x2 ≤X x3

λ̂prob(x) = fx (0.4, 0.4, 0.2) (0.2, 0.8, 0.0) (0.2, 0.3, 0.5)
Fx (0.4, 0.8, 1.0) (0.2, 1.0, 1.0) (0.2, 0.5, 1.0)
F̃x (0.4, 0.9, 1.0) (0.2, 0.9, 1.0) (0.2, 0.5, 1.0)

λ̃prob(x) (0.4, 0.5, 0.1) E(1) (0.2, 0.7, 0.1) E(1) (0.2, 0.3, 0.5)

Table 4.3: The consistent representation(λ̃prob,E(1)) of (λ,≤) usings = 1
2 .

We could avoid introducing the parameters by simply defining an interval func-
tion, as we did in Section 4.6.3. So instead of pint-pointing a specific probability
distribution for each object, we only designate an indicative region wherein the
probability distributions can be found. This approach is more honest in that it does
not give a false impression of accurateness in the case there is in fact not enough
information available to be accurate.
We now define the notion of an interval of (cumulative) distributions:

Definition 4.7.2

Let fX andfY be two probability distributions overL, with fX E(1) fY . Then we
define a(probability distribution) interval as (PROBABILITY

DISTRIBUTION)
INTERVAL [fX , fY ].[fX , fY ] = {fZ ∈ F(L) | fX E(1) fZ E(1) fY } .

We choose to denote the corresponding interval of cumulative distributions as

[FX , FY ] = {FZ ∈ Fcum(L) | (∀i ∈ L)(FX(i) ≥ FZ(i) ≥ FY (i))} ,

whereFcum(L) is the set of cumulative distribution functionsF corresponding to
anf ∈ F(L).
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This approach leads to the following non-invasive definition ofF̃x as an interval:

F̃x := [F̃ `
x, F̃ r

x ] ,

where

F̃ `
x(i) = max(Fm(x, i), FM (x, i)) ,

F̃ r
x(i) = min(Fm(x, i), FM (x, i)) ,

with

Fm(x, i) = min
y∈(x]

Fy(i) ,

FM (x, i) = max
y∈[x)

Fy(i) .

The functionF̃ `
x can be interpreted as the cumulative distribution function off̃ `

x,
and F̃ r

x as the cumulative distribution function of̃fr
x. We obviously have that

F̃ `
x(i) ≥ F̃ r

x(i), whencef̃ `
x E(1) f̃r

x.

Proposition 4.7.5. Let (λ,≤L) be a ranking onΩ. Define the function

λ̃prob(x) := [f̃ `
x, f̃r

x] ,

and the relationE[2]
(1) as

[fX , fY ] E[2]
(1) [fS , fT ] ⇐⇒ (fX E(1) fS) ∧ (fY E(1) fT ) .

It holds that the representation(λ̃prob,E
[2]
(1)) is consistent.

As an alternative to Theorem 4.7.3, we now have:

Corollary 4.7.6. If we define

λ̃prob(x) = (1− s) · f̃ `
x + s · f̃r

x ,

then(λ̃prob,E(1)) is consistent.

4.8 Summary

GENERAL:
A (complete) ranking(λ,≤L) on Ω consists of a classificationf : Ω → L and a
(complete) order≤L onL.

When the objects are described by a set of criteriaC, Ω is represented byΩX ⊆ X
and the representation of a ranking is in general written as:

(λrepr,DIm) .

The description by criteria results in the elementary monotonicity constraint

x >X y⇒ λrepr(x) DIm λrepr(y) .



4.8. SUMMARY 111

MONOTONE REPRESENTATION:
We describe 3 different monotone representations(λrepr,DIm):

• set-based: (based on̂λ(x) = {λ(a) | a ∈ Ω ∧ a = x})

1 (λ̃,≤[2]), with λ̃ : ΩX → L[2] ,

x 7→ [miny∈[x) λ̂`(y),maxy∈(x] λ̂r(y)] ,

λ̂`(x) = min{λ(a) | a ∈ Ω ∧ a = x} ,

λ̂r(x) = max{λ(a) | a ∈ Ω ∧ a = x} ,

and≤[2] the order onL[2] defined by

[r1, r2] ≤[2] [s1, s2] ⇐⇒ (r1 ≤L s1) ∧ (r2 ≤L s2) .

• distribution-based: (based on̂λprob(x) = fx, the probability distribution
of x overL according toλ)

2 (λ̃prob,E(1)), with λ̃prob : ΩX → F(L) ,

x 7→ f̃x ,

F̃x(i) = (1− s) · Fm(x, i) + s · FM (x, i) ,

Fm(x, i) = min
y∈(x]

Fy(i) , FM (x, i) = max
y∈[x)

Fy(i) ,

andE(1) the weak first order stochastic dominance relation.

3 (λ̃prob,E
[2]
(1)), with λ̃prob : ΩX → F(L)[2] ,

x 7→ [f̃ `
x, f̃r

x] ,

F̃ `
x(i) = max(Fm(x, i), FM (x, i)) ,

F̃ r
x(i) = min(Fm(x, i), FM (x, i)) ,

andE[2]
(1) the order onF(L)[2] defined by

[fX , fY ] E[2]
(1) [fS , fT ] ⇐⇒ (fX E(1) fS) ∧ (fY E(1) fT ) .
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Interlude

CREATIVE PROCESSES

Sometimes, my mind can be as predictably uncontrollable as the regular
ebb and flow of the tides. Having tremendous amounts of work is one of
the catalysts to such behaviour. Typically, when time runs the shortest, a
frenzy of artistic creativity will surge and dominate my thoughts. Perfect
testimonies are these interludes, and the piano that doesn’t stop beckoning
me (like just an instant ago, when it lured me into Chopin’s magnificent
Revolution Étude).
The other way round, when I want to take some time off, my mind keeps
equally rushing and whirling with thoughts and ideas concerning my re-
search.

MONTPELLIER. Somewhere in February, I had planned a short trip to
Montpellier (France), to visit a girlfriend and indulge in some rock climb-
ing. During the last minutes preceding my departure, I made the mistake of
running the OSDL algorithm on some newly obtained data sets, and hence,
the last image burned on my retina before closing my door was a screen
displaying some very good results on one, and some slightly disappointing
results on another data set. And of course, during the whole journey, it
was the “slightly disappointing” that kept rumbling in my head on the sedate
rhythm of the thundering train. I soon discovered the heart of the problem,
and the first clues towards its solution began dawning on me.

A STROLL AT THE BEACH. The day after I arrived, I had a nice solitary
walk on the beach and let the wind blow away my continuous pondering.
However, instead of a clear mind, I found a patch of sand on which I started
to etch what became the essence of the Balanced OSDL algorithm. When
I was finished, the clouds in my mind had dissipated completely, and I was
finally free to enjoy the remainder of my stay in the south of France.
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5.1 Introduction

With the mortar and tools prepared in the previous chapter, the path has been paved
to deal in a mathematically and semantically sound way with rankings in the context
of supervised learning. In Chapter 4, we have given a definition, a representation
when dealing with attributes (in which case we are on the territory of ordinal re-
gression), and a consistent interval and stochastic representation when dealing with
criteria.
Although our main interest was in trying to find acceptable representations of a
ranking that could be presented to a decision maker, it appears that the resulting
propositions also constitute a solid basis for an instance-based learning method, i.e.
a learning method that stores the given learning samples (instances) into memory
in some kind of format, and is able to deduce from them the class labels of unseen
objects by some usually local extrapolation technique. As such, we provide an
alternative to OLM, the Ordinal Learning Model [9]. That is the topic of the present
chapter.

5.2 Supervised learning of a ranking

Notions and conventions. A function f : (X,≤X) → (Y,≤Y ) between two
posets(see p. 52)(sets equipped with anorder, i.e. a reflexive, antisymmetric, transi-
tive relation) is calledmonotoneif for all x, y ∈ X it holds thatMONOTONE

FUNCTION.

x ≤X y ⇒ f(x) ≤Y f(y) .

A chain is a completely ordered set(X,≤X), i.e. for allx, y ∈ X we have eitherCHAIN .

x ≤X y or y ≤X x.
Let fX andfY be two probability distributions over a finite setL, and denote their
cumulative distribution functions asFX andFY , i.e.FX(i) = P(X ≤ i), then the
weak (first order) stochastic dominance relation(see p. 106)E(1) is defined bySTOCHASTIC

DOMINANCE.

fX E(1) fY ⇐⇒ (∀i ∈ L)(FX(i) ≥ FY (i)) .

The cardinality of a setX is denoted by|X|.

5.2.1 The classification problem

The basic problem. For some object spaceΩ, the goal is to attach labels from
a finite setL to the objects inΩ, i.e. to find a classificationλ : Ω → L. This
classification must be such that, for a given finitelearning sample (also calledLEARNING SAMPLE

Λ. data set) Λ = (S, d), whereS ⊆ Ω andd : S → L, somerisk functional (also
DATA SET.

RISK FUNCTIONAL

R.

callederror function ) R(λ) is minimised. The functionalR is typically based on
a predefinedloss function` : L × L → R. For example the expected value of the

LOSS FUNCTION`. losses on some test sample:R = E[`(λ(a), d(a)) | a ∈ Stest]. The classification
error is then obtained by choosing the loss function`(i, j) = 1 if i = j, and0
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otherwise; and ifL ⊆ R, then the mean absolute error is obtained by choosing
`(i, j) = |i− j| (remark thatL ⊆ R in itself is no guarantee that the this measure
is meaningful).

Flat-line problems. We will only consider so-calledflat-line problems, i.e. the FLAT-LINE .

objects are described by a fixed and finite set of attributesQ = {qi : Ω → Xqi |
i ∈ N = {1, . . . , n}}, and hence any objecta ∈ Ω can be written as a vectora =
(q1(a), . . . , qn(a)) in the data spaceX =

∏n
i=1 Xqi

. Usually, the search is then DATA SPACEX .

concentrated on finding a representation of a classification1: λ̂ : X → L. Also, the
learning sampleΛ is transformed into a set of couplesΛX = {〈a, d(a)〉 | a ∈ S}. ΛX , SX
We will also use the notationSX = {a | a ∈ S} ⊆ X .

The stochastic problem. Instead of linking a single class label to an object, the
goal is to attach a probability distribution function over the labels to it. In other
words, we are looking for a function̂λprob : X → F(L), whereF(L) is the set of all F(L)

probability distributions overL. Such classifiers are calleddistribution classifiers. DISTRIBUTION

CLASSIFIER.If we write L = {1, . . . , k}, an elementfX ∈ F(L) is sometimes written as a
vector(P(X = 1), . . . ,P(X = k)). For x ∈ X , we will denoteλ̂prob(x) = fx. fx

Remark that it is possible that the learning sample itself is already stochastic, i.e.
d : S → F(L).

Returning a single label. If a single label is asked for an object when a stochas-
tic solution λ̂prob : X → F(L) was found, usually the Bayesian decision (which
minimises the risk) is returned, i.e. the label with highest probability.

5.2.2 The ranking problem

The basic problem. For thecomplete ranking(see p. 90)problem, the goal is the
same as for classification, but now the labelsL are completely ordered by≤L
(i.e. (L,≤L) is a chain) andλ(a) >L λ(b) is to be interpreted as “a is strictly
preferred tob”. The learning sample now has the formΛ = (S, (d,≤L)) with
d : S → (L,≤L).

Flat-line problems. For rankings, the objects are not described by a setQ of at-
tributes but by a setC of criteria. Acriterion [97] (see p. 98)is defined as a mapping CRITERION.

c : Ω → (Xc,≥c), where(Xc,≥c) is a chain, such that it appears meaningful to
compare two objectsa andb, according to a particular point of view, on the sole
basis of their evaluationsc(a) andc(b). We will only consider so-calledtrue cri-
teria [20]: a is preferred tob according to criterionc if c(a) >c c(b). See also TRUE CRITERION.

Figure 4.5(see p. 99)for the difference between attributes and criteria.
The search is now concentrated on finding a representation(λ̃,≤L), whereλ̃ :
(X ,≤X ) → (L,≤L). The use of criteria induces anelementary monotonicity

1To be completely correct, we should writeλ̂ : ΩX → L, with ΩX = {a | a ∈ Ω} ⊆ X .
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constraint (see p. 100)on this representation:x ≤X y ⇒ λ̃(x) ≤L λ̃(y). In other
words, the problem boils down to the following:

The flat-line problem

Find a functioñλ : (X ,≤X )→ (L,≤L) such that:

(i) λ̃ is non-decreasing,

(ii) λ̃ minimises some risk functionalR.

The learning sampleΛX is called (non-decreasing)monotone if a ≤X b ⇒MONOTONE

LEARNING SAMPLE. d(a) ≤L d(b). Remark that in many situations, however, the learning sampleΛX
will not be monotone itself. There might for example be some error in the sample,
or the labels in the learning sample may be based on a different set of criteria than
the one used to describe the objects (a more thorough discussion about the rea-
sons of non-monotonicity can be found in Section 4.6.2(see p. 101), in Section 7.1.3
(see p. 183)the discussion is held in the context of supervised learning).
A popular assumption (typically coming from utility theory2, e.g. [57, 66] con-
cerning ordinal classification) is that an ordinal variable is the result of a coarsely
measured latent continuous variable. In that case, the ordinal ranking problem
is altered into acontinuousranking problem: find a non-decreasing real function
λ̃R : X → R, and, if we writeL = {1, . . . , k}, a strictly increasing (extended)
real functionU : {0, 1, . . . , k} → R with U(0) = −∞ andU(k) = +∞. The
function λ̃ : X → L is then defined bỹλ(x) = ` ⇐⇒ ` ∈ ]U(` − 1), U(`)].
Remind however the discussion in Section 1.2.3. Therefore, we will not pursue this
strategy any further. In practice however, as pointed out in [44], a continuous result
may be desirable because it allows the division of the population of objects into
smaller groups. We will show in Equation (5.2.1) how this can be achieved, if the
need arises, for monotone stochastic classifiers.

The stochastic problem. The problem now becomes to find a functionλ̃prob :
(X ,≤X )→ (F(L),E(1)), whereE(1) is the weak first order stochastic dominance
relation. The elementary monotonicity constraint becomes:

x ≤X y⇒ λ̃prob(x) E(1) λ̃prob(y) .

Therefore, the problem can be restated as shown in the frame on the next page.
Indeed, letx ∈ X . Because of the second and third condition onF̃ , the function
F̃x : L → [0, 1] with F̃x(i) := F̃ (x, i), can be interpreted as the cumulative dis-
tribution function of a probability distributioñfx. If we now define the distribution
classifierλ̃prob : X → F(L) asλ̃prob(x) := f̃x, then the first condition oñF makes
of λ̃prob : (X ,≤X )→ (F(L),E(1)) a monotone (non-decreasing) function.

2See http://cepa.newschool.edu/het/essays/uncert/choiceref.htm for a selection of references.

http://cepa.newschool.edu/het/essays/uncert/choiceref.htm
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The stochastic problem

Find a functionF̃ : X × L → [0, 1] such that

(i) F̃ is non-increasing in its first argument,

(ii) F̃ is non-decreasing in its second argument,

(iii) F̃ (·,maxL) = 1,

(iv) F̃ minimises some risk functionalR.

And defineλ̃prob : (X ,≤X )→ (F(L),E(1)) by λ̃prob(x) := f̃x

with cumulative distributioñF (x, ·).

In this way, the ordinal ranking problem has been decomposed intok = |L| con-
tinuous ranking problems, each with its own derived data set: for eachi ∈ L,
find a non-increasing functioñF (·, i) : X → [0, 1] based on the learning sample
(S, (F̂ (·, i),≤)), whereF̂ (x, i) := F̂x(i) = p̂ (class label≤L i | x), the probabil-
ity estimated from(S, (d,≤L)) that an objecta has a class label at most as high asi
given thata = x. However, thesek problems can not be treated independent from
each other because the corresponding functionsF̃ (x, ·) should be non-decreasing!

Returning a single label. Sometimes, it is necessary to return a single label in-
stead of a distribution. However, the Bayesian decision used for distribution clas-
sifier comes with a little catch in the present context. Suppose thatx ≤X y and
fx E(1) fy. If we defineλ̂′ as the label with the highest probability, we might end

up with λ̂′(x) >L λ̂′(y), i.e. there is no guarantee thatλ̂′ : (X ,≤X ) → (L,≤L)
is still monotone! To illustrate this, considerL = {1, 2, 3, 4}, x ≤X y with fx =
(0.1, 0.3, 0.4, 0.2) andfy = (0, 0.4, 0.3, 0.3). We have indeed thatfx E(1) fy, but

λ̂′(x) = 3 >L λ̂′(y) = 2.
To ensure the monotonicity of the predicted labels, we can perform a step that is
not ordinal in nature: we take the mean of the distribution assuming equidistance
between the labelsL = {1, . . . , k}, hence turning the ordinal scale into an inter-
val scale. Next, we round this value to the nearest integer. This then leads to a
monotone ranking because it is known [83] that

fX E(1) fY ⇒ E[fX ] ≤ E[fY ] . (5.2.1)

5.2.3 Stochastic representation

Data fitting. The first problem at hand is to find a model that aims at reproducing
the given sample data, i.e. a model that is only focussed on attaching the labels to
the objects in the learning sample. This is handled by the following theorem, which
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is a slight reformulation of Theorem 4.7.3(see p. 108)in the context of supervised
learning.

Theorem 5.2.1.Let (d,≤L) be a ranking inS. For all y ∈ SX = {a | a ∈
S}, let f̂y denote a probability distribution estimated from(S, d), i.e. f̂y(i) =f̂y

p̂ (class= i | y). The associated cumulative distribution function is denoted byF̂y.F̂y

Lets ∈ [0, 1]. For all x ∈ X , for all i ∈ L, define:

F̃ (x, i) := (1− s)Fm(x, i) + sFM (x, i) (5.2.2)

where

Fm, FM
Fm(x, i) = min

y∈(x]∩SX
F̂y(i) and FM (x, i) = max

y∈[x)∩SX
F̂y(i) ,

with (x] = {x′ ∈ X | x′ ≤X x} and likewise for[x). If (x] ∩ SX = ∅, define(x], [x)

Fm(x, i) = 1, and if [x) ∩ SX = ∅, defineFM (x, i) = 0. It holds that

(i) F̃ is non-increasing in its first argument,

(ii) F̃ is non-decreasing in its second argument and

(iii) F̃ (·,maxL) = 1.

Remark that the previous theorem is in fact a bit more general than Theorem 4.7.3:

• it allows any estimation̂Fy for Fy. In this thesis however, we will only use
the discrete estimation, i.e.

F̂y(i) =
|{a ∈ S | (a = y) ∧ (d(a) ≤L i)}|

|{a ∈ S | (a = y)}|
.

• it definesF̃ (x, i) for all x ∈ X and not just forx ∈ SX .

It is easily checked that these adaptations do not affect the proof in any way. Also
remark that this theorem allows to work with both ordinal and numerical criteria.

Data extrapolation. After the step of data fitting, a natural continuation is data
extrapolation, where we try to predict the label/distribution of unseen vectors inX \
SX . Since the previous theorem defines probability distributionsf̃x for all x ∈ X ,
we can simply use the same procedure as for the data fitting, which still leads to a
monotone solution (w.r.t. stochastic dominance). This will constitute the essence
of the OSDL algorithm.

Example 5.2.2.Let us have a closer look at what happens exactly. In Figure 5.1,
the cumulative distributionŝFy(i) for i = 1, 2 of some learning sample are de-
picted in two sub-figures (only the data needed to determineF̃ (x, i) is displayed).
Figure 5.1(a) shows the continuous subproblem of findingF̃ (·, 1) where the de-
rived data set is monotone; in (b) the derived data set for the continuous subprob-
lem of findingF̃ (·, 2) is non-monotone. Fori = 1, we findFm(x, 1) = 0.5 and
FM (x, 1) = 0.4, and fori = 2 we haveFm(x, 2) = 0.6 andFM (x, 2) = 0.8.
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(b) F̂y(i), i = 2.

Figure 5.1: Data extrapolation, essence of OSDL.

Interpolation. It should be noted that the above described data extrapolation
method based on Equation (5.2.2) has a drawback: it demands that, once fixed, the
same parameters must be used for all vectors. The restrictions this entails are eas-
ily demonstrated in the following 1-dimensional example with a monotone sample
set: assume we haveSX = {z1, z2}, a single criterionc : Ω→ ({1, . . . , 4),≤) and

(a) Table.

z1 z2 x y

c 1 4 2 3
F̂ (·, i) 0.2 0.7

(b) Linear interpolation.

-
c1

6F̃ (·, i)

1
z1

2
x

3
y

4
z2

0.2

0.7

1

r
r

Table 5.1: Simple one-dimensional interpolation.

a continuous ranking(F̂ (·, i),≤) with F̂ (·, i) : SX → [0, 1], as shown in Table 5.1.
We find Fm(x, i) = Fm(y, i) = F̂ (z1, i) = 0.2 andFM (x, i) = FM (y, i) =
F̂ (z2, i) = 0.7, and therefore, by Equation (5.2.2),F̃ (x, i) = F̃ (y, i), even if we
know thatx <X y. Simple linear interpolation (if we forget about the ordinal
nature of the problem) makes a difference betweenx andy.
An idea that comes to mind, is to apply Theorem 5.2.1 on the given sample (i.e.
data fitting ensuring monotonicity), and afterwards, use some standard interpola-
tion technique on the cumulative distribution functions, such as triangle-based in-
terpolation or natural neighbour interpolation [120]. But this doesn’t work: first of
all, this would force us to transform the ordinal scales on the axes to an interval
scale. More importantly however, even if such a transformation could be done, the
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existing interpolation techniques cannot guarantee a monotone behaviour, making
them ill suited for the job. This can be seen from the following example:

Example 5.2.3.Assume we haveSX = {z1, z2, z3},X = {0, 1, 2}×{0, 1, 2} and
a continuous ranking(F (·, i),≤) with F (·, i) : SX → [0, 1], as shown in Table 5.2.
We want an interpolation forx = (1, 1). BecausẽF must be non-increasing in its

(a) Table.

z1 z2 z3 x

X (0,1) (2,0) (1,2) (1,1)

F (·, i) 1 0 1

(b) Interpolation.

Table 5.2: Example of non-monotone interpolation.

first argument, andz1 ≤X x ≤X z3, we know that̃F (x, i) = 1. But interpolation
would result inF̃ (x, i) < 1, since it will be evaluated asw1×1+w2×0+w3×1,
with w2 6= 0.

Very recently, a monotone interpolation method based on splines was proposed
in [8]. It would be worthwhile to investigate this path further since it is most likely
that it will boost the performance of the data extrapolation.

5.3 The algorithm

5.3.1 OSDL

Introduction. Based on Theorem 5.2.1, we can easily create an instance-based
learner. The learner is built in 2 phases: first the data base is constructed, simply
keeping track of the discrete (cumulative) distribution estimates, then the param-
eters is determined via leave-one-out cross validation (similar to how the param-
eterk is found in the WEKA [124] implementation of thek-Nearest Neighbour
method). Classifying a new instancex ∈ X is done by applying Equation (5.2.2).

The basic algorithm. If we want the distribution for a new instance, we use
Algorithm 5.1. If a single label is required, the functionsingleLabel returns the
mean3 – rounded to the nearest integer – of a probability distribution (see (5.2.1)).

3Remember that this is in fact not a valid ordinal operation. However, using the “ordinal-proof”
median (the quantile of order 1/2) led to extremely poor results on the first tests, so we abandoned it
quite rapidly.

http://www.cs.waikato.ac.nz/ml/weka/
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Algorithm 5.1 : distributionFor , calculate the probability distribution

x← new instance to classify;
calculate the boundsFm(x, ·) andFM (x, ·);
return (1− s)Fm(x, ·) + sFM (x, ·);

The algorithm for building the data base is shown in Algorithm 5.2. The data base
can be updated when new data becomes available. For an example〈x, i〉 ∈ ΛX ,
the functionaddInstance(〈x, i〉) simply addsx to the data base if it is not al-
ready present, and updates the relative frequencyf̂x ∈ F(L) of examples with
vector representationx. The functionremoveInstancejust does the opposite. As
always, we denote probability distributions byf and the corresponding cumula-
tive distribution functions byF . To fill in the role of the risk functionalR that
has to be minimised, we have chosen the mean of the losses over alla ∈ S:
R = E[`(d(a), prediction(a))]. Algorithm 5.2 builds the data base and performs a
leave-one-out cross validation to tune the parameters.

Scalability. It is fairly simple to perform all necessary calculations in a paral-
lel way by simply dividing the training sample overn machines: all calculations
are based on taking the minimum and the maximum inR, which are decom-
posable aggregation operators (for two setsA,B ⊆ R, we haveminA ∪ B =
min(minA,minB) and likewise for the maximum).

A possibly more efficient approach. Each time a new instance has to be ranked,
the previous algorithm asks to calculate the valuesFm(x, i) = miny∈(x]∩SX F̂y(i)
andFM (x, i) = maxy∈[x)∩SX F̂y(i) for all i ∈ L. This is clearly the bottleneck of
this algorithm because time and again, it demands going over the whole data base.
Probably4, a better organisation of the data base would reduce the computation
time. A possible technique is the following: cluster the vectors fromSX into a
series of intervals[y`,yr]. If a new instancex must be ranked, we know that for
some interval[y`,yr]:

(i) If x is incomparable with bothy` andyr, thenx is also incomparable to all
vectorsy ∈ [y`,yr]. This means we can disregard the vectors in[y`,yr] for
the calculation ofFm(x, ·) andFM (x, ·).

(ii) If x ≤X y` then(∀y ∈ [y`,yr])(x ≤X y), which means that by keeping in
memoryF ′

y`
= maxy∈[y`,yr] F̂y allows us to disregard the vectors in[y`,yr]

and only considerF ′
y`

for the calculation ofFM (x, ·).

(iii) If x ≥X yr then(∀y ∈ [y`,yr])(x ≥X y), which makes it interesting to
memoriseF ′

yr
= miny∈[y`,yr] F̂y.

4We have not yet tested this idea by practical experience. This is a path for future research.
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Algorithm 5.2 : Build , build the data base and tune the parameters with leave-
one-out cross validation

// commit data base to memory
for all examples〈x, i〉 ∈ ΛX do

addInstance(〈x, i〉);
end for
if minX 6∈ data basethen

// to make sure Fm can always be calculated
addInstance(〈minX ,minL〉);

end if
if maxX 6∈ data basethen

// to make sure FM can always be calculated
addInstance(〈maxX ,maxL〉);

end if

// cross validation for parameter tuning
for all examples〈x, i〉 ∈ ΛX do

removeInstance(〈x, i〉);
calculate the boundsFm(x, ·) andFM (x, ·);
// we check s = 0 to 1 with steps of 0.1
for s′ = 0 to s′ = 10 do

s← s′/10;
Fs(x, ·)← (1− s)Fm(x, ·) + sFM (x, ·);
error[s′] = error[s′]+ loss (i, singleLabel(fs(x, ·)));

end for
addInstance(〈x, i〉);

end for
for s′ = 0 to s′ ≤ 10 do

R[s′]← error[s′]/ |ΛX |;
end for
s← (arg mins′=0,...,10 R[s′])/10;

To find these clusters, a grid-based clustering technique [14], like MAFIA [81],
is probably most suited since this technique is naturally linked to intervals inX .
Investing some more energy in the building of the data base will then save time in
the classification process.

5.3.2 Balanced OSDL

Introduction. We already mentioned the rigidness of fixing globally a single pa-
rameters. It woud be interesting to have a more locally adaptive parameter that
incorporates more of the available information. When dealing with non-monotone
data sets, this inflexible behaviour is even more annoying. Indeed, consider the fol-
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lowing extreme case: we have a data setΛX with minX 6∈ SX andmaxX 6∈ SX .
Now add two serious outliers to this data set:〈minX ,maxL〉 and〈maxX ,minL〉.
In that case we find for allx ∈ X and for alli <L maxL thatFm(x, i) = 0 and
FM (x, i) = 1 (see Table 5.3). Therefore, we always have thatF̃ (x, i) = s.

a1 a2 a3 a4 a5 a6

c 1 2 3 4 5 6
d 2 1 1 2 2 1

F̂ (·, 1) 0 1 1 0 0 1
F̃OSDL(·, 1) 0.5 0.5 0.5 0.5 0.5 0.5

Table 5.3: An extreme situation. OSDL withs = 1
2 .

In this section, we try to overcome this latter problem by extracting additional in-
formation from the data set: we construct a weighting mechanism that considers
the number of samples that endorse the idea that a vectorx belongs to some rank
≤L i, and the number of samples that contradict this. The proposed adaptation only
deals with non-monotone behaviour, in case the data set is monotone, we still end
up with the standard OSDL technique.

Recapitulation Section 4.7.4

Weighting. Assume the ranking(λ,≤L) is known and that we are in the ideal
situation where the probability distributionsfx behave monotonically, i.e. we could
not have chosen a better set of criteria to describe the problem. This means that for
all y ≤X x, it holds thatfy E(1) fx or Fy(i) ≥ Fx(i) for all i ∈ L, and therefore

Fx(i) ≤ min
y∈(x]

Fy(i) .

At the same time, for ally ≥X x, it should hold thatfx E(1) fy, or

Fx(i) ≥ max
y∈[x)

Fy(i) .

Now consider the case where we only have a learning sample(S, (d,≤L)) at our
disposal. If it is a good sample, it should reflect the actual ranking(λ,≤L), so the
estimationsf̂x of the probability distributionsfx should also be monotone. In that
case, we should have

min
y∈(x]∩SX

F̂y(i) = Fm(x, i) ≥ F̃x(i) ≥ FM (x, i) = max
y∈[x)∩SX

F̂y(i) .

So we can interpretFm(x, i) as the one pushingx towards labels>L i, and simi-
larly FM (x, i) as the one pullingx down to labels≤L i. Indeed, asFm(x, i) drops
to 0, F̃x(i) is also forced towards0, implying that the probability thatx gets a label
at mosti plunges to zero:(∀` ≤L i)(f̃x(`)→ 0). In other words, the label attached
to x is very likely higher thani. Similarly, asFM (x, i) rockets towards1, it also
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lifts F̃x(i) up to the same level. This implies that the probability thatx gets a label
at mosti jumps to one:(∀` ≤L i)(f̃x(`)→ 1).
Sometimes, however,Fm(x, i) and FM (x, i) may become a bit overactive and
pull and pushx over the edge. Indeed, it is possible thatFm(x, i) < FM (x, i).
When this happens, we could look for evidence supporting the pushing, and for
evidence supporting the pulling. In more concrete terms: we can regard the ob-
jectsa ∈ S with a ≤X x and labelledλ(a) >L i as evidence in favour of the
pushyFm(x, i), and objectsb with b ≥X x labelledλ(b) ≤L i as being in league
with the pullingFM (x, i).

Proposition 5.3.1. Letx ∈ X and denote for alli ∈ L

Nm, NM Nm(x, i) = |{a ∈ S | (a ≤X x) ∧ (d(a) >L i)}| ,
NM (x, i) = |{a ∈ S | (a ≥X x) ∧ (d(a) ≤L i)}| .

Now defineF̃ (x, i) as in Equation (5.2.2) ifFm(x, i) ≥ FM (x, i), and otherwise
as

F̃ (x, i) =
Nm(x, i)Fm(x, i) + NM (x, i)FM (x, i)

Nm(x, i) + NM (x, i)
(5.3.1)

It holds that

(i) F̃ is non-increasing in its first argument,

(ii) F̃ is non-decreasing in its second argument and

(iii) F̃ (·,maxL) = 1.

Proof.
First remark that ifFm(x, i) < FM (x, i), thenNm(x, i) > 1 andNM (x, i) > 1.
Indeed, assumeNm(x, i) = 0, this means that all training examplesa with a ≤X
x have a label≤L i. This implies that for these objectsFa(i) = 1, whence
Fm(x, i) = 1, a contradiction. NM (x, i) = 0 leads in a similar fashion to a
contradiction.
Now considerx,y ∈ X , with x ≤X y, implying (x] ⊆ (y] and [x) ⊇ [y) (see

Figure 4.6, p. 105). We therefore have thatFm(x, i) ≥ Fm(y, i) andFM (x, i) ≥
FM (y, i).

(i) We first show thatF̃ is non-increasing in its first argument.

(a) Fm(x, i) < FM (x, i) andFm(y, i) ≥ FM (y, i). We must show that̃Fx(i)
defined via Equation (5.3.1) is at least as big asF̃y(i) defined via Equa-
tion (5.2.2), for alls ∈ [0, 1]. This follows directly fromFM (y, i) ≤
Fm(y, i) ≤ Fm(x, i) < FM (x, i).

(b) Fm(x, i) ≥ FM (x, i) and Fm(y, i) < FM (y, i). In this case, we have
Fm(y, i) < FM (y, i) ≤ FM (x, i) ≤ Fm(x, i).
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(c) Fm(x, i) ≥ FM (x, i) andFm(y, i) ≥ FM (y, i). To prove the present case,
we rely on the following property: Leta1, a2, b1, b2 ∈ R, with a1 ≥ a2 and
b1 ≥ b2. Let s1, s2 ∈ [0, 1]. If s1 ≤ s2, then (see also Figure 5.2)

A = s1 a1 + (1− s1) b1 ≥ B = s2 a2 + (1− s2) b2 .

6R

0

a1

b1

a2

b2

1 1
s1 s2

A

B

Figure 5.2: Interpolation for Balanced OSDL

Therefore, if we can show that

Nm(x, i)
Nm(x, i) + NM (x, i)

≤ Nm(y, i)
Nm(y, i) + NM (y, i)

,

we will have completed the proof .

It is clear thatNm(x, i) ≤ Nm(y, i) (because(x] ⊆ (y]) andNM (y, i) ≤
NM (x, i). Hence

Nm(x, i)NM (y, i) ≤ Nm(y, i)NM (x, i) .

Adding to both sides the termNm(x, i)Nm(y, i) leads to

Nm(x, i)(Nm(y, i) + NM (y, i)) ≤ Nm(y, i)(Nm(x, i) + NM (x, i)) ,

completing the proof.

(ii) We now proceed by showing that̃F is non-decreasing in its second argument.
The proof is very similar to the previous one. Ifi <L j, thenFm(x, i) ≤ Fm(x, j)
andFM (x, i) ≤ FM (x, j).

(a) Fm(x, i) < FM (x, i) andFm(x, j) ≥ FM (x, j). In this case, we have that
Fm(x, i) < FM (x, i) ≤ FM (x, j) ≤ Fm(x, j).

(b) Fm(x, i) ≥ FM (x, i) andFm(x, j) < FM (x, j). In this case, we have that
FM (x, i) ≤ Fm(x, i) ≤ Fm(x, j) < FM (x, j).

(c) Fm(x, i) ≥ FM (x, i) andFm(y, i) ≥ FM (y, i). We have thatNm(x, j) ≤
Nm(x, i) (becaused(a) > j ⇒ d(a) > i) andNM (x, i) ≤ NM (x, j). This
leads to

Nm(x, j)
Nm(x, j) + NM (x, j)

≤ Nm(x, i)
Nm(x, i) + NM (x, i)

,

completing the proof. 2
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The following lemma shows that we can incorporate a second parameter besidess
into the Balanced OSDL variant:

Lemma 5.3.2. Let s′ ∈ [0, 1]. The previous proposition still holds if we replace
Equation (5.3.1) by

F̃ (x, i) =
(1− s′)Nm(x, i)Fm(x, i) + s′ NM (x, i)FM (x, i)

(1− s′)Nm(x, i) + s′NM (x, i)
.

Proof.
For s′ = 0 or s′ = 1, this statement is obvious. Assumes′ ∈ ]0, 1[. It holds
thatNm(x, i)NM (y, i) ≤ Nm(y, i)NM (x, i). Multiplying with the positive value
s′(1− s′) and adding the term(1− s′)2Nm(x, i)Nm(y, i) to both sides leads to

(1− s′)Nm(x, i) [(1− s′)Nm(y, i) + s′NM (y, i)] ≤
(1− s′)Nm(y, i) [(1− s′)Nm(x, i) + s′NM (x, i)] ,

which proves the lemma. 2

If s′ = 0.5, we recover Proposition 5.3.1.

Example 5.3.3.Consider again Table 5.3. We can now calculate the balanced
variant. If we look ata3 for example, we still find thatFm(a3, 1) = 0 and
FM (a3, 1) = 1, but also thatNm(a3, 1) = |{a1}| = 1 andNM (a3, 1) = |{a3, a6}|
= 2. Therefore, according to Equation (5.3.1), we find thatF̃B-OSDL(·, 1) = (1× 0 +
2× 1)/(1 + 2) = 0.66.

a1 a2 a3 a4 a5 a6

c 1 2 3 4 5 6
d 2 1 1 2 2 1

F̃OSDL(·, 1) (s = 0.5) 0.5 0.5 0.5 0.5 0.5 0.5
F̃B-OSDL(·, 1) (s′ = 0.75) 0.9 0.9 0.857 0.6 0.5 0.5
F̃B-OSDL(·, 1) (s′ = 0.5) 0.75 0.75 0.66 0.33 0.25 0.25
F̃B-OSDL(·, 1) (s′ = 0.25) 0.5 0.5 0.4 0.143 0.1 0.1

Table 5.4: OSDL versus Balanced OSDL (B-OSDL).

Scalability. Besides the minimum and maximum operators, the Balanced OSDL
algorithm also needs some additional counts. Again, these can easily be decom-
posed and spread out over several processors.
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5.3.3 Summary

OSDL:
for s ∈ [0, 1], define the cumulative distribution ofx ∈ X as

F̃ (x, i) := (1− s)Fm(x, i) + sFM (x, i) .

Balanced OSDL:
for s, s′ ∈ [0, 1], define the cumulative distribution ofx ∈ X as

F̃ (x, i) :=

(1− s)Fm(x, i) + sFM (x, i) , if Fm(x, i) ≥ FM (x, i) ,

(1−s′) Nm(x,i)Fm(x,i)+s′ NM (x,i)FM (x,i)
(1−s′)Nm(x,i)+s′NM (x,i) , otherwise.

Where

Fm(x, i) = min
y∈(x]∩SX

F̂y(i) , FM (x, i) = max
y∈[x)∩SX

F̂y(i) ,

F̂y(i) =
|{a ∈ S | (a = y) ∧ (d(a) ≤L i)}|

|{a ∈ S | (a = y)}|
,

Nm(x, i) = |{a ∈ S | (a ≤X x) ∧ (d(a) >L i)}| ,
NM (x, i) = |{a ∈ S | (a ≥X x) ∧ (d(a) ≤L i)}| .

A monotone deterministic labelling̃λ : X → L can be obtained by defining

λ̃(x) := E[f̃x] .

This last calculation is, however, non-ordinal.
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5.4 Experiments

5.4.1 Generating artificial data

Introduction. We need two kinds of learning/test samplesΛ = (S, (d,≤L)) for
our experiments: monotone data sets and non-monotone data sets that nevertheless
reflect a monotone idea. Once we have a monotone data set at our disposal, we will
show there are several ways of transforming it into a non-monotone one simulating
different problems that might occur in real data sets.

Monotone (non-stochastic) data sets. In [89], Potharst described an algorithm
for generating monotone test samples for finite data spaces. There are only two
minor drawbacks: not all monotone samples are generated with the same probabil-
ity and it does not allow to generate full monotone functions when the data space
becomes to big (because the method needs to store all vectors into memory). Nev-
ertheless, it is the only one, and it is far from easy to overcome both mentioned
drawbacks.

Non-monotone data sets. In Section 4.6.2(see p. 101)we discussed possible sce-
narios for the occurrence ofreversed preference(see p. 100)(objects not complying
with the monotonicity demand). The first reason was that the setC of criteria de-
scribing the objects is not complete, i.e. that some essential criteria are missing to
obtain a monotone representation. The second reason was that there are some er-
rors in the labelling. The third reason was that the labels for the learning examples
came from different sources.
Assume we have a monotone learning sampleΛX . The second and third reason for
reversed preference can both be simulated by adding some noise to the functiond
in the learning sample (not in the test sample however). The absence of certain
criteria can be simulated by simply omitting some criteria from the setC, i.e. by
projectingX on a lower dimensional subspaceX ′ ⊂ X and continue with the
learning sampleΛX ′ . Remark that the data sets resulting from such a projection
can lead to a quite difficult learning task: even omitting one single axis may cause
extreme reversed preferences as can be seen in Figure 5.3. In the experiments, we
will only consider reversed preferences introduced by projection, because this is a
harder learning task than simply adding some controlled error.

5.4.2 Methods used in the experiments

Instance-based Learners.
NON-MONOTONE. Since the proposed algorithm is an instance-based learner,

we include ak-nearest neighbour (k-NN) algorithm in our comparisons. We have
taken the freely available WEKA implementation [124]:weka.classifiers.
lazy.IBk , where we used the option of tuning the parameterk by leave-one-out
optimisation.

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.3: Leaving out one axis from the monotone data set.L = {B(ad),
M(oderate), G(ood), V(ery) G(ood)}

MONOTONE. We also include Ben-David’s instance-based learnerOLM , Ordi-
nal Learning Model [9], which was the first algorithm specifically adapted to deal
with rankings. It should be commented that in spite of its name, some techniques
used in this algorithm are non-ordinal. Since the result of OLM can be numeric,
we rounded the result to the nearest label, where, as in OLM, equidistance was
assumed to transform the ordinal scale into an interval scale. Lastly, OLM can in
fact deliver non-monotone results, but this can be easily resolved (Section 3.1.1
(see p. 53)). The implementation used in the comparisons is however the algorithm
as described in [9].

Decision Trees.
NON-MONOTONE. One of the usual methods used for comparison is C4.5 [93].

Again, we relied on the WEKA implementation:weka.classifiers.trees.
j48.J48 . We altered it a bit to be able to deal with ordinal attributes, we declared
the attributes nominal but took only splits of the formc (·) ≤c v into account. We
consider both pruned and unpruned trees.

MONOTONE. Classification trees are however not adapted for ranking problems.
Potharst [89] describes the algorithmMDT , Monotone Decision Trees, for generat-
ing monotone decision trees based on monotone (non-stochastic) data. MDT is an
adaptation of the algorithm described in [74] which only handles binary rankings.

Minimal ( λmin) and maximal (λmax) extensions.
MONOTONE. DenoteL = {1, . . . , k}. The most simple manner to rank an in-

stancex is to assign it the minimal labelλmin(x) such that(∀y ≤X x)(λmin(x) ≥L
λ(y)), i.e.λmin(x) = max{d(a) | a ∈ S∧a ≤X x}, or 1 if the set{a ∈ S∧a ≤X λmin(x)

x} is empty. Another option is to assign it the maximal labelλmax(x) such that
(∀y ≥X x)(λmax(x) ≤L λ(y)), i.e.λmax(x) = min{d(a) | a ∈ S ∧ a ≥X x}, or λmax(x)

k if the set{a ∈ S ∧ a ≥X x} is empty.
It is clear that both methods lead to a monotone classifier. In the tables, we denote
these algorithms byMin andMax.

http://www.hait.ac.il/staff/aribenD/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.few.eur.nl/few/people/potharst/
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Statistical.
NON-MONOTONE. To include a totally different learner, we also add theNaive

Bayesmethod, using the WEKA implementationweka.classifiers.bayes.
NaiveBayes .

OSDL and Balanced OSDL.
MONOTONE. Remark that, for monotone non-stochastic data, OSDL with pa-

rameters = 0 coincides with the minimal extension, and thats = 1 leads to the
maximal extension. Hence, with the tuning ofs, it is very likely that OSDL will be
at least as good as any of these two methods. In the binary case,|L| = 2, OSDL
will always be equal to one of these two extensions (remind that this only holds for
non-stochastic data), but as|L| grows, intermediate extensions become possible.
The Balanced OSDL algorithm used in the experiments does not yet incorporate
the second parameters′ (i.e. the constants′ = 0.5 is used).

5.4.3 Performance measures

A note on measures. There does not really exist a measure that is especially
developed for ordinal ranking problems. The perfect measure would be a mix of
(1) how close the predicted label is to the actual label (which is rather difficult to
measure for ordinal classes), (2) accuracy and (3) monotonicity.

STANDARD MEASURES FOR PERFORMANCE. Themean square errorMSE and
mean absolute errorMAE both measure how close the predictions are to the actual
class labels, but they are not really applicable to ordinal problems because they as-
sume an interval scale. Still, they do give a clue of the performance. The classical
accuracy(i.e. percentage of correctly classified instances) is valid on ordinal prob-
lems, but does not punish severe faults such as ranking a class-1 instance as belong-
ing to class 5. A known measure for ordinal problems isKendall’s tau (see p. 53),
defined as

τ =
P −Q

P + Q
∈ [−1, 1] ,

whereP is the number of concordant pairs5 (a, b) ∈ Stest×Stest, andQ the number
of discordant pairs (rank reversal). It is however harder to interpret correctly than
the others.

MONOTONICITY. None of these measures incorporate the idea of monotonicity.
Even more, they tend to punish monotone classifiers: consider for example Fig-
ure 5.3(b), then a monotone classifier is forced to assign at least 3 objects to the
wrong label, non-monotone classifiers on the other hand are only forced to assign
1 object to the wrong label. So the monotonicity constraint has a negative impact
on the previous measures.

5A pair (a, b) is called concordant if the order betweend(a) and d(b) is maintained between
predicted(a) and predicted(b).

http://www.cs.waikato.ac.nz/ml/weka/
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It is possible to define adegree of monotonicityas

# monotone couples inStest

# couples inStest
.

However, monotonicity is a property of a classifier, so either the classifier is mono-
tone, or it is not6. Either the user demands monotonicity, and rejects any classifier
that may produce non-monotone results, or the user is not interested whether or
not the classifier is monotone, as long as it delivers good performance. If only
performance is strived for, modelers building the classifier may come to the con-
clusion that a higher monotonicity degree leads to better results (as we may expect
in our experiments with monotone non-stochastic data), and may therefore aim at
optimising this measure. But the measure in itself has no story to tell.

Measures used in the experiment. We have opted to compute two different mea-
sures: theaccuracybecause it is valid on ordinal problems, and themean absolute
error MAE to give an idea of how close the prediction is to the actual label. In
the description of the used methods in Section 5.4.2, it is always stated whether the
method is monotone or not. To alleviate computations, we did not check out the
MSE nor Kendall’s tau, this decision was also loosely based on the observation that
for the conducted experiments, the MSE behaves rather similar to the MAE, and
Kendall’s tau to the classification accuracy (see also the experiments presented in
Section 7.5.3(see p. 210)).

5.4.4 Overview of the experimental designs

Artificial data. The first set of experiments we conducted are based on artificially
generated monotone samplesS. FromS, we then sampled (without replacement)
the training and test setStrain andStest.
Because of the heavy demands on computer power for generating these artificial
monotone data sets, we only experimented with relatively small sample sets. It
has to be noted that data sets mentioned in the literature share this small scale
characteristic since either this kind of data stems from (expensive) surveys and
polls, or because firms do not yet keep extensive track of this kind of data.
We consider 5 designs, 3 with monotone data, and 2 with projections of monotone
data. The characteristics of these 5 designs can be found in Table 5.5. We use
different sizes for the learning sample (shown in the first column of the result tables)
to test the effect of the sample size on the performance. The size for the test sample
is fixed on 500.
All results collected in the tables (Tables 5.7 and 5.8) are averages (and standard
deviations) derived from 40 independent runs. For each row, the result of the best

6Just as for example transitivity is a property of a relation. Either the relation is transitive or it is
not, it is never transitive to some degree. This is not in contradiction with the different (nested) types
of transitivity from fuzzy set theory (the so-calledT -transitivity): there the relation is in fact graded,
and the methods either do or do not have a certain type of transitivity. The fact that these types can be
nested, just means that one type of transitivity necessarily implies the other.
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|C| (# generated criteria) 4 8 15 8 10
|C′| (# used criteria) 4 8 15 4 8
|Xc| (# criterion values) 7 5 5 7 5
|L| (# labels) 7 4 4 7 4
|X | (# possible vectors) 2.401 390.625 1.073.741.824 2.401 390.625

Table 5.5: Characteristics of the artificial data sets.

performing algorithm is put in boldface, the second-best is underlined7. The last
column indicates the result of a one-sided Wilcoxon signed-rank test [68] between
the best and the second best algorithm, indicating whether or not the difference is
statistically significant. We use the following symbols: significant using a 99.9%
confidence interval�, significant at the 95% level↑, between 95% and 80%−, not
significant using an 80% confidence interval×.

Data sets from surveys. We also report8 the results on the four data sets result-
ing from surveys that were used in [9, 10]. We used 5-fold cross validation and
collected the mean results of these 5 runs on each data set. We considered 2 types
of 5-fold cross validation, the typical one using 4/5 of the data for learning and the
remaining part for validation, and an atypical one where 1/5 of the data is used for
learning and 4/5 for testing (to test the effect of different data sizes).
In Appendix 5.B, we mention the background of these surveys. Table 5.6 sum-
marises the characteristics of these data sets, like the number of criteria, the number
of labels and the number of available examples for learning and testing. Mind that
we did the experiments on the data sets as we received them without any form of
pre-processing.

• Social workers decision(SWD). This data set includes criterion values of
hypothetical cases of child abuse, and the overall risk for the child as judged
by experienced social workers.

• Lecturer Evaluation(LEV). A data set including criterion values of hypothet-
ical lecturers, and opinions of Business Administration students about their
teaching qualities.

• Employee Selection(ESL). This data set includes actual criterion values of
applicants for an industrial opening, and judgements of recruiting experts
about their qualifications for these jobs.

7If OSDL and B-OSDL constitute the two best results, we underline the third best result and use it
for comparison. Similar for C4.5 and C4.5-pruned.

8Many thanks to Arie Ben-David for supplying us these data sets.
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• Employee Rejection/Acceptance(ERA). The data set includes criteria of hy-
pothetical applicants for a job, and evaluations of Business Administration
students regarding their qualifications.

SWD LEV ESL ERA

|C| (#criteria) 10 4 4 4
|Xc| (# criterion values) 2×4; 7×3; 1×2 4×5 2×10; 2×7 4×15
|L| (# labels) 6 5 10 10
|X | (# possible vectors) 69.984 625 4.900 50.625
|S| (# examples) 3.240 3.700 488 5.148

Table 5.6: Characteristics of the survey data sets. (In the row|Xc|, n ×m means
there aren criteria with|Xc| = m.)

5.4.5 Results and discussion

Artificial monotone data. For non-stochastic monotone data, the two algorithms
OSDL and B-OSDL coincide, so we report only the results of OSDL. From the
result depicted in Table 5.7 it is obvious that OSDL outperforms all the other al-
gorithms. It always leads to the lowest mean absolute error, and in general, the
improvement is noticeable. Moreover, also for accuracy it delivers the best results
except in a few couple of cases, where it ends in a competitive second place.
The disappearance of the good performing algorithm MDT for designs 2 and 3
might seem a bit odd, but this algorithm is simply not able to handle these designs.
In most cases, it ran out of memory (which could probably be solved by another im-
plementation), but more importantly, when it did produce a result, it delivered trees
with tons of leafs even for problems with small sample size (experimental results
can be found in Appendix 3.B(see p. 80)) making it more a black box model than
an easy to interpret tree. We will discuss the reason behind this in Appendix 3.A
(see p. 80).

Artificial monotone data, projected. Evidently, because of the more difficult
learning task, the results can never be as good as for monotone data. Also, the
method MDT can no longer be applied since the data sets are no longer monotone.
As was the case for the monotone data sets, the OSDL algorithms deliver the best
overall results, where B-OSDL seems to be the better trade-off between accuracy
and mean absolute error.
It also strikes that, except for design 1, which is a rather small design, the (non-
monotone) Naive Bayes method returns good to very good results, both for mono-
tone and non-monotone data.
Besides some common tendencies, some of the results are clearly different when
compared to the monotone data sets. In design 4 we see that OLM performs really
well, however, not in design 5, nor in the monotone designs. This seems to indicate
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that OLM is especially suited for difficult monotone learning tasks, where a lot of
reversed preferences occur.
Another point worth noticing is that the minimal extension is able to outperform
many of the other methods, except in design 4. Even more peculiar at first sight
is that in this design, the performance of the minimal (and maximal) extension
decreases as more data becomes available. This is however easily explained by
noticing that as more examples violate monotonicity, the minimal (resp. maximal)
extension becomes more and more extreme, classifying more and more points to
the maximal (resp. minimal) label. Indeed, if we reconsider the extreme situation
of Table 5.3, thenλmin would assign all objects to class2 andλmax would rank
them all as1.

Data from surveys. These real data sets are not monotone. The results of the
5-fold cross validations are shown in Table 5.9.
The OSDL algorithms continue their good overall performance, and the fact that
B-OSDL seemed to be preferred for the artificial data is confirmed in these real-
world application domains. However, the differences in performance are much less
pronounced.
There is no real winner among the other classifiers, they all comprise a “best” and
a “second best” result, although C4.5 and OLM seem to be a bit more successful.
It is remarkable how extremely poor the minimal and maximal extensions perform.
Also remark the deterioration in performance of these two classifiers when more
data becomes available, just as in design 4.

5.5 Future research

EXPERIMENTS. Although we did some extensive testing, some of the design
parameters remained unexplored, like the number of class labels. It would be in-
teresting to run experiments changing only|L| to gauge its effect on the different
measures.
Also, experiments where the second parameter in B-OSDL is tuned to the data
would be welcome.

INTERPOLATION. The interpolation technique used at present in the (B-)OSDL
algorithm is extremely simple. Incorporating a more sophisticated interpolation,
e.g. based on ideas coming from [8] constitutes a promising avenue.

PRE-PROCESSING. As for any instance-based learning algorithm, a good at-
tribute (criterion) selection method can probably improve the results. Possible mea-
sures for such a selection scheme could be the OO-measure [48](see p. 70), or the
measure we proposed in [27].

MORE SUBTLE USE OF INFORMATION. The OSDL algorithms merely look at
the two dominance regions[x) and (x], forgetting all about the rest of the data
spaceX , even though there is obviously interesting information to be gathered
from other regions. Moreover, all elements in[x), resp.(x], are treated the same,
whereas it might be argued that the vectors closer to the borderlines should be less
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imposing than vectors that are “deep inside” the region. To obtain such generalisa-
tions, two paths can be followed:

• use a more involved estimation of the distributionsF̂ (x) for the x ∈ SX .
Any distribution classifier can be chosen for this. This is the simplest method
to create a monotone version of any distribution classifier.

• investigate and incorporate the idea of a graded dominance relation, and with
it the effect on (graded) transitivity properties (because the OSDL algorithm
heavily relies on transitivity).

MONOTONE BAYES. The results from the experiments demonstrated that im-
posing a monotonicity demand on a classifier will boost its performance in ranking
problems (when the data is described by criteria). Because the Naive Bayes algo-
rithm delivered overall good results, it would be worthwhile to investigate how it
could be extended towards a monotone version. This could be done as mentioned
above, and/or by incorporating monotonicity from the beginning into the method.
We did some preliminary explorations on the survey data, using B-OSDL with esti-
mations obtained from the Naive Bayes algorithm, but while they were better than
for Naive Bayes alone, they still did not outperform B-OSDL, though coming very
close. This suggests that rather the second path should be explored.

OTHER ALGORITHMS. In the real-world application domains, the other algo-
rithms also performed well, so monotone extensions of decision trees (for non-
monotone data) and of nearest neighbour algorithms would also be interesting lines
of thoughts. In Appendix 5.A, we propose a first line of thought concerning the
adaptation of the nearest neighbour algorithm.
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Interlude

THE PROJECT

SATURDAY, MAY 18, 2003.Last week (or was it two weeks ago? time
can be so slippery), Bernard asked me to help him write a proposal for a
new project. A kind of continuation of my research, combined with his joint
work with Hans De Meyer on alternatives for stochastic dominance and its
consequences in statistics. Something to do with very strange dice and
winning every game when playing with them. Hey, even more abstract than
what I’m doing :-)
Well today, this drizzly evening to be exact, I finally started writing the pro-
posal. It’s due this Monday, so – as usual – I must admit I could have began
just a tiny bit earlier instead of rushing me in these last minute late night
stressy situations. Anyway, the general layout for the proposal is: what’s
classification, one third of a page, what’s the difference with ranking, one
third of a page, blahblahblah..., what makes it so difficult to adapt classifica-
tion algorithms to ranking problems, one third of a page... Hum... Not more
than one third of a page? That’s though... Let me think..., yeah,... the eas-
iest classification algorithm is surely the Nearest Neighbour one. It’s easily
explained and it’s extremely local, which helps to highlight the difference
with the very global monotonicity of the ranking problem. Perfect. What’s
the next point in the proposal’s layout?
Of course, I couldn’t just let it be at that. Noooo, not me. I seem to
have this compulsive behaviour, this never failing tremendous urge, this al-
ways painfully present and uncontrollable aching thirst that leaves me no
other option than to dig into any open problem I find myself confronted
with (...at least, when it seems solvable in a reasonable amount of time
– unfortunately, I’m a lousy estimator). So tonight, it happened again, in-
deed, I just had to satisfy my yearning and attempt to solve the “Monotone
Nearest Neighbour” problem.
In the next chapter, you, my dearest reader (well who would have thought,
somebody is actually reading this thesis!), can find the results of my find-
ings during the night of May 18th 2003. It’s a rather short chapter, mainly
because I really don’t have the time anymore to work it out completely, other
chapters of this thesis that where planned long before do demand my total
devotion at this moment.

SATURDAY, JUNE 29. Finally, the time has arrived to commence this long-
planned journey. Since I conceived it, Bernard repetitively told me a chapter
on Quasi Monotone Nearest Neighbours (QM-NN) was really not neces-
sary, that nobody would put up a strange face if it was not included, that
no soul would even notice its absence, and some days ago I actually ca-
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pitulated, and – with the full understanding that there was no time left to
write it anyway – frankly agreed that he was right. Yet in spite of this, look
at me, here I am, investing my precious time into it after all. And why? I’ll
tell you why. There are two reasons, first of all I think it fills a gap between
Chapter 4, the framework of intervals and stochastic dominance, and Chap-
ter 5, the application of stochastic dominance. As you can see, there is a
part missing about the application of intervals, and that’s QM-NN. Isn’t that
nice? But a second reason – and I have to admit it’s not really a scientific
one, not at all, it’s rather the kind of ridiculous reason my friends would ex-
pect from me – is that I sort of like the previous interlude of May 18 (it was
in fact the first one I wrote), and I didn’t like the idea of having to leave it out.
Well, there you have it, it’s out in the blue. So I hope you enjoyed reading
the interlude, and I also hope you will enjoy reading the next part of the ap-
pendix (as a compromise, I decided to make it part of the appendix rather
than a full fledged autonomous chapter).
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5.A QM-NN: Quasi Monotone Nearest Neighbour

Here we propose a very simple adaptation of the basick-Nearest Neighbour algo-
rithm with k = 1. Instead of simply returning the label of the nearest label, we
will make sure it behaves monotonically w.r.t. to the given learning samples by first
identifying for the object the adequate interval of class labels to which the label of
the object should belong.

Notions and conventions. A function f : (X,≤X) → (Y,≤Y ) is calledquasi-QUASI-MONOTONE.

monotone [74] w.r.t. a subsetS ⊆ X if all elementsx ∈ X are monotone w.r.t.
all elementss ∈ S, i.e. for all couples(x, s) ∈ X × S we havex ≤X s im-
pliesf(x) ≤Y f(s) ands ≤X x impliesf(s) ≤Y f(x). Clearly,f can only be
monotone w.r.t.S if f|S is monotone itself.

5.A.1 Interval representation

We start with an adaptation of Theorem 4.6.3(see p. 104)in the context of supervised
learning. It handles the problem of data fitting.

Theorem 5.A.1. Let (d,≤S) be a ranking inS, and letC be a set of criteria. Now
define

λ̃(x) :=

{
[λmax, λmin] , if λmax ≤L λmin (monotone case)

[λmin, λmax] , if λmin ≤L λmax (non-monotone case)

whereλmin andλmax are the minimal and maximal extension. We have that the
representation(λ̃,≤[2]) is non-decreasing, where≤[2] is the order on

L[2] = {[r, s] | (r, s) ∈ L2 ∧ r ≤L}

defined as

[r1, r2] ≤[2] [s1, s2] ⇐⇒ ((r1 ≤L s1) ∧ (r2 ≤L s2)) .

5.A.2 QM-NN

Here we present how the interval representation can help into remolding a Nearest
Neighbour (NN) algorithm into aquasi-monotone(see p. 56)variant, on the condi-
tion that the learning sample is monotone. If the learning sample is not monotone,
QM-NN no longer has the monotonicity property, the only thing that can be said is
that it takes into account the monotonicity into its calculations to enhance perfor-
mance.
The construction of the data base is exactly the same as for the NN algorithm.
For anyx ∈ X , λNN(x) is the label produced by NN. The labelling of a new in-
stancex ∈ X by QM-NN is done as follows:
If the learning sample is monotone, then Theorem 5.A.1 assures that the label is
chosen within an interval that guarantees monotonicity w.r.t. to the learning sam-
plesS. This procedure results by definition in a quasi-monotone labelling w.r.t.S.
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Algorithm 5.3 : Label , label a new instance

x← new instance to classify;
`← min{λmin(x), λmax(x)};
r ← max{λmin(x), λmax(x)};
if ` = r then

return `;
else

v ← λNN(x);
if v < ` then

return `;
else ifv > r then

return r;
else

return v;
end if

end if

5.A.3 Experiments.

We have conducted a few experiments in the fashion of Section 5.4. We are mainly
interested in the comparison with the Nearest Neighbour algorithm, but will also
report some other algorithms.

Results and discussion. The results all convey the same message, so we only
display one design, using 10 criteria, where each criterion can take 5 values, and
there are 4 labels. The data set is monotone. Figure 5.4 shows the mean results
after 40 independent runs.

Figure 5.4: Accuracy and MAE, monotone design.

Clearly, incorporating monotonicity requirements into the NN method leads to an
obvious gain in performance. However, this simple scheme is still not able to top
the Naive Bayes, and is even a longer way from beating OSDL.
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5.B Background of the surveys.

We take over the texts from [9] documenting these data sets.

Social Workers Decisions. Monica Shapira and Rami Benbenishty [102] of the
[Paul Baerwald] School of Social Work at the Hebrew University of Jerusalem
conduct ongoing research regarding decision making processes of social workers
[their research is still going on [12, 103]]. In one of their experiments they pre-
sented experienced social workers with simulated cases of abused children, asking
the experts to judge the risk for the child and to suggest appropriate intervention.
Risk judgements were measured on a five point ordinal scale.
Social workers are known to be quite reluctant to interfere with an abused or ne-
glected child’s family structure, unless they have solid reasons for doing so. They
typically prefer to try and solve the problem within the family. This is the reason
why they were found empirically to apply strict decision making strategies [102].
The inputs for the decision were attributes such as the mother’s relation toward the
child, parental cooperation, severity of signs of abuse, etc. There were ten such
attributes, all of which were ordinal. The opinions were given by twenty-nine qual-
ified social workers. A file with examples regarding 3240 rehabilitation program
recommendations was used.

Lecturer Evaluation. This data set was taken from an experiment aimed at com-
paring self-declared problem-solving strategies and actual judgements. Sixty-three
undergraduate students were presented with randomly generated profiles of hypo-
thetical lecturers. The students were asked to evaluate each lecturer according to
his/her ability to capture student’s interest, in achieving appropriate class participa-
tion, teaching analytical tools, etc.

Employee Selection. Just as different jobs require different skills, testing can-
didate’s qualifications varies with the type of position, its level, and the resources
allocated to the testing procedure. Selected candidates for certain positions are
sometimes sent to consulting firms that specialise in evaluating their qualifications
trough psychometric tests and interviews. The resulting evaluation serves as an
input for the decision of which applicants best fit the positions. The experience
gained by a consulting firm influences the method it uses.
In order to evaluate candidates for some industrial manufacturing position, a lead-
ing Israeli recruiting firm uses a hierarchical model. The output is a score, with
ten possible ordinal values, that predict the candidate’s qualification to successfully
fill the position. In our data set, there were four top level attributes on which the
score was based: working style, writing fluency, ability to fit in the organisation,
and other qualifications. Each top-level attribute also had a score with ten possi-
ble ordinal values. The score of a top level attribute was determined according to
lower level attributes. Working style, for example, was determined by determina-
tion, flexibility, curiosity, pragmatism, and openness. Although each sub-model for

http://www.sw.huji.ac.il/Staff/home_p/SHAPIRA,MONICA/index.shtml
http://www.sw.huji.ac.il/Staff/home_p/BENBENISHTY,RAMI/index.shtml
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determining a lower level attribute was also ordinal, in this experiment only the
upper level decision were used. Anonymous actual examples of 488 applicants for
certain closely related openings were available.

Employee Rejection/Acceptance. The purpose of this research, conducted by
Yoav Ganzach of the Hebrew University of Jerusalem, was to evaluate the degree
on non-linearity in decision making strategies, and to evaluate the effects of prob-
lem presentation on decision makers. As part of the experiment, 115 undergraduate
business administration students were given random profiles of hypothetical candi-
dates for a job. The subjects were told they were personnel managers responsible
for hiring employees for a managerial position. they were asked to indicate to what
degree (on a seven point scale) they would accept or reject each candidate according
to four attributes: maturity, motivation, academic achievement, and interpersonal
communication. Each attribute had seven possible ordinal values.
The problem that was presented before the students was ordinal. The cover story
implied strong involvement, and the subjects were found to apply strict judge-
ments [43].

http://recanati.tau.ac.il/faculty/ganzach_yoav.htm
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Interlude

ABOUT JOY AND AGONY

Every Ph.D. student is familiar with the regular depressive time lapses that
are adequately called Ph.D. blues. Nobody escapes it (except maybe the
ones that really do not care about their Ph.D. - and I know only of one such
a person whom I know will be smiling broadly with twinkling eyes when
reading this), it hits you at least once during your Ph.D., sometimes weakly,
sometimes harsh, and for quite some people it doesn’t fade away until they
take refuge in the ultimate dramatic cure of forsaking their thesis altogether.
But every bad comes with a good, and this is no exception to this rule.
As a compensation for the blues periods, we also get funky periods, when
everything is shiny and bright and beautiful and this without being in love!
These are the moments when two pieces finally fit together or an exper-
iment leads to better results than even expected, when some mysterious
haze that clouded your mind suddenly dissipates under the warmth and
light of a new insight.

MONDAY, MAY 19, 2003.During a long time, I thought that Chapter 6
was already finished... until that dreadful moment in April (dearest reader,
I beg your indulgence for the non-chronological account of my story, I will
tell all about that dreadful moment in the Interlude preceding Chapter 7). I
wrongfully thought I just had to copy paste the article I wrote for Intelligent
Systems and do some minor adjustments. Today, I know I need to incorpo-
rate the property of transitivity into my definition of partial dominance, and I
even know how it can be done, namely be simply considering the transitive
closure of my earlier definition. So, all things considered, it should still not
be too much work. Let’s start writing and get it over with!

TUESDAY, MAY 20. Oh boy, I am afraid I proved – again – to be a lousy
estimator. Again, I underestimated my animal-like urge too understand the
why, and, as always, I now realise that I will not be satisfied by simply de-
scribing the how (as I – stupid me – still erroneously thought yesterday).
The only problem is that, at this very moment, I only have a strong intuition
about the why, a feeling that all but breaks the tender film between hunch
and knowledge, an understanding that balances on the edge of chaotic in-
tuition and ordered formalisation. In the end, it just means that nobody but
myself will appreciate it if I would write it down like that. So here I am, like
a proper fidget, nudging and budging and stretching my mind to come up
with a decent formal way of confiding my intuition to paper.
After a lot of huffing and puffing, I finally managed to blow away the myste-
rious clouds that blocked my view, and I became the proud father of Sec-
tion 6.2.3, “Dominance revisited”. I’m really feeling good!! Tomorrow, I will
wrap this chapter up!
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WEDNESDAY, MAY 21. Or not.

Today was a whirlpool of emotions. I’ve seen heights, I’ve seen depths.
What started as a nice and easy mountain walk on a pleasant summer
afternoon, soon turned into a difficult and tricky ascension. After falling,
I crawled up again, reaching to the summit, only to find that the weather
had turned midway, and to get myself lost in the ever thickening mists on
the flanks of what had become mount Doom. The joy and agony, blissful
happiness and endless sorrow that are so typical during a Ph.D. but are
normally stretched out over wide periods of time, now succeeded each other
in a daredevil raging canter. There was scarce time to breath in between.
One moment, I believed I had the final solution, the next, it was scattered
into bits and pieces again. I fixed it, only to find it break apart at another
spot. And I don’t have the luxury of time anymore, to leave it to settle all by
itself. I need that answer now, today!

THE FOLLOWING DAYS. At last, I managed to crest this high rising moun-
tain and was rewarded with a splendid view on the tricky slopes of slide
debris going up sheer walls of rock, on the deeply cut valleys at their base,
and on the open hillsides and wooded vales scattered around in the far
distant.
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6.1 Introduction

This is the third and final chapter about the framework for rankings. Here the
previous two (namely Chapters 2 and 4) are blended together, and served with
some additional spices.
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Before, we have mixed and kneaded the basic ingredients of Section 2.2 into Sec-
tion 2.3. In the present chapter, we will mimic this recipe and mould Chapter 4,
the counterpart of Section 2.2 for rankings, into a more general and more flexible
form.
To do so, we first need to understand better our basic ingredients. The elementary
syntax for classification used in Section 2.2 was rather matter-of-course. However,
we saw that for ranking, the syntax was richer and additionally seasoned by some
semantical flavours. Therefore, we start in Section 6.2 by dissecting and scrutinis-
ing thedominance relationand the associatedprinciple of dominance preservation,
which lead to monotonicity requirement in rankings (Section 4.5(see p. 97)). These
two notions are then opened up respectively in Sections 6.3 and 6.4. Finally, with
Section 6.5, we complete this chapter by serving some of the more technical aspects
concerning the representation of rankings.

Preliminaries about ranking. We quickly refresh the main ideas and concepts of
the supervised ranking problem. Aclassification(see p. 29)is a functionλ : Ω→ L,CLASSIFICATION λ.

assigning class labels (e.g. “red”, “blue”, “yellow”) to a set of objects. A (complete)
ranking (see p. 90)is a classificationλ where the labels are linearly ordered by theRANKING (λ,≤L).

(complete) order≤L (a reflexive, antisymmetric and transitive relation onlabels)
and this ordering reflects a preference between the classes (e.g. “Bad”, “Satisfac-
tory”, “Good”). We denote a ranking as(λ,≤L).
In the context of classification, the object spaceΩ is structured by describing the
objects on the basis of a fixed setQ of attributes (see p. 30)q : Ω → Xq. ObjectsATTRIBUTES.

are then represented by vectors inX =
∏

q∈Q Xq. In the context of ranking, it is
usual to consider criteria instead of attributes. Acriterion [97] (see p. 98)is definedCRITERION.

as a mappingc : Ω → (Xc,≥c), where≥c is a complete order onXc, such that
it appears meaningful to compare two objectsa and b, according to a particular
point of view, on the sole basis of their evaluationsc(a) andc(b). We will only
consider so-calledtrue criteria [20]: a is preferred tob according to criterionc if
c(a) >c c(b).

6.2 The principle of dominance preservation

Notions and conventions A preorder (see p. 88)is a reflexive and transitive rela-PREORDER.

tion. A weak preference relation[118] (see p. 88)S is a reflexive relation where theWEAK PREFERENCE

RELATION <S . expressionaSb stands for “a is at least as good asb”. In this chapter, we will use
the notation<S instead ofS.
A weak preference relation can be decomposed into (and is totally defined by) three
mutually exclusive relations: an asymmetricstrict preference relation≺S (a ≺S b
if a 4S b and notb 4S a), a reflexive and symmetricindifference relation∼S

(a ∼S b if a 4S b andb 4S a), and an irreflexive and symmetricincomparability
relation‖S (a ‖S b if not a 4S b and notb 4S a).≺S ,∼S , ‖S
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6.2.1 An example

Example (part 1). We start with the small introductory example that was pre-
sented in Section 1.2.2(see p. 6), the data are shown again in Table 6.1, but for an
elaboration on this candidate evaluation example, you will need to thumb back
to Chapter 1. We assume familiarity with the basics of decision trees(see also Ap-

c1 c2 c3 λ

a1 − − + B
a2 + − − M
a3 − + + G
a4 + + − M

Table 6.1: Evaluations of candidates.

pendix 1.A, p. 14). If we would run a classification tree algorithm on this problem,
we would end up with one of the two trees depicted in Figure 6.1. If we choose

(a) T1 (b) T2

Figure 6.1: Classification trees for candidate evaluation.

treeT1, for instance, it turns out that the best possible candidate, with evaluations
(+,+,+), is evaluated as Moderate. However, another person having evaluations
(−,+,−) ends up in the class labelled Good. This is in contradiction with the basic
principle of dominance preservation, roughly stating that an objecta with (partial)
evaluations at most as good as the (partial) evaluations of an objectb, should have
a global evaluation that is also at most as good.

6.2.2 The principle

The principle of dominance preservation. We start by repeating the definition
of thedominance relation(see p. 98).
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Definition 6.2.1 (see [97])

Thedominance relation/ onΩ w.r.t. a set of true criteriaC is defined by

a / b ⇐⇒
{

(∀c ∈ C)(c(a) ≤c c(b))
(∃c ∈ C)(c(a) <c c(b))

for anya, b ∈ Ω. It is said thata is dominated byb. If only the first condition is
fulfilled, i.e. (∀c ∈ C)(c(a) ≤c c(b)), we say thata is weakly dominated byb and
we writea E b.

Theprinciple of dominance preservationcan now be formulated asPRINCIPLE OF

DOMINANCE

PRESERVATION. a / b =⇒ λ(a) ≤L λ(b) . (6.2.1)

If this principle is violated, we speak ofreversed preference(see p. 100)between the
ranking(λ,≤L) and the set of criteriaC: there exist objectsa, b ∈ Ω such that

a / b and λ(a) �L λ(b) .

We remark that the principle of dominance preservation implicitly demands that
the relation on its left hand side is transitive (see Section 6.2.3). In this case,/ is
transitive, so there is no problem.

6.2.3 Dominance revisited

Introduction. In this section, we have a closer look at the dominance relation.
While dominance seems a very simple and straightforward idea, it has quite a few
tricky catches well hidden below its serene surfaces. As soon as you try to meddle
with its most basic definition, problems start emerging from the depths and threaten
to turn the serene surface into a boiling chaos. We will not go too deeply into
the subject, and will only dig into the problems that arise in the context of the
supervised learning of a ranking.

The usual definition. If we encounter the (weak) dominance relation in the liter-
ature, it is always defined as in Definition 6.2.1. And it always goes hand in hand
with the following basic principle from MCDA (Multi-Criteria Decision Aid) [97]

a E b⇒ a 4S b , (6.2.2)

where4S is the weak preference relation onΩ that is sought after during the deci-
sion process.

A different view. First we write (6.2.2) in a more general form where the domi-
nance relation is replaced by some weak preference relation4D. We obtain

a 4D b⇒ a 4S b . (#)
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We know that the weak dominance relation fulfills property (#). Let us now turn the
world upside down, and instead of saying that some weak preference relation4D

satisfies (#), we see this property as defining some weak preference relation4D,
which we could interpret as a more general version of the weak dominance rela-
tion. We mean the following: the underlying idea of (#) becomes the question: if
we know the evaluations of the objects on the different criteria (we have no addi-
tional information about any relationships between criteria whatsoever), in which
cases can we say thata 4S b? These cases are then captured by the generalised
dominance relation, i.e.a 4D b (a is weakly dominated byb) if and only if we
can say, solely based on the information ofc(a), c(b) and the derived information
about4Sc

and∼Sc
on a andb for all criteriac ∈ C, thata 4S b. We then could

definea ≺D b (a is dominated byb) by a 4D b and notb 4D a.
Another view could be even less restrictive in the sense that information other than
only the evaluations of the objects on the different criteria might also be consid-
ered. We call the resulting relation anintegrated dominance relation. The more INTEGRATED

DOMINANCE

RELATION.
information is taken into consideration, the more the integrated dominance relation
matches4S . If all available information is considered, the integrated dominance
relation equals4S (in the end,a 4S b just means thata is weakly dominated byb
if all available information is taken into account). In that sense,E is the least inte-
grated dominance relation, the most objective one, i.e. for all integrated dominance
relations4D we must havea E b impliesa 4D b. Thedecision-maker-dominance
used in ARGUS [34, 35] can be catalogued as an integrated dominance relation,
somewhere in betweenE and the final4S . Also the so-calledbutterfliesin [37] are
examples of integrated dominance relations.

A valid extension? A plausible and intuitive definition in line of the first more
restricted view would be

a ≺D b ⇐⇒
{

(∀c ∈ C)(a 4Sc
b)

(∃c ∈ C)(a ≺Sc
b)

and

a 4D b ⇐⇒ (∀c ∈ C)(a 4Sc b) .

For true criteria, we just find that4D coincides withE. However, we do not dare
to put this forward as a general definition without a serious investigation of all its
consequences: what are the effects of this definition together with the principle (#)
on 4S? This is no problem if all the4Sc behave extremely well as in the case of
true criteria, but what if some4Sc show a more exotic behaviour?

An example of “more exotic behaviour”. Assume all criteriac ∈ C incorporate
some indifference thresholdqc, i.e.

a ∼Sc b ⇐⇒ |c(a)− c(b)| ≤c qc .
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Now let a, b ∈ Ω with c(a) = c(b) + qc for all c ∈ C. This means that(∀c ∈
C)(a ∼Sc b), and consequently,a <D b, which leads in turn toa <S b. Analo-
gously, we findb <S a, whencea ∼S b. Still, if put before the choice betweena
andb, the human mind tends to prefera just becausea . b. Can we simply con-
struct<S and afterwards break ties using/, or does such a two-step procedure
produce undesired side-effects (direct, e.g. rank reversal, or indirect, e.g. via the
axiom of independence of irrelevant alternatives)? What if the behaviour is even
more exotic, for example,∼Sc and≺Sc are no longer transitive?
A weak preference relationS onΩ satisfies theaxiom of independence of irrele-AXIOM OF

INDEPENDENCE OF

IRRELEVANT

ALTERNATIVES.

vant alternatives [4] if the relations between two objects (alternatives)a andb are
not influenced by the pairwise relations betweena, b and a third alternativee. This
means for example that your attitude towards 2 political parties (e.g. the “AB&C”
and the cartel “D.E.F-Lively”) should not be influenced by the existence (or non-
existence) of some third party like “Vote4Me”. It is clear that any method that
violates this axiom can be criticised as being not robust.

Dominance and transitivity. And with this, we come to the problem that started
our musing about the dominance relation. We start with the premisse that the in-
tegrated dominance relation is not transitive. What are the consequences together
with the rule (#)? LetΩ = {a, b, e}, with ¬(a 4D b). Now take into considera-
tion the independent third partye, with a 4D e ande 4D b (such a situation is
conceivable because of the premisse that4D is not transitive). The rule (#) implies
a 4S e ande 4S b. It is time to add another premisse: we want4S to be transitive.
In that case, we obtaina 4S b. This means that, with these given premisses, the
configurationb ≺S a becomes impossible because of an independent third party!

Dominance, transitivity and supervised learning. In the supervised learning
problem, we always start with only a subsetSΩ (the objects that will be used for
learning) of the object spaceΩ. This implies we have to be very careful concerning
the axiom of independence of irrelevant alternatives, since every object inΩ \ SΩ

becomes an irrelevant alternative.
Let us start again from the premisses that the weak preference relation4S is tran-
sitive, while the dominance relation is not. As should be clear by now, the axiom
of independent third parties is violated in most cases. The obvious question is: Is
there a way out of this impasse? The answer is yes: just replace the non-transitive
dominance relation by its transitive closure. When closing a reflexive relationR
in a transitive way, the resulting transitive relationR̄ becomes apreorder (see p. 88)

with (interpretingR̄ as a weak preference relation4R̄)

a ∼R̄ b ⇐⇒ (a 4R̄ b) ∧ (b 4R̄ a), and

a ≺R̄ b ⇐⇒ (a 4R̄ b) ∧ ¬(b 4R̄ a) ,

meaning that all cycles that where introduced during the transitive closure, result in
series of indifferent objects (ifa 4R̄ b 4R̄ c 4R̄ a, then transitivity impliesa 4R̄

b, b 4R̄ a, and hencea ∼R̄ b; likewise b ∼R̄ c anda ∼R̄ c). When applied to
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a non-transitive dominance relation, this indifference is propagated to4S via the
rule (#).
This new transitively closed integrated dominance relation already incorporates all
possible irrelevant alternatives. This is a quite drastic, but totally justifiable ap-
proach. Reconsider the political party example. Closing the integrated dominance
relation just means that you have considered the existence of all possible other
partiesbeforefixing your attitude towards the two parties “AB&C” and “D.E.F-
Lively”. As a result, the existence (or non-existence) of a party like “Vote4Me”
will not influence your attitude anymore since you already incorporated itspossi-
bleexistence in your attitude towards the other two parties.
A small remark is in place. The axiom of independence of irrelevant alternatives is
only violated because we added some additional information about the properties
of S, namely that it is transitive. This means that the transitively closed integrated
dominance relation becomes even more integrated.

The principle of dominance preservation. We will now relate this to the prin-
ciple of dominance preservation (6.2.1). The principle

a / b⇒ a 4S b ,

is just a small variant of the principle (6.2.2). In the case of a ranking,a <S

b corresponds toλ(a) ≥L λ(b), whence we obtain the principle of dominance
preservation

a / b⇒ λ(a) ≤L λ(b) .

Moreover, since≤L is transitive, the previous discussion becomes very actual in
this context. The use of/ does not lead to any problems because it is transitive.
However, if we try to generalise the dominance relation into a partial dominance
relation, with an associated principle of partial dominance, we must be careful and
verify transitivity.

6.3 The local dominance relation

Notions and conventions. LetX =
∏

c∈C Xc for some fixed set of criteriaC =
{ci | i ∈ N}, with N = {1, . . . , n}. As usual, we use the conventionsa, b ∈ Ω,
x,y ∈ X , with x = (x1, . . . , xn), and ifa ∈ Ω, thena ∈ X with ai = ci(a). The
product order≤X is defined asx ≤X y if (∀i ∈ N)(xi ≤ci

yi).
Any subspaceXI =

∏
i∈I Xci

with I ∈ N is called agrid (see p. 18). The associated
product order is denoted by≤XI

. A partition (see p. 33)Π of X is a set of non-
empty, pairwise disjoint subsetsπ of X such that

⋃
π∈Π π = X . The elementsπ

of a partitionΠ are calledblocks. The unique block containingx ∈ X is denoted
by Π(x).
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6.3.1 Partial knowledge, grids

Example (part 2). If we look at Table 6.1, we see that there is no violation against
the principle of dominance preservation. Nevertheless, careless induction of the
rankingλ may lead to (partial) reversed preferences. Let us have a closer look at
how this can happen in the context of decision trees. If we analyse the possibilities
for the first split, we notice that only the second option has some kind of monotone
behaviour as can be expected from a true criterion (see Figure 6.2). More specifi-

Figure 6.2: Three possible first splits.

cally, we could say that the second option preservespartial dominance in the sense
that c1(a) <c1 c1(b) ⇒ λ(a) ≤L λ(b). The split based onc1, however, results
in c1(a3) <c1 c1(a2) = c1(a4), while λ(a3) = G �L λ(a2) = λ(a4) = M. A
similar counter-intuitive situation occurs for the split based onc3.

Grids. Consider the following situation, which is typical for the rough set method-
ology (see Appendix 1.B, p. 17): assume we only know the values of the objects fromΩ
on the subset of criteriaCI = {ci | i ∈ I} ⊆ C = {ci | i ∈ N} for some
subsetI ⊆ N . This amounts to saying that for all remaining criteriac, c(a) is an
unknown value, and this for alla ∈ Ω. In other words, instead of working inX ,
we are now working in the gridXI . Obviously, it is straightforward to restrict the
definition of the dominance relation to the subspaceXI . This is exactly how in
[50, 53] the(weak) partial dominance relationEI on Ω w.r.t. a set of true criteria
C = {ci | i ∈ N} and a subsetI ⊆ N is defined:

a EI b ⇐⇒ (∀c ∈ CI)(c(a) ≤c c(b)) , (∗)

for any a, b ∈ Ω. Based on this definition, the principle of partial dominance
preservation becomes

a /I b =⇒ λ(a) ≤L λ(b) .
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It can simply be interpreted as the principle of dominance preservation making
abstraction of the criteria that are not under consideration. Remark that this prin-
ciple of partial dominance preservation is meaningful because/I is transitive(see

Section 6.2.3, p. 154).

6.3.2 Partial knowledge, partitions

Introduction. More generally, we may be in the situation where we only know
that an object belongs to some block in a partition. This typically happens in
partition-based methods(see Section 2.3, p. 33), in particular tree-based methods(see

Appendix 1.A, p. 14). Look for example at Figure 6.3. If we know that an objecta falls

Figure 6.3: A binary tree with the induced partition.

into the leaft2, i.e. we just know thatc1(a) ≤c1 v andc2(a) ≥c2 w1, and if another
objectb ends up int3, i.e. we know thatc1(b) ≥c1 v andc2(b) ≤c2 w2, how can
we comparea andb? If the partition is induced by the gridXI ⊆ X , we are in the
special case dealt with in the previous paragraph.
It is possible to define the relationEI indirectly via the blocks of the partitionΠI

induced by the gridXI . First remark that for all elementsx,y in the same blockπ ∈
ΠI it holds that(∀i ∈ I)(xi = yi). So, if for some particulara, b ∈ Ω with a ∈ π
andb ∈ π′ it holds thata EI b (or equivalently(∀i ∈ I)(ai ≤ci bi)), then we have
immediately that for alla, b ∈ Ω

(a ∈ π) ∧ (b ∈ π′)⇒ (a EI b) .

This implies that the following definition is meaningful: for allπ, π′ ∈ ΠI , define

π EI π′ ⇐⇒ (∃x ∈ π)(∃y ∈ π′)(x ≤XI
y) (∗∗)

⇐⇒ (∀x ∈ π)(∃y ∈ π′)(x ≤XI
y)

⇐⇒ (∃x ∈ π)(∀y ∈ π′)(x ≤XI
y)

⇐⇒ (∀x ∈ π)(∀y ∈ π′)(x ≤XI
y) ,
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wherex ≤XI
y means(∀i ∈ I)(xi ≤ci yi). We can now defineEI on Ω via (∗∗)

as follows: leta, b ∈ Ω with ΠI(a) = π andΠI(a) = π′, then

a EI b ⇐⇒ π EI π′ .

Now, we would like to generalise (∗) even further to be able to deal with any par-
tition Π. First remark that for blocksπ andπ′ from ΠI , the above expressions for
π EI π′ can be rewritten independently of the setI. For example, becauseXI can
be obtained fromX by projection, we have that (∗∗) is equivalent to

π EI π′ ⇐⇒ (∃x ∈ π)(∃y ∈ π′)(x ≤X y) .

Because the right part does not depend on the setI anymore, this expression seems
a good candidate for the generalisation: for any partitionΠ, we could define for all
π, π′ ∈ Π that

π E1 π′ ⇐⇒ (∃x ∈ π)(∃y ∈ π′)(x ≤X y) . (6.3.1)

We could likewise define generalisations based on the other expressions forπ EI

π′. Of course, not all of these generalisations are equivalent to one another, so for
each one of them a lot of questions arise: Is this definition semantically sound?
What are the properties of this relation? Are these properties meaningful? Can we
build a “principle of partial dominance” on it? Are there other possible generali-
sations? Remark the similarities with the problem stated in Section 4.4.2, where
we searched for an ordering of the intervals of a chain. In the same spirit as in
that section, we will not try out every possibility, but rather directly construct an
ordering that reflects a semantical idea.

Partitions. Assume that we know the partial evaluations ofa for some subset
CI ⊆ C, and the partial evaluations ofb for the criteria inCJ ⊆ C. How will we
compare them? Or even more generally, we might only know for an objecta that
for eachc ∈ CI it holds thatc(a) ∈ Vc ⊆ Xc, whereVc is not restricted to be a
singleton as previously, in other words, we only know that the partial evaluations
of a belongs to some subsetA ⊆ X , and that those ofb belong to someB ⊆ X .
How do we comparea andb?
Our goal in this section is to establish a comparison between two objectsa andb
based on whatever information is available about either of them, as long as there is
no possibility for their evaluations to be equal, i.e. the setsA andB that define our
information are disjoint.
We can realise a comparison between two objects on the basis of such partial in-
formation by understanding more profoundly the idea underlying the principle of
partial dominance preservation. In essence, it tries to establish a global compari-
son between two objects based on partial information. Since an objective global
comparison can only be done based on the dominance relation, for which all infor-
mation is required, we have to express partial dominance in terms of dominance,
which on its turn is expressed in terms of the product order≤X onX .
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Semantics. What are the semantics we expect for a weak partial dominance re-
lationDp (where the subscript “p” refers to “partial”)? Expressing the meaning of
a weak preference relation(see p. 88)is always more easily done by expressing the
meaning of the strict preference relation, the indifference relation and the incom-
parability relation. In our case, the semantics underlying the strict preference part
of the weak partial dominance relation can be described as

a /p b should mean


b could be better thana AND

a can never be better thanb AND

a is not partially indifferent tob

(6.3.2)

where “partially indifferent” refers to indifference from a partial dominance point
of view, it does not refer explicitly to howa andb should be finally ranked (see
lower).
The first two demands can easily be expressed in terms of dominance:

“b could be better thana” becomes “possiblya / b” ,

and
“a can never be better thanb” becomes “impossiblyb / a” .

The third demand is a bit more tricky because it asks for a semantical description of
the partial indifference relation. However, indifference is not really linked with the
idea of dominance: in the definition of the weak dominance relation, two objects
are indifferent if and only if they are equal, which does not bring us one step closer
to its underlying semantics.
Instead of focussing on indifference, it is more interesting to put everything we
already know together:

• We are looking for some weak preference relationDp,

• a is partially indifferent tob if a Ep b andb Ep a,

• /p is asymmetrical anda /p b if a Ep b and notb Ep a,

• the semantics for/p are asymmetrical and contain “possiblya / b” and “not
possiblyb / a”.

In view of this all, we see that the semantics

a Ep b means possiblya E b , (6.3.3)

implies the semantics (6.3.2). Indeed, it implies that

not b Ep a means


impossiblyb E a AND

a 6= b AND

a is not partially indifferent tob ,
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so, if we define/p in terms ofEp, we stumble upon the semantics (6.3.2).
Remark that this also induces a semantics for indifference:

a is indifferent tob means

{
possiblya E b AND

possiblyb E a .

At first sight, there seem to be no arguments why this semantics would be improper
in this context. So let us see if the proposed semantics are still meaningful in
combination with (#).

The semantics w.r.t. supervised learning. The impact of the described seman-
tics on (#) result in

possiblya E b implies a 4S b .

This can clearly be criticised. Indeed, why would we not allow incomparability if
there is not enough information to either confirm thata E b, or to be really sure
thata 4S b. To answer this question, we must be totally aware of the context of
supervised learning we are working in. This means that one of our objectives is to
provide a decision algorithm that delivers results that are consistent in the eyes of
the user(s) of the algorithm. As discussed in Section 4.5.3, this requires the results
to be monotone, i.e. it must be assured that whenevera E b, the algorithm states
that a 4S b. So, if we only know that “possiblya E b”, this also includes the
case where we actually havea E b, and therefore the algorithm’s output should be
a 4S b.

6.3.3 The local product ordering

The semantical expression (6.3.3) leads us to the following definition of a local
dominance relation on non-overlapping sets:

Definition 6.3.1

Let C be a set of true criteria andX =
∏

c∈C Xc. Let A andB be two subsets
of X , i.e. A andB correspond to sets of possible evaluations for objects fromΩ,
with A ∩B = ∅. We define thelocal product ordering �` asLOCAL PRODUCT

ORDERING.
A �` B ⇐⇒ (∃x ∈ A)(∃y ∈ B)(x ≤X y)

with the conventions that

A ≺` B ⇐⇒ (A �` B) ∧ ¬(B �` A) ,

and
A−` B ⇐⇒ (A �` B) ∧ (B �` A) .

We can now define thelocal dominance relation in terms of the local productLOCAL DOMINANCE

RELATION. ordering. Consider two objectsa, b ∈ Ω and assume that we only know that the
evaluations ofa belong toA, and the evaluations ofb belong toB. We havea �` b
(resp.a ≺` b anda−` b) if and only if A �` B (resp.A ≺` B andA−` B).
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Why “local”? The term “local” originated from a graph theoretic point of view.
The poset (see p. 52)(X ,≤X ) corresponds1 to a lattice with a nice corresponding
graph, see Figure 6.4.

(a) The data space
X .

(b) The corresponding
lattice.

Figure 6.4:X and the corresponding lattice.

If we consider a partition ofX , then the equivalence classes group together “indif-
ferent” elements ofX . Now the problem is to define a kind of ordering on these
blocks. If we look at the graph (see Figure 6.5), we see that several groups of nodes

(a) A partition ofX . (b) Some of the nodes will
be compressed.

(c) After
compression.

Figure 6.5: The partitioning ofX and the compression of the graph.

are replaced by a single node, these replacements are a kind oflocal compressions
of the graph. As the product order was an order on the nodes of the initial graph,
so is the local product ordering an ordering of these local compressions.

1If X is finite, otherwise, we need to consider the extendedX =
∏

c∈C X c whereX c = Xc ∪
{inf Xc, supXc}.
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Interpretation. The previous definition tells us only how to compare two objects.
Essential to understanding this definition is that all objects within a subsetA ⊆ X
get the same treatment2. Consider for example Figure 6.6. Just following our

Figure 6.6: Interpretation of local product ordering

intuition one would be compelled to say thatB outperformsA in a robust way: the
evaluations inB score high on both criteria, while the evaluations inA only score
high on one criterion, and there is only one exception, namelyx. However, if all
evaluations inA must be treated the same and ifa ∈ A (i.e. the partial valuations
of a belong toA) outperforms some objectb ∈ B, then the objects ofA should get
a ranking at least as high asb. But sinceb gets the same ranking as all other objects
in B, we must conclude thatA should score better thanB. The definition is such
that there exists no possible evaluations to counter this reasoning.

Example 6.3.1.Assume you want to build a dog kennel for your new hairy friend,
the one with the huge puppy eyes that kept blinking at you at the pet store in
Section 4.5.3 and for whose charmes you finally succumbed, as did your mellow
hearted (girl/boy)friend/husband/wife when (s)he finally saw the puppy. But since
you are also really fond of your furniture, you decided it would be best to keep this
doggy out of the house as much as possible, so you really need a dog kennel. Of
course, you want this kennel to be magnificent and you have to choose between
some carpenters to help you construct it. There are two local carpenters, the good
old Jimmy who is known to deliver decent work at a decent price, and some trendy
newcomer P.J. of whom it is said the work is rather sloppy and the rates extreme.
Then there is this very popular carpenter Rachem in your region who is known to
be a a really good crafts(wo)man, and this at the same price as Jimmy. However,
Rachem became so overbooked that she took an aid to help her out (whom you
know to be not as good as trustworthy Jimmy), and you never know if you will get
Rachem or her aid to help you out. Lastly, there is the carpenter with state renown,
the best in the country, but with the associated price tag. So we have four groups
A,B,C andD. GroupA is good old Jimmy,B is trendy P.J., the groupC is the

2That is our basic assumption: if the current information only tells us that the evaluation of an
objecta belongs toA, then all evaluations belonging toA arepossibleevaluations fora. There is not
one evaluation “more” possible than another one, i.e. we use thecharacteristic functionχA (see p. 43)
as a possibility distribution over the regionA. This is in line with the idea of equivalence classes: inside
an equivalence class, all elements are treated as one.
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tandem Rachem and her aid, and finallyD is the master carpenter. These groups
are depicted in Figure 6.7.

Figure 6.7: Building a doghouse.

We will now try to (completely) rank these groups. Clearly,B, trendy P.J., is the
least interesting option. It is also obvious that there is no immediate preference
between the groupsA and D, and betweenC and D, their relative order is not
fixed by what we know. How can we compareA, Jimmy, andC, Rachem and her
aid? Rachem is has more qualities than Jimmy, so there are arguments against
sustaining thatC should be better thanA. But Jimmy is preferred to Rachem’s aid,
providing an argument against puttingA in front of C. Therefore, based on the
current information, we can only plead indifference and give them the same rank.
(Remark that with more information, A and C might be differentiated.) The two
possible (complete) rankings are shown in Figure 6.8.

Figure 6.8: Ranking the carpenters (Hasse diagram).

About transitivity. Although the local product ordering is meaningful for the
comparison of two blocks of a partition, it is not transitive. The following example
will show this. Assume we are working with two criteria with values inXci

=
{1, 2, 3}, where1 <ci

2 <ci
3. Now consider the subsets of evaluationsA =

{(1, 3)}, B = {(2, 1), (2, 2), (2, 3)} andC = {(3, 1)}. We haveA ≺` B because
(1, 3) <X (2, 3) and(1, 3) is incomparable to(2, 1) and(2, 2). Likewise we have
B ≺` C, but we do not haveA ≺` C because(1, 3) ‖X (3, 1).
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(a) Non-transitivity. (b) Cycles.

Figure 6.9: Non-transitivity and cycles in the local product ordering.

About cycles. Even though it will not influence our discussion in any sense, it
is worth while to notice that the local product ordering may contain cycles. The
simple example depicted in Figure 6.9(b) makes this clear: we haveC ≺` A ≺`

B ≺` C. In Section 7.2.1(see p. 186), we will come back to this in the context of
decision trees.

About antisymmetry. Finally, it is worth while to emphasis that the local product
ordering is not antisymmetric, i.e.A−` B does not correspond toA = B.

6.4 The principle of partial dominance preservation

6.4.1 Partial dominance

We would like to extend the principle of dominance preservation (6.2.2) by replac-
ing the dominance relation with the local dominance relation. However, as we ar-
gued in Section 6.2.3, whatever relation replacing the dominance relation in (6.2.2)
must be transitive to avoid problems with the axiom of independence of irrelevant
alternatives. This condition is not met by the local dominance relation. We also ar-
gued that this problem can be overcome by considering the transitive closure. This
leads us to the following definitions:

Definition 6.4.1

The local product preorder .` on non-intersecting subsets ofX is the transitiveLOCAL PRODUCT

PREORDER. closure of the local product ordering�`. (We follow the usual conventions in
writing <` and∼`.)
Thepartial dominance relation Ep is now defined in function of the local productPARTIAL

DOMINANCE

RELATION.
order. Leta, b ∈ Ω and assume we only know that the partial evaluations ofa
belong toA ⊆ X , and those ofb belong toB ⊆ X , with A ∩ B = ∅, then we
have thata Ep b if and only if A .` B. The subscript “p” refers to the “partial”
knowledge we have abouta andb.
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Obviously, the local product preorder is indeed an preorder: it is reflexive and tran-
sitive. The fact that it is in general not antisymmetric will have some repercussions
as we will see in Section 6.5.3.

6.4.2 The principle

The principle of partial dominance preservation is a straightforward extension PRINCIPLE OF

PARTIAL

DOMINANCE

PRESERVATION.

of the principle (6.2.1):

a /p b =⇒ λ(a) ≤L λ(b).

This principle can be interpreted as follows: “if for two objectsa, b ∈ Ω, we know
that based on the information we have (or take into account) abouta andb, a might
be dominated byb, but not vice-versa, then the ranking ofb must be at least as high
as the ranking ofa”.

Question. Recall from Section 6.2.3 that the principle of dominance preservation
is based on the weakened forma / b ⇒ a 4S b of the basic MCDA principle
a E b ⇒ a 4S b. We know this weakened form is meaningful in combination
with the dominance relation, but is it still meaningful in combination with other
preference relations, like for example the partial dominance relation?

Doubt and reversed preference Already in Chapter 2, we mentioned the notion
of doubt (see p. 32), two objectsa, b ∈ Ω with a = b but λ(a) 6= λ(b). Then in
Chapter 4, the notion ofreversed preference(see p. 100)was introduced. Reversed
preference arises between the ranking(λ,≤L) and the set of criteria when the prin-
ciple of dominance preservation is violated.
Although doubt and reversed preference were introduced separately from each
other, and although they treat very different problematics3, they do in fact, in the
context of rankings, arise from the same basis, namely violation of the basic prin-
ciple

a E b⇒ λ(a) ≤L λ(b) . (##)

Indeed, (##) can be decomposed into{
(a E b) ∧ (b E a) ⇒ λ(a) = λ(b)

a / b ⇒ λ(a) ≤L λ(b) ,

and violation of the first part results in doubt (because we have(a E b)∧ (b E a) if
and only ifa = b), while violation of the second part results in reversed preference.
Based on the previous, it is child’s play to generalise the notions of doubt and
reversed preference between the ranking(λ,≤L) and the set of criteriaC towards
the use of any integrated (weak) dominance relation, and hence in particular forEp,
the (weak) partial dominance relation.

3Remember that doubt can be tolerated in a ranking, while reversed preference is never acceptable
(see p. 100).
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Definition 6.4.2

Let 4D be an integrated dominance relation.

(i) There isdoubt between the ranking(λ,≤L) and4D ifDOUBT.

(∃(a, b) ∈ Ω2)(a ∼D b ∧ λ(a) 6= λ(b)) .

(ii) There isreversed preferencebetween the ranking(λ,≤L) and4D ifREVERSED

PREFERENCE.
(∃(a, b) ∈ Ω2)(a ≺D b ∧ λ(a) �L λ(b)) .

Remark that what we called “doubt, resp. reversed preference, between the ranking
and the set of (true) criteria” in Definition 4.5.1(see p. 97), resp. Definition 4.5.2
(see p. 100), corresponds to “doubt, resp. reversed preference, between the ranking
and the dominance relation”.

6.4.3 An example

Example (part 3). We already explained why the first split should be based onc2.
With the definition of the partial dominance relation, it is now also possible to show
graphically that the split based onc2 is better than a split based onc1 (or c3), as
can be seen in Figure 6.10. The possibilities for the second split are depicted in

Figure 6.10: The splits based onc1, c2, along with the induced partition ofX
and the corresponding (locally compressed) graph. The arrows in the graph show
the local product ordering<`. We cross out the arrow if the principle of partial
dominance preservation is violated.

Figure 6.11. We clearly see that the split based onc3 leads to a violation of the
principle of partial dominance preservation:a2 /p a1 andλ(a2) = M �L λ(a1) =
B. The split based on criterionc2 is in line with the principle and is therefore
chosen.
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Figure 6.11: Two possibilities for the second split: trees, induced partitions and
graphs.

6.5 Monotone classifiers

6.5.1 Introduction

Up to this moment, the starting point in the previous sections was the initial rank-
ing (λ,≤L) of the objects fromΩ and not some representation(λrepr,EIm) of a
ranking as discussed in Chapter 4. A reasonable question is why did we bother to
do this if, as discussed in Chapter 4,“for practical purposes we use the represen-
tation of the ranking”, and“we must only take care of reversed preference inside
the representation”(see p. 102).
The answer is simple: sometimes we want to represent our ranking by a model, and
while representation is an important aspect of modelling, it is onlyoneaspect of
it. In the end, a model will be a representation of whatever we tried to model, so
comparingmodels amounts to comparing representations. However, whilebuilding
these models, we must take into account certain aspects of the data that will be
smoothed in the final model representation. For example, we can compare the
rule bases derived from a tree based approach and a rough set based approach (see
Appendix 1.4), but they are both built in a different way.

6.5.2 Representations based on partitions

In Chapter 2 we emphasised the importance of partitions for classifiers with (the
very simple) Proposition 2.A.1(see p. 48). Now denote byλcl : X → λcl(X ) a (static,
i.e. time-independent) classifier without random component that works onΩ via its
representationX . Clearlyλcl induces a partitionΠcl on X such that all elements
inside the same block are mapped to the same output. This means we can define
λcl : Πcl → λcl(X ) by

λcl(π) := λcl(x) ,

wherex ∈ π ∈ Πcl.
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In the remainder of this section, we will writeλrepr instead ofλcl, because it only
refers to the representational part of the classifier, and not to the classifier itself,
which gives us a more general setting: even though any possible representation of
a classification can be seen as a classifier, it is clear that the known classifiers do
not comprise all possible representations.

6.5.3 Partition-based monotonicity

Let (λrepr,E) be anyrepresentation of a ranking(see p. 92)(λ,≤L). In Section 4.5,
we defined theelementary monotonicity constraint(see p. 100):

x ≤X y⇒ λrepr(x) EIm λrepr(y) .

We are now able to define another version of this constraint taking into account
that all representations are somehow partition-based. LetΠrepr denote the partition
induced byλrepr, then we obtain the followingpartition-based monotonicity con-PARTITION-BASED

MONOTONICITY

CONSTRAINT.
straint :

π1 .` π2 ⇒ λrepr(π1) EIm λrepr(π2)

A representation of a ranking is said to beconsistent w.r.t. the induced partitionCONSISTENT W.R.T.
THE INDUCED

PARTITION.
if it satisfies the partition-based monotonicity constraint.
Remark that it demands far less effort to validate the partition-based monotonic-
ity constraint than the elementary one because only the blocks of the partitions
need to be checked, and not all vectors inX . This can be a huge asset in practice.
Moreover, the following lemma shows that if partition-based monotonicity is sat-
isfied, we immediately have elementary monotonicity, which is of course no real
surprise considering our discussion on the impact of the semantics underlyingEp

on (##). But there is more, Lemma 6.5.2 shows that in any ordinary situation,
the partition-based monotonicity constraint can be written in a weaker form, and
Proposition 6.5.3 shows that – again in any normal situation – these two forms of
monotonicity actually coincide!

Lemma 6.5.1. The partition-based monotonicity constraint implies the elementary
monotonicity constraint. In other words, a representation of a ranking that is con-
sistent w.r.t. its induced partition is a consistent(see p. 100)representation.

Proof.
Suppose that we haveπ1 .` π2 ⇒ λrepr(π1) EIm λrepr(π2). Assume thatx <X y,
and denoteΠ(x) = πx and Π(y) = πy. By definition, we haveπx �` πy,
implying λrepr(x) = λrepr(πx) EIm λrepr(πy) = λrepr(y). 2

Lemma 6.5.2 (4). In caseEIm is transitive, we can replace the monotonicity con-
dition by the following equivalent definition:

π1 �` π2 ⇒ λrepr(π1) EIm λrepr(π2) .
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Proof.
Assumeπ1 .` π2. If π1 �` π2, then there exists a sequence(π′i)

k
i=1 in Πrepr such

that
π1 = π′1 �` . . . �` π′k = π2 .

This means that
λrepr(π1) EIm . . . EIm λrepr(π2) ,

and transitivity now leads toλrepr(π1) EIm λrepr(π2). 2

We now show that under two very natural additional conditions, namely that the
orderingEIm onλrepr(X ) is also5 transitive and that/Im contains no cycles, these two
monotonicity constraints are equivalent to each other:

Proposition 6.5.3. Let (λrepr,EIm) be a representation of the ranking(λ,≤L), and
let Πrepr be the partition induced byλrepr. If EIm is transitive and/Im contains no
cycles, then the partition-based monotonicity constraint and the elementary mono-
tonicity constraint are equivalent, i.e.

(∀x,y ∈ X )(x ≤X y⇒ λrepr(x) EIm λrepr(y))
m

(∀π1, π2 ∈ Πrepr)(π1 .` π2 ⇒ λrepr(π1) EIm λrepr(π2)) .

Proof.
(i) That partition-based monotonicity implies elementary monotonicity was already
proven in Lemma 6.5.1.
(ii) Now assume thatx ≤X y ⇒ λrepr(x) EIm λrepr(y) holds. Because of the
preceding Lemma 6.5.2, we only need to investigate the case whenπ1 �` π2.

(a) π1 ≺` π2. This means there exist anx ∈ π1 and ay ∈ π2 such thatx <X y.
By assumption, this leads toλrepr(π1) = λrepr(x) EIm λrepr(y) = λrepr(π2).

(b) π1 −` π2. This means thatπ1 �` π2 �` π1. So there existx,x′ ∈ π1 and
y,y′ ∈ π2 such thatx ≤X y andy′ ≤X x′. By assumption, this leads to
λrepr(x) EIm λrepr(y) = λrepr(y′) EIm λrepr(x′) = λrepr(x), or, because/Im does
not contain cycles,λrepr(x) ∼Im λrepr(y), from whichλrepr(π1) ∼Im λrepr(π2). 2

As a consequence, we have that the previous holds for all orderingsEIm of the
image ofλrepr we considered in Chapter 4:

Corollary 6.5.4. For any representation(λrepr,EIm) whereEIm is either the total
order ≤L on L, the partial order≤[2] on L[2] (see p. 96)or the weak first order
stochastic dominanceE(1) (see p. 106), we have that partition-based monotonicity is
the same as elementary monotonicity.

5Besides the conditions demanded in Section 4.4.2, namely reflexivity, proper semantics, indepen-
dence ofλ and that it should extend≤L. Remark however that we do not need any of these basic
properties for the proof of Proposition 6.5.3.
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A remark concerning antisymmetry. Note that the elementary monotonicity
constraint has two equivalent forms:

x ≤X y⇒ λrepr(x) EIm λrepr(y)

and
x <X y⇒ λrepr(x) EIm λrepr(y) ,

but we do not have such a property for the partition-based monotonicity constraint.
Moreover, we have

(∀x,y ∈ X )(x <X y⇒ λrepr(x) EIm λrepr(y)) (6.5.1)

��⇓ ��⇑
(∀π1, π2 ∈ Πrepr)(π1 <` π2 ⇒ λrepr(π1) EIm λrepr(π2)) , (6.5.2)

not even whenEIm is transitive and/Im contains no cycles. This can be easily
seen in Figure 6.12. Firstly, figure (a) contradicts the downward implications: if
(∀a ∈ Ω)(a ∈ π1 ⇒ λ(a) = 2) and (∀a ∈ Ω)(a ∈ π3 ⇒ λ(a) = 1), and
if (∀a ∈ Ω)(a ∈ π2 ⇒ ((a >X x0 ⇒ λ(a) = 2) ∧ (a <X y0 ⇒ λ(a) =
1))) then the elementary monotonicity constraint is satisfied, whileπ1 <` π3 and6

λ̂Π(π1) = 2 >L λ̂Π(π3) = 1. Figure (b) contradicts the upward implication:
becauseπ1 ∼` π2, we cannot say anything aboutλrepr(x) andλrepr(y).

(a) Counterexample. (b) Counterexample.

Figure 6.12: Counterexamples.

It should be noted that the culprit behind the second counterexample is that.` is
not necessarily antisymmetric (i.e. partial indifference∼` may be different from
equality=). Indeed, the following self-evident lemma holds:

Lemma 6.5.5. If the partitionΠrepr is such that.` behaves as an antisymmetric re-
lation on its blocks, we have that (6.5.2) is equivalent to the partition-based mono-
tonicity constraint.

Corollary 6.5.6. Under the conditions of Lemma 6.5.5, we have that (6.5.1) im-
plies (6.5.2). Under the additional conditions of Proposition 6.5.3, it holds that
expressions (6.5.1) and (6.5.2) are equivalent.

6Hereλ̂Π is defined as in Section 2.3.3, Equation (2.3.1) (see p. 35).



6.5. MONOTONE CLASSIFIERS 173

Doubt and reversed preference. In case we can not rely on the property of an-
tisymmetry, there can exist doubt in the representations(λrepr,EIm) of a ranking
(λ,≤L) that is not present in the representationλrepr of the classificationλ. So we
end up with the following definitions that have to be distinguished from the ones in
Definition 6.4.2:

Definition 6.5.1

(i) There isdoubt inside the representation(λrepr,EIm) if DOUBT.

(∃(π1, π2) ∈ Πrepr)(π1 ∼` π2 ∧ λrepr(π1) 6∼Im λrepr(π2)) .

(ii) There isreversed preferenceinside the representation(λrepr,EIm) if REVERSED

PREFERENCE.

(∃(π1, π2) ∈ Πrepr)(π1 <` π2 ∧ λrepr(π1) 6EIm λrepr(π2)) .

6.5.4 Consistency

We wind this section up with reconsidering the main results of Chapter 4. We start
by relaxing the condition ofminimal consistency(see p. 107)

Definition 6.5.2

We say that the representation(λrepr,EIm) of (λ,≤L) is minimally consistent w.r.t. MINIMALLY

CONSISTENT W.R.T.
THE INDUCED

PARTITION.

the induced partition Πrepr, if for all π1, π2 ∈ Πrepr with π1 .` π2, it holds that

λ̂r(π1) ≤L λ̂`(π2) =⇒ λrepr(π1) EIm λrepr(π2) ,

where
λ̂`(π) = min{λ(a) | a ∈ Ω ∧ a ∈ π} ,

λ̂r(π) = max{λ(a) | a ∈ Ω ∧ a ∈ π} .

Lemma 6.5.7. If (λrepr,E) is minimally consistent w.r.t. its induced partition, then
it is also minimally consistent inX .

Proof.
Assumeλ̂r(π1) ≤L λ̂`(π2). Because(∀x ∈ π1)(λ̂r(x) ≤L λ̂r(π1)) and(∀y ∈
π2)(λ̂`(π2) ≤L λ̂`(y)), we findλ̂r(x) ≤L λ̂`(y) leading toλrepr(π1) = λrepr(x) E
λrepr(y) = λrepr(π2). 2

This enables us to weaken Proposition 4.7.2 to the following statement:

Corollary 6.5.8. Substituting the ranking(λ,≤L) by a representation(λrepr,EIm)
that is minimally consistent w.r.t. its induced partition will never introduce new
reversed preferences.
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Consistent representations. And now we come to the two theorems of Chap-
ter 4, Theorem 4.6.3(see p. 104)about the consistent interval representation, and
Theorem 4.7.3(see p. 108)about a consistent stochastic representation. Both theo-
rems and their proofs can be immediately generalised towards the context of parti-
tions. Indeed, their proofs rely on the fact that forx,y ∈ X with x ≤X y, it holds
that(x] = {x′ ∈ X | x ≤X x′} ⊆ (y] and[y) ⊆ [x). Because of the transitivity
of .`, we have this same property forπ1, π2 ∈ Π with π1 .` π2.
Lemma 6.5.1 now assures the resulting partition-based representations are still
monotone in the usual sense! In particular, this means that the OSDL algorithm
(Ordinal Stochastic Dominance Learner, Chapter 5), can be applied on any parti-
tion of the data spaceX using the local product preorder instead of the product
order.

6.6 Future research

One of our basic assumptions is that we only consider disjoint sets for defining the
local product ordering. An interesting extension would be to investigate the impact
of allowing intersecting sets. Still in the same direction, it would be worthwhile to
extend the setting even further towards graded relations.
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Interlude

RANKING TREES, THE MAKING OF

A STORY BEHIND THE SCENES

YOUNG HEARTS. Once upon a time, in the year 2001, while the short dark
cold winter months gradually were easing into the softer tones and spir-
its of a promising spring, an ardent young man deemed his research was
ripe enough to be released out of its confinement and be cast into the vast
and vibrant world. With the rash confidence that is proper to the verdancy
of youngsters, he wrote and submitted proudly an extended abstract (12
pages) about ranking trees, based upon insight gained from his newly de-
veloped framework. Now he only needed to wait for a notice of acceptance.

OHOH, PROBLEMS... Time whirled the consecutive months nimbly off, until
I finally received an email from the conference organisers. I was not just a
bit disillusioned when I discovered I had been refused. But an even greater
shock was about to blast me away: in the session referee’s comments at-
tached to the email, it was rather bluntly and ungainly hinted that I had no
knowledge of the related literature whatsoever and that everything I pre-
sented in my paper had already been done and published previously by
others. Aaaaarrrrgggghhhhh!!!!!! A whole year of hard work and intensive
labour down the drain, all in vain, all for nothing. A quick look up on the
internet of the adjoined references they so kindly and mercifully provided,
endorsed the referee’s comments and gave me plenty of reasons to get in
an even bleaker mood.

I think that was the swiftest plunge into a Ph.D. blues I ever took. I still
remember the email I sent to Rob Potharst, one of the authors of the refer-
ence articles I was given, to beseech him to forward me his Ph.D. thesis on
the topic of monotone classification. I also remember vividly his warm and
encouraging response to my distressed (and probably depressed) words.
Bernard reacted more stoical to this situation. But then again, he always
kept the utmost confidence in me and my progressions, even when I was
totally stripped of it myself. It seems, luckily, that he was right and I was
wrong.

THE RECOVERY. Indeed, when I started to study these reference articles
more closely, it began to dawn on me that although there was some resem-
blance in a few of the ideas, my approach was fundamentally different. The
referee had obviously made the mistake of jumping a bit too diagonal over
the paper. Relief washed through me. In the end, I salvaged the paper
somewhat by rewriting it in light of this new information and sending it to a
journal where it finally got accepted.
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HOBBLING ALONG. All went relatively well from that moment on. I cheer-
fully submitted another handful of papers to machine learning and data
mining conferences (on various topics ranging from my classification frame-
work, over the OSDL algorithm, to impurity measures for ranking), and yes,
I got pleasantly refused for all of them. Isn’t that nice? Aah, and also Chap-
ter 4 was refused as a contribution for some journal’s special issue. Oh
well, after a while, you just get used to those congenial emails with “We
are sorry to inform you that...”, and from the reports I usually had to con-
clude that they didn’t really grasp my ideas, which is also useful information
(whether it’s them or my clumsy writing style, I will leave aside, probably
a bit of both). I learned the hard way what people – or at least the ref-
erees I encountered – seem to expect. Stated baldly, they like everything
that is written in the form of theorems and proofs, they prefer dry text, they
prefer ε-contributions7 subdued to extensive experimental testing and they
do not like (or do not understand?) discussion about semantical founda-
tions, nor theoretical and abstract papers without any application (unless in
theorem+proof style). Oh, and not unimportant, I guess many of the ref-
erees were not really fond of the topic (it’s not a very popular one indeed,
although that appears to be changing ever so slightly over the years). Any-
way, I took some of these hints to heart, the ones from which I could see the
surplus value, like the theorem+proof style that, when practiced judiciously,
relentlessly captures the attention of the unheeding reader, and I stubbornly
disregarded the other ones (maybe one day I will see the wisdom in them,
and laugh heartily at my headstrong demeanour and unrelenting stupidity...
but so far, I don’t).

OHOH, AGAIN ... Not so long ago, at the beginning of April this year,
when a merry and pleasant spring had just taken over the reign of a for-
bidding but bearable winter, I estimated I but had to jot all my findings
down on paper and be done with it. But didn’t I already mention that I
am quite a lousy estimator? Well, all went exactly according to the plan I
had sketched, giving me plenty of time with a broad three months for writing
until the end of June, and another month of editing and drawing figures in
August. Until that dreadful moment when I discovered that my final ranking
tree algorithm did not do in all circumstances what it was supposed to do.
Aaaaarrrrgggghhhhh!!!!!! In the mean time, I already had quite some exper-
tise in dealing with the Ph.D. blues, but it still was a very unpleasant finding,
nagging me and depriving me of full sleep. Bernard reminded me that the
algorithm did not produce wrong output, only that it was a bit less perform-
ing than what could have been expected. And he assured me that this did
not jeopardise my dissertation in any way. But for me, this algorithm was
the finishing touch of my Ph.D., it had been the driving force during all these
years and I would consider my thesis as incomplete and unsatisfactory if it
would not be precisely working as I originally intended it.

7A small contribution on existing and well-known topics– Bernard De Baets’ Unabridged Dictio-
nary of Personal Scientific Language.
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THE REPARATION. It didn’t take that long to find the missing stitch and it
wasn’t even difficult to sew it back together. However, like in clothing, it is
all about the details: “Hey, that seam is on the outside. Shouldn’t it have
been on the inside?” And since my own research philosophy prohibits me
from doing something I do not understand to its full depth, I had to unstitch
everything, and even unravel the pieces of cloth themselves to get to the
bottom of it... It took me one very stressful month and a half... just to
understand it, not even to write it down. And it is common knowledge that
entrusting new insights to paper tends to be a lot slower than scribbling
away well digested information. All in all, my agreeable three months for
writing had crumpled down to a pathetic month and a half. That’s a story
that I already told throughout the other interludes. And here is another one
of these diary entries, written down during the struggle with Chapter 7.

SATURDAY, 31 MAY, 2003.These days, I am not just preparing my Ph.D.,
I am also preparing for the 5-ball cascade, that’s juggling with 5 beautiful
and colourful balls. (Since half of April, I suddenly got this renewed interest
in juggling that grew even more intense since I began writing 2 weeks ago).
Just half an hour ago, I laid down my continuous chapter writing, to take
up my continuous ball juggling. (That’ssss a 3-ball trick in juggling alsssso
called “the ssssnake”, becausssse the ballssss form a continuoussss pat-
tern, assss in the popular game with the ssssame name. It’s really pretty to
look at, and a perfect exercise for the 5-ball cascade because it’s the same
throws but with two balls missing). Anyway, yesterday I read that if you get
stressed with all these balls in the air, you should “try to visualise the figure
like a unit rather “living” than like a succession of balls [Arlabosse]”. And
today I discovered – to my own wonder I may add – that this works wonder-
fully well. It’s a nice example of how a different perspective can ease things
up. Let’s see if I can adapt this new insight into the writing of my thesis ;-)
believe it or not, but that was in fact one of the first things that popped up
in my mind while keeping control of my 3-ball bouncing beast (how far can
someone be gone?)

References
[Arlabosse] D. Arlabosse, Juggling workshop: 5 balls, [Online].

Available: http://didier.arlabosse.free.fr/balles/english/index.html.
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Notions and conventions.
CLASSIFICATION. A classification(see p. 29)is a mappingλ : Ω→ L, assigningCLASSIFICATION.

class labels to a set of objects. Each objecta ∈ Ω is described by a finite set
of attributesq : Ω → Xq (see p. 30), and can therefore be represented by a vector
a = (q1(a), . . . , qn(a)) ∈ X =

∏n
i=1 Xqi

. This induces arepresentationλrepr of
the classificationλ (see p. 31), mapping vectors fromX to some set of labels. We
speak ofdoubt (see p. 32)if a = b (implying λrepr(a) = λrepr(b)) andλ(a) 6= λ(b).DOUBT.

PREFERENCE MODELLING. A weak preference relation [118] (see p. 88)is aWEAK PREFERENCE

RELATION 4. reflexive relation4 where the expressiona 4 b stands for “a is at most as good
as b”. A function f : (X, 4X) → (Y,4Y ) between two sets equipped with a
preference relation is calledmonotone(see p. 52)if for all x, y ∈ X it holds thatMONOTONE

FUNCTION.

x 4X y ⇒ f(x) 4Y f(y) .

An order (see p. 52)≤X on a setX is a binary relation that isreflexive(x ≤X x),ORDER.

antisymmetric(if x ≤X y andy ≤X x, thenx = y) and transitive (if x ≤X y
andy ≤X z, thenx ≤X z). It is in particular a weak preference relation. The
couple(X,≤X) is called aposet(partially ordered set). The subset[x, y] = {z ∈POSET(X,≤X).

X | x ≤X z ≤X y} is called a(poset) interval in (X,≤X). An order is called(POSET) INTERVAL

[x, y]. completeif for all x, y ∈ X eitherx ≤X y or y ≤X x.
COMPLETE. MULTI -CRITERIA DECISION A ID . A criterion [97] (see p. 98)is defined as a
CRITERION. mappingc : Ω → (Xc,≤c), where≤c is a complete order onXc, such that it

appears meaningful to compare two objectsa andb, according to a particular point
of view, on the sole basis of their evaluationsc(a) andc(b). We will only consider
so-calledtrue criteria [20]: a is preferred tob according to criterionc if c(a) >c

c(b). Moreover, we assume that allXc are finite and that the underlying scale of all
criteria is ordinal.

RANKING . A complete ranking (λ,≤L) (see p. 90)consist of a classificationλCOMPLETE

RANKING (λ,≤L). and a complete order≤L onL that induces a preference relation onΩ: a 4 b if
λ(a) ≤L λ(b). When the objects are described by a finite set of criteria,C = {ci |
i ∈ N = {1, . . . , n}}, then this induces arepresentation(λrepr,EIm) (see p. 92). The
product order≤X onX =

∏n
i=1 Xci is defined byx ≤X y if (∀i ∈ N)(xi ≤ci yi).

7.1 Partition-based modelling of a ranking

Notions and conventions.
PARTITIONS. A partition Π of X is a set of non-empty, pairwise disjoint sub-PARTITION.

setsπ of X such that
⋃

π∈Π π = X . The elementsπ of a partitionΠ are called
blocks. The unique block containingx ∈ X is denoted byΠ(x). We also denoteBLOCKS.

πΩ = {a ∈ Ω | a ∈ π} andΠΩ = {πΩ | π ∈ Π}.πΩ, ΠΩ

MODELLING. For rankings, the basic supervised learning problem is to induce
a ranking(λ,≤L) (or some representation(λrepr,EIm) of it) from a givenlearningLEARNING SAMPLE

(S, (d,≤L)). sample (also calleddata set) (S, (d,≤L)), whereS ⊆ Ω and d = λ|S . This
DATA SET. induction process is calledmodelling, or building a model.

MODELLING .
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PARTITION-BASED MODELLING, what does it mean? Firstly, mark the differ-
ence between the verb “modelling” and the result of this action, a “model”. As
we mentioned already in Appendix 2.A(see p. 48), any model can be interpreted
as being partition-based (indeed, any representationλrepr induces a partition onX
andΩ, grouping all elements mapped to the same output). However, the process
of building this model may not be partition-based in itself. We mean that once
the data spaceX has been fixed (i.e. once the set of attributes/criteria has been
fixed), no other1 partitions were constructed during the building of the model. For
example, building thek-Nearest Neighbour model is just putting the learning sam-
ple to memory, fixing the metric and identifying the number of neighbours to take
into consideration. On the other hand, building a tree model is a clear example of
partition-based modelling.

Recapitulation Chapter 67.1.1 Ordering partitions

Thelocal product preorder .` (see p. 166)on the blocks of a partitionΠ of X is the LOCAL PRODUCT

PREORDER.` .transitive closure of thelocal product ordering �` (see p. 162)which is defined by
LOCAL PRODUCT

ORDERING�` .π1 �` π2 ⇐⇒ (∃x ∈ π1)(∃y ∈ π2)(x ≤X y) .

The local product ordering�` is reflexive, but not antisymmetric (that is why we
write π1 −` π2 if both π1 �` π2 andπ2 �` π1) nor transitive, and≺` may contain
cycles.
Consider two objectsa, b ∈ Ω and a partitionΠ of X . The partial dominance PARTIAL

DOMINANCE

RELATION (W.R.T.
Π) Ep .

relation (w.r.t. Π) Ep (see p. 166)is defined by

a Ep b ⇐⇒ π1 .` π2 ,

wherea ∈ π1 andb ∈ π2. When all the blocks ofΠ consist of singletons, this
relation is just thedominance relationE (see p. 98). Remark thata E b if and only DOMINANCE

RELATION E.if a ≤X b.

7.1.2 Validation versus modelling

Validation. The term “validation” only refers to finished models, i.e. input-output
boxes, whether they are black or white. It refers to questions like: What is the ac-
curacy of the model? How acceptable is the model? How useful is the model?
Some of these properties can be measured quantitatively by somerisk functional RISK FUNCTIONAL.

(see p. 116)(also callederror function ) R. Other properties refer to some demands
that can only be described qualitatively. For example, many situations are conceiv-
able where a black box model is not considered as useful, even if its accuracy on
some test set is the full 100%. But also a rule-based model containing contradicting
rules could be deemed unacceptable for some people.

1The data spaceX itself induces a partition ofΩ.
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Modelling. In general, validation is an important aspect of modelling: in most
techniques for modelling a classification, the risk functionalR used for validation
is somehow incorporated, either directly or indirectly. For example in thek-Nearest
Neighbour method, the parameterk can be estimated to minimise the expected er-
ror R using a leave-one-out cross validation on the learning sample; the pruning
of a tree is all about maintaining or even decreasing the expected error while si-
multaneously decreasing the complexity of the model; the whole theory of support
vector machines is based on what is called the structural minimisation of the risk
functional (structural risk minimisation [54, 115]).
Still, despite the importance of validation, it remains butoneaspect of the mod-
elling process. Indeed, essentially, the modelling process is about finding one ade-
quate model among infinitely many possible models. Even if the space of possible
models is restricted to a certain family of models, e.g. models that can be rep-
resented by a decision tree, then it is in most situations still impossible to do an
exhaustive search to find the “optimal” model(s). Therefore, we need guidelines to
help us see the wood for the trees.

Validation and ranking. Our point of departure is that we are confronted with
the problem of learning a ranking based on a fixed set of criteria. This means that
in general a model for this ranking should be monotone to be acceptable2. In view
of such a demand, any non-monotone model should immediately be disregarded,
even if its accuracy on some test set is the full 100%.

Assumption: the user demands the monotonicity of the model.

This means that the representation(λrepr,EIm) induced by the model must be mono-
tone, i.e. for allx,y ∈ X it must hold that

x ≤X y⇒ λrepr(x) EIm λrepr(y)

In Chapter 4, we showed how simple set-based and distribution-based representa-
tions λrepr could be made monotone. And in Section 6.5.4(see p. 173), we showed
that we do not need to alter these representation on a point by point basis to achieve
this, but that the same feat can be accomplished on the level of any partition em-
bedded in the partition induced byλrepr (of course, as a downside, this latter process
is usually much coarser if not carried out with care).

2This was discussed in Section 4.5.3, in particular in the paragraph entitledAbout doubt and reversed
preference(see p. 100). Of course, in some situations, the user can live with some minor degree of non-
monotonicity, e.g. if there is only a 5% chance that there is rank reversal of order 1 between two objects,
a 0.5% chance the reversal is of order 2, and in no situation, the reversal is of order higher than 2, where
the order of rank reversal could be defined as the rank difference of two objects leading to reversed
preference (for example on the ordinal scale Bad, Moderate, Good, Very Good, we have rank reversal
of order 1 if a Good object is ranked lower than a Moderate object, and of order 2 if a Very Good object
is ranked lower than a Moderate object).
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Modelling and ranking. While the major part of Chapter 4 is mainly a contri-
bution to the validation process, the bigger part of Chapter 6 deals directly with
a guideline for model building when dealing with partition-based modelling: the
principle of partial dominance preservation(see p. 167):

a /p b⇒ λ(a) ≤L λ(b) .

Although this principle can not always be fully satisfied during the modelling phase
because of the restrictions met during the modelling (as we will see below), we
would like it to be fulfilled as much as possible. In other words, it gives us the
guideline to reduce violations against this principle (i.e. thereversed preferences REVERSED

PREFERENCES.(see p. 100)) to a minimum.

Broad guideline: minimise reversed preferences.

7.1.3 Monotone and non-monotone data sets

In this section, we take a closer look at the problems in finding a monotone model
starting from monotone and non-monotone learning samples.

Monotone data sets. A data set(S, (d,≤L)) is calledmonotoneif MONOTONE DATA

SET.

a ≤X b⇒ d(a) ≤L d(b) .

Now assume we are confronted with such a monotone learning sample(S, (d,≤L)),
and our mission is to build a monotone partition-based model(λ∗repr,≤L) such that
for all a ∈ S, we haveλ∗repr(a) = d(a). This problem can be solved by finding some
partitionΠ of X such that for alla, b ∈ S it holds that

Π(a) .` Π(b)⇒ d(a) ≤L d(b) . (7.1.1)

Indeed, if this demand is satisfied, we have in particular that

Π(a) ∼` Π(b)⇒ d(a) = d(b) ,

whence alsoΠ(a) = Π(b) ⇒ d(a) = d(b). Because of this, we can define the
representationλ∗repr as the function that maps all elements in the same blockπΩ ∈
ΠΩ (with πΩ∩S 6= ∅) onto the single value of the samples it contains. By definition,
we have that(λ∗repr,≤L) is monotone on this subset of objects and thatλ∗repr coincides
with d onS. The other blocks may be labelled at will as long as the monotonicity
of (λ∗repr,≤L) is safeguarded (which of course is always possible). Remark that, as
the data set is monotone, we know there exists at least one such a partition, namely
the trivial partition where each vector ofX is a block.
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Non-monotone data sets.
WHY? The definition of monotone data sets is rather limiting, because it does

not allow for any uncertainty, not even the simple occurrence of doubt within the
data. It strictly prevents the occurrence of two objectsa, b ∈ Ω with the same
descriptiona = b, but having different labelsd(a) 6= d(b). Moreover, monotone
data sets exclude the idea of error, except if by coincidence, it would comply with
the monotonicity demand. Lastly, monotone data sets prohibit any occurrence of
reversed preference, even the ones that are not due to errors. This happens for
example in surveys where each person is asked to give partial evaluations as well
as a global evaluation (either about one subject fixed for everybody, e.g. student
evaluation of lecturers, or about a subject linked to their personal situation, e.g.
noise annoyance). Clearly, nothing guarantees these responses will not contradict
each other.

HOW? INVASIVE APPROACHES. There are several possible solutions to deal
with the more realistic case of non-monotone learning samples. One is to define a
new set of criteriaC such that the new adapted data set becomes monotone, another
is to simply remove the examples causing trouble. This latter approach is the most
frequently used, e.g. [74, 117], and is in fact the essence of the method OLM [9],
see also Section 3.1.1(see p. 53). However, there lurk some immediate dangers in
removing examples from the learning sample in order to make it monotone, the
same problem that appears in data cleansing: How can you determine what are the
erroneous examples to be removed? And for that matter: How can you determine
that the non-monotonicity was caused by errors in the first place? If you remove the
correct example, and leave in the error, the relative number of incorrect examples
in the data set becomes higher, while the total number of examples in the data set
itself diminishes. And if the problem was not caused by an error in the first place,
then you have deliberately ignored potentially useful information. In other words,
before an example is removed, there should better be some good reasons to do so
(e.g. a decent technique for identifying outliers in a ranking problem3). Finally,
the MDT algorithm (Monotone Decision Trees [89]) was recently adapted to be
able to deal with non-monotone data [17, 18, 87]. This method is however based
on a technique of adding generated data and relabelling existing data. We believe
that the same caution as with removing objects should be administered to adding
non-authentic data, or altering the original examples.

HOW? A NON-INVASIVE APPROACH. We believe that in dealing with non-
monotone data sets, we should not invade into the learning sample itself, incor-
porating the information of every example as it is into the final result. This brings
us to the following simple idea for partition-based models: try to find a partitionΠ
such that (7.1.1) holds except for the objectsa, b ∈ S for which

(a E b) ∧ (d(a) �L d(b)) ,

since these occurrences of doubt and reversed preferences are inherent to the given
problem, and can never be eliminated. We also say they areunsolvable.SOLVABLE

DOUBT/REVERSED

PREFERENCE. 3Note that such a technique does not yet exist (at least not at the moment of this writing).
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As was the case for monotone data sets, the trivial partition ofX always complies
to this demand. So, we can refine our previous guideline to

Broad guideline: minimise solvable reversed preferences.

7.2 Principles of growing

Notions and conventions. We assume the reader is familiar with the basic ideas
of growing (splitting) and pruning a tree. A short introduction can be found in
Appendix 1.A(see p. 14).

NODES. Every nodet of a treeT corresponds to some subset of the data spaceX ,
which we will denote bytX . As a consequence,t also corresponds to some sub- tX

set tΩ of the object spaceΩ, i.e. tΩ = ρ−1(tX ), whereρ : Ω → X ; a 7→ tΩ

(c1(a), . . . , cn(a)). In a less formal way, we sometimes simply writea ∈ t or
x ∈ t instead ofa ∈ tΩ andx ∈ tX . A node of a treeT is called aleaf if it has no LEAF.

children, otherwise it is calledinner node. The set of leaves ofT is denoted bỹT . INNER NODE.

T̃ , TtLet t be an inner node ofT . The subtree ofT starting att is denoted byTt. See
also Figure 7.1.

Figure 7.1: The subtreeTt of T . Leaves are denoted by2, inner nodes by•.

SPLITS. Performing a single splits on a treeT involves identifying the leaft to
be split, and some testh on the objects from the leaft which determines in which
child of t the object will fall. If the splits is binary, the test has a yes-no response,
objects that answer positive are sent to the left child, the others to the right child.
Assuming we are only dealing with true criteria, asingle univariate binary split s

SINGLE

UNIVARIATE

BINARY SPLIT

s = (t, c, v).
on a treeT is a triplet(t, c, v), where

• t ∈ T̃ is a leaf ofT , namely the leaf to be split,

• c ∈ C is a criterion on which objects fromt will be tested

• v ∈ Xc is a value from the image of the criterionc. For anya ∈ t, if
c(a) ≤c v thena ∈ tL, otherwisea ∈ tR, wheretL (resp.tR) denotes the tL, tR

left (resp. right) child oft after the split is carried out.



186 CHAPTER 7. THE BASICS OF RANKING TREES

If the leaf to be split is clear from the context, we writes = (c, v), or sometimes
even simplyc ≤c v. In this thesis, we only consider univariate splits.
Let s be a split onT . We denote the tree obtained fromT after splitting it according
to s by T (s). Let t be an inner node ofT . Pruning [23] a branchTt from a treeTT (s)

consists of deleting fromT all descendants oft, that is, cutting off all ofTt except
its root node. We denote the resulting pruned tree byT/t. See also Figure 7.2.T/t

Figure 7.2: Splitting and pruning:T , T (s) with s = (t, c, v) andT/t.

SPLITTING RULE. There exist many kinds of different splitting rules (also called
splitting measure or splitting criterion). In this chapter, we only mention thetwoingTWOING

CRITERION. criterion , adapted to ordinal class labels [23]. Its value for a binary splits is
calculated as follows. For eachi ∈ L, relabel the objects in the children oft as
belonging to a class≤L i, or belonging to a class>L i. Now calculate the Gini
diversity indicesGi on the splits based on these new labels, i.e. calculate

Gi = p(tL) p(≤L i|tL) p(>L i|tL) + p(tR) p(≤L i|tR) p(>L i|tR) ,

wherep(t) is the estimated probability that an object falls into the nodet, andp(j|t)
is the estimated probability that an object belongs to classj if it is know to fall
into t. The value of the twoing criterion is just the minimum of allGi.

7.2.1 Ordering the leaves

Leaves and intervals. A tree is nothing but a nice representation of a family of
partitions that has some nice properties. For example, it was shown in [89] that all
blocks of a partition induced by a tree are intervals in(X ,≤X ):

Lemma 7.2.1. [89] LetT be a tree. For all leavest ∈ T̃ it holds that

tX = [x,y]

for somex,y ∈ X with x ≤X y.

We will adhere to the following notations as used in [89]: the minimal and maximal
element inX that characterise the interval induced by a leaft are denoted bya(t)
andb(t), i.e. tX = [a(t), b(t)].
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An order on the leaves. Since the leaves can be identified with blocks of a parti-
tion, we can use the local product preorder to order them.

Definition 7.2.1

Let T be a tree. We define the order≤T on the leaves ofT as follows: lett, t′ ∈ T̃ ,
then

t ≤T t′ ⇐⇒ tX .` t′X .

We also write
t �T t′ ⇐⇒ tX �` t′X .

We already noted that all the blocks of the partitions induced by a tree are intervals
in X . The following lemma tells us how the local product ordering�` behaves on
intervals:

Lemma 7.2.2. Consider two non-empty intervals[x,y] and [x′,y′] in (X ,≤X ),
then it holds that

(i) [x,y] �` [x′,y′] ⇐⇒ (x ≤X y′)

(ii) [x,y]−` [x′,y′] ⇐⇒ [x,y] ∩ [x′,y′] 6= ∅

Proof.
(i) Assume[x,y] �` [x′,y′]. Then(∃z ∈ [x,y])(∃z′ ∈ [x′,y′])(z ≤X z′). So,
x ≤X z ≤X z′ ≤X y′. The converse holds by definition.

(ii) Assume[x,y] −` [x′,y′]. Then (i) learns us that we have bothx ≤X y′ and
y ≤X x′, i.e. (∀i ∈ N)(xi ≤ci

y′i) and(∀i ∈ N)(x′i ≤ci
yi). Let K1 = {i ∈ N |

yi <ci y′i}, and define the vectorz by

zi =

{
yi , if i ∈ K1,

y′i , otherwise.

We have for alli ∈ K1 thatxi ≤ci
zi = yi because[x,y] is a non-empty interval;

x′i ≤ci
zi = yi becausex′ ≤X y; zi = yi ≤ci

yi; andzi = yi ≤ci
y′i by definition

of K2.
For all i ∈ N \ K1, we findxi ≤ci zi = y′i becausex ≤X y′; x′i ≤ci zi = y′i
because[x′,y′] is a non-empty interval;zi = y′i ≤ci

yi becausei 6∈ K1; zi =
y′i ≤ci

y′i.
In all, we find thatz ∈ [x,y] ∩ [x′,y′].
Conversely, ifz ∈ [x,y] ∩ [x′,y′], thenx ≤X z ≤X y′, andx′ ≤X z ≤X y. 2

As a consequence we have that

t �T t′ ⇐⇒ a(t) ≤X b(t′)

and that the ordering�T is antisymmetrical: for any two leavest, t′ ∈ T̃ , we al-
ways havetX ∩ t′X = ∅, except ift = t′ (because the leaves of a tree induce a
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partition ofX ). This makes that≤T becomes an order, i.e. reflexive, antisymmet-
rical and transitive! Moreover, it can be shown that≺T and<T contain no cycles,
the proof of which is deferred to Section 7.6, Proposition 7.6.2 and Corollary 7.6.3
(see p. 216).

Proposition 7.2.3. The relations≺T and<T contain no cycles.

7.2.2 Visualisation

One of the key aspects of decision trees is their easily interpretable graphical rep-
resentation, reflecting all information at a single glance. However, for ranking
problems, the basic tree visualisation is hiding the essential ordering information.
For example, the tree in Figure 7.3(a) is monotone, as can be easily seen from the

(a) Tree. (b) Induced partition.

Figure 7.3: A monotone tree.

partition it induces (figure (b)). However, the monotonicity is not immediately ob-
vious from the pictured tree itself. If the tree gets more complex, the problem is
even more imposing. Even the visualisation of the induced partition will bring little
comfort, as for dimensions higher than two, the partition becomes unreadable. But
all is not lost, the following lemma comes to the rescue!

Lemma 7.2.4. The poset(T̃ ,≤T ) is a lattice.

Proof.
We only need to prove that for each pair of leavest1 and t2 in T̃ there exist a
greatest lower bound and a least upper bound.
Considerx = inf {b(t1), b(t2)}, thenx ∈ X because(X ,≤X ) is a lattice, and
hence there is a uniquet∗ such thatx ∈ t∗X . Clearlyt∗ ≤T t1 (becausea(t∗) ≤X
x ≤X b(t1)) andt∗ ≤T t2, so t∗ is a lower bound oft1 andt2. Moreover, it is
the greatest lower bound. Indeed, assumet′ is another lower bound oft1 andt2,
implying thata(t′) ≤X b(t1) anda(t′) ≤X b(t2). Because(X ,≤X ) is a lattice,
we may derive from this thata(t′) ≤X x ≤X b(t∗), or t′ ≤T t∗.
Analogous for the least upper bound. 2
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So, we can always draw a lattice reflecting the order≤T , where the nodes of the
lattice correspond to the leaves of the tree. If we tilt the lattice 90 degrees clockwise
(i.e. the infimum on the left instead of on the bottom, and the supremum on the right
instead of on the top), we can always – provided that we play a bit around with the
different possibilities for positioning – draw nice diagrams like in Figure 7.4. We

Figure 7.4: A monotone treeT with dominance graph(T̃ ,≤T ).

will call such a graph adominance graph4. DOMINANCE

GRAPH.

7.2.3 Growing

Introduction. It is already known quite some time that the process of building
a tree is best done in two steps: first grow an overly large tree to obtain a near-
to-perfect fit of the training data, then prune the branches that seem5 to cause an
overfitting of the problem. This section handles about the growing phase of a tree
for a ranking problem.

A naive algorithm. In Section 7.1.3 we mentioned that the goal is to obtain a
partition that fulfils the demand (7.1.1) except for unsolvable doubt and reversed
preference, or translated to the context of decision trees:

Stopping condition for splitting : when for alla ∈ tΩ and for allb ∈ t′Ω it
holds that

t ≤T t′ ⇒ d(a) ≤L d(b) ,

except if the pair(a, b) leads to doubt or reversed preference in(d,≤L).

This is the equivalent of demanding that all leaves are pure or as pure as possible
in a regular classification context.

4Remark that this dominance graph is nothing else but the locally compressed graph mentioned in
Section 6.3.3, paragraph “Why local?” (see p. 163).

5According to [24, 98], pruning does not necessarily lead to better predictive accuracy. However, it
does lead to less complex and hence easier comprehensible trees.
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We can now derive a naive6 monotone tree algorithm: just keep on splitting until the
previous demand is met. Remark that it is very probable that we will obtain empty
leaves, i.e. leaves that contain no objects fromS, in order to satisfy this demand.
In that case, the problem becomes: How do we label these empty leaves? A more
sophisticated, but still a bit naive7 tree growing approach was proposed in [74, 90].

A less naive algorithm. The broad guideline mentioned in Section 7.1.3 helps us
in finding a more adapted scheme: for each split, choose the one that minimises
the number of reversed preferences between(d,≤L) andEp. Because our sec-
ond objective is to minimise impurity8 in the tree, we can for example break ties
using the twoing criterion, which tends to choose more balanced splits (see [23]).
This idea could be said to be more sophisticated in its dealing with reversed pref-
erence, while rather naive in its dealing with doubt in case there is reversed prefer-
ence. Still, it should be remarked that this is a good starting point, since minimis-
ing reversed preference will automatically reduce doubt/impurity9, while reducing
doubt/impurity may have an increasing effect on reversed preference. Of course,
the best would be to have some kind of measure that can incorporate both doubt
and reversed preference on the same level10.

About overfitting. In the case of non-monotone data, the proposed approach is
likely to overfit the data, just because of the reversed preferences inherent to the
given learning sample. In Chapter 4 and Section 6.5.3(see p. 170), we already showed
how reversed preference leads to additional doubt in the final classifier by the idea
of turning reversed preference into doubt to assure monotonicity. Indeed, consider
the non-monotone learning sample(S, (d,≤L)) with only one criterion, i.e.X =
Xc is one-dimensional, as given in Table 7.1. Fromd, we can define a consistent
representation(λrepr,≤[2]) as shown in the same table. However, if we want to grow
a tree on this data set, and only stop growing when the above stopping condition
is met, we see that we have to separate the objectsa3 anda4 into different leaves
because they do not lead to doubt nor to reversed preference. So the minimal tree
that satisfies the stopping condition has four leavest1, t2, t3, t4, with t1X = [1, 1],
t2X = [2, 3], t3X = [4, 5] andt4X = [6, 6] for example the tree depicted alongside the
table. Obviously, if the nodet would be pruned, merging the leavest2 andt3, we
would obtain a tree with the same performance.

About the interdependency of the leaves. There is another very important re-
mark to be made. In classification trees, all leaves are independent. This makes

6Naive in the sense that we can always grow a perfect tree if we just keep on splitting long enough.
7Sophisticated in its dealing with doubt and in its labelling, but still a bit naive in its dealing with

reversed preference. See also Appendix 3.A where we solidify this statement.
8A set is pure if it contains only objects with the same label, the more diverse the content of the set,

the more impure it becomes. Impurity can be measured by e.g. the Gini diversity index or the Shannon
entropy [23], see also Section 2.4.2, p. 39.

9Doubt and impurity are closely related as demonstrated in Section 2.5.3 (see p. 46).
10We elaborate on a first proposal of such a measure in [27].
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(a) Table.

a1 a2 a3 a4 a5 a6

c 1 2 3 4 5 6
d 1 2 1 2 1 2

λrepr 1 [1,2] [1,2] [1,2] [1,2] 2

t1 t2 t3 t4

(b) Tree.

Table 7.1: A simple learning sample(d,≤L) and a monotone model.

that each node can be seen as the root of a new classification tree that can be dealt
with on its own. However, in the ranking problem, all leaves are interconnected by
the order≤T and must therefore always be considered as a whole. This means that
while for classification trees, the local optimum of the splitting measure at a node
coincides with the global optimum for the whole tree, this is not necessarily true
for ranking trees. So besides the local component, ranking trees must always keep
a kind of global control on what is happening during splitting, because the split of
one leaf may have an effect on all the other leaves. As a consequence, the order in
which the leaves are split starts playing a distinctive role. For now, we will follow
a “breadth first” strategy, or even better, an “impurest first” strategy (meaning that
the node with the highest value on some impurity measure weighted by the node’s
weight is chosen). At the end of Section 7.3.3 we will discuss how only considering
splits of one leaf at a time may be inappropriate for finding a good solution, and
in Section 7.5.1 we will suggest yet another scheme for picking the next nodes to
consider for splitting.

Another complexity problem. For each possible split, in order to calculate some
measure on the leaves, we first need to determine the order≤T on the leaves. The
definition of≤T involves a transitive closure of another relation, and this may be
very time-consuming. In Section 7.6, we discuss a way of generating the rela-
tion ≤T after the split from the relation before the split with minimal additional
calculations.
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7.2.4 Summary

Every leaft of a treeT corresponds to an interval[a(t), b(t)] in X . We can define
a partial order≤T on the set of leaves̃T of T in two steps:

(i) Define the reflexive and antisymmetric relation�T by:

t �T t′ ⇐⇒ a(t) ≤X b(t′) .

(ii) Consider the transitive closure≤T of �T .

The resulting poset(T̃ ,≤T ) is a lattice, which enables us to easily draw thedomi-
nance graph.

While splitting, the main guideline is to minimise the occurrence of solvable re-
versed preference.T is grown until the stopping condition is met, i.e. until for all
t, t′ ∈ T̃ it holds that

(∀a ∈ tΩ)(∀b ∈ t′Ω)(t ≤T t′ ⇒ d(a) ≤L d(b)) ,

except for the pairs(a, b) leading to doubt or reversed preference within the learn-
ing sample.
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7.3 Examples of growing

7.3.1 Minimal example, monotone data set

Candidate evaluations. Consider again the candidate evaluation example of Sec-
tion 1.2.2(see p. 6), as depicted in Table 7.2. Candidates are evaluated according

c1 c2 c3 d

a1 − − + B
a2 + − − M
a3 − + + G
a4 + + − M

Table 7.2: Evaluations of candidates

to c1, their capacity for learning (slow or fast),c2, their working experience (lit-
tle or much), andc3, their personal profile, i.e. how well they will fit into the
group they have to work with (bad or good). These binary values are denoted by−
and+. The set of labels isL = {B(ad) <L M(oderate)<L G(ood)}. We have
seen in Section 1.2.2 that a classification tree algorithm run on this data set leads to
a non-monotone tree, although this learning sample is clearly monotone.

Growing the tree. Let us now demonstrate the principles of the previous section.
There are three possibilities for the first split. These are pictured together with their
dominance graph in Figure 7.5. We see that the first option results in 2 occurrences

Figure 7.5: The splits based onc1, c2 andc3, along with the corresponding domi-
nance graph. We mark the occurrence of reversed preference with a cross

of reversed preference:a3 ∈ t1 ≤T t2 3 a2, a4, while d(a3) = G �L d(a2) =
d(a4) = M. The split based onc2, however, is in accordance with the principle
of partial dominance preservation:(∀a ∈ t)(∀b ∈ t′)(t ≤T t′ ⇒ d(a) ≤L d(b)).
The third possible split leads again twice to reversed preference. So we obtain
c2 > c1 = c3 as the ranking of the possible splits.
Now that the first split has been chosen, we look at the possibilities for the second
split as depicted in Figure 7.6. We see clearly that the split based onc3 leads again
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Figure 7.6: Two possibilities for the second split.

to reversed preference:a2 ∈ t1 ≤T t2 3 a1 andd(a2) = M �L d(a1) = B. The
split based on criterionc1 is in line with the principle and is therefore chosen.
Finally, the last split is best based onc3 as can be seen in Figure 7.7.

Figure 7.7: Two possibilities for the third split.

The rule base. In this example, all leaves contain at least one example, so we are
not confronted with the labelling of empty leaves. We end up with the following
rule base:

• if the candidate has little or no working experience and if, moreover, (s)he is
a slow learner, then (s)he gets the global evaluationBad,

• if the candidate has little or no working experience but can compensate this
a bit by being a fast learner, then (s)he is evaluatedModerate,

• if the candidate has a lot of working experience, but doesn’t fit well into the
group, then (s)he is evaluatedModerate,

• if the candidate has a lot of working experience combined with a good fit into
the group, then (s)he is evaluatedGood.

This rule base is very natural, especially compared to the rule bases induced from
a classification tree algorithm (see Section 1.2.2,p. 7).
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7.3.2 Minimal example, non-monotone data set

Consider the example from Section 4.6.3(see p. 105), retaken in Table 7.3.

a1 a2 a3 a4 a5 a6

c 2 1 4 3 6 5
d 1 2 3 4 5 6

Table 7.3: A simple non-monotone ranking(d,≤L).

Here, we are confronted with binary splits of the formc ≤c v. For the first split,
we see that the splitsc ≤c i with i = 1, 3, 5 lead to reversed preference, while
the splitsc ≤c j with j = 2, 4 do not (see Figure 7.8). Since these latter splits

Figure 7.8: Some possibilities for the first split.

also lead to the same value of the twoing criterion, we simply choose the first
one,c ≤c 2, as our first split. If we now consider an “impurest first” strategy for
picking the next node to split, we come up with nodet2. A “breadth first” strategy
would lead tot1. We now remark that anyway,t1 only contains two objects that
lead to reversed preference in the learning sample, so splittingt1 doesn’t get us
anywhere. For the split oft2, there are three possibilities left:c ≤ 3 leading to
reversed preference,c ≤ 4 which is consistent, andc ≤ 5 leading again to reversed
preference. Thereforec ≤ 4 is chosen and we end up with the final tree complying
with our stopping demand, as depicted in Figure 7.9 (a).

But... There is however an important “But...”. In the previous case, it was easy
to detect that the splitting oft1 is useless. But is this always true? The answer is
unfortunately negative11. Therefore, we only stop considering a node for splitting
in case it is pure and if it does not lead to solvable reversed preferences with other
leaves. Moreover, while splitting, we check whether the best split does at least
something: either removing doubt or removing solvable reversed preferences. If
not, the split is not carried out. This scheme would lead to the final tree shown in
Figure 7.9 (b). Clearly, this tree is in need of some pruning!

11Maybe there exists a positive answer to this question, but we haven’t yet figured that one out.
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(a) Final treeT1. (b) Final treeT2.

Figure 7.9: Final trees for Table 7.3.

7.3.3 A more involved example

Introduction The examples elaborated in the previous section are extremely well
behaving: we can always find a split that causes no reversed preference (at least
not solvable ones). This implies that the resulting children can be considered as
independent, because meddling with them can not affect the other leaves (influence
on other leaves can only be achieved via reversed preferences). The next example
taken from [48], which is an adaptation (a recoding) of a data set in [31], does not
have this friendly property.

The contraception data. The data are shown in Table 7.3.3, where0 = low, 1 =
moderate, 2 = high. The global label given byd stands for the “use of contracep-
tion”, the partial evaluations are based on the following criteria:

• Average years of education (c1),

• Urbanisation (c2),

• Gross national product per capita (c3),

• Expenditure on family planning (c4).

Remark that this data set is not monotone, although nearly. The countries Sri Lanka
(4) and Thailand (6) cause reversed preference in the learning sample. As men-
tioned above, we could eliminate one of them, but in this case, this would mean
disregarding information because all data is correct. The reason for the reversed
preference is likely to be caused by a too small set of criteria (see also Section 4.6.2,
p. 101).

Growing a ranking tree There are eight possible splits to start with:ci ≤ 0 and
ci ≤ 1 for i = 1, . . . , 4. Some of them are shown in Figure 7.10, a table with the
number of solvable reversed preferences corresponding to all splits can be found
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Country c1 c2 c3 c4 d
(1) Lesotho 1 0 0 0 0
(2) Kenya 0 0 0 0 0
(3) Peru 1 1 2 0 0
(4) Sri Lanka 1 1 0 1 0
(5) Indonesia 0 0 0 1 0
(6) Thailand 1 0 0 1 1
(7) Colombia 1 2 1 1 1
(8) Malaysia 0 1 2 1 1
(9) Guyana 2 1 2 0 1
(10) Jamaica 2 0 2 2 1
(11) Jordan 0 2 1 0 1
(12) Panama 2 2 2 1 2
(13) Costa Rica 2 1 2 2 2
(14) Fiji 1 1 2 2 2
(15) Korea 2 1 1 2 2

c1 : Average years of education

c2 : Urbanisation

c3 : Gross national product per capita

c4 : Expenditure on family planning

d : Use of contraception

0=low, 1=moderate, 2=high

Table 7.4: Recoded contraception data

on the bottom of this figure. Consider for example the splitc2 ≤ 0. It contains four
reversed preferences: two objects with label 1 belong tot1 and two objects with
label 0 belong tot2, while t1 <T t2. However, one of these pairs causing reversed
preference is the pair (Sri Lanka, Thailand), which is an unsolvable one. Therefore
we end up with three solvable reversed preferences for the splitc2 ≤ 0. In all, we
see we have a tie betweenc3 ≤ 0 andc4 ≤ 1. This tie is broken by calculating that
the splitc4 ≤ 1 has the lowest value for the twoing measure.

Now, following the impurest first strategy, we continue splitting the nodet1. The
splits are shown in Figure 7.11. This time, we have to consider three leaves in
our calculations, for example for the splitc1 ≤ 0, we find six reversed preferences
betweent3 andt4, one betweent4 andt2, and none betweent3 andt2. Considering
all splits, we find again a tie, now betweenc1 ≤ 1 andc2 ≤ 1. The matter is settled
in favour ofc1 ≤ 1.

The next least pure node ist3, and as can be seen in Figure 7.12, we find one best
split, namelyc2 ≤ 1.

Continuing like this, we finally find the tree presented in Figure 7.13. It can be
seen that the influence of the inherent reversed preference between Sri Lanka and
Thailand causes overfitting at nodet14. This can be seen intuitively by noting that
we are better off not splittingt14 because it produces only counterintuitive (non-
monotone) results.
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splits oftroot (c1, 0) (c1, 1) (c2, 0) (c2, 1) (c3, 0) (c3, 1) (c4, 0) (c4, 1)

# solvable rev. pref. 6 2 3 6 1 7 4 1

Figure 7.10: Some of the possible splits of the root and the table of all splits with
the corresponding number of solvable reversed preferences.

splits oft1 (c1, 0) (c1, 1) (c2, 0) (c2, 1) (c3, 0) (c3, 1) (c4, 0)

# solvable rev. pref. 7 1 2 1 2 4 5

Figure 7.11: Some of the possible splits oft1 and the table of all splits with the
corresponding number of solvable reversed preferences.

splits oft3 (c1, 0) (c2, 0) (c2, 1) (c3, 0) (c3, 1) (c4, 0)

# solvable rev. pref. 7 2 1 2 4 3

Figure 7.12: Splits fort3.
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Figure 7.13: Overly grown tree for the contraception data.
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Blind splits. As in the foregoing examples, we were lucky that none of the leaves
ended up empty. Moreover, there is still one problem during the growing phase
left untreated: what if we do not find a split that reduces either doubt or reversed
preference? Consider for example Figure 7.14(a), and assume that for some reason

(a) Table.

c1 c2 c3 d

a1 2 2 1 B
a2 1 1 2 G

(b) Forced
tree.

(c) Projection of the induced partitions for the
two possible splits oft1.

Figure 7.14: A possible problem during splitting: blind splits.

the first split was forced to bec1 ≤ 1. We continue splitting because our stopping
demand has not yet been met, but how do we choose the split fort1? There is
only one example int1, and neither of the two possible splitsc2 ≤ 1 andc3 ≤ 1
eliminates the existing reversed preference. Since both splits end up in a strict tie,
the usual approach is to take the first one, that isc2 ≤ 1. In other words, the split is
takenblindly . However, from Figure 7.14(c) it is clear we should have takenc3 ≤ 1BLIND SPLIT.

to be able to solve the reversed preference when splittingt2. We will address this
kind of problems12 in Section 7.5. It should be noted that this problem is closely
related to the problem of empty nodes.

7.4 Principles of labelling and pruning

We already mentioned the need of pruning a tree, certainly in the ranking problem
context. Obviously, pruning is inextricably intertwined with validation, such as the
minimisation of some error functionalR and the acceptability of the final tree to
the user. On its turn, validation depends on how the leaves of the tree are labelled.
You may have such a nice tree, but if your labelling rule tells you to assign always
the same label to each leaf, you might as well prune the entire tree to its root.

7.4.1 Labelling

Introduction. In Chapter 4 we discussed circumstantially how to produce a mono-
tone labelling scheme in the presence of reversed preference. In Chapter 5, we
developed the OSDL algorithm (Ordinal Stochastic Dominance Learner) based on

12Remark that the “cornering” method described in [74, 89] (see also Section 3.2.3, p. 62) solves this
particular example nicely, but as we discuss in Appendix 3.A, this is no longer true in more complex
situations,where the problem of blind splits occurs frequently.
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these ideas. Then, in Chapter 6, in particular Section 6.5.4(see p. 174), we showed
how everything could be adapted towards partition-based patterns.

The labelling rule.
IN GENERAL , a labelling rule λT : T̃ → LT assigns a label to each leaf ofLABELLING RULE

λT .the tree. In order to avoid confusion, we stress thatLT may be different from the
LTinitial label setL from the learning sample. For example, we may haveLT = 2L,

the power set ofL, orLT = F(L), the set of distributions overL. F(L)

FOR CLASSIFICATION trees, a labelling rule has only one objective: given the
current tree, minimise the risk functional on some sample (this is usually the learn-
ing sample itself). Mostly, eitherLT = F(L) and the leaves are labelled with the
distribution overL of the examples in each leaf, orLT = L where the label with
the maximum probability in the previous distribution is assigned to the leaf.

FOR RANKING trees, a labelling rule has the additional requirement that it has
to make the tree monotone. Possible candidates are the Minimal and Maximal
extension mentioned in Section 5.4.2(see p. 130)adapted towards partitions, but we
opt for the modified OSDL algorithm, i.e.

λT (t) := λOSDL(t) ,

because of its good performance13 in ranking problems(see Section 5.4.5, p. 135).

About the monotonicity of trees. In [89], An “efficient algorithm for testing
the monotonicity of a tree”was put forward. It is interesting to note that this al-
gorithm follows as a consequence from Lemma 6.5.2(see p. 170)and the fact that
t �T t′ ⇐⇒ a(t) ≤X b(t′). Indeed, they imply that the partition-based mono-
tonicity constraint can be rewritten as

a(t) ≤X b(t′)⇒ λT (t) EIm λT (t′) .

Because Lemma 6.5.1(see p. 170)says that partition-based monotonicity implies el-
ementary monotonicity (i.e. on the pairs of vectors ofX ), this means that a tree is
monotone if it passes the algorithm

for all pairs of leavest, t′ ∈ T̃ do

if
(

a(t) ≤X b(t′) and λT (t) 6EIm λT (t′)
)

or(
a(t′) ≤X b(t) and λT (t′) 6EIm λT (t)

)
then

stop:T not monotone
end if

end for

which corresponds exactly to the algorithm described in [89] if(LT ,EIm) is chosen
to be(L,≤L).

13Of course, the effect of different labelling rules could (should) be compared experimentally.
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7.4.2 Pruning

Introduction
IN CLASSIFICATION , it is observed that estimates based on small samples are

potentiallyunreliable. They tend to capture patterns that are very specific to this
particular learning sample. This is called overfitting. However, Shaffer [98] made
clear that there are no“statistical reasons for believing that these overfitting avoid-
ance strategies do increase accuracy”. This seems to be very true if a classification
tree algorithm is let loose on a ranking problem: pruning the tree seems rather to
decrease the accuracy than to increase it, as can be seen in the tables in Section 5.4.5
(see p. 135). This can be explained by observing that while the samples do get smaller,
they also get more restricted by the monotonicity constraint. For example, in Fig-
ure 7.15 it is shown how only two examples(a, d(a) = 2) and(b, d(b) = 2) with

Figure 7.15: Two examples determine completely the labelling of a range of subsets
of X .

a ≤X b fix the labels of all setsA within the interval[a,b]. Such a setA may even
not contain any examples at all, while still leading to high accuracy.

HOWEVER, in the ranking tree approach, we also have to consider the problem
of reversed preference, that urges us to consider pruning. And then there is this last,
but ever so important reason: pruningalwaysreduces the complexity of the tree.
If you just want high accuracy, there are plenty of black box algorithms that will
outperform trees. The main reason why trees are still popular is probably because
they are so easy to interpret while still returning good accuracy, and a smaller tree
is even easier to interpret.

Possible pruning techniques. Once the labelling rule has been fixed, we can ap-
ply any pruning approach we desire. But, as always, there is a catch. The same kind
of woes we encountered during the growing phase emerge again, playing their dirty
little tricks on the pruning process. Pruning algorithms are usually specifically cre-
ated to be efficient for non-interacting leaves: for each nodet, we can, givenλT (t),
simply calculate the errorR(t) without having to worry that cutting some branches
off will influence this result. For example, if we would interpret the tree of Fig-
ure 7.13 as a classification tree, then we can calculate the distribution-label of
e.g.t11 as14 (0, 1, 0), which is nothing else but the distribution of the examples in

14If L = {1, . . . , k}, then we denote a distributionfX ∈ F(L) as a vector of dimensionk: fX =
(P(X = 0), . . . ,P(X = k)).
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nodet11. Pruning nodet4 does not affect the number of examples int11. If we ap-
ply the labelling rule OSDL, then this sweet reality gets distorted: pruningt4 does
meddle with the distribution-label attached tot11, instead of(0, 1, 0), we would
obtain(0.5, 0.5, 0). As a consequence, although we can still keep the ideas of all
pruning techniques, we can not rely on the implementations that are available for
them. For that matter, we can not even easily extend these algorithms. For exam-
ple, the efficient cost-complexity pruning algorithm described in [23,p. 293] heavily
relies upon the inter-independence of the nodes. In fact the whole cross-validation
technique for cost-complexity pruning is built upon the premisse that the leaves can
be treated separately. Finding really efficient algorithms for pruning ranking trees
is a difficult matter that will not be dealt with in this thesis.

Minimal cost-complexity pruning. Here we will briefly touch on the troubles
that arise when we try to adopt the idea of cost-complexity pruning [23]. This
approach creates a sequence(T0 = T (α0), . . . , Tk = T (αk)) of shorter and shorter
nested trees, where each treeT (αi) minimises thecost-complexity measure

Rα(T ) = R(T ) + α|T̃ | ,

for ever increasing complexity parameterαi (the cost per leaf is measured by the
number of leaves). HereR(T ) =

∑
t∈T̃ R(t) is calculated on the training sample

used to grow the tree. The second phase consists of finding reliable estimates for
theR(Ti). The final tree is then the one with the lowest estimated value of the risk
functional.
For classification problems,limα→∞ α corresponds to the shortest treeTk (the root
node).α = 0 corresponds to the longest treeT0 = Tmax, on the condition that the
splitting rule is designed to keep reducingR at each split, and this is always the
case in the existing classification tree algorithms. And here the problems start, for
ranking trees, it is not guaranteed thatR is non-increasing. This also implies that
we cannot be sure the sequence(Ti)i consists of nested trees. This means that the
whole theory of cost-complexity collapses.
Still, we can create a sequence of nested trees using an idea derived from cost-
complexity pruning: pruning is done by repetitively cutting the weakest link in a
treeT , we just can not be sure anymore that the trees in this sequence have the
same nice properties as in the theory of cost-complexity pruning. Theweakest link
is defined as the inner nodet that minimises thelink strength15

R(T/t)−R(T )

|T̃t| − 1
.

Remark that for classification problems,R(T/t) − R(T ) = R(t) − R(Tt), which
saves a lot of calculations. For ranking problems, we need to establish for each
possible pruned treeT/t the order≤T/t and then apply OSDL to it. In Section 7.6,
we will discuss how we can do this a bit more efficiently.

15The weakest link is the inner nodet that produces the smallest value forα satisfyingRα(T/t) =
Rα(T ). More details can be found in [23].
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Remark. Independently from our research, monotone labelling and pruning tech-
niques have been proposed in [17, 18, 87]. The post-pruning they offer, is based
on the labelling of the leafs by the Minimal or Maximal extension as mentioned
higher. The pruning is controlled by fixing a misclassification threshold percent-
age. Also a pre-pruning strategy is presented for the special case of the MDT
(Monotone Decision Trees) algorithm [89] by another intervention in the updat-
ing rule Section 3.2.3(see p. 62)of MDT. The growing of the is controlled by the
minimal number of objects that have to fall into a leaf.

7.4.3 Example

In order to make this example easier to understand, we will use as a labelling rule
the optimal (in terms ofR chosen as the misclassification error w.r.t. to the given
sample) monotone labelling. Remark that, for the small example considered here,
it is easy to find such an optimal labelling, and that it is not necessarily unique.
However, the optimal labelling problem becomes very complex in general, and has
not yet been solved at the time of this writing. As a pruning rule, we will follow
the weakest link strategy described above.
Consider again the tree obtained from Table 7.3, leading to the maximally grown
tree shown in Figure 7.16 withR(Tmax) = 1

2 . At this point, we can prune any one

Figure 7.16: Maximally grown treeTmax on Table 7.3.

of the nodest0, t1, t2, t3 or t4, leading to the trees depicted in Figure 7.17. From
the table in the same figure, we read that there are three weakest nodest1, t2 or
t3. We choose the first one for pruning, resulting in the treeT ′ = T/t1. We can
now prune eithert0, t1, t3 or t4. Continuing like this results in a nested sequence of
trees. The pruning order and associated errors (on the training sample16) are shown
in Table 7.5. From this table, we conclude thatT3 is the best tree, as depicted in
Figure 7.18.

16In the optimal situation, this error should be estimated from a large independent sample set. Cross-
validation techniques have not yet been developed for pruning ranking trees.
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(a) Pruned
treeT/t0.

(b) Pruned
treeT/t1.

(c) Pruned
treeT/t2.

(d) Pruned
treeT/t3.

(e) Pruned
treeT/t4.

node t0 t1 t2 t3 t4

error pruned tree 5
6

1
2

2
3

1
2

1
2

link strength 1
15 0 1

18 0 0

Figure 7.17: Pruning the tree grown on Table 7.3: pruningTmax.

T0 T1 T2 T3 T4 T5pruning sequence
Tmax Tmax/t1 T1/t3 T2/t4 T3/t2 T4/t0

error 1
2

1
2

1
2

1
2

2
3 1

Table 7.5: Pruning sequence for the tree grown on Table 7.3.

7.5 A ranking tree algorithm

Notions and conventions. Let R denote a binary relation on a setX. A chain CHAIN IN A BINARY

RELATION.in R is a sequence(ai)i of elementsai ∈ X such thataiRai+1.

A single split s is a split on one leaft. We will denote the children oft after a SINGLE SPLIT.

single binary split bytL andtR with tL ≤T tR. tL, tR

Performing several single splitssi, i = 1, . . . , k simultaneously, is called amultiple MULTIPLE SPLIT.

split. In the special case where such a multiple splits consists of several single bi-
nary splits of the formsi = (ti, c, v), i = 1, . . . , k with ti ∈ T̃ , we write this short
ass = (L, c, v), with L = {t1, . . . , tk}. We stick to the notationT (s) for denoting
the tree resulting fromT after performing the splits.

A single split is calledvoid if it does not affect the partitioning ofX . For example, VOID SPLIT.

consider the tree in Figure 7.18(see p. 200). The split(t1, c, 1) is a void split. More
formally, if tX = [x,y], then any split(t, ci, vi) with vi 6∈ [xi, yi[ is a void split. Do
remark that nothing prevents us from performing a void split, but the only result is
that nothing will happen. However, it can prove helpful to consider the childrentL
andtR of such a split, where one of them equalst, and the other one is aphantom PHANTOM NODE.

node, a non-existing node.
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Figure 7.18: Final tree.

7.5.1 Avoiding blind splits

Introduction. Recall the problem we raised in Figure 7.14, where it was difficult
to find a split for one of the leaves. The essence of this issue lies in the interdepen-
dency of the leaves. So instead of abiding by the idea of splitting a single leaf at a
time, we should consider the option of splitting several leaves at a time.

Choosing which leaves to split. We let us inspire by the guideline of trying to
minimise solvable reversed preferences. The idea is to split the couple of leaves that
have the most solvable reversed preferences between them. If there are no reversed
preferences, we only split one node, the impurest one. The algorithmPickNodesis
described in Algorithm 7.1. We denote the number of solvable reversed preferences
between two leavest, t′ ∈ T̃ by #rp(t, t′).

Algorithm 7.1 : PickNodes, primal selection of leaves to split

RP← max
(u,v)∈T̃ 2

#rp(u, v);

if RP = 0then
return impurest leaf;

else
return(t, t′)← arg max

(u,v)∈T̃ 2

#rp(u, v);

end if

However, even though considering a simultaneous split of two leaves may solve
the problem in Figure 7.14, blind splits (in the sense they can not foresee how
to eliminate the reversed preference) may still occur. Consider for example the
situation in Table 7.19. To keep the example simple, we usen-ary splits (like
in ID3 [92]). If the first split is based onc1, then we may choose whatever splits
we like on t1 and t3, but we will never break the relationa /p b because of the
existence oft2: any childt′1 of t1, and any childt′3 of t3 will always be related as
t′1 ≤T t2 ≤T t′3. Our personal observations have made clear this kind of situation
is not exceptional, even in binary splitting.
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(a) Part of the table.

c1 ci d

a 3 . . . G
b 1 . . . B

(b) Dominance graph of any split
of (t1, t3). (c) Induced partition.

Figure 7.19: A constant dominance graph for splitting(t1, t3).

Avoiding blind splits. The problem of blind splits can be solved by not simply
splitting the two leaves leading to reversed preference, but also all leaves that lie in
between them.

Lemma 7.5.1. Let t, t′ ∈ T̃ , with t <T t′, be two leaves such that there exists at
least one solvable reversed preference between them. DenoteL = {u ∈ T̃ | t ≤T

u ≤T t′}. There exists a multiple splits = (L, c, v) such that at least one of the
solvable reversed preferences inT does not occur anymore inT (s).

Proof.
Let C = {ci | i ∈ N} be the set of criteria. By assumption, there exist some
objectsa ∈ t andb ∈ t′, with a �X b andd(a) >L d(b), i.e. a andb lead to
reversed preference inT becauset <T t′, but not within the learning sample. This
means there exists at least onei ∈ N such thatci(a) >ci

ci(b). We will now
demonstrate that the splits(L, ci, vi) with vi ∈ [ci(b), ci(a)[ will solve the reversed
preference betweena andb in T (s). Let s = (L, c, v) be such a split.

Consider any chain(li)k
i=1 in (T̃ ,≤T ) with l1 = t and lk = t′. By definition

of s, all these leaves are split followingc ≤ v. We havea ∈ tR = (l1)R and
b ∈ t′L = (lk)L. Moreover, it holds thattR �T (s) t′L, and they are not connected
by the children of the leavesli. Indeed, after splitting, the chain(li)i is split into
two chains((l1)L, (l2)L, . . . , (lk)L, (lk)R) and((l1)L, (l1)R, (l2)R, . . . , (lk)R), as
can be seen in Figure 7.20. Remark that some of these children may in fact be
phantom nodes, but this does not affect our demonstration (see below). Since this

Figure 7.20: The splitting of the chain(li)i.
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(a) Tree before
splitting.

(b) Associated
partition before
splitting.

(c) Associated
partition after
splitting.

(d) Dominance graph with phantom nodes.

Figure 7.21: Phantom node.

holds for all chains connectingt and t′, we ultimately have thattR �T t′L, and
therefore the reversed preference betweena andb is resolved inT (s). 2

Example of multiple split with phantom nodes. Consider the tree depicted in
Figure 7.21(a), and the (multiple) splitc2 ≤ 1 on the chain of nodest, t′, t′′.
Clearly, the splits ont and t′ are void ones, with phantom nodestR and t′L. As
can be seen from Figure 7.21(d), considering the would-be relations with the phan-
tom nodes does not affect the relations between the real nodes.

7.5.2 The splitting and pruning algorithms

Splitting. Once the initial node(s) to be split are chosen, we have to find the split
to perform. The best split among a set of splits is always chosen in two steps: first
find the one that minimises the number of solvable reversed preferences inT (s),
and amid these, choose the ones that minimise the twoing criterion onT (s). If
there are several such splits, pick the first one encountered.
Algorithm 7.2 describes a possible splitting algorithm for ranking trees. First
choose the nodes to split based onPicknode, which delivers either one (case (i))
or two nodes (case (ii)). In the latter case, we know by Lemma 7.5.1 that we can
always reduce the number of solvable reversed preferences by splitting all chains
between the chosen nodest1 andt2 (case (ii–c)). However, we first try to lower
this number by only splittingt1 or t2 (case (ii–a)), or by a simultaneous split oft1
andt2 (case (ii–b)).
We denote the number of solvable reversed preference inside a treeT by #rp(T ).
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Algorithm 7.2 : Split , find a split for a treeT

L← Picknode(T );

(i) caseL = {t}:
for all i ∈ N do

find the best splitsi = (t, ci, v) among the non-void splits oft;
return s← best one amongsi.

(ii) caseL = {t1, t2}:
Rename such thatt1 ≤T t2. We proceed in three steps where we try to find
a solution that requires the minimal number of nodes to be split:

(a) for i = 1, 2 do
Si ← {(ti, c, v) | s = (t, c, v) in T, t ∈ ancestors(ti)},
si ← best split inSi;

if (s← best split in{s1, s2}) is such that#rp(T (s)) < #rp(T ) then
returns;

(b) for all i ∈ N do
find the best splitsi = ({t1, t2}, ci, v) among those splits for
which (t1, ci, v) and(t2, ci, v) are both non-void;

if (s← best amongsi) is such that#rp(T (s)) < #rp(T ) then
return s;

(c) L← {t ∈ T̃ | t1 ≤T t ≤T t2};
for all i ∈ N do

Si ← {(L, ci, v) | v ∈ [a(t2)i, b(t1)i[ },
si ← best split inSi;

return s← best one amongsi.

As a variant on step (ii–b), we might consider to searchsi among the set of
splits 〈(t1, ci, v), (t2, ci, w)〉 wherev ≥c w and both simultaneous splits are non-
void. In caset1 ≺T t2, such splits still ensure that(t1)R �T (t2)L.
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Pruning. We implemented the “cut-the-weakest-link” approach based on the min-
imal cost-complexity pruning technique, as described in Section 7.4.2, to obtain a
sequence of smaller and smaller nested trees(T0 = Tmax, . . . , Tk = troot). What
we did not yet address, is the problem of picking out the final tree from the obtained
pruning sequence.
For classification trees, there are two approaches, either use an additional inde-
pendent (large enough) learning sample for pruning, or cross-validation. At this
moment, there is not yet a theory allowing cross-validation for ranking trees, so we
are left with the first option. However, if no such sample is available, the final tree
can always be chosen from the sequence using the original learning sample. As we
explained above, our splitting does not guarantee the continuous decreasing of the
risk functionalR on the training set: we even observed that, for non-monotone data
sets, the plot ofR in function of the number of leaves shows a curve starting high,
then going down steeply, reaching a minimum and climbing up again. This can be
explained by noticing that at a certain point, the decrease in the number of solvable
reversed preferences is no longer sufficient to compensate for the growing number
of unsolvable reversed preferences.

7.5.3 Experiments

Introduction In this section, we present the results of some experiments we con-
ducted. The general settings and implementation frame are the same as described in
Sections 5.4.1 to 5.4.3(see p. 130). We only conducted experiments using artificially
generated monotone data sets, as described in the next paragraph.

Artificially generated data sets. Our experiments for RT, Ranking Trees, are
based on artificially generated monotone samplesS, where we divideS into a
training set and a test set. The size of the test set will always be 500. All results
gathered in the figures and tables are averages from 10 independent runs.
We consider 3 monotone designs, and 1 non-monotone design (a projection of a
monotone data set as discussed in Section 5.4.1(see p. 130)) whose characteristics
can be found in Table 7.6.

de
si

gn
1

de
si

gn
2

de
si

gn
3

de
si

gn
4

|C| (# generated criteria) ∗ 7 6 8
|C′| (# used criteria) ∗ 7 6 6
|Xc| (# criterion values) 5 ∗ 5 5
|L| (# labels) 4 4 4 4
|S| (# learning instances) 100 100 ∗ ∗

Table 7.6: Characteristics of the different designs.
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COMPARISON WITH TREE ALGORITHMS. We first perform some comparisons
with C4.5 [93], both pruned and unpruned variants, and MDT, Monotone Deci-
sion Trees [89]. We calculated the classification accuracy, Kendall’s tau, the mean
absolute error (MAE) and the mean square error (MSE). More details about these
measures can be found in Section 5.4.3(see p. 132). The results for designs 1 and 2
are shown in Figures 7.22 and 7.23.

Figure 7.22: Design 1, variable dimension.

The first noticeable feature of these graphs is the similar behaviour in these exper-
iments of the classification accuracy and Kendall’s tau on the one hand, and of the
MAE and MSE on the other. Therefore, for the remainder of this section, we will
just concentrate on the classification accuracy and the MAE.
Secondly, these figures indicate that RT produces trees with slightly better results
compared to MDT. To get an idea of the significance of this improvement, we
performed the one-sided Wilcoxon signed-rank test [68], which is non-parametric.
The results are given in Table 7.7. From these, it becomes clear that the larger
the space, the more important and significant the gain becomes. This gain can be
attributed to the avoidance of blind splits, as is evidenced from the average tree
sizes (number of leaves) for these two experiments as summarised in Table 7.8.
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Figure 7.23: Design 2, variable axis length.

COMPARISON WITH OTHER ALGORITHMS. Now, we also contrast the tree al-
gorithms with OSDL, the Ordinal Stochastic Dominance Learner from Section 5
(see p. 115), and the Naive Bayes method. The results on the monotone design 3 and
the non-montone design 4 (both with variable training sample size) are shown in
Figures 7.24 and 7.25. It seems that on design 3, RT still improves on OSDL w.r.t.
the classification accuracy. There is a price to be paid however, namely a slight
deterioration on the MAE. For the non-monotone design 4, RT tastes defeat from
OSDL, except on accuracy when there is really little data available.

7.6 More efficient splitting and pruning

Notions and conventions. To keep notations manageable, we denotea = a(t),
a′ = a(t′), a1 = a(t1), a2 = a(t2) and similarly forb. With the notationa(t)i, wea, a′, a1, a2

refer to theith component of the vectora(t). Because this section is only concerned
with X , this cannot lead to confusion with objects fromΩ.
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(a) Design 1 (monotone), variable dimension.

mean accuracy mean MAE

dim alt. hypothesis Z-value p-value alt. hypothesis Z-value p-value

4 RT < MDT -0.4587 0.3232 RT > MDT 1.0213 0.1536
5 RT > MDT 1.5799 0.0571 RT < MDT -1.173 0.1204
6 RT > MDT 2.0412 0.0206 RT < MDT -2.2949 0.0109
7 RT > MDT 1.8371 0.0331 RT < MDT -2.0909 0.0183
8 RT > MDT 2.7557 0.0029 RT < MDT -2.3474 0.0095

(b) Design 2 (monotone), variable axis length.

mean accuracy mean MAE

|Xc| alt. hypothesis Z-value p-value alt. hypothesis Z-value p-value

3 RT > MDT 1.478 0.0697 RT < MDT -0.7645 0.2223
4 RT > MDT 0.867 0.193 RT < MDT -0.102 0.4594
5 RT > MDT 1.8371 0.0331 RT < MDT -2.0909 0.0183
6 RT > MDT 2.5499 0.0054 RT < MDT -2.2934 0.0109

Table 7.7: One-sided Wilcoxon signed-rank test for designs 1 and 2.

(a) Design 1, variable dimension.

dim C4.5pruned C4.5 MDT RT

4 13.2±3.55 24.2±4.61 56.9±12.72 47.3±6.25
5 12.4±1.78 27.6±2.76 171.0±41.33 73.3±11.78
6 9.7±3.86 29.1±2.88 706.7±305.6 99.3±20.58
7 11.0±3.02 32.8±4.71 3340.5±1739.84 130.7±47.0
8 9.2±2.49 32.7±4.4 10044.1±4116.59 173.1±69.77

(b) Design 2, variable axis length.

|Xc| C4.5pruned C4.5 MDT RT

3 11.2±2.86 30.9±4.89 224.4±87.39 94.5±23.28
4 9.3±2.21 32.3±3.43 816.7±224.83 113.1±22.03
5 11.0±3.02 32.8±4.71 3340.5±1739.84 130.7±47.0
6 10.3±2.83 33.8±4.13 7846.5±3240.36 160.1±62.11

Table 7.8: Number of leaves.

7.6.1 Introduction

As we have seen, the order of the leaves is of primordial importance in the construc-
tion of ranking trees. Both during the growing (splitting) phase, as in the pruning
phase.

Splitting. Let T be a not fully grown tree. To choose the next split, we must
evaluate the splitss from some setS of possible splits according to some splitting
criterion, e.g. minimising the number of reversed preferences in the split treeT (s).
Hence, for each split (single or multiple)s ∈ S, the partial dominance order≤T (s)

of the leavesT̃ (s) must be ascertained. If this has to be done for each splits on
basis of the definition of the partial dominance order, this would mean the pairwise
comparison of all leaves to obtain the partial dominance relation�T (s), followed
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Figure 7.24: Design 3 (monotone), variable training sample size.

Figure 7.25: Design 4 (non-monotone), variable training sample size.

by its transitive closure to obtain≤T (s). This is clearly a computationally intensive
process. While it is fairly obvious how to obtain�T (s) from�T with a minimum
of additional calculations, this still leaves unaddressed the transitive closure, which
is the bigger time consumer of the two. Theorem 7.6.9 will provide an answer
to how≤T (s) can be computed from�T and≤T and a minimum of additional
calculations.

Pruning. A similar problem occurs during the pruning process. In order to obtain
the next pruned treeTi+1 from Ti in the pruning sequence, we must compare all
treesT ′i+1 that can be obtained fromTi via pruning. Consider for example weakest-

link pruning: since there are2|T̃i| − 1 nodes (including the leaves) in the binary
treeTi, there are|T̃i| − 1 such treesT ′i+1. For each of these trees, the nodes must
be labelled monotonically, in our case by the OSDL algorithm. Just running OSDL
on each of the treesT ′i+1 requires huge computation times, mainly because each
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call to OSDL implies that the order≤T ′i+1
must be calculated. As before, this is in

essence a computation intensive process. We show in Theorem 7.6.8 how this can
be done more efficiently by deriving≤T ′i+1

directly from≤Ti
.

7.6.2 Some lemmas

Splitting is inherently more complex than pruning. This also surfaces during the
following demonstrations: we will need pruning properties to capture the behaviour
of splitting.

Preliminaries. If we split a leaft by some univariate binary split(t, ci, v) into
the childrent1 andt2, with t1 �T t2, then we have that

a1 = a, b2 = b, a1 <X a2, b1 <X b2, (b1)i = v, (a2)i = v .

This is exemplified in Figure 7.26.

Figure 7.26: Splitt into t1 ≺T t2 using the splitc2 ≤ v. a(t1) ≤X a(t2).

About pruning and about cycles.

Lemma 7.6.1. Consider a univariate binary treeT and a leaft ∈ T̃ . LetT ′ denote
the tree we obtain fromT by the univariate splitting of the nodet into the nodest1
andt2, with t1 <T ′ t2. For anyt′ ∈ T̃ ′ \ {t1, t2} it holds that

t1 ≺T ′ t′ ⇒ t ≺T t′ and t2 ≺T ′ t′ ⇒ t ≺T t′ .

Likewise

t′ ≺T ′ t1 ⇒ t′ ≺T t and t′ ≺T ′ t2 ⇒ t′ ≺T t .

Proof.
If t1 ≺T ′ t′, thena = a1 <X b′ and therefore immediatelyt ≺T t′. If t2 ≺T ′ t′,
thena = a1 <X a2 <X b′ and therefore againt ≺T t′. The other directions are
similar. 2
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Proposition 7.6.2. LetT be a univariate binary tree. The relation≺T contains no
cycles.

Proof.
The proof is done by induction: ifT0 is a tree with one node, the root, then obvi-
ously<T0 does not contain any cycles. The same is true for the treeT1 after the
first split: if t1 ≺T1 t2 andt2 ≺T1 t1, thena1 <X b2 anda2 <X b1. But this would
imply by Lemma 7.2.2 thatt1 ∩ t2 6= ∅, a contradiction.
Now assume that the treeTi contains no cycles, and letTi+1 be the tree derived
from Ti by the univariate binary splitting of the leaft ∈ T̃i. AssumeTi+1 contains
a cyclet1 ≺Ti+1 . . . ≺Ti+1 tk ≺Ti+1 t1. Because≺Ti

does not contain any cycles,
at least one of theti must be a child oft. Moreover, if the same child occurs at least
twice in the cycle, we can always consider a smaller sub-cycle containing each
child at most once. We consider two cases:

(i) Only one of theti is a child oft:

t1 ≺Ti+1 . . . ≺Ti+1 tj−1 ≺Ti+1 tj = tchild

≺Ti+1 tj+1 ≺Ti+1 . . . ≺Ti+1 tk ≺Ti+1 t1 .

Now Lemma 7.6.1 implies that

tj−1 ≺Ti
t ≺Ti

tj+1 ,

which means≺Ti
contains a cycle. A contradiction.

(ii) Both childrentL andtR are contained exactly once in the cycle,tj = tL and
tk = tR.

(a) We suppose thatj < k. If k 6= j + 1, we may construct another cycle
in ≺T ′ such thattL andtR are subsequent (we know thattL ≺T ′ tR):

t1 ≺Ti+1 . . . ≺Ti+1 tj−1 ≺Ti+1 tj = tL ≺Ti+1 tk = tR

≺Ti+1 tk+1 ≺Ti+1 . . . ≺Ti+1 tk ≺Ti+1 t1 .

We find again that
tj−1 ≺Ti

t ≺Ti
tj+2 ,

implying the existence of a cycle in≺Ti
.

(b) We suppose thatk < j. The configurationj = k + 1 is excluded by
Lemma 7.2.2. So, we have as a subsequence:

tk = tR ≺Ti+1 tk+1 ≺Ti+1 . . . ≺Ti+1 tj−1 ≺Ti+1 tj = tR ,

implying
t ≺Ti

tk+1 ≺Ti
. . . ≺Ti

tj−1 ≺Ti
t ,

which is a cycle in≺Ti
. 2
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Corollary 7.6.3. If T is a univariate binary tree, then the relation<T contains no
cycles.

Proof.
The transitive closure cannot introduce cycles. 2

We can now generalise Lemma 7.6.1 towards the order≤T on T̃ .

Lemma 7.6.4. Consider a univariate binary treeT and a leaft ∈ T̃ . LetT ′ denote
the tree we obtain fromT by the univariate splitting of the nodet into the nodest1
andt2, with t1 <T ′ t2. For anyt′ ∈ T̃ ′ \ {t1, t2} it holds that

t1 <T ′ t′ ⇒ t <T t′ and t2 <T ′ t′ ⇒ t <T t′ .

Likewise

t′ <T ′ t1 ⇒ t′ <T t and t′ <T ′ t2 ⇒ t′ <T t .

Proof.
(i) Assumet2 <T ′ t′, butt2 6≺T ′ t′. In that case, there exist leavesli ∈ T̃ ′\{t1}

such thatt2 ≺T ′ l1 ≺T ′ . . . ≺T ′ lk ≺T ′ t′. Lemma 7.6.1 learns us that
t ≺T l1. From Proposition 7.6.2 we already know that the chain(li)i will
not containt1 or t2. This means that the chain(li)i also exists in≺T . So in
all, transitivity leads tot <T t′.

(ii) Assumet1 <T ′ t′, but t1 6≺T ′ t′. We consider two cases: (a) one of the
li = t2, (b) none of theli = t2. Assume (a) holds, from the previous, we
immediately havet <T t′. Now assume that (b) holds. As above, we find
from Lemma 7.6.1 and Proposition 7.6.2 thatt <T t′.

(iii) The other direction is similar. 2

The previous lemma is visualised in Figure 7.27.

Figure 7.27: Visual presentation of Lemma 7.6.4.
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Lemma 7.6.5. Consider a univariate binary treeT and a leaft ∈ T̃ . Let T ′

denote the univariate binary tree we obtain fromT by splitting the nodet into the
nodest1 and t2, with t1 <T ′ t2. There exists no leaft′ from T̃ \ {t} such that
t1 <T ′ t′ <T ′ t2.

Proof.
Assume that such a leaf exists, then Lemma 7.6.4 tells us thatt <T t′ <T t, which
is impossible because of Corollary 7.6.3. 2

About splitting.

Lemma 7.6.6. Consider a univariate binary treeT and a leaft ∈ T̃ . Let s =
(t, ci, v) be a single univariate binary split onT and denoteT (s) the tree we obtain
fromT by splitting the nodet into the nodest1 andt2, with t1 <T (s) t2, using the

split s. For anyt′ ∈ T̃ (s) \ {t1, t2} (or equivalently,t′ ∈ T̃ \ {t}), it holds that:

(i) If t′ <T t, then eithert′ <T (s) t1 or t′ ‖T (s) t1, and alwayst′ <T (s) t2.

(ii) If t <T t′, then alwayst1 <T (s) t′, and eithert2 <T (s) t′ or t2 ‖T (s) t′.

(iii) If t ‖T t′, then botht1 ‖T (s) t′ andt2 ‖T (s) t′.

The same holds for≺T .

Proof.
(i) Assume thatt′ <T t. If t1 <T (s) t′ then Lemma 7.6.4 results int <T t′, a

contradiction. So we havet1 6<T (s) t′. Concerning the relation betweent′

andt2, we distinguish between two cases:

• Case 1:a′ <X b. Sinceb = b2, we havet′ <T (s) t2.

• Case 2: there exist leavesli ∈ T̃ \ {t} such thatt′ <T l1 <T . . . <T

lk <T t with a′ <X b(l1), a(li) <X b(li+1) anda(lk) <X b. We know
from the previous thatlk <T (s) t2, and therefore by transitivity that
t′ <T (s) t2.

(ii) Similar to (i).

(iii) Assume thatt ‖T t′. If we would havet1 <T (s) t′, then Lemma 7.6.4 implies
that alsot <T t′, a contradiction. The relationst′ <T (s) t1, t2 <T (s) t′ and
t′ <T (s) t2 also lead to a contradiction. 2

This lemma can be visualised as in Figure 7.28.
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Figure 7.28: Visual presentation of Lemma 7.6.6.

7.6.3 Main theorems

The previous lemmas are very important for more efficient splitting and pruning of
the tree. They provide a way of rebuilding the new relations<T ′ from <T , whether
T ′ is obtained fromT because a leaf ofT was split, or an internal node ofT was
pruned.

Pruning. The next lemma considers the case where a branchTt of depth 1 is
pruned.

Lemma 7.6.7. Consider a univariate binary treeT and an inner nodet ofT whose
childrent1, t2 are leaves ofT . LetT/t denote the tree we obtain fromT by pruning

the nodet. For all u, u′ ∈ T̃/t \ {t} it holds that

u <T u′ ⇒ u <T/t u′ .

Proof.
Assumeu <T u′. If a(u) <X b(u′), then immediatelyu <T/t u′. Otherwise,
there exists at least one chain of leavesu = l1 ≺T . . . ≺T lk = u′. If one of these
chains(li)i consists only of leaves from̃T \ {t1, t2} then this chain exists also
in T/t, whenceu <T/t u′. Now assume that each of these chains(li)i containst1
and/ort2. Remark that because<T does not contain any cycles, the nodest1 andt2
can appear at most once in these chains(li)i. Let (li)i be such a chain and assume
it contains botht1 andt2, i.e.

l1 ≺T . . . ≺T lj−1 ≺T lj = t1 ≺T lj+1 = t2 ≺T lj+2 ≺T . . . ≺T lk .
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Remark that there cannot be a leafli in betweent1 andt2 because of Lemma 7.6.5.
Lemma 7.6.4 learns us thatlj−1 <T/t t <T/t lj+2, whenceu <T/t u′. A similar
reasoning holds when(li)i contains only one of the childrent1 or t2. 2

We now come to the main theorem for efficiently constructing the order on the
leaves during pruning.

Theorem 7.6.8.Consider a univariate binary treeT and an inner nodet of T .
LetT/t denote the univariate binary tree we obtain fromT by pruning the nodet.

For all u, u′ ∈ T̃/t \ {t} it holds that

(i) u <T/t t ⇐⇒ (∃l ∈ T̃t)(u <T l), and

t <T/t u ⇐⇒ (∃l ∈ T̃t)(l <T u).

(ii) u <T/t u′ ⇐⇒ (u <T u′) ∨ (u <T/t t <T/t u′).

Proof.
Pruning the nodet can be done in several steps. Take any leafl of Tt and let
(l = l1, . . . , lk = t) be the path inTt betweenl andt (i.e. li+1 is the parent ofli).
Now setT = T1 and letTi (i = 2, . . . , k) be the tree obtained fromTi−1 by pruning
the leafli, i.e.Ti = Ti−1/li. We have thatTk = T/t.

(i) We first demonstrate the sufficiency of the statements. Ifu <T l = l1,
Lemma 7.6.7 tells us thatu <Ti

li for all i = 2, . . . , k, in particularu <T/t

lk = t. The casel <T u is similar. Also remark that there can never at the
same time be two leavesl, l′ ∈ T̃t such thatu <T l andl′ <T u since this
would lead tou <T/t t <T/t u, a cycle.

Now, we proceed with the necessity. Ifu <T/t t, then Lemma 7.6.7 ex-
presses thatu <Tk−1 tR, if tL, tR are the children oft with tL ≺Tk−1 tR.

If tR ∈ T̃ , we are done. Otherwise, applying again the same lemma, we
find thatu <Tk−2 tRR, and we can continue like this until we findu <T l

with l ∈ T̃ . Similarly for t <T/t u.

(ii) We first demonstrate the sufficiency of the statement.

(a) Assumeu <T u′. Since bothu andu′ belong to the sets̃Ti \ {li}
for i = 2, . . . , k, we can apply Lemma 7.6.7 for the pruning ofTi,
i = 1, . . . , k − 1, guaranteeing thatu <Ti u′ for all i, in particular for
i = k.

(b) If u <T/t t <T/t u′, thenu <T/t u′ by transitivity.

Now we continue with the other direction (necessity). Assumeu <T/t u′,
notu <T u′ and notu <T/t t <T/t u′. Becauseu ≮T u′, we have thatu ⊀T

u′, and therefore alsou ⊀T/t u′. Hence, there exists some chain(u, t′, u′)
in <T/t. By our assumptions, we know thatt′ 6= t, but in that caset ∈
T̃/t \ {t}, sou <T u′, giving rise to conflict with our assumptions. 2
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Splitting. The following theorem answers the same question for splitting.

Theorem 7.6.9.Consider a univariate binary treeT and a leaft ∈ T̃ . Let s =
(t, ci, v) be a single univariate binary split onT and denoteT (s) the tree we obtain
fromT by splitting the nodet into the nodest1 andt2, with t1 <T (s) t2, using the

split s. For all leavesu, u′ ∈ T̃ (s) \ {t1, t2} (or equivalently,u, u′ ∈ T̃ \ {t}), the
following holds:

(i) If u <T t, thenu <T (s) t2, t1 ≮T (s) u, t2 ≮T (s) u. Moreover,

u ≺T (s) t1 , if

{
(u ≺T t) AND

(a(u)i ≤ci v) ,

u <T (s) t1 , if

{
(u ≺T (s) t1) OR

(∃u′ ∈ T̃ \ {t})((u <T u′) ∧ (u′ ≺T (s) t1)) ,

u ‖T (s) t1 , otherwise.

(ii) If t <T u, thent1 <T (s) u, u ≮T (s) t1, u ≮T (s) t2. Moreover,

t2 ≺T (s) u , if

{
(t ≺T u) AND

(b(u)i >ci
v) ,

t2 <T (s) u , if

{
(t2 ≺T (s) u) OR

(∃u′ ∈ T̃ \ {t})((t2 ≺T (s) u′) ∧ (u′ <T u)) ,

u ‖T (s) t2 , otherwise.

(iii) If u ‖T t, thenu ‖T (s) t1 andu ‖T (s) t2.
If u ‖T u′, thenu ‖T (s) u′.

(iv) If u <T u′, then
u ‖T (s) u′ , if


u 6≺T u′ AND[

every chain in≺T connectingu
with u′ containst

AND

(u ‖T (s) t1) ∧ (u′ ‖T (s) t2) ,

u <T (s) u′ , otherwise.

The statement

every chain in≺T connectingu with u′ containst

is true if and only if

(u <T t <T u′) ∧ (∀t′ ∈ T̃ )((u <T t′ <T u′)⇒ (t′ 6 ‖T t)) .
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Proof.
We start by proving (iv).

(iv) Assume thatu <T u′. We distinguish three cases.

(a) u ≺T u′, in which case directlyu <T (s) u′.

(b) There exist leavesli ∈ T̃ \ {t}, such thatu ≺T l1, . . . ≺T lk ≺T

u′, implying that alsou ≺T (s) l1, . . . ≺T (s) lk ≺T (s) u′, and hence
u <T (s) u′.

(c) The remaining case:u ⊀T u′ and every chain in≺T connectingu
with u′ containst. Sinceu <T u′, there must exist some chainu <T

t <T u′.

• Assumeu <T (s) t1. We already know from Lemma 7.6.6 that
t1 <T (s) u′, and henceu <T (s) u.
• Assumeu ‖T (s) t1. If t2 <T (s) u′, we haveu <T (s) t2 <T (s)

u′ by Lemma 7.6.6. Ift2 ‖T (s) u′, there is no chain in≺T (s)

connectingu andu′. Indeed, if there were such a chain, then it
could not containt1 andt2 (otherwise it wouldn’t be a chain). This
means the chain would also exist in≺T without containingt, a
contradiction. Sou ≮T (s) u.
Because of Lemma 7.6.7 we already know thatu >T (s) u′ is not
possible (otherwiseu >T u′, which on its turn is impossible be-
cause<T (s) contains no cycles), therefore the only remaining pos-
sibility is thatu ‖T (s) u′.

The last equivalence is self-evident. We now proceed with the demonstration of (i).
Again, we will show that the cases stated are in fact characterisations.

(i) Assumeu <T t. We haveu <T (s) t2 because of Lemma 7.6.6. This imme-
diately implies thatt2 ≮T (s) u, otherwise we would have a cycle. The same
lemma states that eitheru <T (s) t1 or u ‖T (s) t1, in both cases leading to
t1 ≮T (s) u.

(a) Assumeu ≺T t anda(u)i ≤ci v. We know thata(u) ≤X b(t), and
b(t1)j = b(t)j for all j 6= i, andb(t1)i = v. Thereforea(u)i ≤ci v
impliesa(u) ≤X b(t1), i.e.u ≺T (s) t1.
Conversely, we show that the relationu ≺T (s) t1 only occurs in the case
stated. Assumeu ≺T (s) t1. Thena(u) ≤X b(t1) ≤X b(t), whence
u ≺T t. So,a(u) ≤X b(t1), and in particulara(u)i ≤ci

b(t1)i = v.

(b) Assume(∃u′ ∈ T̃ \{t})((u <T u′)∧(u′ ≺T (s) t1)). Becauseu′ <T (s)

t1, we know by Lemma 7.6.4 thatu′ <T t. This means that we can
deduce from (iv) thatu <T u′ impliesu <T (s) u′ (since there exists
no chain(u, t, u′) in <T ). Transitivity now leads tou <T (s) t1.
Conversely, assumeu <T (s) t1, but u ⊀T (s) t1. This means there

exists a leafu′ ∈ T̃ (s) \ {t1, t2} such thatu <T (s) u′ ≺T (s) t1. Now
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Theorem 7.6.8 learns us thatu <T (s) u′ impliesu <T u′, finishing our
demonstration.

(ii) Similar to (i).

(iii) Assumeu ‖T u′. If we would haveu <T (s) u′, Lemma 7.6.7 would imply
thatu <T u′, a contradiction. Lemma 7.6.6 provides the proof for the fact
thatu ‖T t implies bothu ‖T (s) t1 andu ‖T (s) t2. 2

Remark 1. This theorem can be easily extended towards multiple splits of the
form s = (L, c, v), whereL is a chain in(T̃ ,≤T ). Consider such a chain(li)k

i=1.
The general position of a leafu ∈ T̃ \ L w.r.t. toL is (see Figure 7.29):

l1 ≤T . . . ≤T lj1 ≤T u ≤T lj2 ≤T . . . ≤T lk ,

with j1 < j2, andu ‖T li for i = j1 + 1, . . . , j2 − 1. We allowj1 = 0, meaning
thatu ≤T lj2 ≤T . . . ≤T lk andu ‖T li for i = 1, . . . , j2 − 1. Similarly, we allow
j2 = k + 1.

Figure 7.29: The position of a leaf in a chain.

Now we apply the splits. We have thatu will also be incomparable to all the
children of theli, i = j1 + 1, . . . , j2 − 1. Moreover, because(lj1)L ≤T (s) u, we
immediately have(li)L ≤T (s) u for i = 1, . . . , j1. Likewise, we haveu ≤T (s)

(li)R for i = j2, . . . , k. Now, we only need to establish the relationship with the
(li)R for i = 1, . . . , j1, and the(li)L for i = j2, . . . , k. But since these are two
chains, it suffices to find the highest (resp. lowest)i for which (li)R ≤T (s) u (resp.
u ≤T (s) (li)R), the other relations deducible from them.

It can be checked that we will haveu ‖T (s) u′ if and only if u ‖T (si) u′, where
si = (li, c, v), for somei = 1 . . . , k. This gives us a way of determining the
relation between two leavesu, u′ ∈ T̃ \ L.

Remark 2. All lemmas and propositions were formulated on univariate binary
trees. However, all the proofs can be simply adapted to hold for univariate trees
where the splits are not necessarily binary.
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7.7 Future research

Pruning and cross validation. Pruning gets its real power from the derivation of
good error and variance estimates from the given training data. Ideally, these esti-
mates can be calculated from a second large data set independent from the training
data. However, if no such set is available, a successful technique to resort to is
cross validation. The implementation of cross validation in classification trees is,
however, not directly adaptable towards ranking trees. But it would surely be a very
promising avenue for boosting the accuracy of RT-algorithms.
Another open problem related to pruning is the optimal monotone labelling of the
leafs.

Robustness. The problem of non-robustness is one of the most important vices
of tree growing procedures. They are highly sensitive to changes in the data set:
adding or deleting a few example can cause the choice of a different split. An idea
to acquire greater stability would be to create at each splitk learning samplestkS
from tS , and find for each of thesek data sets a ranking on the splits. Then these
rankings could be aggregated to one final ranking that is then used for choosing
the split oft. In that way, a kind of compromise split that performs well on allk
samples will be chosen. It can be suspected that incorporating such compromise
splits in the growing phase will lead to more stable trees. Of course, the down side
is that a lot more computations have to be made, and there is still the problem of
how to aggregate the different rankings.

Variants of the algorithm. The main purpose of this chapter was to provide an
inkling of how a full-fledged ranking tree algorithm can be developed. The al-
gorithm described in Section 7.5 only applies the most basic and straightforward
ideas. Obviously, a lot of more evolved and fine-tuned variants can be thought of:

(i) First of all, instead of simply counting reversed preferences, we could envis-
age a more advanced splitting measure. Some of our efforts in that direction
can be found in [27], where the idea of transforming reversed preference into
doubt is incorporated to adapt impurity measures towards ranking.

(ii) Along the same line, we could try to adopt a more regression-like approach,
where for example OSDL is applied to obtain the labelling for each split.

(iii) Another degree of freedom that was not further investigated is the choice of
the nodes to be split.

(iv) We could also allow more freedom within the multiple split. The algorithm
we described simply uses the same split(c, v) for all nodes, but it might be
more interesting to let the value ofv vary when splitting different leaves.
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Optimisation. No real efforts (besides the ones mentioned in Section 7.6) have
yet been done to reduce the computational complexity of the algorithm. A lot
more research is needed in this direction to cram ranking trees for practical use.
One possibility could be to investigate more in depth the impact of closing the
relation�T in a transitive way. This impact is situated on two levels: first of all
there is the influence on the relation≤T itself (how much do the relations�T and
≤T actually differ?), and secondly, we can look at how the tree is affected by it
both during splitting and pruning.
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Now the moment has arrived for us to draw our conclusions from everything we’ve
been through together, and hopefully to act upon them in times to come and future
days. The journey was sometimes a true ordeal, but in the end worth all the hardness
and deprivation.
So, what have we learnt?

8.1 In general

One of the main contributions of this work is the demonstration that investing time
in a solid semantical framework is not a waste effort. Although most trail-blazing
pioneering work is grounded initially in the firm earth of philosophy and/or seman-
tics, these basics are usually quite rapidly forgotten, and the research is continued
in a style where one searches and re-searches among the endless possibilities in
combining and extending notions and formulas, only guided by mere logical deduc-
tion and a restricted form of trial and error. This dissertation picks up the original
threads, spun from philosophical and semantical flocks that were trimmed from dif-
ferent disciplines, and knits them together into a new pattern continuously adding
and reassessing the semantical backbone. Like this, we have securely anchored
a framework and some adjoined notions for the supervised learning of a ranking.
The algorithms that were built starting from these roots prove the efficiency of this
non-standard approach.

8.2 Theoretical: syntax and semantics

8.2.1 Classification in supervised learning

Based on simple schemes of functions and relations, it is possible to decompose a
classification in the context of the learning problem, resulting in clear representa-
tions based on sets or distributions. This then leads to an alternative view on the
basic concepts underlying rough sets (the notion ofinconsistencyis better called
doubt), including extensions based on similarity relations. Also information mea-
sures can be quite easily extended toward similarity relations once this framework
is adopted.

8.2.2 Ranking in supervised learning

Ranking differs from ordered (ordinal or continuous) classification in the underly-
ing semantics that can be attached to the order, namely that of a (weak) preference
relation. The property of monotonicity is due to the use of criteria instead of at-
tributes to describe the objects to be ranked.
When we are confronted with the problem ofreversed preferences(when an object
that is dominated by another object still gets a higher rank) inside the data, the
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proposed framework and representations employed for classification deliver a non-
invasive solution: the reversed preferences are transformed intodoubtregarding the
preferences, guaranteeing the monotonicity of the resulting representations.

When reversed preference occurs in a distributional context, it is possible to com-
bine the two conflicting probability distributions (via the cumulative distribution
functions) and mould them into a single one, freeing the resulting representation of
conflicts while respecting the originally given data as much as possible.

These findings form the foundations for the instance-based algorithms OSDL and
B-OSDL.

8.2.3 The dominance relation in supervised learning

Extending the dominance relation is no sinecure. The concept is so fundamen-
tal that messing around with it tends to inflict unforseen, but severe and possibly
unwanted consequences. To get a grip on these consequences, we restricted our
generalisation to the context of supervised learning and partitions, resulting in the
partial dominance relation. As always, we started from semantical considerations
and their interactions with the problem.

These findings form the foundations for a model-based algorithm, Ranking Trees.

8.3 Practical: algorithmic

8.3.1 Instance-based

The algorithm OSDL (Ordinal Stochastic Dominance Learner) is an immediate
application of the distributional representation theorem for rankings. It stores all
data (in a specified format) into memory, and, based on elementary dominance
principles, determines a probability distribution for new unseen objects. OSDL
contains one parameter, which can be tuned automatically using a leave-one-out
cross validation strategy.

A variant on this algorithm, named B-OSDL (Balanced OSDL), probes deeper into
the available information. A more refined interpretation of the number of occur-
rences of reversed preference makes it possible to add more relief to otherwise flat
regions of the learned surface. B-OSDL has two parameters to tune.

An extensive experimental setup for learning rankings, based on both artificially
generated data and data coming from real surveys shows clearly the supremacy of
the OSDL algorithms over other ones. Moreover, they guarantee that the results
are monotone (which is not the case for the most competitive algorithm, the Naive
Bayes method).

A drawback of instance-based methods is of course that they cannot be interpreted,
that they are black boxes.
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8.3.2 Model-based

The Ranking Tree algorithm is designed as an answer to this black box criticism.
Based on the ideas of classification trees, it provides a tree structure (visualising
the rule base), complemented with a lattice-structure on the leaves (visualising the
partial dominance structure on the different regions of the data space).
The Ranking Tree algorithm is presented in its most elementary form, making sure
that all concepts are applied correctly, and solving all essential algorithmic aspects
of the growing of a tree for a ranking problem, like avoiding blind splits and mak-
ing sure that the final tree is monotone. However, no further research concerning
less elementary splitting measures (only a simple counting of reversed preferences
is considered) or other heuristics for choosing which leaves to split was conducted.
No extensive investigations were done on how to make the algorithm more per-
forming in computational terms, and hence able to deal with larger data sets.
The results of a modest experimental setup with artificial data show that the Rank-
ing Tree algorithm outperforms the other existing tree-based algorithms. But com-
pared to OSDL, no definite conclusion can yet be drawn (except that OSDL is
currently able to deal with larger data sets).
The fact that such an elementary and not fine-tuned algorithm does deliver these
good results, clearly indicates that this is a very promising avenue for further re-
search.



Samenvatting

Gesuperviseerd rangschikken:
van semantiek tot algoritmiek

Dan toch nog een woordje Nederlands in dit boek. In dit korte en bondige na-
hoofdstukje zetten we alles nog eens mooi op een rijtje, netjes beginnend met
de filosofische beschouwingen uit het eerste hoofdstuk, en eindigend met de con-
clusies uit het achtste en laatste hoofdstuk.

1 Filosofie en probleemstelling

Rangschikken en ordenen doen we de hele tijd, of het nu gaat om het kopen van
een hondje, een sollicitatie, een maatschappelijk onderzoek naar de subjectieve
gewaarwording van geluidshinder, de economische evaluatie van faillissementen,
of de kwaliteitsopvolging van een proefveld. Continu evalueren we zaken op ver-
schillende criteria om tot een eindbeoordeling te komen. Prefereer je een kleine
langharige keffer, of hou je meer van een reusachtige kortharige labrador? Vul je
de vacature op met een stille harde werker, of sluit een babbelgraag nauwer aan
bij het profiel van de job? Welke soort geluiden leiden ertoe dat “de mensen” het
gevoel van geluidsoverlast ervaren, en welke niet?
In deze huidige door de computer overspoelde tijden is het mogelijk om ons voor
dergelijke vragen digitaal te laten assisteren, en om de antwoorden te analyseren en
zelfs te automatiseren. Aan de hand van een reeks eerder genomen gelijkaardige
beslissingen, aan de hand van de uitslagen van een enquête, aan de hand van een
reeks observaties tracht men dan de criteria te linken met de eindbeoordeling door
middel van een zogenaamd leerproces. Edoch, voor een rangschikking dient het
verband tussen de criteria en het eindbeoordeling monotoon, niet-dalend, te zijn.
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Een mens is echter niet altijd even consequent en rigoureus, en van een groep
mensen kan men al helemaal niet meer verwachten dat ze er allemaal precies
dezelfde mening op nahouden, en daar ook naar handelen. Dit leidt soms tot
beslissingen die elkaar lijken tegen te spreken (tegenstrijdige preferenties). Dit
is problematisch voor computers, die moeite hebben zich in te leven in de grillige
en subjectieve geesten van ons, mensen.
De grondslag van dit werk is eerder filosofisch, vertrekkende van het besef dat we
onze wereld alleen vanuit onze eigen perceptie kunnen waarnemen, en dat we der-
halve overeenkomsten nodig hebben om de betekenis die we ergens aan hechten
een universeel karakter te geven. In tegenstelling tot de algemeen gangbare over-
tuiging is dit niet anders met betrekking tot wiskunde en informatica. Een andere
interpretatie, een andere context, kortom, een andere semantiek kan leiden tot an-
dere antwoorden tijdens het uitwerken van een wiskundig probleem.
Perceptie en semantiek zijn echter niet de enige leidraden die dit onderzoek in
goede banen hebben geleid, en tevens een niet geringe drijfveer vormden. De be-
doeling was om steeds het grotere geheel als referentiekader te nemen, om niet te
verzanden in de details eigen aan algoritmische benaderingen. Het grotere geheel
is echter opgebouwd uit verscheidene onderdelen, welke elk zowel apart als in in-
teractie met elkaar dienen begrepen te worden. Ook een heel belangrijk, zo niet
het belangrijkste, opzet was om, eerder dan in hethoe, inzicht te verwerven in het
waaromvan de zaken. Tenslotte beoogden we een “non-invasive” houding in onze
benadering van het probleem.

2 Een kader voor classificatie

Een classificatie is eigenlijk een afbeelding van een verzameling objecten naar een
verzameling van klasselabels. Om daarin wat meer structuur te brengen, wor-
den de objecten beschreven aan de hand van een reeks metingen, zodat elk ob-
ject met een punt in een vectorruimte overeenkomt. De classificatie zelf is echter
gedefinieerd op de verzameling objecten, en niet op de vectorruimte die deze verza-
meling wiskundig modelleert. Dit is eenvoudig op te lossen door ook de classifi-
catie te modelleren: hecht aan elke vector die overeenkomt met een of meerdere
objecten de klasselabels van deze objecten. Dit kan door ofwel de verzameling
klasselabels die zo ontstaat als nieuw label te interpreteren, ofwel door een dis-
tributie over de klasselabels aan de vectoren te hechten. Het is duidelijk dat als
een vector de gelijktijdige representatie is van meerdere objecten die tot verschil-
lende klassen behoren, er niet eenduidig kan gezegd worden tot welke klasse de
objecten die door deze vector worden voorgesteld behoren. In dit geval spreken we
vantwijfel tussen de objecten.
Voorgaande kan uitgebreid worden van punten (vectoren) naar hele regionen, waar-
bij de afspraak geldt dat als (de vectorrepresentatie van) twee objecten tot zo’n ge-
bied in de vectorruimte behoren, er niet voldoende informatie is om deze objecten
van elkaar te onderscheiden omdat ze te veel op elkaar lijken. Op deze manier kun-
nen similariteitsmaten op natuurlijke wijze geı̈ntroduceerd worden in het kader van
classificatie.
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Op basis van voorgaand kader is het dan niet zo moeilijk meer om informatiematen
zoals de Shannon entropie en de Gini diversiteitsindex te veralgemenen voor sim-
ilariteitsmaten. Ook de onder- en bovenbenaderingen die gebruikt worden in de
ruwverzamelingenleer kunnen vanuit dit kader eenvoudig opnieuw opgesteld wor-
den. En als we distributies gebruiken als basis, rollen we recht in het variabele
precisie ruwverzamelingenmodel.

3 Overzicht van bestaande rangschikkingsmethodes

Aangezien we de hele tijd rangschikken en ordenen is het niet verwonderlijk dat er
in het verleden al een aantal algoritmes werden ontwikkeld voor het probleem van
gesuperviseerd rangschikken. Dat dit pas in het laatste decennium gebeurde, en dan
zelfs voornamelijk gedurende de laatste jaren, is waarschijnlijk te verklaren door
de complexiteit van het probleem. Zowel de basistheorieën en algoritmes omtrent
classificatie, als de computers van weleer waren nog niet ver genoeg ontwikkeld
om hiermee om te kunnen gaan.

Instantie-gebaseerd. Het enige voorheen gecreeërde instantie-gebaseerde algo-
ritme, OLM (Ordinal Learning Method) [11, 9], dateert reeds uit 1989, en was
daarmee het eerste algoritme dat specifiek ontwikkeld werd voor het leren van
rangschikkingen. Het boort wel onmiddellijk door naar de essentie en levert tevens
de onontbeerlijke monotone resultaten op, iets waarmee in latere algoritmes wel
eens wat losser wordt omgesprongen.

Bomen. Een volgende reeks algoritmes concentreert zich specifiek op het groeien
van boomstructuren. De auteur van OLM, Ben-David, bijt wederom de spits af in
1995 met MID (Monotone Induction of Decision trees) [10]. Opnieuw bevat de op-
bouw van zijn algoritme alle basiselementen eigen aan dit specifieke leerprobleem
met deze specifieke structuren, maar een stevig gefundeerd kader ontbreekt waar-
door dit algoritme aan menige kritiek onderhevig is. Een paar jaar later, besluiten
ze in Japan dat Israël lang genoeg solo-slim heeft gespeeld. Makino et al. [74]
gooien het over een heel andere boeg, en komen op de proppen met hun boom-
algoritmes P-DT, (Positive Decision Tree) and QP-DT (Quasi-monotone P-DT) ,
specifiek voor het binaire rankschikkingsprobleem. Kort daarop veralgemeende
Potharst [89, 90, 91] in Nederland deze aanpak naar niet-binaire problemen, resul-
terend in de algoritmes MDT (Monotone Decision Tree) en QMDT. Een overzicht
van de eigenschappen van al deze boom-algoritmes is terug te vinden in Tabel 3.1
(zie p. 58).

Methodes gebaseerd op ruwverzamelingen (rough sets)Door het gedachten-
goed van multicriteria beslissingsanalyse in de noties van ruwverzamelingen te in-
tegreren, openden Greco et al. [50, 51, 52, 53] een nieuwe weg in het omgaan
met gesuperviseerd rangschikkingen. Hun benadering, DBRS (Dominance-based
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Rough Sets approach) kreeg evenwel kritiek te verduren omwille van een dissoci-
atie van de gebruikte maat en de regels die gegenereerd worden. Een andere maat,
vrij van deze kritiek, werd daarna voorgesteld door Gediga en Düntsch [48]. Bioch
en Popova [15, 16, 87] nemen nog een andere benadering, en baseren zich op de
theorie van de Boolese functies die een alternatieve kijk geeft op ruwverzamelin-
gen.

Aggregatiemethodes Ook de Choquet integraal, welke monotoon is van nature,
werd al meermaals als uitgangspunt genomen. Verkeyn et al. [116, 117] gebruiken
deze rechtstreeks en lieten een genetisch algoritme de vele parameters van deze
functie bepalen. TOMASO (Tool for Ordinal Multi-Attribute Sorting and Orden-
ing) van Roubens et al. [76, 96] hanteert een steviger kader voor het gebruik van
de Choquet integraal om het probleem van de “commensurabiliteit” (het meetbaar
moeten zijn op dezelfde schaal van alle criteria) te omzeilen. De parameters worden
berekend via een lineair programma.

Gerelateerde methodes: ordinale classificatie en regressieHoewel ze niet on-
twikkeld werden voor rangschikking, is er nog een hele klasse van algoritmes die
wel geordende klassen aankunnen. Hierin dienen alleszins de cumulatieve mod-
ellen uit de statistiek vermeld te worden, ontwikkeld door McCullagh [77] in 1980.
Ook het veel recentere distributie onafhankelijk model van Herbrich [56, 57, 58]
verdient het uitgelicht te worden.

4 Een kader voor rangschikken:elementaire granulatie

Het probleem met de bestaande algoritmes is dat ze allen zonder een algemeen
omvattend kader ontwikkeld zijn. Dit maakt dat de onderliggende machinaties
soms niet erg duidelijk zijn, of dat ze onbewust bepaalde assumpties aanvaarden
die soms wel een grote impact kunnen hebben. Om te beginnen was nog nergens
sluitend gedefinieerd wat een rangschikking precies is.
Afgaande op de semantiek van het woord, zoals bepaald in een woordenboek, kun-
nen we een rangschikking definiëren als een geordende (ordinaal of continu) clas-
sificatie waarbij deze orde de betekenis van een (zwakke) preferentierelatie aan-
neemt. Wanneer de objecten dan beschreven worden door criteria i.p.v. attributen
(waarbij criteria geordende attributen zijn met een ordening die overeenkomt met
een preferentierelatie) komt op natuurlijke wijze de monotoniteit van het prob-
leem naar boven drijven. Hierbij dient men wel te letten op het feit dat het om
de monotoniteit van de gerepresenteerde rangschikkingλrepr gaat, en niet om mono-
toniteit van de gerepresenteerde objecten (de vectoren) en de oorspronkelijke rang-
schikkingλ.
Bij het representeren van een rangschikking komt de semantiek weer op de prop-
pen: als men de verzameling interpretatie zoals bij classificatie wil hanteren moeten
de verzamelingen vervangen worden door intervallen, waarop dan weer een nieuwe
ordening moet bepaald worden. Afhankelijk van de preferenties van de gebruiker
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kan deze ordening aangepast worden aan het probleem, maar de meest algemene
ordening is wel de klassieke orde[r1, r2] ≤[2] [s1, s2] ⇔ (r1 ≤ s1) ∧ (r2 ≤ s2).
Indien men met probabiliteitsdistributies werkt, treedt de stochastische dominantie
op natuurlijke wijze naar voor.

Wanneer we geconfronteerd worden mettegenstrijdige preferentiesin de data, dan
biedt het voorgaande kader en de bijhorende representaties een oplossing die de
onaanvaardbare tegenstrijdigheid in de data niet verwijdert maar omzet in aan-
vaardbare twijfel omtrent de preferenties, welke bovendien de monotoniteit van
de oplossing garandeert. In de context van probabiliteitsdistributies kunnen de
strijdige distributies gecombineerd worden (door over te gaan op de cumulatieve
distributiefuncties), en zelfs samengesmolten worden totéén enkele distributie.

5 OSDL: Ordinale Stochastisch Dominante Leermethode

De voorgaande monotone representaties gebaseerd op distributies (gebaseerd op
het cumulatief model) vormen de onmiddellijke basis voor de instantie-gebaseerde
algoritmes OSDL en zijn meer geBalanceerde variant B-OSDL. Deze algoritmes
memoriseren alle data (in een specifiek formaat), en, gebaseerd op elementaire
dominantie principes, wordt dan voor elk object een bijhorende probabiliteitsdis-
tributie gegenereerd. Hiertoe worden in feite evenveel oplossingsoppervlakken
geleerd als er klassen zijn. Indien gewenst kan de bekomen distributie ook omgezet
worden inéén enkel klasselabel. OSDL bevatéén parameter, welke automatisch
kan afgesteld worden door gebruik te maken van een leave-one-out kruisvalidatie
strategie.

De gebalanceerde variant, B-OSDL, graaft dieper in de informatie die latent aan-
wezig is in de leervoorbeelden. Door een meer verfijnde interpretatie van het
aantal tegenstrijdige preferenties, is het mogelijk meer reliëf te creëeren in anders
vlakke regionen in de geleerde oppervlakken. B-OSDL bevat twee parameters die
afgesteld moeten worden.

Bij een nieuw algoritme hoort uiteraard een uitgebreide experimentele test-fase.
We hebben dat dan ook gedaan, en een heleboel andere methodes, zowel voor clas-
sificatie (k-nearest neighbour, C4.5, naive Bayes) als voor rangschikking (OLM,
MDT, de minimale en maximale extensie), vergeleken met de OSDL-algoritmes.
We bekeken zowel artificieel gegenereerde data in verschillende designs, monotoon
en niet-monotoon, als data afkomstig uit enquêtes. In zowat alle gevoerde experi-
menten springen de OSDL-algoritmes eruit, waarbij we nogmaals benadrukken dat
OSDL de monotoniteit van de oplossing garandeert (wat niet het geval is voor het
meest competitive algoritme, de naı̈ve Bayes).

Een nadeel aan alle instantie-gebaseerde methodes is natuurlijk dat ze de data niet
interpreteren, dat het gewoon input-output modellen zijn, zwarte dozen.
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6 Een kader voor rangschikken:relationele granulatie

Het kader ontwikkeld in het vierde hoofdstuk is toegespitst op punten (vectoren)
in de dataruimte. Er zijn echter een heleboel leermethodes gefundeerd op de par-
titionering van de dataruimte. Edoch, overgaan van punten naar partities is zeker
geen sinecure, want aan de grondslag van de monotoniteit van het probleem ligt de
dominantie relatie die enkel op punten is gedefinieerd (monotoniteit komt voort uit
het principe van behoud van dominantie). Deze relatie is zo fundamenteel dat elke
wijziging vele onvoorziene consequenties tot gevolg kan hebben, sommige heel
ingrijpend en mogelijk ongewenst.
Om toch een beter houvast te krijgen op alle mogelijke implicaties, hebben we onze
veralgemening beperkt tot de context van partities en gesuperviseerd leren. Vertrek-
kend van de onderliggende oorspronkelijke semantiek van het basisbegrip, en van
de gewenste semantiek voor de gezochte veralgemening (steeds m.b.t. gesuper-
viseerd leren), leidde onze queeste tot het begrip vanpartiële dominantie. Hiermee
gewapend kan dan het principe van behoud van partiële dominantie geformuleerd
worden, en een partitie-gebaseerde monotoniteit. De representatiestellingen uit
Hoofdstuk 4 kunnen dan vlot omgezet worden van punten naar partities.

7 De basis van rangschikkingsbomen

Boomstructuren voor classificatie zijn sedert hun introductie in de wetenschap-
pelijke wereld altijd zeer populair geweest omwille van hun gemakkelijk interpre-
teerbare visuele voorstelling van de classificatie. Door hun helderheid en trans-
parantie vormen zéeén van de meest intuı̈tieve antwoorden op het probleem van
zwarte doos modellen. Dit laatste hoofdstuk behandelt alle elementaire vragen
omtrent de aanpassing van algoritmes voor het groeien van classificatiebomen naar
de context van rangschikken, inclusief een aangepaste visuele voorstelling die reken-
ing houdt met de complexere structuur eigen aan rangschikkingen.
Eerst en vooral wordt de meest rudimentaire maat voorgesteld om de keuze van de
splitsing van een blad te bepalen: de splitsing die de meeste tegenstrijdige preferen-
ties elimineert wordt gekozen. Maar de meest in het oog springende aanpassing is
dat voor rangschikkingsbomen, de blaadjes van de bomen niet meer onafhankelijk
zijn, maar verbonden worden via de partiële dominantie relatie. Eerst en vooral
leidt dit tot een visuele representatie van de ordening want in dit geval blijkt deze
relatie tot een traliestructuur te leiden. Een ander gevolg is dat de volgorde van de
blaadjes die gesplitst worden een belangrijke rol gaat spelen in de ontwikkeling van
de boom. Een gerelateerd gevolg is dat het splitsen van slechtséén enkel blad soms
blind gebeurt, waarmee we bedoelen dat het algoritme met geen mogelijkheid kan
bepalen welke splitsing relevant is. Voor beide problemen dient dus een oplossing
en/of heuristiek bedacht te worden. Als een eerste mogelijke optie stellen we voor
om twee blaadjes te kiezen, namelijk deze die leiden tot de meeste tegenstrijdige
preferenties, en om deze blaadjes gelijktijdig te splitsen (en indien nodig ook alle
blaadjes die in de tralie ertussen liggen).
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Ook het achteraf snoeien van de boom levert een reeks eigen problemen op. De
voorgestelde aanpak is het eenvoudigweg snoeien van de zwakste schakel, waarbij
de labels van de blaadjes bepaald worden door een aangepaste vorm van het OSDL
algoritme.
Het algoritme dat gepresenteerd wordt is in feite slechts een samenraapsel van alle
meest elementaire oplossingen, en is derhalve slechts een basis, een smaakmak-
ertje, voor een volwaardig Ranking Tree algoritme. Ook werd nog niet veel aan-
dacht besteed aan de complexiteit van het algoritme, een paar stellingen omtrent
de orde op de blaadjes tijdens het splitsen en snoeien niet te na. Maar deson-
danks toonden de resultaten van een bescheiden experimentele opzet met artificiële
data dat het voorgestelde algoritme andere boomalgoritmes achter zich laat. Een
vergelijking met OSDL leidde evenwel nog niet tot finale conclusies (behalve dat
OSDL grotere databanken aankan dan het huidige Ranking Tree algoritme).
Het feit dat een dergelijk rudimentair algoritme en totaal niet fijn afgesteld algo-
ritme toch zulke goede resultaten oplevert, is een duidelijk indicatie dat dit voor
verder onderzoek een veelbelovende weg is om te bewandelen.

8 Conclusies

De wetenschappelijke resultaten zijn duidelijk zichtbaar: een stevig onderbouwd
kader dat zowel classificatie als rangschikking omvat, en daaruit voortvloeiend ver-
scheidene algoritmes, zowel instantie-gebaseerd als model-gebaseerd. Een andere
contributie welke zeker niet te onderschatten valt is iets meer aan het zicht ont-
trokken. Het gaat om de niet echt standaard aanpak van de wiskundige en infor-
matica problemen die aan bod kwamen.
Alhoewel het meeste van het ingrijpende pionierswerk oorspronkelijk geaard is
in filosofie en/of semantiek, toch worden deze basisideeën gewoonlijk nogal vlug
vergeten. Het onderzoek wordt dan voortgezet als een zoektocht doorheen de
oneindige mogelijkheden in het combineren en veralgemenen van begrippen en
formules, louter geleid door logische deductie en een beperkte vorm van “trial and
error”. Dit proefschrift pikt de originele draden weer op, het garen gesponnen
van filosofische en semantische wolvlokken afkomstig uit diverse disciplines, en
verweeft de van oudsher vastgelegde semantiek samen met de beoogde semantiek
tot een nieuw verfijnd patroon. In plaats van een formeel logisch discours aan de
grondslag te leggen, werd het geheel verankerd in semantische overwegingen en
filosofische beschouwingen. Dit werk is in zijn geheel een demonstratie van de
kracht van een dergelijke aanpak, het toont aan dat het investeren in een gedegen
semantisch kader absoluut geen tijdverspilling is.
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Coda

SUNDAY, NOVEMBER 9, 2003.Well people, that was it. Time to unfold
and close the curtain on this rather intense stage of my life. Time to rest
and enjoy the thrill, to relish in the knowledge that this four year during
performance ended with an extremely happy note, both professionally in
the recognition I received from this work, and personally in the fabulous
dreamgirl I met at exactly the right moment. Time to let me sweep away
by the current of the next and very likely even more intense and gratifying
chapter of the story that makes up my life.
Only one final rush still separates me from the ultimate last and grand finale
of this Ph.D., only two weeks left to finish (actually only 12 days) my swirling
and maybe a bit unusual presentation. I hope my estimations have become
a bit more reliable of late, because I have to admit – a bit reluctantly – that
I still have to start from scratch and with the crazy ideas I wish to realise,
time is definitely not on my side (hey, that’s something new! Where did I
hear that one before?)

WEDNESDAY, NOVEMBER 12, 2003.Hard to believe, but I’ve done it again.
I still have practically nothing for my presentation. But, I just – its 5am–
finished my cover design. I’m quite happy with it, not bad for a couple
of hours intensive struggle, certainly for somebody who never worked in
Photoshop before. Today I also learned how to use an animation program
for all my special effects, and later on, I will try to understand the basics
of some video editing program. I think I’m crazy. Any sane person would
say the task is sheer impossible, but you know, positive stress can be very
stimulating, and the sheer impossible is just the kind of tantalising challenge
I adore.

THE REMAINING DAYS. Well, I won’t be able to keep you up to date with
my final progressions, because this manuscript has to go to the printing
office. Today, now. So, that’s it. I really enjoyed talking to you, and hope
you enjoyed every bit as much as I. Take care.

THE FINAL WORDS. Bernard, because some things can not be repeated
often enough: thank you for everything.
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