
SOLUTION TO THE FIRST COUSIN PROBLEM FOR
VECTOR-VALUED QUASIANALYTIC FUNCTIONS

ANDREAS DEBROUWERE AND JASSON VINDAS

Abstract. We study spaces of vector-valued quasianalytic functions and solve the
first Cousin problem in these spaces.

1. Introduction

In abstract terms, the first Cousin problem can be formulated as follows. Let X
be a topological space and let F be a sheaf on X. Let Ω ⊆ X be open and let
M = {Ωi : i ∈ I} be an open covering of Ω. Suppose that ϕi,j ∈ Γ(Ωi ∩ Ωj,F),
i, j ∈ I, are given sections such that

ϕi,j + ϕj,k + ϕk,i = 0 on Ωi ∩ Ωj ∩ Ωk,

for all i, j, k ∈ I. Are there ϕi ∈ Γ(Ωi,F), i ∈ I, such that

ϕi,j = ϕj − ϕi on Ωi ∩ Ωj,

for all i, j ∈ I? For X = Cd and F the sheaf of holomorphic functions the Cousin
problem is solvable if Ω is a Stein open set, as follows from the celebrated Oka-Cartan
theorem. This problem was very important for the development of the modern theory
of functions of several complex variables and led to the use of sheaf cohomology in that
area. We refer to [14] for a clear exposition of the problem. Since every open set in Rd

has a system of complex neighborhoods consisting of Stein open sets, it follows that
the Cousin problem is solvable for X = Rd and F the sheaf of real analytic functions
(where Ω is now an arbitrary open set). Petzsche announced in [28] the solution to the
Cousin problem for quasianalytic classes in connection with the construction of sheaves
of infrahyperfunctions, but his article on the subject seems not to have appeared.

The aim of this paper is to show that the Cousin problem is in fact solvable for spaces
of quasianalytic functions. We shall also give sufficient conditions on a locally convex
space F such that the Cousin problem is solvable in spaces of F -valued quasianalytic
functions. We mention that in a forthcoming paper [9] the authors will apply the vector-
valued results from this article to construct sheaves of differential algebras in which
the spaces of infrahyperfunctions of class {Mp} [16] are embedded in such a way that
the ordinary multiplication of ultradifferentiable functions of class {Mp} is preserved.
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2 A. DEBROUWERE AND J. VINDAS

Notice that for Mp = p!, one obtains a differential algebra that contains the space of all
hyperfunctions and in which the multiplication of real analytic functions coincides with
their pointwise product. The construction of such algebras and embeddings has been
an important and long-standing open question in the non-linear theory of generalized
functions.

The analysis of the Cousin problem requires the study of topological properties of
the spaces of quasianalytic functions. The space of real analytic functions has been
thoroughly investigated in the literature and its locally convex structure is by now well
understood; see [3, 12, 13, 23] for the scalar-valued case and [2, 4, 11, 21] for the vector-
valued case. This is much less the case for other spaces of quasianalytic functions,
although some work has been done [3, 7, 22, 30]. The first part of this article is devoted
to studying various useful topological properties of spaces of vector-valued quasianalytic
functions (defined via weight sequences [18]). Even in the scalar-valued case, some of
the results we discuss here appear to be new; for example, we will establish that the
spaces of quasianalytic functions of Roumieu type are ultrabornological (PLN)-spaces,
a fact that is crucial for us to solve the Cousin problem in this case and that, to the
best of our knowledge, remained unnoticed in the literature for general open subsets
of Rd (see Remark 3.3).

The plan of the paper is as follows. Section 2 explains some basic material on locally
convex spaces that we shall need later. In Section 3 we prove that the spaces of quasi-
analytic functions of Roumieu type are ultrabornological with the aid of Hörmander’s
support theorem for quasianalytic functionals [15, 16]. A generalization of Komatsu’s
first structure theorem for quasianalytic functionals is discussed in Section 4. This
result enables us to give an explicit system of seminorms generating the topology on
the quasianalytic function spaces of Roumieu type; such a projective topological de-
scription plays an important role in the analysis of the vector-valued case. We study
vector-valued quasianalytic functions in Section 5, we closely follow there Komatsu’s
approach from [19]; in order to discuss their topological properties, we make use of the
dual interpolation estimate for the space of real analytic functions [3] and a deep result
of Domański on the ε-product of (PLS)-spaces [11]. The Cousin problem is solved in
Section 6. Our proof is based on duality theory and the vanishing of the Proj1-functor
for ultrabornological (PLS)-spaces. The result is extended to the vector-valued case
by using the topological properties obtained in Section 5.

We are indebted to the authors of [3, 11], as many of our proofs below rely on their
results. In particular, Domański’s work on the ε-product of (PLS)-spaces was very
inspiring to us.

2. Projective and inductive spectra of locally convex spaces

In this preliminary section we collect some useful background material on projective
and inductive spectra of locally convex spaces that will be used in the next sections. Of
particular importance for us is the characterization of ultrabornological (PLS)-spaces
due to Vogt and Wengenroth [34] that we state below.

Throughout this article every locally convex space (from now on abbreviated as
l.c.s.) is assumed to be Hausdorff. Given a l.c.s. X we write X ′ for its topological dual.
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Unless otherwise stated, we endow X ′ with the strong topology. A projective spectrum
is a sequence X = (Xn, ι

n
n+1)n∈N consisting of vector spaces Xn and linear mappings

ιnn+1 : Xn+1 → Xn. Set

Proj0X = lim←−
n∈N

Xn

and denote by ιk, k ∈ N, the canonical mapping of Proj0X into Xk. Define

Proj1X =
∏
n∈N

Xn/B(X ),

where

B(X ) = {(xn) ∈
∏
n∈N

Xn : ∃(yn) ∈
∏
n∈N

Xn with xn = yn − ιnn+1(yn+1), ∀n ∈ N}.

This definition is due to Palamodov [27] and coincides with his original definition in
terms of homological algebra (see [35, Sect. 3.1]). Let

0 X Y Z 0

be an exact sequence (in the category of projective spectra) and suppose that Proj1X =
0, then

0 Proj0X Proj0 Y Proj0Z 0

is again exact.
A projective spectrum of l.c.s. is a projective spectrum X = (Xn, ι

n
n+1)n consisting

of l.c.s. Xn and continuous linking mappings ιnn+1. The spectrum X is called reduced
if the mappings ιk have dense range for each k ∈ N.

An inductive spectrum of l.c.s. is a sequence X = (Xn, σ
n
n+1)n∈N of l.c.s. Xn and

linear continuous mappings σnn+1 : Xn → Xn+1. The spectrum X is called injective if
σnn+1 is injective for each n ∈ N. Set

X = lim−→
n∈N

Xn.

Denote by σk, k ∈ N, the canonical mapping of Xk into X. The inductive spectrum
X is called regular (α-regular, resp.) if X is Hausdorff and for every bounded set B in
X there is k ∈ N and a bounded set A in Xk such that σk(A) = B (there is a - not
necessarily bounded - set A in Xk such that σk(A) = B).

Let X = (Xn, ι
n
n+1)n∈N be a projective spectrum of l.c.s. and set X = lim←−Xn. One

defines its dual inductive spectrum as X ∗ = (X ′n,
tιnn+1)n∈N. If X is reduced, we have

X ′ ∼= lim−→X ′n as vector spaces [20, p. 290]. If, additionally, the spaces Xn are semi-
reflexive, the above isomorphism also holds topologically [20, pp. 294 and 300]. Sim-
ilarly, let X = (Xn, σ

n
n+1)n∈N be an inductive spectrum of l.c.s. and set X = lim−→Xn.

We define its dual projective spectrum as X ∗ = (X ′n,
tσnn+1)n∈N. We always have

X ′ ∼= lim←−X
′
n as vector spaces [20, p. 290]. If, moreover, the spectrum X is regular the

above isomorphism also holds topologically.
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A l.c.s. X is called a (PLS)-space ((PLN)-space, resp.) if X = lim←−Xn with (Xn)n∈N
a projective spectrum of (DFS)-spaces ((DFN)-spaces). A l.c.s. X is said to be an
(LFS)-space ((LFN)-space, resp.) if X = lim−→Xn with (Xn)n∈N an injective inductive
spectrum consisting of (FS)-spaces ((FN)-spaces). The hereditary properties of nu-
clearity imply that (PLN)-spaces are nuclear [33, Prop. 50.1]. Vogt and Wengenroth
characterized ultrabornological (PLS)-spaces in the following way:

Proposition 2.1. [34, Thm. 3.3, Thm. 3.5] Let X = (Xn, ι
n
n+1)n∈N be a reduced pro-

jective spectrum of (DFS)-spaces and set X = lim←−Xn. Then, the following statements
are equivalent:

(i) Proj1X = 0.
(ii) X is ultrabornological.

(iii) X ∗ is α-regular.
(iv) X ∗ is regular.

3. Spaces of quasianalytic functions and their duals

We now discuss some topological properties of the spaces of quasianalytic functions.
We work with ultradifferentiability as defined in [18].

Let (Mp)p∈N be a sequence of positive real numbers and define mp := Mp/Mp−1,
p ∈ Z+. We call Mp a weight sequence if M0 = 1 and limp→∞mp = ∞. We make use
of the following conditions:

(M.1) M2
p ≤Mp−1Mp+1, p ≥ 1,

(M.2)′ Mp+1 ≤ AHp+1Mp, p ∈ N, for some A,H ≥ 1,

(QA)
∞∑
p=1

1

mp

=∞.

For α ∈ Nd we write Mα = M|α|. The associated function of Mp is defined as

M(t) = sup
p∈N

log
tp

Mp

, t > 0,

and M(0) = 0. We extend M to Cd as M(z) = M(|z|), z ∈ Cd. As usual [18], the
relation Mp ⊂ Np between two weight sequences means that there are C, h > 0 such
that Mp ≤ ChpNp, p ∈ N. The stronger relation Mp ≺ Np means that the latter
inequality remains valid for every h > 0 and a suitable C = Ch > 0.

Let K be a regular compact set in Rd, that is, intK = K. For h > 0 we write
EMp,h(K) for the Banach space of all ϕ ∈ C∞(K) such that

‖ϕ‖K,h := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
h|α|Mα

<∞.

For an open set Ω in Rd we define

E (Mp)(Ω) = lim←−
KbΩ

lim←−
h→0+

EMp,h(K), E{Mp}(Ω) = lim←−
KbΩ

lim−→
h→∞
EMp,h(K).

The elements of their dual spaces E ′(Mp)(Ω) and E ′{Mp}(Ω) are called quasianalytic
functionals of class (Mp) or Beurling type in Ω and quasianalytic functionals of class
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{Mp} or Roumieu type in Ω, respectively. Notice that E{p!}(Ω) is precisely the space
A(Ω) of real analytic functions in Ω, while A′(Ω) is that of analytic functionals in Ω.

In the sequel we shall write ∗ instead of (Mp) or {Mp} if we want to treat both
cases simultaneously. In addition, we shall often first state assertions for the (Mp)-case
followed in parenthesis by the corresponding statements for the {Mp}-case.

We also need the ensuing assumption on Mp:

(NA) p! ≺Mp

in the Beurling case and

(NE) p! ⊂Mp

in the Roumieu case. Conditions (NA) and (NE) guarantee that the space of entire
functions is dense in E∗(Ω) [16, Prop. 3.2] 1. Hence for Ω′ ⊆ Ω and two weight sequences
Mp with Np ⊂ Mp we may identify E ′(Mp)(Ω′) (E ′{Mp}(Ω′)) with a vector subspace of
E ′(Np)(Ω) (E ′{Np}(Ω)). If Np ≺ Mp we have that E ′(Mp)(Ω′) ⊂ E ′{Np}(Ω). In particular,
we always have E ′∗(Ω′) ⊆ A′(Ω).

Unless otherwise explicitly stated, Mp will always stand for a weight sequence sat-
isfying (M.1), (M.2)′, (QA), and (NA) in the Beurling case or (NE) in the Roumieu
case.

Next, we discuss the notion of support for quasianalytic functionals. For a compact
set K in Rd, we define the space of germs of ultradifferentiable functions on K as

E∗[K] = lim−→
KbΩ

E∗(Ω).

The elements of the dual spaces E ′∗[K] are called local quasianalytic functionals of
class (Mp) or Beurling type (of class {Mp} or Roumieu type) on K. Let N (K) be a
fundamental system of open neighborhoods of K. Clearly,

E∗[K] ∼= lim−→
Ω∈N (K)

E∗(Ω)

as locally convex spaces. Notice that E (Mp)[K] is a (LFN)-space while E{Mp}[K] is a
(DFN)-space, as follows from [18, Thm. 2.6]. Moreover, since

(3.1) E∗(Ω) ∼= lim←−
KbΩ

E∗[K]

as l.c.s. for Ω open, and E∗(Ω) is dense in each E∗[K], we have the isomorphism of
vector spaces

E ′∗(Ω) ∼= lim−→
KbΩ

E ′∗[K].

If ∗ = {Mp}, the isomorphism is in fact topological because each E∗[K] is reflexive.
Let f ∈ E ′∗(Ω), where Ω is open. A compact set K b Ω is said to be a ∗-carrier of f

if f ∈ E ′∗[K]. It is well known that for every f ∈ A′(Ω) there is a smallest compact set
K b Ω among the {p!}-carriers of f , called the support of f and denoted by suppA′ f .
This essentially follows from the cohomology of the sheaf of germs of analytic functions
(see e.g. [26]). An elementary proof based on the properties of the Poisson transform

1Hörmander actually only considers the Roumieu case but his proof can easily be adapted to cover
the Beurling case as well.
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of analytic functionals is provided in [17, Sect. 9.1]. See [24] for a proof by means of the
heat kernel method. Hörmander noticed that a similar result holds for quasianalytic
functionals of Roumieu type [16, Cor. 3.5]. More precisely, he showed that for every
f ∈ E ′{Mp}(Ω) there is a smallest compact set among the {Mp}-carriers of f and that
this set coincides with suppA′ f . The corresponding statement for the Beurling case
was shown in [15, Thm. 4.11] 2. For future reference, we collect these facts in the
following proposition.

Proposition 3.1 ([15, 16]). Let Ω ⊆ Rd be open. For every f ∈ E ′∗(Ω) the set suppA′ f
is the smallest compact set of Ω among the ∗-carriers of f .

It follows from [18, Thm. 2.6] that E (Mp)(Ω) is a (FN)-space, while E{Mp}(Ω) is a
(PLN)-space, as follows from the projective representation (3.1). In the next propo-
sition we establish a topological property of E{Mp}(Ω) that shall be crucial for the rest
of this work.

Proposition 3.2. Let Ω ⊆ Rd be open. The space E{Mp}(Ω) is an ultrabornological
(PLN)-space.

Proof. Let (Kn)n∈N be an exhaustion by compact subsets of Ω. The projective spectrum
X = (E{Mp}[Kn])n∈N (with canonical linking mappings) consists of (DFN)-spaces and
is reduced. Moreover, we have the following isomorphism of l.c.s.

E{Mp}(Ω) ∼= lim←−
n∈N
E{Mp}[Kn],

which gives that E{Mp}(Ω) is a (PLN)-space as already mentioned above. By Propo-
sition 2.1, it suffices to show that X ∗ is α-regular. We have

E ′{Mp}(Ω) ∼= lim−→
n∈N
E ′{Mp}[Kn]

as locally convex spaces. Let B ⊂ E ′{Mp}(Ω) be bounded. A classical result of Mar-
tineau shows that A(Ω) is an ultrabornological (PLN)-space [23, Thm. 1.2, Prop. 1.9].
Since the inclusion mapping E ′{Mp}(Ω)→ A′(Ω) is continuous, Proposition 2.1 implies
that B ⊂ A′[Kn] for some n ∈ N. The result now follows from Proposition 3.1. �

Remark 3.3. For Ω convex, Proposition 3.2 is due to Rösner [30]. To the best of our
knowledge, the result was not yet known for general Ω .

4. Structure theorem for quasianalytic functionals

The purpose of this section is to generalize Komatsu’s first structure theorem [18,
Thm. 8.1] for non-quasianalytic ultradistributions to quasianalytic functionals. As an
application, we shall give an explicit system of seminorms generating the topology
of the space E{Mp}(Ω) (cf. [19, Prop. 3.5]). The latter result is indispensable for the
treatment of vector-valued quasianalytic functions of Roumieu type in the next section.
The analysis of the Beurling case is similar to that given in [18], but we include details
for the sake of completeness. The Roumieu case requires more elaborate arguments.

2The authors work there with the notion of ultradifferentiability defined via weight functions as in
[6], but their proofs can also be adapted to the present setting.
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Proposition 4.1. Let Ω ⊆ Rd be open. For every bounded set B in E ′(Mp)(Ω) there
are a compact set K b Ω and measures µα(f) ∈ C ′(K), α ∈ Nd, f ∈ B, such that

sup
f∈B

sup
α∈Nd

‖µα(f)‖C′(K)Mα

h|α|
<∞

for some h > 0 and

f =
∑
α∈Nd

(µα(f))(α), f ∈ B.

Proof. Let (Kn)n∈N be an exhaustion by regular compact subsets of Ω. We write Xn

for the space of all ϕ ∈ C∞(Kn) such that

sup
x∈Kn

n|α||ϕ(α)(x)|
Mα

→ 0, as |α| → ∞;

endowed with the norm ‖ ‖Kn,1/n it becomes a Banach space. Clearly, E (Mp)(Ω) =

lim←−Xn as locally convex spaces. Since E (Mp)(Ω) is a Fréchet space, the set B is equicon-
tinuous and, by the Hahn-Banach theorem, it can be extended to an equicontinuous

set B̃ in X ′n for some n ∈ N. Set K = Kn and define Yn as the space of all tuples

(ϕα)α ∈ C(K)N
d

such that

n|α|‖ϕα‖C(K)

Mα

→ 0, as |α| → ∞;

endowed with the norm

sup
α∈Nd

n|α|‖ϕα‖C(K)

Mα

it becomes a Banach space. The mapping ι1 : Xn → Yn : ϕ → (ϕ(α))α is an injective
linear topological homomorphism. Next, write U for the disjoint union of Nd copies
of K. It becomes a locally compact space with the disjoint union topology. Notice
that C0(U) can be topologically identified with the Banach space of all tuples (ϕα)α ∈
C(K)N

d
such that

‖ϕα‖C(K) → 0, as |α| → ∞,
endowed with the norm

sup
α∈Nd

‖ϕα‖C(K).

Hence the mapping ι2 : Yn → C0(U) : (ϕα)α → (n|α|ϕα/Mα)α is an injective linear
topological homomorphism. We set ι = ι2 ◦ ι1 : Xn → C0(U) and write ρ : ι(Xn)→ Xn

for the continuous linear mapping such that ρ ◦ ι = id. The Hahn-Banach theorem

implies that the set {g ◦ ρ : g ∈ B̃} can be extended to an equicontinuous subset of
C ′0(U). By the Riesz representation theorem there are Borel measures µ̃α(g) ∈ C ′(K),

α ∈ Nd, g ∈ B̃, such that

sup
g∈B̃

∑
α∈Nd

‖µ̃α(g)‖C′(K) <∞,
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and

g =
∑
α∈Nd

µ̃α(g) ◦ ι, g ∈ B̃.

Denote by f̃ the extension of f ∈ B to B̃. It is then clear that the measures µα(f) =

(−n)|α|µ̃α(f̃)/Mα satisfy all requirements. �

Our strategy to deal with the structure of Roumieu quasianalytic functionals is
to reduce the problem to the Beurling case. For it, we employ the Fourier-Laplace
transform and a support splitting theorem due to Hörmander [16, Thm. 5.1]. We need
some preparation.

The supporting function [26, Sect. 1.8] of a convex compact set K of Rd is defined
as

hK(ξ) := sup
x∈K

Re(ξ · x), ξ ∈ Cd.

For λ > 0 we write OMp,λ
K for the Banach space of all entire functions F ∈ O(Cd) such

that

sup
ξ∈Cd

|F (ξ)|e−hK(ξ)−M(ξ/λ) <∞.

Given a convex open set Ω in Rd, we define

O(Mp)
Ω = lim−→

KbΩ

lim−→
λ→0+

OMp,λ
K , O{Mp}

Ω = lim−→
KbΩ

lim←−
λ→∞
OMp,λ
K .

Let f ∈ E ′∗(Ω), its Fourier-Laplace transform is defined as

F(f)(ξ) = f̂(ξ) = 〈f(x), e−iξ·x〉, ξ ∈ Cd.

It is known that F : E ′∗(Ω)→ O∗Ω is a linear topological isomorphism (see e.g. [15, 32]).
Next, we discuss Hörmander’s splitting theorem. We give a short proof using

Proposition 3.1. Let K1 and K2 be compact sets in Rd with K1 ⊆ K2. We write
ιK1,K2 : E∗[K2] → E∗[K1] for the canonical restriction mapping. Its transpose is the
canonical inclusion mapping E ′∗[K1]→ E ′∗[K2]. We shall identify f ∈ E ′∗[K1] with its
image under the mapping tιK1,K2 .

Proposition 4.2. Let K1 and K2 be compact sets in Rd. The sequence

0 E ′{Mp}[K1 ∩K2] E ′{Mp}[K1]× E ′{Mp}[K2] E ′{Mp}[K1 ∪K2] 0
S T

is topologically exact, where S(f) = (f, f) and T (f1, f2) = f2− f1. Moreover, for every
bounded set B ⊂ E ′{Mp}[K1∪K2] there are bounded sets Bj ⊂ E ′{Mp}[Kj], j = 1, 2, such
that T (B1, B2) = B.

Proof. In view of the open mapping theorem, it suffices to show that the sequence
is algebraically exact. The injectivity of S is clear while the equality ImS = kerT
follows from Proposition 3.1. Notice that the transpose of T may be identified with
the mapping

E{Mp}[K1 ∪K2]→ E{Mp}[K1]× E{Mp}[K2] : ϕ→ (−ιK1,K1∪K2(ϕ), ιK2,K1∪K2(ϕ)).
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The mapping T is surjective since the above mapping is injective and has closed range.
Indeed, the injectivity is clear while the closed range property follows from the fact
that the range is equal to the kernel of the continuous mapping

E{Mp}[K1]× E{Mp}[K2]→ E{Mp}[K1 ∩K2] : (ϕ1, ϕ2)→ ιK1∩K2,K1(ϕ1) + ιK1∩K2,K2(ϕ2).

The second part follows from the general fact that for an exact sequence of Fréchet
spaces

0 −→ X −→ Y
T−→ Z −→ 0

with X an (FS)-space it holds that for every bounded set B ⊂ Z there is a bounded
set A ⊂ Y such that T (A) = B [25, Lemma 26.13]. �

We write R for the family of positive real sequences (rj)j∈N with r0 = 1 which
increase (not necessarily strictly) to infinity. This set is partially ordered and directed
by the relation rj � sj, which means that there is a j0 ∈ N such that rj ≤ sj for all
j ≥ j0. Let Mp be a weight sequence with associated function M and let rj ∈ R.
We denote by Mrj the associated function of the sequence Mp

∏p
j=0 rj. We need three

technical lemmas.

Lemma 4.3. Let Mp be a weight sequence satisfying (M.1), (M.2)′, and (QA). Then,
for every rj ∈ R there is r′j ∈ R with r′j ≤ rj, j ∈ N, such that the sequence Mp

∏p
j=0 r

′
j

also satisfies (M.1), (M.2)′, and (QA).

Proof. Set k0 = 1 and

kj = 1 +

(
j∑

p=1

1

mp

)1/2

, j ≥ 1.

The sequence r′j ∈ R with r′0 = 1 and

r′j = min(rj, 2
j, kj), j ≥ 1,

satisfies all requirements. �

Lemma 4.4. [8, Lemma 4.5] Let Mp be a weight sequence satisfying (M.1) and (M.2)′

and let g : [0,∞) → [0,∞). Then, g(t) = O(eM(t/λ)) for all λ > 0 if and only if

g(t) = O(eMrj (t)) for some rj ∈ R.

Lemma 4.5. Let Ω ⊆ Rd be open. For every bounded set B in E ′{Mp}(Ω) there is a
weight sequence Np with Mp ≺ Np satisfying (M.1), (M.2)′, and (QA) such that B is
contained and bounded in E ′(Np)(Ω).

Proof. STEP 1: Ω is convex. From the above remarks on the Fourier-Laplace transform
it follows that there is a convex compact set K ⊆ Ω such that

sup
f∈B

sup
ξ∈Cd

|f̂(ξ)|e−hK(ξ)−M(ξ/λ) <∞,

for all λ > 0. Applying Lemma 4.4 to the function

g(t) = sup
f∈B

sup
|ξ|=t
|f̂(ξ)|e−hK(ξ), t ≥ 0,
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we find a sequence rj ∈ R such that

sup
f∈B

sup
ξ∈Cd

|f̂(ξ)|e−hK(ξ)−Mrj (ξ) <∞.

By Lemma 4.3, we may assume without loss of generality that the sequence Np :=
Mp

∏p
j=0 rj satisfies (M.1), (M.2)′, and (QA). The result now follows from the fact

that F : E ′(Np)(Ω)→ O(Np)
Ω is a topological isomorphism.

STEP 2: Ω is arbitrary. By Propositions 2.1 and 3.2 there is K b Ω such that B is
contained and bounded in E ′{Mp}[K]. Let K1, . . . , KN , N ∈ N, be convex compact sets

in Ω such that K ⊆
⋃N
j=1Kj. Using Proposition 4.2 and a simple induction argument,

we find bounded sets Bj ⊂ E ′{Mp}[Kj], j = 1, . . . N , such that B = B1 + · · ·+BN . The
result now follows from the first step and Lemma 4.3. �

Remark 4.6. The technique of reducing the case of arbitrary open sets to open convex
sets as in Lemma 4.5 is due to Heinrich and Meise [15].

Propositions 4.1 and Lemma 4.5 immediately yield the analogue of Komatsu’s first
structure theorem in the Roumieu case.

Proposition 4.7. Let Ω ⊆ Rd be open. For every bounded set B in E ′{Mp}(Ω) there
are a compact set K b Ω and measures µα(f) ∈ C ′(K), α ∈ Nd, f ∈ B, such that

sup
f∈B

sup
α∈Nd

‖µα(f)‖C′(K)Mα

h|α|
<∞

for all h > 0 and

f =
∑
α∈Nd

(µα(f))(α), f ∈ B.

Proposition 4.8. Let Ω ⊆ Rd be open. A function ϕ ∈ C∞(Ω) belongs to E{Mp}(Ω) if
and only if

‖ϕ‖K,rj := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
Mα

∏|α|
j=0 rj

<∞

for all K b Ω and rj ∈ R. Moreover, the topology of E{Mp}(Ω) is generated by the
system of seminorms ‖ ‖K,rj .

Proof. The first part follows from [19, Lemma 3.4], we thus only have to check the
topological assertion. Clearly, every seminorm ‖ ‖K,rj acts continuously on E{Mp}(Ω).

Conversely, let p be a continuous seminorm on E{Mp}(Ω). There is a bounded set
B ⊂ E ′{Mp}(Ω) such that

p(ϕ) ≤ sup
f∈B
|〈f, ϕ〉|, ϕ ∈ E{Mp}(Ω).

Proposition 4.7 implies that there are a compact set K b Ω and measures µα(f) ∈
C ′(K), α ∈ Nd, f ∈ B, such that

sup
f∈B

sup
α∈Nd

‖µα(f)‖C′(K)Mα

h|α|
<∞
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for all h > 0 and

f =
∑
α∈Nd

(µα(f))(α), f ∈ B.

Hence,

sup
f∈B
|〈f, ϕ〉| ≤ sup

f∈B

∑
α∈Nd

‖µα(f)‖C′(K)‖ϕ(α)‖C(K),

and the result follows once again from [19, Lemma 3.4]. �

5. Vector-valued quasianalytic functions

We now turn our attention to spaces of vector-valued quasianalytic functions and
their topological properties. Our first goal is to derive a tensor product representation
of these spaces.

Given two l.c.s. X and Y we denote by L(X, Y ) the space of all continuous linear
mappings from X into Y . We write Lβ(X, Y ) (Lc(X, Y ), resp.) if we want to indicate
that we endow L(X, Y ) with the strong topology (topology of uniform convergence on
balanced convex compact sets). We use the same notation for indicating the topology
on X ′. Recall that if we merely write X ′ we implicitly endow it with the strong
topology. For t = β, c we denote by Lε(X

′
t, Y ) the space L(X ′t, Y ) endowed with the

topology of uniform convergence on equicontinuous subsets of X ′.
Following Schwartz [31] and Komatsu [19], we denote by XεY (the ε-product of X

and Y ) the space of all bilinear functionals on X ′c× Y ′c which are hypocontinuous with
respect to the equicontinuous subsets of X ′ and Y ′. We endow it with the topology of
uniform convergence on products of equicontinuous subsets of X ′ and Y ′. As pointed
out in [19, p. 657], we have the following canonical isomorphisms of l.c.s.

XεY ∼= Lε(X
′
c, Y ) ∼= Lε(Y

′
c , X).

The tensor product X ⊗ Y is canonically embedded into XεY via (x ⊗ y)(x′, y′) =
〈x′, x〉〈y′, y〉. Clearly, the induced topology on X ⊗ Y is the ε-topology. Given contin-
uous linear mappings T1 : X1 → Y1 and T2 : X2 → Y2 we write T1εT2 : X1εX2 → Y1εY2

for the continuous linear mapping given by

T1εT2(Φ)(y′1, y
′
2) = Φ(tT1y

′
1,
tT2y

′
2), y′j ∈ Y ′j , j = 1, 2.

The restriction of T1εT2 to X1 ⊗X2 is equal to the tensor product of the mappings T1

and T2.
IfX and Y are complete and if eitherX or Y has the weak approximation property, in

particular, if either X or Y is nuclear, we have XεY = X⊗̂εY as locally convex spaces
[19, Prop. 1.4]. As usual, if either X or Y is nuclear, we write X⊗̂Y := X⊗̂εY =
X⊗̂πY .

We now introduce spaces of vector-valued quasianalytic functions. Let Ω ⊆ Rd be
open and let F be a locally convex space. We write E (Mp)(Ω;F ) (E{Mp}(Ω;F )) for the
space of all ϕ ∈ C∞(Ω;F ) such that, for each continuous seminorm q on F , K b Ω,
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and h > 0 (rj ∈ R),

qK,h(ϕ) := sup
α∈Nd

sup
x∈K

q(ϕ(α)(x))

h|α|Mα

<∞

(
qK,rj(ϕ) := sup

α∈Nd

sup
x∈K

q(ϕ(α)(x))

Mα

∏|α|
j=0 rj

<∞

)
.

We endow it with the locally convex topology generated by the system of seminorms
qK,h (qK,rj). Notice that, in view of [19, Lemma 3.4], E{Mp}(Ω;F ) coincides with the
set of all ϕ ∈ C∞(Ω;F ) such that for each continuous seminorm q on F and K b Ω
there is h > 0 such that qK,h(ϕ) <∞.

Proposition 5.1. Let Ω ⊆ Rd be open and let F be a sequentially complete locally
convex space. Then, E∗(Ω;F ) coincides with the space of all functions ϕ : Ω → F
such that 〈y′,ϕ(·)〉 ∈ E∗(Ω) for all y′ ∈ F ′. Moreover, we have the following canonical
isomorphism of l.c.s.

E∗(Ω;F ) ∼= E∗(Ω)εF,

and, if F is complete,

E∗(Ω;F ) ∼= E∗(Ω)εF ∼= E∗(Ω)⊗̂F.

The proof of Proposition 5.1 is based on the following criterium due to Komatsu.

Lemma 5.2. [19, Lemma 1.12] Let Ω be a σ-compact metrizable locally compact space,
let X be a space consisting of continuous scalar-valued functions on Ω equipped with a
locally convex topology that is semi-Montel and stronger than the topology of uniform
convergence on compact subsets of Ω, and let F be a sequentially complete locally convex
space. Suppose that the sequential closure in X ′c of the set of functionals represented
by measures with compact support in Ω is equal to X ′. Then, XεF ∼= L(F ′c, X) may be
identified with the space of all ϕ : Ω→ F such that 〈y′,ϕ(·)〉 ∈ X for all y′ ∈ F ′.

Lemma 5.3. Let Ω ⊆ Rd be open. The sequential closure in E ′∗β (Ω) of the linear span
of the set {δx : x ∈ Ω} is equal to E ′∗(Ω).

Proof. Beurling case: The sequential closure of a subset in a (DFS)-space is equal
to its closure (cf. [5, Prop. 8.5.28]). Therefore, it suffices to show that the linear

span of the set {δx : x ∈ Ω} is dense in E ′(Mp)
β (Ω), but this follows at once from the

Hahn-Banach theorem and the fact that the space E (Mp)(Ω) is reflexive.
Roumieu case: Let (Ωn)n∈N be an exhaustion by relatively compact open subsets

of Ω. We have E ′{Mp}
β (Ω) = lim−→E

′{Mp}
β [Ωn] as locally convex spaces. Let n ∈ N be

arbitrary. The condition (QA) implies that an element ϕ ∈ E{Mp}[Ωn] is equal to zero
if and only if one (and hence all) of its representatives vanishes on Ωn. Hence, by the
Hahn-Banach theorem and the fact that the space E{Mp}[Ωn] is reflexive, we obtain that

the linear span of the set {δx : x ∈ Ωn} is dense in E ′{Mp}
β [Ωn]. Since the latter space

is a Fréchet space, we actually have that for each f ∈ E ′{Mp}[Ωn] there is a sequence
(fj)j∈N ⊂ span{δx : x ∈ Ωn} ⊂ span{δx : x ∈ Ω} such that fj → f , as j → ∞, in

E ′{Mp}
β [Ωn] and, thus, in E ′{Mp}

β (Ω). �
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Proof of Proposition 5.1. With the aid of Lemma 5.3, the proof now becomes identical
to that of [19, Thm. 3.10]. We repeat the argument for the sake of completeness. We
only show the Roumieu case, the Beurling case is similar. Clearly, ϕ ∈ E{Mp}(Ω;F )
implies that 〈y′,ϕ(·)〉 ∈ E{Mp}(Ω) for all y′ ∈ F ′. Conversely, let ϕ : Ω → F be a
function having the latter property. In particular, it holds that 〈y′,ϕ(·)〉 ∈ C∞(Ω) for
all y′ ∈ F ′ and, thus, by a well known result, that ϕ ∈ C∞(Ω;F ) and

(5.1) 〈y′,ϕ(·)〉(α) = 〈y′,ϕ(α)(·)〉, y′ ∈ F ′, α ∈ Nd.

Hence, by Proposition 4.8, we obtain that for each K b Ω and rj ∈ R the set{
ϕ(α)(x)

Mα

∏|α|
j=0 rj

: x ∈ K,α ∈ Nd

}
is weakly bounded in F . By Mackey’s theorem the set is bounded in F , which precisely
means that ϕ ∈ E{Mp}(Ω;F ). This shows the first part of the proposition. By Lemmas
5.2 and 5.3, we therefore have E{Mp}(Ω;F ) ∼= E{Mp}(Ω)εF as vector spaces. We now
show that this isomorphism also holds topologically. Let K b Ω, rj ∈ R, and let q be
an arbitrary continuous seminorm on F . Define A to be the polar set of the ‖ ‖K,rj -unit

ball in E{Mp}(Ω) and B to be the polar set of the q-unit ball in F . Hence, by (5.1) and
the bipolar theorem,

sup{|〈f, 〈y′,ϕ(·)〉〉| : f ∈ A, y′ ∈ B} = sup{‖〈y′,ϕ(·)〉‖K,rj : y′ ∈ B}

= sup

{
|〈y′,ϕ(α)(x)〉|
Mα

∏|α|
j=0 rj

: y′ ∈ B, x ∈ K,α ∈ Nd

}
= qK,rj(ϕ).

In view of Proposition 4.8, this shows that the above isomorphism indeed holds topo-
logically. The last part follows from the fact that the space E{Mp}(Ω) is nuclear. �

Next, we are interested in the topological properties of the spaces E∗(Ω;F ). We
start with a discussion about the ε-product of (PLS)-spaces. Let X = lim←−Xn be a
(PLN)-space with (Xn)n∈N a reduced projective spectrum of (DFN)-spaces and let
Y = lim←−Yn be a (PLS)-space with (Yn)n∈N a reduced projective spectrum of (DFS)-
spaces. First notice that, by [19, Prop. 1.5], we have the following isomorphism of
l.c.s.

XεY ∼= lim←−
n∈N

XnεYn.

Moreover, as the ε-product of two (DFS)-spaces is again a (DFS)-space [1, Prop.
4.3] and XεY = X⊗̂Y is dense in each XnεYn = Xn⊗̂Yn, XεY is a (PLS)-space
which can be represented as the projective limit of the reduced spectrum (XnεYn)n∈N
of (DFS)-spaces. It is highly desirable to find conditions on X and Y which ensure
that XεY is ultrabornological. Domański [11] achieved this by making use of the so
called dual interpolation estimates for (PLS)-spaces. These were introduced in [3] and
can be viewed as abstract Phragmén-Lindelöf conditions. Let us discuss the precise
definition.
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Let X = lim←−Xn be a (PLS)-space with (Xn)n∈N a projective spectrum of (DFS)-
spaces. Suppose that the Xn are given by

Xn = lim−→
N∈N

Xn,N

with (Xn,N , ‖ ‖n,N) Banach spaces. We say that X has the dual interpolation estimate
for small theta if

∀n ∃m ≥ n ∀k ≥ m ∃N ∀M ≥ N ∃θ0 ∈ (0, 1) ∀θ ∈ (0, θ0) ∃K ≥M ∃C > 0 ∀x′ ∈ X ′n :

‖x′‖∗m,M ≤ C
(
‖x′‖∗k,K

)1−θ (‖x′‖∗n,N)θ .
It is known that the dual interpolation estimate for small theta implies that the space is
ultrabornological [35, Thm. 3.2.18]. Moreover, by using [3, Prop. 1.1], one can readily
check that a (DFS)-space X satisfies the dual interpolation estimate for small theta if
and only if X ′ satisfies Vogt’s condition (DN) (see [25, p. 368] for the definition). The
following proposition of Bonet and Domański is very important for us.

Proposition 5.4. [3, Cor. 2.2] Let Ω ⊆ Rd be open. The space A(Ω) satisfies the dual
interpolation estimate for small theta.

Proposition 5.5. Let Ω ⊆ Rd be open.

(i) If F is a Fréchet space, then E (Mp)(Ω;F ) is a Fréchet space.
(ii) If F is a (DFS)-space such that F ′ satisfies (DN), then E{Mp}(Ω;F ) is an

ultrabornological (PLS)-space.

The proof of Proposition 5.5(i) is easy, one just has to combine Proposition 5.1
with the fact that the ε-product of two Fréchet spaces is again a Fréchet space. For
Proposition 5.5(ii), we use the following result due to Domański.

Proposition 5.6. [11, Thm. 5.6] Let X be a (PLN)-space and F a (PLS)-space.
Suppose that both X and F satisfy the dual interpolation estimate for small theta.
Then, XεF is an ultrabornological (PLS)-space.

Remark 5.7. Domański showed the above result under the additional assumption that
the space X is so called deeply reduced. By [29, Prop. 8] this assumption is superfluous.
Moreover, based on results of Domański, Piszczek was able to show that the (PLS)-
space XεF also satisfies the dual interpolation estimate for small theta [29, Thm. 9].

Remark 5.8. The space A(Ω;F ) is ultrabornological for any (PLS)-space F satisfiying
the dual interpolation estimate for small theta, as immediately follows from Proposi-
tions 5.1, 5.4, and 5.6.

Proof of Proposition 5.5(ii). We use the same technique as in Proposition 3.2. There-
fore, we first give a representation of the dual of E{Mp}(Ω;F ). Let (Kn)n∈N be an
exhaustion by compact subsets of Ω. By Proposition 5.1, [19, Prop. 1.5], and [19,
Prop. 2.3], we have the following isomorphisms of l.c.s.

E ′{Mp}(Ω;F ) ∼= (E{Mp}(Ω)⊗̂F )′ ∼= (lim←−
n∈N
E{Mp}[Kn]⊗̂F )′ ∼= lim−→

n∈N
Lβ(E{Mp}[Kn], F ′).
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Let K b Rd. Using the isomorphism L(E{Mp}[K], F ′) ∼= L(F, E ′{Mp}[K]) and the Pták
closed graph theorem, one deduces

L(E{Mp}[K], F ′)

∼= {f ∈ L(E{Mp}(Rd), F ′) : y ◦ f ∈ E ′{Mp}[K], ∀y ∈ F},(5.2)

as vector spaces. By Proposition 2.1, it suffices to show that the inductive spectrum

(Lβ(E{Mp}[Kn], F ′))n∈N

is α-regular. Let B ⊂ E ′{Mp}(Ω;F ) be bounded. Since the canonical inclusion mapping
E ′{Mp}(Ω;F )→ A′(Ω;F ) is continuous, Remark 5.8 implies that B ⊂ L(A[Kn], F ′) for
some n ∈ N. Hence, by (5.2) and Proposition 3.1, we obtain that B ⊂ L(E{Mp}[Kn], F ′).

�

6. The Cousin problem

We are ready to solve the Cousin problem for quasianalytic functions.

6.1. Scalar-valued case. It is natural to formulate the Cousin problem in the lan-
guage of cohomology groups with coefficients in a sheaf. We therefore start with a brief
discussion of the basic notions from this theory. For a detailed exposition, we refer to
[26, Chap. 4].

Let X be a topological space and let F be a sheaf on X. We denote by Γ(U,F) the
sections of F on an open set U of X. Let M = {Ui : i ∈ I} be a collection of open
subsets of X. We write

Ui0,...,ip = Ui0 ∩ · · · ∩ Uip , p ∈ N, i0, . . . , ip ∈ I.
We define Cp(M,F), p ∈ N, as the set consisting of collections ϕ = (ϕi0,...,ip) ∈∏

(i0,...,ip)∈Ip+1 Γ(Ui0,...,ip ,F) which are antisymmetric with respect to the indices i0, . . . , ip.

For ϕ ∈ Cp(M,F) we define δpϕ ∈ Cp+1(M,F) as

(δpϕ)i0,...,ip+1 =

p+1∑
j=0

(−1)jϕi0,...,îj ,...ip+1|Ui0,...,ip+1
, i0, . . . , ip+1 ∈ I,

where, as usual, the hat mark on îj means that the index ij is omitted. Since δp+1◦δp =
0, we have the complex

(6.1)
0 C0(M,F) C1(M,F) C2(M,F) · · · .

δ0 δ1 δ2

Define Zp(M,F) = ker δp, B
p(M,F) = Im δp−1 (B0(M,F) = {0}), and

Hp(M,F) = Zp(M,F)/Bp(M,F), p ∈ N,
that is, the p-th cohomology group of the complex (6.1).

Let I ′ ⊆ I and set M′ = {Ui : i ∈ I ′}. By restricting the indices of an ele-
ment of Cp(M,F) to I ′, we can naturally define the restriction mapping Cp(M,F)→
Cp(M′,F). We write Cp(M,M′,F) for the kernel of this mapping and defineHp(M,M′,F)
to be the p-th cohomology group of the complex
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0 C0(M,M′,F) C1(M,M′,F) C2(M,M′,F) · · · .
δ0 δ1 δ2

We have the following complex of short exact sequences

0 0 0

0 C0(M,M′,F) C0(M,F) C0(M′,F) 0

0 C1(M,M′,F) C1(M,F) C1(M′,F) 0

...
...

...

which yields the long exact sequence of cohomology groups [26, Thm. B.2.1]

(6.2)

0 H0(M,M′,F) H0(M,F) H0(M′,F)

H1(M,M′,F) H1(M,F) H1(M′,F)

H2(M,M′,F) · · · .

We can now formulate the main theorem of this subsection. We write E∗ for the
sheaf of ultradifferentiable functions of class ∗ on Rd.

Theorem 6.1. Let Ω ⊆ Rd be open and let M = {Ωi : i ∈ I} be an open covering of
Ω. Then, H1(M, E∗) = 0. Explicitly, this means that the sequence

(6.3)
0 E∗(Ω)

∏
i∈I E∗(Ωi) Z1(M, E∗) 0

δ

is exact, where

Z1(M, E∗) = {(ϕi,j) ∈
∏
i,j∈I

E∗(Ωi,j) : ϕi,j + ϕj,k + ϕk,i = 0 on Ωi,j,k, ∀i, j, k ∈ I},

and

δ = δ0 :
∏
i∈I

E∗(Ωi)→ Z1(M, E∗) : (ϕi)→ ((ϕj − ϕi)|Ωi,j
).

We shall prove this theorem in several steps.

Lemma 6.2. Let Mp be a weight sequence satisfying (M.1), (M.2)′, and p! ≺ Mp.
Then, for every rj ∈ R there is r′j ∈ R with r′j ≤ rj, j ∈ N, such that the sequence
Mp/

∏p
j=0 r

′
j also satisfies (M.1), (M.2)′, and p! ≺Mp.
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Proof. Using [19, Lemma 3.4], we first find kj ∈ R such that p! ⊂ Mp/
∏p

j=0 kj. The
sequence r′j ∈ R with r′0 = r′1 = 1 and

r′j = min

(
rj,

mj

mj−1

r′j−1,
√
kj

)
, j ≥ 2,

satisfies all requirements. �

Proposition 6.3. Let K1 and K2 be compact sets in Rd. The sequence

0 E∗[K1 ∪K2] E∗[K1]× E∗[K2] E∗[K1 ∩K2] 0

is exact.

Proof. We only need to show the surjectivity of the mapping

E∗[K1]× E∗[K2]→ E∗[K1 ∩K2] : (ϕ1, ϕ2)→ ϕ2 − ϕ1,

the rest is clear.
Roumieu case: The transpose of the above mapping is given by

E ′{Mp}[K1 ∩K2]→ E ′{Mp}[K1]× E ′{Mp}[K2] : f → (−f, f).

The result is therefore a consequence of the fact that this mapping is injective and has
closed range, as follows from Proposition 3.1.

Beurling case: Let ϕ ∈ E (Mp)[K1∩K2]. By [19, Lemma 3.4], there is rj ∈ R such that

ϕ ∈ E{Mp/
∏p

j=0 rj}[K1 ∩K2]. By Lemma 6.2, we may assume without loss of generality
that Mp/

∏p
j=0 rj satisfies (M.1), (M.2)′, and p! ≺ Mp. The result now follows from

the Roumieu case.
�

Proof of Theorem 6.1. STEP 1: I = {1, 2}. Let (Ωj,n)n∈N be an exhaustion by rela-
tively compact open subsets of Ωj, j = 1, 2. Define the following projective spectra

X = (E∗[Ω1,n∪Ω2,n])n∈N, Y = (E∗[Ω1,n]×E∗[Ω2,n])n∈N, Z = (E∗[Ω1,n∩Ω2,n])n∈N.

By Proposition 6.3, we have the following exact sequence of projective spectra

0 X Y Z 0.

Since

Proj0X ∼= E∗(Ω1 ∪ Ω2), Proj0 Y ∼= E∗(Ω1)× E∗(Ω2), Proj0Z ∼= E∗(Ω1 ∩ Ω2),

it suffices to show that Proj1X = 0.
Beurling case: The spectrum X is equivalent (in the sense of [35, Def. 3.1.6]) to

the spectrum X0 = (E (Mp)(Ω1,n ∪ Ω2,n))n∈N. Hence, by [35, Prop. 3.1.7], we have
Proj1X ∼= Proj1X0. Since the spectrum X0 consists of Fréchet spaces and is reduced,
the Mittag-Leffler lemma (see e.g. [18, Lemma 1.3], [35, Thm. 3.2.1]) implies that
Proj1X0 = 0.

Roumieu case: Immediate consequence of Propositions 2.1 and 3.2.
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STEP 2: I is finite. This can be shown by using the first step and an induction
argument (for details see the second step in the the proof of [26, Thm. 2.3.1]).

STEP 3: I is arbitrary. Since every open set of Rd is second countable, we may
assume without loss of generality that I is countable (set I = N) and that Ωi b Ω for
all i ∈ N. Define the following projective spectra

(6.4) X =

(
E∗
(

n⋃
i=0

Ωi

))
n∈N

, Y =

(
n∏
i=0

E∗(Ωi)

)
n∈N

, Z = (Z1(Mn, E∗))n∈N,

where Mn = {Ωi : i = 0, . . . , n}. By the second step, we have the following exact
sequence of projective spectra

(6.5)
0 X Y Z 0 .

Since

Proj0X ∼= E∗(Ω), Proj0 Y ∼=
∏
i∈N

E∗(Ωi), Proj0Z ∼= Z1(M, E∗),

it is enough to verify that Proj1X = 0.
Beurling case: Since the spectrum X consists of Fréchet spaces and is reduced, it

follows again from the Mittag-Leffler lemma.
Roumieu case: The spectrum X is equivalent to the spectrum X0 = (E{Mp}[

⋃n
i=0 Ωi])n∈N.

By Propositions 2.1 and 3.2, we have Proj1X ∼= Proj1X0 = 0. �

Remark 6.4. It is worth comparing Theorem 6.1 with Hörmander’s work [16] in the
Roumieu case. Since Proposition 6.3 in this case follows directly from Hörmander’s
support theorem (Proposition 3.1), one may say that it is implicitly contained in his
work. By merely combinatorial means, one easily deduces from Proposition 6.3 that
given finitely many compact sets K1, K2, . . . , Kn in Rd and germs of quasianalytic
functions ϕi,j ∈ E{Mp}[Ki∩Kj], subject to the co-cycle conditions ϕi,j +ϕj,k +ϕk,i = 0,
there are germs ϕi ∈ E{Mp}[Ki] such that ϕi,j = ϕj − ϕi. In the passage to open sets
and (finite or infinite) open coverings, the essential ingredients for Theorem 6.1 are
then Propositions 2.1 and 3.2.

Next, we discuss the topological exactness of the sequence (6.3). We endow
∏
E∗(Ωi)

with the product topology and Z1(M, E∗) with the relative topology induced by∏
E∗(Ωi,j) (endowed with the product topology). Notice that Z1(M, E∗) is a closed

subspace of
∏
E∗(Ωi,j) and that the mapping δ is continuous.

Proposition 6.5. The sequence (6.3) is topologically exact if I is countable.

In the Roumieu case, we need the ensuing lemmas.

Lemma 6.6. Let X be a topological space and let F be a sheaf on X. Suppose that
H1(M,F) = 0 for all finite open coverings M. Then, Hp(M,F) = 0 for all p ≥ 1
and all finite open coverings M.
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Proof. We use induction on N = |M|. The case N = 1 is clear. Suppose that the result
holds for N . Let M = {Ωi : i = 0, . . . , N} be an arbitrary open covering and define
M′ = {Ωi : i = 0, . . . , N−1}. Using the induction hypothesis, we obtain Hp(M′,F) =
0 for all p ≥ 1. Hence, the long exact sequence of cohomology groups (6.2) implies
that Hp(M,F) ∼= Hp(M,M′,F) for all p ≥ 2. A straightforward calculation yields

Cp(M,M′,F) ∼= Cp−1(M̃,F) for all p ≥ 1, where M̃ = {Ωi ∩Ωn : i = 0, . . . , N − 1}.
Therefore, we have Hp(M,F) ∼= Hp(M,M′,F) ∼= Hp−1(M̃,F) = 0, for all p ≥ 2,
where in the last inequality we have used the induction hypothesis. �

Lemma 6.7. Let

0 X0 X1 · · · XN 0
d0 d1 dN−1

be an exact sequence of ultrabornological (PLS)-spaces. Then, the sequence is auto-
matically topologically exact and ker dj is an ultrabornological (PLS)-space for each
j = 0, . . . , N − 1.

Proof. Since every (PLS)-space X has a strict ordered web, De Wilde’s open map-
ping theorem [25, Thm. 24.30] implies that any linear continuous surjective mapping
X → Y , with Y ultrabornological, is a topological homomorphism. Moreover, a closed
subspace A of an ultrabornological (PLS)-space X is ultrabornological if and only
if X/A is complete [10, Cor. 1.4]. Combining these two facts, we obtain the desired
result. �

Proof of Proposition 6.5. In the Beurling case, the statement is a consequence of the
open mapping theorem for Fréchet spaces. We now consider the Roumieu case. Since
the countable product of (PLS)-spaces is a (PLS)-space and a closed subspace of a
(PLS)-space is again a (PLS)-space, the spaces appearing in (6.3) are all (PLS)-
spaces. We divide the proof into two steps.

STEP 1: I is finite. Suppose I = {0, . . . , N} for some N ∈ N. Theorem 6.1 and
Lemma 6.6 imply that the sequence

0 E∗(Ω)
∏N

i=0 E∗(Ωi) C1(M, E∗) · · · CN(M, E∗) 0

is exact. Notice that Cp(M, E∗) is isomorphic to a finite product of spaces of the form
E∗(Ωi0,...,ip), 0 ≤ i0 < i1 < · · · < ip ≤ N . We endow it with the product topology. In
such a way the linking mappings in the above sequence become continuous. Moreover,
since a finite product of ultrabornological spaces is again an ultrabornological space,
the result follows from Proposition 3.2 and Lemma 6.7.

STEP 2: I is countable (set I = N). Consider the projective spectra defined in
(6.4). By the first step we know that the the complex (6.5) consists of topologically
exact sequences. Since every (PLS)-space X has a strict ordered web and Proj1X = 0
(see the third step in the proof of Theorem 6.1), [35, Thm. 3.3] implies that the map-
ping δ appearing in (6.3) is a topological homomorphism. As the countable product
of ultrabornological spaces is again an ultrabornological space and the quotient of an
ultrabornological space with a closed subspace is again ultrabornological, we obtain
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that Z1(M, E{Mp}) is an ultrabornological (PLS)-space from Proposition 3.2. Fur-
thermore, it implies that ker δ is ultrabornological (cf. the proof of Lemma 6.7). Hence
E∗(Ω)→

∏
i∈N E∗(Ωi) is a topological embedding by De Wilde’s open mapping theorem.

�

6.2. Vector-valued case. We now address the Cousin problem for spaces of F -valued
quasianalytic functions for suitable l.c.s. F . We write E∗(· ;F ) for the sheaf of F -valued
ultradifferentiable functions of class ∗ on Rd.

Theorem 6.8. Let Ω ⊆ Rd be open, let M = {Ωi : i ∈ I} be an open covering of Ω,
and let F be a locally convex space. Then, H1(M, E∗(· ;F )) = 0 in the following cases:

(i) For ∗ = (Mp) and F a Fréchet space,
(ii) for ∗ = {Mp} and F a (DFS)-space such that F ′ satisfies (DN),

(iii) for ∗ = {p!} and F a (PLS)-space satisfying the dual interpolation estimate for
small theta.

We shall need the following lemma in the proof of the Roumieu case.

Lemma 6.9. [11, Prop. 4.5] Let

0 X Y Z 0
S T

be a topologically exact sequence of (PLS)-spaces and let F be a (PLS)-space. Suppose
that X is a (PLN)-space and that the (PLS)-space XεF is ultrabornological. Then,
the sequence

0 XεF Y εF ZεF 0
Sε idF Tε idF

is exact.

Proof of Theorem 6.8. As in the scalar-valued case, the vanishing of the first cohomol-
ogy group H1(M, E∗(· ;F )) means that

0 E∗(Ω;F )
∏

i∈I E∗(Ωi;F ) Z1(M, E∗(·, F )) 0
δF

is exact, where

Z1(M, E∗(·, F )) = {(ϕi,j) ∈
∏
i,j∈I

E∗(Ωi,j;F ) : ϕi,j+ϕj,k+ϕk,i = 0 on Ωi,j,k,∀i, j, k ∈ I},

and
δF =

∏
i∈I

E∗(Ωi;F )→ Z1(M, E∗(·, F )) : (ϕi)→ ((ϕj −ϕi)|Ωi,j
).

We may assume that I is countable. Furthermore, we only need to show that δF is
surjective, the rest is clear. Notice that we have the following isomorphisms of l.c.s.

E∗(Ω;F ) ∼= E∗(Ω)εF,
∏
i∈I

E∗(Ωi;F ) ∼=

(∏
i∈I

E∗(Ωi)

)
εF,

Z1(M, E∗(·, F )) ∼= Z1(M, E∗)εF.(6.6)
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The first two isomorphisms are consequences of Proposition 5.1 and [19, Prop. 1.5].
We now show the third one. Since the ε-product of two injective linear topologi-
cal homomorphisms is again an injective linear topological homomorphism, the space
Z1(M, E∗)εF is topologically isomorphic to a subspace X of(∏

i,j∈I

E∗(Ωi,j)

)
εF ∼=

∏
i,j∈I

E∗(Ωi,j;F ).

Let us now prove that X = Z1(M, E∗(· ;F )). Let (ϕi,j) ∈ X. Employing the represen-
tation Z1(M, E∗)εF ∼= L(F ′c, Z

1(M, E∗)) we obtain that

(〈y′,ϕi,j(·)〉) ∈ Z1(M, E∗), y′ ∈ F ′,
and, thus,

0 = 〈y′,ϕi,j(x)〉+ 〈y′,ϕj,k(x)〉+ 〈y′,ϕk,i(x)〉 = 〈y′,ϕi,j(x) + ϕj,k(x) + ϕk,i(x)〉,
for all y′ ∈ F ′, x ∈ Ωi,j,k, i, j, k ∈ I. This implies that (ϕi,j) ∈ Z1(M, E∗(· ;F )). The
converse inclusion can be shown similarly. Finally, notice that δF = δε idF .

(i): By the hereditary properties of nuclearity, we have that the spaces
∏

i∈I E (Mp)(Ωi)

and Z1(M, E (Mp)) are nuclear Fréchet spaces. Hence, by (6.6), we may represent δF as
a tensor product of mappings,

δF = δ⊗̂ idF :

(∏
i∈I

E (Mp)(Ωi)

)
⊗̂F → Z1(M, E (Mp))⊗̂F.

The result now follows from the solution to the scalar-valued Cousin problem (Theorem
6.1) and the following well known fact: Given two surjective continuous linear mappings
T1 : X1 → Y1 and T2 : X2 → Y2 between Fréchet spaces, the mapping

T1⊗̂πT2 : X1⊗̂πX2 → Y1⊗̂πY2

is also surjective.
(ii) and (iii): In view of Lemma 6.9 this follows directly from Proposition 5.5 (Re-

mark 5.8 in the real analytic case) and Proposition 6.5. �
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