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Summary

This dissertation investigates advanced numerical methods that are to be used to
solve problems that, when translated into the language of mathematics, involve
partial di�erential equations (PDEs) and inverse problems (IPs).

Partial di�erential equations are very often the result of mathematical mod-
elling, which is a process of describing the forces that govern the physical world
in terms of numbers and mathematical symbols. The more precise and accurate
description is required, the more complicated equations are gained. Since there is
no global theory whose application would provide us with the solution of a gen-
eral PDE, and it is very unlikely that such a theory will ever be discovered, the
only way how to treat unsolved problems is to patiently and carefully keep seek-
ing new methods that uncover step by step the solutions of a whole new class of
problems.

Sometimes, and in practice very often, it can happen that a part of a model,
e.g. a di�usivity coe�cient, a time-dependent source or a convolution kernel,
is unknown. In such a situation this parameter is to be identi�ed based on the
knowledge of some additional information. This extra information can be either
provided by a measurement or derived from theory. This type of problem is usu-
ally labeled as an inverse problem.

The content of this dissertation is based on research activities which I con-
cluded within the last four years, and the two articles [79, 80] that have been pub-
lished in the respected journal Computers & Mathematics with applications with
high impact factor 1.398; according to the Web of Science it occupies the 46th place
in the list of 254 journals in the category of Applied mathematics.

xiii



xiv Summary

This dissertation is organized as follows:

Chapter 1 proposes a general overview of mathematical tools, which are essen-
tial for coherent reading of the main parts of this work. In this chapter, the formal
de�nition of PDEs is introduced as well as the concepts of initial and boundary
conditions, strong and weak solutions, and inverse problems. The core part of
this chapter is the Section 1.3 that explains Rothe’s method as a tool for �nding
solutions to evolution problems. By means of Rothe’s method the existence and
uniqueness of the solution is proven too.

Chapter 2 is based on article [80] and in this chapter a time-dependent source
in Maxwell’s equations is recovered from a surface measurement. The main con-
tribution of this part is, that the additional measurement is only taken along a 2D
surface, which means that a non-invasive measurement is assumed. The existence
of a solution together with its uniqueness is proven, error estimates are obtained,
and the theoretical results are supported with numerical examples.

Chapter 3 deals with non-linear hyperbolic Maxwell’s equations with missing
time-dependent convolution kernel. The missing data are determined from a sur-
face measurement, which is a new and a very extensive aspect. The uniqueness
and existence of a solution is proven in this chapter. Furthermore, a numerical
scheme for �nding a solution based on backward Euler’s method is proposed.

The last chapter, Chapter 4, introduces a new class of techniques called Model
order reduction, which has been subject of extensive amount of studies within the
past decades. We propose a discussion of the advantages and disadvatages of this
method compared with techniques which are considered to be standard, e.g. De-
coupling scheme or Minimization of a cost functional. This chapter is strongly
linked to the two previous chapters, because it allows one to see the problems
described in Chapters 2 and 3 from a new perspective.



Samenvatting

Dit doctoraatsproefschrift onderzoekt een aantal geavanceerde numerieke metho-
den voor wiskundige problemen waarin partiële di�erentiaalvergelijkingen (PDV)
voorkomen en die als inverse problemen (IP) geformuleerd kunnen worden.

Partiële di�erentiaalvergelijkingen zijn vaak het resultaat van wiskundige mod-
ellering. Dit is een proces waarbij natuurkundige fenomenen beschreven worden
met behulp van getallen en wiskundige symbolen. Hoe nauwkeuriger en realisti-
scher het vereiste model moet zijn, hoe ingewikkelder de bekomen vergelijkingen
gaan zijn.

Er bestaat geen algemene theorie die het bestaan van een oplossing van een
PDV garandeert. Bovendien is het heel onwaarschijnlijk dat zulke theorie ooit zal
ontdekt worden. Een goede manier om de onopgeloste problemen aan te pakken
is door aandachtig en stap voor stap te blijven zoeken naar nieuwe methoden voor
bepaalde klassen van problemen.

In de praktijk komt het vaak voor dat een parameter van het model onbek-
end is, bv. een di�usiecoë�ciënt, een bronterm, een convolutiekern, etc. In deze
situatie is het de bedoeling om die parameter te identi�ceren door middel van bij-
komende informatie. Deze extra informatie kan bekomen worden door middel
van een bijkomende meting, maar kan soms ook afgeleid worden uit de theorie.
Dit soort problemen krijgen meestal de benaming inverse problemen.

Dit doctoraatsproefschrift is gebaseerd op vier jaar lang doctoraatsonderzoek
dat resulteerde in twee artikels [79, 80]. Deze artikels zijn beide gepubliceerd in
het gerespecteerde tijdschrift Computers & Mathematics with applications (impact

xv



xvi Samenvatting

factor 1,398, 46e plaats in de lijst van 254 tijdschriften in de categorie Toegepaste
wiskunde volgens de Web of Science).

Dit doctoraatsproefschrift bestaat uit vier hoofdstukken. Hoofdstuk 1 geeft
een algemeen overzicht van de wiskundige instrumenten die essentieel zijn voor
de analyse in het vervolg van het proefschrift. In dit hoofdstuk leggen we de
basisbegrippen uit zoals de de�nitie van een PDV, van beginvoorwaarde en van
randvoorwaarde, van sterke en zwakke oplossingen, en van inverse problemen. In
de belangrijkste sectie, i.e. Sectie 1.3, wordt de Rothemethode beschreven. Deze
methode is een belangrijk instrument om een oplossing van een tijdsafhankelijke
PDV te vinden. Meer precies, kan men onder bepaalde veronderstellingen met
behulp van deze methode bewijzen dat er een unieke oplossing bestaat.

Hoofdstuk 2 is gebaseerd op het artikel [80]. We beschouwen hier de quasi-
statische Maxwellvergelijkingen in combinatie met een onbekende tijdsafhanke-
lijke bron die bepaald wordt op basis van een meting langs een 2D-oppervlak.
We tonen aan dat er een unieke oplossing bestaat en we berekenen ook fouten-
schattingen. De theoretische resultaten worden ondersteund met numerieke voor-
beelden.

In Hoofdstuk 3 wordt een niet-lineaire hyperbolische Maxwell vergelijkingen
beschouwd met een onbekende tijdsafhankelijke convolutiekern. De ontbrekende
gegevens worden bepaald op basis van een meting over de rand van het domein.
Opnieuw wordt het bestaan van een uniek oplossing bewezen. Bovendien wordt
een numeriek schema gebaseerd op de achterwaartse Eulermethode voorgesteld.

In het laatste hoofdstuk, Hoofdstuk 4, onderzoeken we wiskundige technieken
genoemd model order reduction, die de laatste jaren veel aandacht hebben getrok-
ken in wetenschappelijk onderzoek. Wij bestuderen de verschillende aspecten van
deze technieken, en hun voordelen en nadelen. We vergelijken deze technieken
met andere standaardtechnieken zoals bv. ontkoppelde schemas en het minimalis-
eren van een functionaal. Op deze manier zijn we in staat om de problemen in
Hoofdstuk 2 en 3 vanuit een nieuw perspectief te bekijken.



Chapter 1

Mathematical background

1.1 Partial Di�erential Equations

Considering the fact that most of our research e�ort, as well as this thesis itself,
is devoted to Partial Di�erential Equations (in literature very often abbreviated as
PDEs), we would like to brie�y explain and illuminate this term �rst in order to
avoid any misinterpretations.

1.1.1 History of PDEs

Partial di�erentiation and partial integration are processes which had been known
even before the term partial di�erential equations was established [13]. Leibniz
employed partial process in his letter to l’Hospital in 1694 where he introduced
the symbol δm to denote the partial derivative ∂m/∂x and ϑm to denote ∂m/∂y.
Leibniz considered bdx + cdy where b and d involved x and y. His goal was to
�nd m = 0, where m also involved x and y. Di�erentiating m = 0 gives δmdx+

ϑmdy = 0, which is in fact a total di�erential equation. However, it remains
unclear whether he himself recognised this as a partial di�erential equation.
In the same year he published an article where he tried to �nd the envelope of
the circles x2 + y2 + b2 = 2bx+ ab. From the steps he made in order to �nd the

1



2 Mathematical Background

required envelope (the parabola ax + a2/4 = y2) it is clear that he used partial
processes when he kept both x and y constant and took b as independent variable,
even though he did not use any special name for this process.

Partial derivatives do not have only a geometric interpretation. One of the greatest
mathematicians, Sir Isaac Newton, solved in 1736 the di�erential equation 2ẋ −
ż + ẏx = 0, where the �uxion ẋ stated for dx/dt. Many writers interpreted this
as partial di�erential equation.

1.1.2 Formal de�nition of PDEs

As the two historical examples show a partial di�erential equation is an equation
that involves an unknown function which depends on several independent vari-
ables and its partial derivatives. In a case when the unknown function depends
only on a single variable, the term ordinary di�erential equations is used.

De�nition 1.1.1. Let (x1, . . . , xn) ∈ Ω ∈ Rn be the domain of a function u =

u(x1, . . . , xn). A partial di�erential equation for this function is an equation of a
form:

f

(
x1, . . . , xn,

∂u

∂x1
, . . . ,

∂u

∂xn
,
∂2u

∂x2
1

, . . . ,
∂2u

∂x2
n

, . . .

)
= 0.

The highest order of derivative that appears in such an equation also de�nes
the order of the PDE. Moreover, if f from De�nition 1.1.1 is linear, then the whole
equation is called linear. Otherwise the term nonlinear PDE is used.

Example 1. For better illustration

∂u

∂t
− ∂2u

∂x2
− f(x, t) = 0

is a linear PDE of second order.

1.1.3 Initial and boundary conditions

Partial di�erential equations have in general in�nitely many solutions. In practice
there usually exists a need to �nd one particular solution. In order to �nd this
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special one some additional conditions are taken into account. There exist two
types of conditions that specify the solution:

• boundary conditions,

• initial conditions (for time-dependent equations).

Initial conditions

In a case of evolution equations (that is a type of problems where the unknown
quantity does not depend only on the space variable, but the solution evolves in
time as well) an initial state at some time (mostly t = 0) is given. A good example
is the heat equation, which models the distribution of temperature in a given space
and time; u = u(x, t) where x ∈ Ω and t ∈ (0, T ).

Example 2. De�ne an initial value problem as

ut −∆u = f in Ω× (0, T )

u(x, 0) = u0(x) in Ω
(1.1)

Here the second equality stands for the initial condition (IC). Having this condition
linked to the equation, the solution at any other time is determined1. A partial dif-
ferential equation together with an initial condition create initial value problem.

Boundary conditions

The other important type of additional condition is called boundary condition
(BC) for a very simple reason. In this case the behaviour of the solution near the
boundary of a space domain is known (or given). If the space domain is denoted
by Ω, the boundary is often marked as ∂Ω. Boundary conditions together with a
prescribed PDE form a Boundary value problem. A solution to a boundary value
problem is a solution to the di�erential equation which also satis�es the boundary
conditions.

1On condition that Ω = the whole space. Otherwise the boundary conditions are still needed to
determine the solution
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It is worth mentioning that not only the value of a solution at a boundary
can be known. Knowing a derivative of the solution may also be su�cient to
characterise the desired solution. Therefore we distinguish between:

• Dirichlet boundary condition. The value of a solution at the boundary is
prescribed.
For the Example 2 it means u(x, t) = g(x, t) on ∂Ω× (0, T ).

• Neumann boundary condition. The derivative of a solution at the boundary
is known.
For the heat equation from Example 2 it means ∂u∂ν = g(x, t) on ∂Ω×(0, T ).

These two condition can be joined together, when a linear combination of the
values and the values of the derivative of the solution is given. In such a situation
we talk about Robin boundary condition.

None of the above-mentioned conditions needs to be prescribed for the whole
boundary ∂Ω. The boundary can be split into several parts and for each part a
di�erent type of boundary conditions can be considered. A problem formulated
in this way is called a Mixed boundary problem.

Apart from that there exist another two types of boundary conditions: non-
local boundary conditions and nonlinear boundary conditions.

1.1.4 Methods for �nding a solution to a PDE

At �rst, only analytic methods for solving PDEs were at hand. This classical ap-
proach, which was mostly used in the past, before the computer era, bene�ts only
from the arguments of mathematical analysis. The best-known methods, which
are used even today are:

• Separation of variables,

• Method of characteristics,

• Integral transform,

• Change of variables.
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Solutions obtained via one of these methods are very elegant, because they all
give an explicit solution. Having an explicit solution is the best result that can
be achieved. Nevertheless, in most cases, when the problem arises from practical
applications, it can not be obtained. A cure to this issue are often numerical meth-
ods, which became very popular in a recent history. Numerical methods do not
aim to give exact solution to the problem, but rather a numerical approximation.
Among the most well-known numerical methods are:

• Finite element method (Section 1.4),

• Finite di�erence method,

• Finite volume method.

The reason why numerical methods are predominant is that computers have be-
come very accessible due to their decreasing price and because these methods can
be applied to a very broad range of problems.

1.1.5 Strong and weak solutions

The question which has not been answered yet is what does it actually mean to
get a solution to a partial di�erential problem. The best way how to explain what
a solution is required to ful�ll, is to give an example. For instance, let us assume
a problem which needs to be solved is 2

−∆u = f, (1.2)

where u = u(x), f = f(x) and x ∈ Ω ⊂ Rn, accompanied with Dirichlet
boundary condition

u = 0, on ∂Ω. (1.3)

Then it is very reasonable to require that the classical solution u belong to space
C2(Ω) ∩ C(Ω).

2The symbol ∆ stands for the Laplace operator A.0.3, but any linear or nonlinear operator of second
order can be assumed at this point.
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Remark 1.1.1. Note that to �nd a classical solution means to seek for a function u
that is two times continuously di�erentiable. That is to say, the problem (1.2) has to
be ful�lled for every point in Ω. This is in fact a very restrictive condition, which very
often can not be achieved in practice. Therefore, the concepts of strong and weak
solutions have been developed.

Example 3. The need for the introduction of a weak solution may follow from either
insu�cient regularity of coe�cients or from the nonlinear nature of the equation. E.g.
porous media equation

∂tu− ∂xxum = 0

does not have any classical solution, however, the weak solution does exist.

Weak solutions help to reduce the regularity conditions. In order to get the
weak formulation of problem (1.2), it is required to do the following:

1. Multiply the equation with a test function φ and integrate over the domain
Ω;

2. Apply one of the integration by parts formula (see appendix A) and use the
boundary condition;

3. Determine the proper test space.

The �rst step for the problem (1.2) gives

−
ˆ

Ω

∆uφdΩ =

ˆ

Ω

fφdΩ, (1.4)

for all φ ∈ C∞0 (Ω). This regularity condition can be weakened to u ∈ H2(Ω)

and φ ∈ L2(Ω). A strong solution of problem (1.2) is a function u ∈ H2(Ω),
which ful�lls (1.4). Note that it is no longer required for the derivatives to exist
pointwise.

The second step lowers the regularity of the solution even more, by trans-
ferring one derivative to the test function φ. Green’s theorem (see Appendix A)
applied to (1.4) yields ˆ

Ω

∇u · ∇φdΩ =

ˆ

Ω

fφdΩ, (1.5)
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where su�cient conditions for this formula to hold true are u, φ ∈ H1
0 (Ω) and f ∈

L2(Ω). Thus, the weak solution (also called variational solution) is a function u ∈
H1

0 (Ω) which ful�lls the above-stated identity (1.5). The existence and uniqueness
of such a solutions is guaranteed by Riesz’s representation theorem or the Lax-
Milgram lemma (see C.0.2 and C.0.3 ).

If the classical solution to problem (1.2) exists, then it also solves the weak
formulation (1.5). On the other hand, if a weak solution is regular enough (in this
model situation u ∈ C2(Ω) ∩ C(Ω)) then it also solves the classical formulation
of the problem (1.2).

Remark 1.1.2. The weak formulation (1.5) is often written as

a(u, φ) = f(φ),

where a(., .) is a bilinear form and stands for the left-hand side of the weak formu-
lation and f(φ) is a functional representing the right-hand side of the weak formu-
lation. This notation is also used in this thesis e.g. (1.6).

1.1.6 Applications of PDEs in practice

The key point of this part is to demonstrate that partial di�erential equations are
not just a theoretical concept without any practical meaning. Even from the very
brief historical introduction it is clear that they arose from a need to model phe-
nomena that could be observed in real life. The following three examples prove
that partial di�erential equations can be and are used in practice.

Wave equation

The simplest situation to give rise to the one-dimensional wave equation is the
motion of a stretched string — especially the transverse vibration of a string such
as the string of a musical instrument. Assume that a string is placed along the
x-axis, is stretched and then �xed at the ends x = 0 and x = L. The string is then
de�ected by applying a force and at some instant, usually called t = 0, released
and allowed to vibrate. The quantity of interest is the de�ection u of the string at
any point 0 ≤ x ≤ L, and at any time t > 0. That means u = u(x, t).
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Remark 1.1.3. In order to get the desired mathematical model, several details have
to be neglected, such as the damping forces of air resistance, the weight of the string,
etc.

An application of Newton’s Law of motion brings us to the following PDE

∂2u

∂t2
= c2

∂2u

∂x2
,

where c2 = T
ρ , with ρ being the mass per unit length of the string and T being the

horizontal component of the tension in the string. To determine u(x, t) uniquely
(for a given set of boundary conditions), we must also know the initial de�ection
of the string at the time t = 0 at which it is released and the initial velocity of the
string. This information is in mathematical terms represented as

• u(x, 0) = f(x) (initial position)

• ∂u
∂t (x, 0) = g(x) (initial velocity)

The boundary conditions are in fact u(0, t) = u(L, t) = 0 for t ≥ 0.

Even this simple model shows the potential of PDEs being applied in practice.
More complicated and thus more precise models can be derived if fewer facts are
neglected.

Heat conduction equations

Another famous example is the model of heat conduction where a thin bar or
wire of constant diameter and of homogeneous material oriented along the x-axis
is assumed. Presume that the wire is insulated and so thin that it only allows the
heat to �ow in the x-direction. Then the temperature u at any point depends only
on the x-coordinate and the time t. Application of the principle of conservation
of energy yields that u(x, t) is represented by the PDE

∂u

∂t
= k

∂2u

∂x2

for 0 ≤ x ≤ L and t > 0, where k is a positive constant called the thermal di�u-
sivity of the bar. An additional information about the temperature at initial time
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t = 0 is needed. The initial condition is u(x, 0) = f(x) . Various types of bound-
ary conditions at x = 0 and x = L are possible. Either the temperature at the
ends of the bar can be known (represented by Dirichlet conditions) or the insu-
lation condition at both ends are given (represented by homogeneous Neumann
conditions)

Maxwell’s equations

Maxwell’s equations is a common name for a set of partial di�erential equations
that covers the fundamental laws of optics, electrodynamics, electric circuits, and
even more. As the main part of this thesis concentrates its e�ort in solving
Maxwell’s equations, we omit more information about them at this point and refer
the reader to the Section 1.5 where they are explained in more details.

1.1.7 Well-posed and Ill-posed problems

It follows from the above paragraphs that a deep knowledge of the tools of math-
ematical analysis is necessary for �nding a solution to a problem modelled as a
PDE. Even though the model may arise from physical or natural phenomena, its
mathematical solvability is not guaranteed. A proper analysis needs to be done
before starting to solve the problem. This holds true especially nowadays, when
various automated numerical solvers are available. It could easily happen that a
result gained via a computer program would be worth no more than a guess. The
reason for that is following: the uniqueness of the solution is not always guar-
anteed, or the solution can be sensitive to a small perturbation in data. For that
particular reason Hadamard3 formulated criteria which if ful�lled, guarantee that
the result is solid.

De�nition 1.1.2. Hadamard’s criteria [35] for a problem to be called well-posed
are:

1. The solution to the problem exists;

2. The solution is unique;

3Jacques Hadamard (1865-1963)



10 Mathematical Background

3. The behavior of solution changes continuously with the data.

If some problem does not ful�ll these criteria, it is said to be an ill-posed problem.
We propose now a couple of ill-posed problems:

Example 4. Arithmetic:

• well-posed problem: Multiplication by a small number A: Aq = f ;

• ill-posed problem: Division by a small number (|A| � 1): A−1f = q;

Example 5. Calculus:

• well-posed problem: integration;

• ill-posed problem: di�erentiation;

Example 6. Elliptic PDEs:

• well-posed problem: ∆u(x) = 0, x ∈ Ω with boundary condition given for
the whole boundary Γ = ∂Ω;

• ill-posed problem: ∆u(x) = 0, x ∈ Ω with boundary condition given only for
a part of the boundary Γ1 ⊂ ∂Ω;

It is worth mentioning that inverse problems, which are discussed in the fol-
lowing section, are very often ill-posed and therefore they require an extremely
sensitive approach.

1.2 Inverse problems

To this point partial di�erential equations were only depicted as a tool for mod-
elling physical phenomena. If some universal law is translated into mathematical
language then this model can be used to predict the behaviour of the quantity of
interest. This is often called Forward or Direct problem. Inverse problems (IPs) as
the name suggests do the opposite — they induce the reason that led to the result



1.2. Inverse problems 11

from the observed data. Roughly speaking inverse problems are those where back-
ward thinking is engaged: getting the data from the model is the direct problem
and getting the model from the data is the the inverse problem.

From a mathematical point of view, though, it is unclear which problem is
direct and which one is inverse. To distinguish whether or not to talk about inverse
problems a very vague de�nition by J.B. Keller [58] is often cited: "We call two
problems inverses of one another if the formulation of each involves all or part of the
solution of the other. Often for historical reasons, one of the two problems has been
studied extensively for some time, while the other has never been studied and thus
is not so well understood. In such cases, the former one is called the direct problem,
while the later one is the inverse problem."

In connection to PDEs, an inverse problem means for example recovering an
unknown parameter used in a model from a measured data. That is in fact the
main reason why inverse problems are studied extensively, because they provide
valuable information about a physical parameter which is impossible to observe
directly.

Remark 1.2.1. Inverse problems do not require PDEs to be part of them. The area
which is covered by the term inverse problems is much broader. However, this thesis is
dedicated to PDEs and thus the other �elds will not be explained in this short overview
nor in subsequent chapters.

Many applications of mathematics in science or engineering lead to inverse
problems. Therefore, this research area has developed widely in the recent history.
The list of branches of applied science where IPs appear is exhaustively large. For
better illustration only a handful of them are named:

• biomedical engineering;

• image processing;

• geoscience, vulcanology;

• natural language processing ;

• non-destructive material evaluation;
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• electricity and magnetism.

A huge need to solve inverse problems has arisen among scientists, especially
mathematicians, who have been developing sensitive methods for handling these
delicate problems.

Current literature identi�es three main types of inverse problems:

1. parameter identi�cation, where some speci�c material parameter present in
the equation is unknown and the aim is to reconstruct it. For example a
source term, a convolution kernel, a di�usion coe�cient, etc;

2. boundary value inverse problems, where a measurement on the boundary
(or on a part of the boundary) can not be taken directly and has to be deter-
mined;

3. evolutionary inverse problems, where the initial conditions are unknown and
have to be reestablished.

In this thesis, parameter identi�cation problems are discussed. Chapter 2 deals
with time-dependent source term identi�cation. In Chapter 3 the time-dependent
convolution kernel is unknown.

In Section 1.1.7 is stated that inverse problems often do not meet the criteria
of well-posedness (see De�nition 1.1.2). Being ill-posed means that a problem is
very challenging, if not impossible, to solve. We use a very primitive example to
illustrate this.

Example 7. Assume a set of problems is given:

• Direct problem: What is the result of summing of the integers 2 and 3?

• Inverse problem: Which calculational problem gives the result 5?

The direct problem is straightforward, however, more than one solution to the
inverse problem exist. In fact there are in�nitely many solutions to this particu-
lar problem. Even the restriction of only using the sum of integers is not enough
to guarantee uniqueness of a solution. The violation of the third condition also



1.2. Inverse problems 13

appears regularly. Small data perturbation can signi�cantly change the solution,
which causes severe numerical problems, because the data are rarely known ex-
actly due to noise in measurements and computational errors. Di�erentiation was
used in the previous section as an example of an ill-posed problem. The following
explanation clari�es why.

Example 8. Consider a di�erentiable function u ∈ C1[0, 1] and the associated
sequence

uδn(x) := u(x) + δ sin
nx

δ
, x ∈ [0, 1],

where n ∈ N and δ ∈ (0, 1). The function u represents the exact data whereas uδn
stands for the perturbed data. Then

(uδn)′(x) = u′(x) + n cos
nx

δ
.

The maximum norm yields ∥∥u− uδn∥∥ = δ,

∥∥u′ − (uδn)′
∥∥ = n.

From the above-stated, it is obvious that an arbitrarily small error δ in the data results
in an arbitrarily large error n in the result, which means that di�erentiation does not
depend continuously on the data.

Numerical schemes designed to cope with ill-posedness of inverse problems
are named regularization methods. Under the term regularization, a process of ap-
proximation of an ill-posed problem by a family of neighbouring well-posed prob-
lems is understood. Regularization typically involves the inclusion of additional
assumptions, the smoothness of the solution for example. Among the regulariza-
tion methods Tikhonov regularization [84] is one of the most popular. The standard
process for solving parameter identi�cation problems consists of two parts. First
the cost functional, which captures the error between the exact and parametrized
solutions, is constructed. Then the minimum of this functional is sought. Even
though this method is considered to be standard, one of the goals of this thesis is
to propose a di�erent approach, which is explained in later chapters.
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1.3 Rothe’s method

The goal of this section is to brie�y present Rothe’s method as a tool for �nd-
ing solutions to evolution problems. Understanding of the fundamentals of this
method is essential for the reader in order to comprehend the core parts of the
topics explained in the following chapters.

Rothe’s method bears the name of Erich Rothe4, who �rst published this method
in [70] in 1930. The elementary principle of this method applied to evolution
problems is to discretize the time domain in order to obtain a (�nite) set of elliptic
problems, which are solved by means of standard techniques for elliptic problems.
This method is therefore sometimes referred to as the method of lines. Once the
elliptic equations for each time instance are solved an approximation of a solution
to the initial evolution problem is constructed. Subsequently, the convergence of
the approximate solution towards the exact solution is proved using arguments of
functional analysis.

The scheme consists of several steps.

1. A well-de�ned variational formulation must be de�ned, meaning that all
terms are �nite;

2. The Backward Euler method is used for time discretization, meaning all
time derivatives are replaced by di�erences in order to get a set of elliptic
problems;

3. The existence and uniqueness of the solutions of obtained elliptic problems
is proved.

4. Using the fact that the solution is known at the initial time thanks to the
initial condition, solutions in all other time instances are subsequently eval-
uated;

5. Rothe’s functions (both piece-wise constant and piece-wise linear) are con-
structed.

6. To reach the goal of Rothe’s method, the following steps are made:
4Erich Hans Rothe (1895-1988) - German mathematician
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(a) A priori estimates are made,

(b) Uniqueness is proved,

(c) Convergence is proved,

(d) Error estimates are established (optional).

The undisputed advantage of this approach is twofold. Not only the unique-
ness and existence of a solution are proved, but the constructive algorithm is built-
in in this method as well. More information about this method can be found in
[69] or in books of Jozef Kačur [56, 57], who extended the usability of this method
to a broad area of applications.

1.4 Finite element method

The �nite element method (FEM) is one of the numerical methods used for �nding
an approximate solution to a partial di�erential equation, especially to elliptic
PDEs. The FEM is in fact a special variation of Galerkin method. For that reason
the concept of Galerkin method is introduced �rst and the explanation of the FEM
principle follows. Readers familiar with this topic can skip this section.

1.4.1 Galerkin method

The Galerkin method or more precisely Galerkin methods form a class of meth-
ods for transforming a continuous operator problem, a PDE for example, to a
discrete problem. This method bears a name of Galerkin5 despite the fact that
it was Walther Ritz6 who discovered this method and to whom Galerkin refers.
Therefore, this method can be found in literature under several names: Galerkin,
Ritz-Galerkin [33], Petrov-Galerkin or Bubnov-Galerkin method.

Assume V is a Hilbert space. Let a : V × V → R be a bilinear form and
f ∈ V ∗, where V ∗ is a dual space. Suppose that a and f be the left-hand side and
the right-hand side of a weak formulation of a PDE, respectively. The objective is

5Boris Galerkin (1871-1945), Soviet mathematician and engineer
6Walther Ritz (1878-1909), Swiss theoretical physicist
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to �nd u such that
a(u, v) = f(v), ∀v ∈ V. (1.6)

Further, suppose that the conditions of Lax-Milgram Lemma are ful�lled in order
to guarantee uniqueness of a solution. Due to the fact, that V is in general an
in�nite-dimensional space, it is impossible to �nd the solution u numerically. The
idea of Galerkin method is to substitute the in�nite-dimensional space V by a
set of carefully constructed �nite dimensional subspaces {Vn}∞n=1 ⊂ V with the
property Vn ⊂ Vn+1, so that Vn �lls the space V in the limit. The objective is
then to solve (1.6) in every subspace gradually to get a sequence {un}∞n=1, which
under additional assumptions converges towards u, the solution of 1.6.

De�nition 1.4.1. Discrete problem. Find un ∈ Vn such that

a(un, v) = f(v), ∀v ∈ Vn. (1.7)

One of the properties of Hilbert spaces is that every subspace inherits all prop-
erties of the original space. The properties of a(., .) such as boundedness, V-
ellipticity and bilinearity are also preserved when restricted to Vn × Vn. Thus
the Lax-Milgram Lemma guarantees the existence and uniqueness of the solution
un to equation (1.7). Thanks to the fact that Vn is a �nite dimensional Hilbert
space a �nite set {φi}ni=1 forming the basis of Vn exists. The importance of a �-
nite basis lies in fact that un then can be rewritten as a linear combination of basis
functions

un =

n∑
i=1

ciϕi. (1.8)

Substituting (1.8) into (1.7) yields

a

(
n∑
i=1

ciϕi, v

)
=

n∑
i=1

cia(ϕi, v) = f(v), ∀v ∈ Vn. (1.9)

In (1.9) ϕj , j = 1, . . . , n can replace v to get
n∑
i=1

cia(ϕi, ϕj) = f(ϕj), j = 1, . . . , n (1.10)

From equation (1.10) it follows that ccc = (c1, . . . , cn)T solves the algebraic system

Accc = fff, (1.11)



1.4. Finite element method 17

where fff = (f(ϕ1), . . . , f(ϕn))T and

A =


a(ϕ1, ϕ1) . . . a(ϕn, ϕ1)

...
. . .

...
a(ϕn, ϕ1) . . . a(ϕn, ϕn)

 .

The V-ellipticity of a results in the positive de�niteness of the matrixA. Then, the
matrix is regular and a unique solution to problem (1.11) exits. The initial problem
is in this manner transformed into an algebraic system which can be solved via
any standard algebraic solver.

Moreover the error en = u−un has the following properties of orthogonality.

Lemma 1.4.1. Suppose u ∈ V is the exact solution of continuous problem (1.6) and
un ∈ Vn the exact solution of discrete problem (1.7). Then the error en = u − un
satis�es

a(u− un, v) = 0, ∀v ∈ Vn.

This property can be interpreted as follows. The symmetric bilinear form in-
duces an inner product and the norm ‖v‖e =

√
a(v, v),∀v ∈ V . That means that

the previous lemma implies that en is orthogonal to Vn, which must be understood
in no other way than un is an orthogonal projection of u onto Vn.

A better relation between the error en and the Galerkin subspace Vn is estab-
lished in Cea’s lemma.

Lemma 1.4.2. Cea’s lemma: Let V be a Hilbert space, a : V × V → R a bilinear
bounded V-elliptic form and f ∈ V ∗. Let u ∈ V be the solution of the problem (1.6).
Further, let Vn be a subspace of V and un ∈ Vn be the solution of (1.7). Let C and
Ce be the continuity and V-ellipticity constants, respectively. Then

‖u− un‖V ≤
C

Ce
inf
v∈Vn

‖u− v‖V .

The important message of Cea’s lemma is that the error en does not depend on
the choice of basis of Vn but on the subspace Vn only. Therefore, the error remains
una�ected when a di�erent basis is chosen. Reasonable choice of the subspace Vn
is thus crucial in order to get su�ciently good approximation of the solution.
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Another important consequence of Cea’s lemma is the convergence of the ap-
proximate solutions {un} of problem (1.7) towards the exact solution u of problem
(1.6).

Theorem 1.4.1. Let V be a Hilbert space and Vn a sequence of �nite dimensional
subspaces Vn ⊂ V for which

inf
v∈Vn

‖u− v‖V → 0 as n→∞,∀u ∈ V,

where u ∈ V is the solution of problem (1.6). Let un ∈ Vn be the solution of the
Galerkin approximation (1.7). Furthermore, let a : V ×V → R be a bilinear bounded
V-elliptic form and f ∈ V ∗. Then, the Galerkin method for problem (1.6) converges:

lim
n→∞

‖u− un‖V = 0.

1.4.2 Finite element method

As stated above, the �nite element method itself is a special case of Galerkin
method. The explanation of what makes it so special and unique follows.

The FEM is a restriction of the Galerkin method to Hilbert spaces V consisting
only of functions de�ned in a domain Ω ⊂ Rn and Galerkin subspaces Vn ⊂ V

consisting only of piece-wise polynomial functions.

The Ciarlet de�nition of a �nite element was �rst introduced in 1975 [16]. His
de�nition reads as:

De�nition 1.4.2. A �nite element in Rn is a triple (K,PK ,ΣK) where

1. K is a closed bounded set in Rn with nonempty interior and piecewise smooth
boundary (the element domain),

2. PK is a �nite dimensional space of functions over the setK (the space of basis
functions),

3. ΣK is a set of linearly independent functionals φj , j = 1, . . . , N (the degrees
of freedom).
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The set ΣK is PK-unisolvent, meaning that ΣK can be taken as a basis of a
space P ′K , the dual space to PK . The functions pi ∈ PK form the basis of the �nite
element functions and have a property

φj(pi) = δij for i, j = 1, . . . , N.

Suppose a su�ciently smooth function v : K → R is given, so that the degrees
of freedom φj(v) for j = 1, . . . , N are well-de�ned. Then the PK-interpolant is
unambiguously de�ned as

πv =

N∑
j=1

φj(v)pi.

The set K is usually an interval in 1D, a triangle in 2D and a tetrahedron in 3D,
usually a polyhedron in Rn 7. The space PK is often a polynomial space Pk(K),
consisting of polynomials with degree less or equal to k.

Example 9. First-order Lagrange elements. Lagrange elements are the most used
family of �nite elements. Their degrees of freedom are point values. Let K̂ ⊂ Rn be
the unit n-simplex,

K̂ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n and
n∑
i=1

xi ≤ 1}

which is in fact the convex hull of the set {eeej}nj=0, where e
j
i = δij . For the sake of

clarity, only the simplest member of this family is de�ned, the �rst-order Lagrange
�nite element (K̂, P̂ , Σ̂). The space P̂ is then de�ned as the space of all linear func-
tionsP1(K̂) and the corresponding set of degrees of freedom Σ̂ is de�ned symbolically
as

Σ̂ = {p(ejejej), 0 ≤ j ≤ n}.

Remark 1.4.1. In electromagnetism, a key role is played by the so called Edge ele-
ments [63], which are often used for solving Maxwell’s equations.

Example 10. First-order edge elements. Let K̂ ⊂ R3 be the unit tetrahedron (the
unit 3-simplex). P̂ , the associated �nite element space, consisting of homogeneous

7In general other types of domains are allowed and are often used in practice. For exampleK is an
n-simplex or n-rectangle
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linear vector polynomials p(x)p(x)p(x) such that p · xp · xp · x = 000. The degrees of freedom are in
this case the line integrals along the edges of the tetrahedron

Σ̂ =


ˆ

ê

p · τp · τp · τds, for each edge ê of K̂

 ,

with τ being a unit vector in the direction of ê. For more information the reader is
referred to [4].

The next step before using the FEM in practice is to set the “global” notions. Let
Ω be a bounded domain, with the boundary ∂Ω such that Ω̄ =

⋃
K∈Th

K , where

the set Th is called a mesh or triangulation of the domain. The crucial part is
to consider only a�ne families of �nite elements meaning there exists a unique
invertible a�ne mapping FK to the reference element (K̂, P̂ , Σ̂) which simpli�es
the description of the family (K,PK ,ΣK). Rather than prescribing such a family
for every triple (K,PK ,ΣK),K ∈ Th separately, it is su�cient and much more
convenient to have one reference �nite element (K̂, P̂ , Σ̂) and the a�ne mappings
FK . Having this mapping is not only of practical but of theoretical importance too.
The union of all degrees of freedom ΣK forms a set of global degrees of freedom
Σh. The associated �nite element spaceXh then consists of all functions v, where
v|K ∈ PK ,K ∈ Th, ful�lling some continuity conditions on the vertices (edges)
of the adjacent elements.

Remark 1.4.2. The function v is not properly de�ned, because it does not require to
be uniquely de�ned along the faces common to adjacent �nite elements.

The triple (K,PK ,ΣK),K ∈ Th is called to be of class C0 if the space Xh is
in addition a subset of the space of continuous functions de�ned in Ω̄. Providing
v : Ω̄→ R is su�ciently smooth, the global Xh-interpolant of v is de�ned as

πhv =

M∑
j=1

φj,h(v)wj , (1.12)

where φj,h are the global degrees of freedom and wj are associated global basis
functions.
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Example 11. 1st order Lagrange FEM in 1D. In a case when Ω = (a, b) ⊂ R, the
whole domain is divided into a �nite system of n disjoint open subintervals Ωi =

(xi−1, xi) of length hi = xi − xi−1 for i = 1, . . . , n, i.e.

a = x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = b.

The interval Ωi stands for K from the de�nition of the �nite element. Let P1(Ωi)

be the set of all polynomials of degree 1 de�ned on Ωi. Moreover let h = max
1≤i≤n

hi

denote the largest length (mesh diameter) of all subintervals. The space

V 1
h := {ϕ ∈ C(Ω̄) : ϕ|Ωi ∈ P1(Ωi), i = 1, . . . , n}

is then called the 1st order Lagrange FEM space. Note that the space Pk(Ωi) in this
scenario plays the role of PK from the de�nition of �nite element and V 1

h is the
associated FEM space. The polynomials of degree 1 (p1(x) = a0 + a1x) can be
determined from their values in 2 nodes. The degrees of freedom from the de�nition
of FEM are the point values in the nodes. The global basis functions wj ∈ V 1

h are
de�ned as

wj(x) =


x−xj−1

hj
x ∈ Ω̄j ;

1− x−xj
hj+1

x ∈ Ω̄j+1;

0 otherwise.

The solution of a classical PDE problem in terms of the �nite element method
resembles very much the Galerkin solution. Consider (1.6). To approximate the
solution u, the �nite element space Vh ⊂ Xh needs to be de�ned �rst. Each �nite
element space Vh is then associated with the discrete solution uh satisfying

a(uh, vh) = f(vh), ∀vh ∈ Vh,

which is in fact equivalent to the linear system

Accc = fff, c ∈ RM ,

where
Aij = a(φi,h, φj,h), fj = f(φj,h),

and

uh =

M∑
i=1

ciwi.
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The degrees of freedom are chosen in a way which ensures that the global basis
functions are nonzero only on the adjacent elements. The result is that the matrix
A is sparse. Sparse matrices are in general easier to handle and allow a broader
set of advanced linear-system solvers.

This short introduction to the �nite element method ends with the following
convergence results [16].

De�nition 1.4.3. Conforming FEM. A �nite element method is called conforming
if Vh ⊂ V .

De�nition 1.4.4. Regular triangulations. A family of triangulations Th of the
domain Ω is called regular if

• There exists a constant σ > 0 such that

hK/%k ≤ σ for any simplexK ∈ Th,

where hK is dhe diameter of K and %k the supremum of the diameters of the
spheres inscribed intoK ;

• The discretization parameter h approaches zero.

Theorem 1.4.2. Let Th be a regular family of triangulations of Ω. Assume that
all the �nite elements (K,PK ,ΣK),K ∈

⋃
h

Th are a�ne-equivalent to a single

reference �nite element (K̂, P̂ , Σ̂) and they are of class C0. Assume moreover that
there exist integers k ≥ 0 and l ≥ 0, such that the following inclusions are satis�ed:

Pk(K̂) ⊂ P̂ ⊂ H l(K̂),

Hk+1(K̂) ↪→ Cs(K̂),

where s is the maximal order of partial derivatives occurring in the de�nitions of the
set Σ̂. Then, there exists a constant C independent of h such that, for any function
Hk+1(Ω),

‖v − πhv‖Hm(Ω) ≤ Ch
k+l−m|v|Hk+1(Ω), 0 ≤ m ≤ min{1, l}, (1.13)

where πhv is the Xh-interpolant of the function v.
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FEM solvers

There exist many packages that can be used to solve PDEs using the �nite element
method. Among the most-known are: AFENA, Agros2D, DUNE, Elmer, FEniCS
Project, UG, FreeFEM, GetDP, PLTMG, COMSOL, and more. Some of them are
proprietary commercial software, but many of them fall under the GPL license.

To simulate the problems described in later chapters of this thesis the FEniCS
Project software was used. The FEniCS Project is a collection of free, open source
software components with the goal to enable automated solution of di�erential
equations. The project was initiated in 2003 as a research collaboration between
the University of Chicago and Chalmers University of Technology as an umbrella
project for a collection of interoperable components among which are:

• UFL (Uni�ed Form Language),

• FIAT (Finite element Automatic Tabulator),

• FFC (FEniCS Form Compiler),

• UFC (Uni�ed Form-assembly Code),

• Instant,

• DOLFIN - a C++/Python library providing data structures and algorithms
for �nite element meshes and automated �nite element assembly.

For more information the reader is referred directly to the FEniCS Project home-
page www.fenicsproject.org.

1.5 Maxwell’s equations

Due to the fact that in the core part of this thesis problems that arose from Maxwell’s
equations are solved, it is proper to state in this section their theoretical and prac-
tical meaning. More rigorous and detailed descriptions of Maxwell’s equations
can be found in [8, 15, 36, 60, 62, 63].

https://fenicsproject.org/
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Maxwell’s equations is a term used for a set of 4 complicated equations that
describe the world of electromagnetism. Maxwell’s8 Publication Treatise on Elec-
tricity and Magnetism is considered to be the foundation of the modern theory
of electromagnetism. The very brief and vague description of the meaning of
Maxwell’s equations is that they describe the universal law which governs the
world of electromagnetism — how electric and magnetic �elds propagate and in-
teract, and how are they in�uenced by objects.

1.5.1 Description of quantities and notations

The electromagnetic �eld is on the macroscopic scale described by four vector
functions of the space variable xxx ∈ R3 and the time variable t ∈ R denoted by
EEE,DDD,HHH,BBB, where the fundamental vector �elds areEEE — the electric �eld andHHH
— the magnetic �eld. The vector �eldsDDD andBBB, which are usually eliminated from
the description of electromagnetic �elds via suitable constitutive relations, are
called the electromagnetic displacement and the magnetic induction, respectively.

An electromagnetic �eld is formed when sources of static electric charges and
the directed �ow of electric charges (which is called current) are distributed in
time and space. The distribution of charges is given by a scalar charge density
function ρ, whereas the vector functionJJJ describes the current density. Maxwell’s
equations for a region of space Ω ⊂ R3 have the form:

∂BBB

∂t
+∇×EEE = 0, (1.14)

∇ ·DDD = ρ, (1.15)
∂DDD

∂t
−∇×HHH = −JJJ, (1.16)

∇ ·BBB = 0, (1.17)

where equation (1.14) is called Faraday’s law, the divergence condition (1.15) is
also known as Gauss’s law, (1.16) states for Ampère’s law modi�ed by Maxwell
and �nally the equation (1.17) indicates the solenoidal9 nature ofBBB.

8James Clerk Maxwell (1831 1879) was an Newton/Einstein-level genius.
9The term solenoidal originates in Greek and in present context stand for �xed volume.
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Notations In later chapters, where problems arising from the classical Maxwell’s
equations are solved, we use the symbol Ω for denoting a bounded domain Ω ⊂
R3, where the domain, either smooth ( Ω ∈ C1,1) or convex, is occupied by an
electromagnetic material. The boundary of the domain Ω is denoted by ∂Ω = Γ

and the symbol ννν stands for the outer normal vector associated with the bound-
ary Γ. The symbols ∇×,∇·,∇ denote the operators curl (rotor), divergence and
gradient, respectively, as de�ned in Appendix A. Moreover, the notation ∂t or ∂

∂t

is used for time derivative. Further, we denote by (·, ·) the standard inner prod-
uct of L2(Ω) and by ‖·‖ its induced norm. When working at the boundary Γ

a similar notation is used, namely (·, ·)Γ, L2(Γ) and ‖·‖Γ. By C ([0, T ], X) the
set of abstract continuous functions w : [0, T ] → X equipped with the usual
norm maxt∈[0,T ] ‖·‖X is denoted and Lp ((0, T ), X) is furnished with the norm(ˆ T

0

‖·‖pX dt
) 1
p

with p > 1, cf. [29]. The symbol X∗ stands for the dual space

to X . A standard notation is used for C, ε and Cε, which denote generic posi-
tive constants depending only on a priori known quantities, where ε is small and
Cε = C

(
ε−1
)

is large.

Faraday’s law

Faraday’s 10 law of induction, represented by equation (1.14), is a basic law of elec-
tromagnetism predicting the interaction of the magnetic �eld and electric circuits
and the production of electromotive force. It is the fundamental operating prin-
ciple of transformers, inductors, electrical motors, generators and solenoids. The
equation (1.14) wraps the observations Faraday made during his experiments and
can be interpreted as follows:

• Electric current gives rise to magnetic �elds. Magnetic �elds around a circuit
give rise to electric current;

• Magnetic �eld changing in time induces electric �eld which circulates around
it;

• A circulating electric �eld in time induces Magnetic �eld changing in time.
10Michael Faraday (1791 - 1867) was an English scientist
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Derivation of Faraday’s law. What Faraday observed was that the electromo-
tive force is equal to the opposite of the rate of change of magnetic induction,
formally written as: ˛

EEE · dR = − d

dt

ˆ

S

BBB · dS.

Applying of Stokes theorem yields
ˆ

S

∇×EEE · dS = − d

dt

ˆ

S

BBB · dS,

which if all members of the equation are moved to the left hand side gives
ˆ

S

(
∇×EEE +

∂BBB

∂t

)
· dS = 0.

Since this holds true for every domain S with closed boundary, the �nal equation
holds

∂BBB

∂t
+∇×EEE = 0.

Gauss’s law

Gauss’s law (1.15) describes the behaviour of electric �eld when electric charges
are present. This law is usually expressed in terms of the electric �ux density and
the electric charge density. It was �rst formulated by Lagrange11 in 1773 and then
by Gauss12 in 1813. The interpretation of Gauss’s law is following:

• ElectricEEE and electromagnetic displacementDDD �eld lines start and stop on
electric charge;

• EEE andDDD �eld lines beam from positive charges towards negative charges;

• The divergence of electromagnetic displacement over any domain (volume)
is equal to the net amount of charge inside the domain.

11Joseph-Louis Lagrange (1736 - 1813) was an Italian Enlightenment era mathematician and as-
tronomer

12Johann Carl Friedrich Gauss (1777 - 1855) was German mathematician
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Derivation of Gauss’s law. Gauss’s law can be derived from Coulomb’s law13.
A point charge q produces electric �eld as follows

EEE =
kq

r3
rrr, (1.18)

where k = 1
4πε0

, and rrr is the position in spherical coordinates. The way from
Coulomb’s law to Gauss’s law leads through the calculation of the �ux of electric
�eld over a closed boundary surface S of some domain:˛

S

EEE · dS =
q

ε0
.

For several charges within the volume V enclosed by the surface S, the superpo-
sition principle

¸
S
EEE =

∑
qi/ε0 is used and the point charge is replaced by the

continuous electric charge density ρ to get˛

S

EEE · dS =
1

ε0

ˆ

V

ρ dV.

Application of Gauss’ theorem yieldsˆ

V

∇ ·EEE dV =
1

ε0

ˆ

V

ρ dV ⇒
ˆ

V

(
∇ ·EEE − 1

ε0
ρ

)
dV = 0.

The �nal step is to realize that this holds true for every volume V . Hence,

∇ ·EEE =
ρ

ε0
.

Remark 1.5.1. Microscopically, all charges are the same. There exists a di�erence
between free and bound charge, though. Therefore the results of Gauss’s law are
sometimes interpreted in terms ofEEE and sometimes in terms ofDDD. In vacuumDDD =

ε0EEE holds.

Ampère’s law

Ampère’s 14 law, which is given by equation (1.16), explains the relation between
the magnetic �eld around a closed loop to the electric current passing through the
loop. The meaning of this law is the following:

13Coulomb’s inverse-square law is a law of physics which describes the force interacting between
static electrically charged particles.

14André-Marie Ampère (1775 - 1836) was a French physicist and mathematician.
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• A �owing electric current JJJ induces a magnetic �eld that encircles the cur-
rent;

• A change of electric �ux density DDD in time induces a magnetic �eld that
�ows around theDDD �eld;

Derivation of Ampère’s law. The observations Ampère made during his experi-
ments are similar to those of Faraday. Ampère discovered that the sum of mag-
netic �elds at each point around a current �owing in a wire is equal to the total
amount of current encircled by the magnetic �eld. This in mathematical terms
means ˛

HHH · dL = I.

If a new constant value for the magnetic �eld is added and named H , then
˛
HHH · dL = 2πrH = I =⇒ H =

I

2πr

implies that the magnetic �eld is everywhere because r is arbitrary, and that the
magnitude decreases the more the farther the observer stands from the wire. In
order to get Ampère’s law as stated in equation (1.16), Stoke’s theorem has to be
applied and the total current I needs to be replaced by the surface integral of the
current density JJJ .

ˆ

S

(∇×HHH) · dS =

˛
HHH · dL = I =

ˆ

S

JJJ · dS.

From there

∇×HHH = JJJ.

Then, Maxwell’s modi�cation of the original Ampère’s law comes onto the scene.
Maxwell introduced a new term ∂DDD

∂t = JJJd and named it displacement current den-
sity. If this term is added to the previous equation, one gets the form of Ampère’s
law as formulated in (1.16). Maxwell’s contribution not only made Faraday’s and
Ampère’s law more symmetrical, but most of all, it led to a better understanding
of the propagation of electromagnetic waves.
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Gauss’s law for magnetism

The meaning of equation (1.17) is that

• The magnetostatic �eld does not have a source;

• Magnetic monopoles do not exist;

• The divergence of the �eldsBBB andHHH is always zero through any volume.

1.5.2 Establishing equations for linear media

The relation between the �elds EEE andHHH and the �eldsDDD andBBB, respectively, is
straightforward for vacuum or a free space. In that situation

DDD = ε0EEE andBBB = µ0HHH

where ε0 is the electric permittivity15 and µ0 stands for magnetic permeability16.
However, in general the relations are of the type

DDD = DDD(EEE,HHH) andBBB = BBB(EEE,HHH),

and the exact form of the relationship depends on the situation under considera-
tion. The dependencies can be linear (in linear materials) or nonlinear (in super-
conductors, nonlinear optics, ...). In order to establish the relation, the physical
background needs to be studied.

Remark 1.5.2. Even though both �eldsHHH andBBB are often called the same way —
electric �eld, it must be obvious now, that they are not the same. In a nutshell, the
magnetic �eldHHH describes the region, where a magnetic force can be felt, whereas the
magnetic �uxBBB describes how much magnetic �eld passes through an area. Similar
arguments hold forEEE andDDD.

15Permittivity measures how an electric �eld a�ects and is a�ected by a medium.
16Permeability measures the ability of a material to support the formation of a magnetic �eld within

itself.
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Ohm’s law

Another important constitutive relation, which links the equations for electricity
and magnetism is Ohm’s law17, which puts current, voltage and resistance into a
well-known relation:

I =
V

R
.

However, in physics the term Ohm’s law is often used to describe various general-
izations of the law that was originally formulated by Ohm. The simplest example
is

JJJ = σEEE, 18

where σ is a material-dependent parameter called conductivity and is in fact the
inverse of the resistance,JJJ is the �owing electric current (analogous to the current
I) andEEE (an analogue for the voltage V ) stands for the electric �eld as described
above.

Example 12. In order to derive a numerical scheme, all constitutive relations avail-
able are combined together. An illustrative example is proposed:

• SubstituteBBB = µHHH in (1.14) andDDD = εEEE in (1.16) to get

µ∂tHHH +∇×EEE = 000 (1.19)

∂t(εEEE)−∇×HHH = −JJJ. (1.20)

• Multiply (1.19) by µ and then apply∇×. Di�erentiate (1.20) in time:

∇× (∂tHHH) +∇× (
1

µ
∇×EEE) = 000, (1.21)

∂tt(εEEE)−∇× (∂tHHH) = −∂tJJJ. (1.22)

• Substitute (1.22) in (1.21) to get

∂tt(εEEE) +∇× (
1

µ
∇×EEE) = −∂tJJJ, (1.23)

which is an equation ready to be solved. It is worth noting that the governing equation
can easily be expressed in terms ofHHH ,BBB orDDD. The choice ofEEE is arbitrary.

17Georg Simon Ohm (1789 - 1854) was a German physicist and mathematician.
18In region where σ 6= 0 (also called conductor) the electric �eld produces an electric current.
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1.5.3 Boundary conditions

The equations (1.14) and (1.16) do not describe the electric and magnetic �elds
completely, because at the interface between two materials (e.g. copper and air)
either µ or ε are discontinuous. From Lemma 5.3. in [63] it follows that ν∇ ×
EEE, meaning that the tangential component of electric �eld, has to be continuous
across the interface S. Otherwise the∇×EEE in equation (1.14) is not well de�ned.
LetEEE1 andEEE2 denote the limiting value of electric �eld approaching the interface
S from region 1 and 2, respectively. Then the condition

ν × (EEE1 −EEE2) = 000 on S (1.24)

must be ful�lled. In a special case when, say, the material in region 2 is a per-
fect conductor, the condition is slightly di�erent. For superconductors σ tends to
become in�nitely large. From Ohm’s law JJJ = σEEE2, it follows that if JJJ is to be
bounded, thenEEE2 has to approach zero in the limit. OnceEEE2 vanishes from 1.24,
the index 1 can be omitted and the boundary condition becomes of the form

ν ×EEE = 000.

A di�erent type of boundary conditions is obtained if a well-de�ned µHHH is to be
guaranteed. In that case the normal component of µHHH needs to be continuous
across S so that

ν · (µ1HHH1 − µ2HHH2) = 0 on S. (1.25)
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Chapter 2

Recovery of a
time-dependent source from
a surface measurement in
Maxwell’s equations

2.1 Problem formulation

The content of this chapter is based on the article [80], which has been published
in the journal Computers & Mathematics with applications.

This chapter solves a problem arising from Maxwell’s equations (see Section
1.5), where the time-dependent source on the right-hand side of the equation is
unknown and is to be determined from a given integral over-determination. The
main contribution of this chapter is that the measurement is only taken along a
2D surface. Let us �rst derive the governing equation that is to be solved.

The classical Maxwell’s equations (1.14), (1.15), (1.16), (1.17) are considered. In
eddy current problems the change of electric displacement in time is negligible,

35
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hence the term ∂tD in (1.16) is omitted. Further, Ohm’s law in a standard form is
assumed

J = σE,

and a linear homogeneous magnetic material is considered, i.e.

B = µH

with a positive constant permeability µ. Elimination ofH leads to

σµ∂tE +∇×∇×E = −µ∂tJapp, (2.1)

where JJJapp stands for the source term, which is assumed to be separable, i.e.

−µ∂tJapp = h(t)f(x).

Here the space-dependent function f(x) is given but the time-dependent function
h(t) is unknown. The function f is requested to obey

f × ν = 0 on Γ. (2.2)

The perfect conductivity on the boundary is modelled via

E × ν = 0 on Γ (2.3)

and the initial datum is prescribed as

E(0,x) = E0(x). (2.4)

For ease of explanation, µ and σ can be set to 1.

Direct problem

If all previous assumptions are combined, the direct problem can be de�ned as

∂tE +∇×∇×E = h(t)f(x) in Ω× [0, T ], (2.5)

E × ν = 0 on Γ× [0, T ], (2.6)

f × ν = 0 on Γ× [0, T ], (2.7)

E(0,x) = E0(x) in Ω. (2.8)
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Remark 2.1.1. The source term — the right-hand side of the equation (2.5) can be
easily augmented by adding a known vector function F (t,x) which obeys (2.7) for
all t. This modi�cation will not cause any trouble in the proof technique proposed
later in this chapter.

Since the assumption of h(t) being unknown was made, it is no longer possible
to approach (2.5) as a direct problem.

Inverse problem

The inverse source problem (ISP) is to �nd a couple {E(t,x), h(t)}. The missing
data function h(t) will be recovered by means of the following measurement along
a 2D-surface γ
ˆ
γ

E ·ν dγ = m(t), with γ ⊂ Ω (normal component measurement). (2.9)

Such an integral over-determination is frequently used in various inverse prob-
lems (IPs) for evolutionary equations, cf. [50, 68, 76] and the references therein.
This chapter assumes that the surface over which the measurement is made, γ, is
a part of a boundary of a sub-domain G ⊂ Ω, i.e. γ ⊂ ∂G1.

Remark 2.1.2. In the case of a divergence free electrical �eld E (which is not as-
sumed in this chapter), this PDE can be seen as a vectorial heat equation due to the
well known relation

∇×∇×E = ∇(∇ ·E)−∆E.

Such a case subjected to various BCs has already been studied by many authors, e.g.
[39, 40, 41, 68, 77, 78].

The recovery of an unknown source belongs to the hot topics in IPs. If the
unknown source depends on the space variable, one needs an additional space
measurement (e.g. solution at the �nal time), cf. [14, 24, 26, 38, 49, 54, 67, 68, 71, 82].
This means that both kinds of ISPs need totally di�erent additional data.

1Note that the case (2.9) allows to take the measurement surface γ to be part of boundary Γ as well.
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Inspection of the existing literature shows that the additional integral mea-
surement is usually taken over the whole domain (or over a sub-domain). Getting
such a measurement can often be impossible from the physical point of view or
too costly from the practical point of view. Therefore, in this chapter an integra-
tion over a 2D-surface γ in (2.9) is considered, which is one of the highlights of
this part of our thesis. Only the normal component of the electrical �eld is mea-
sured. A numerical scheme, for approximating the problem, based on the Rothe’s
method [56] is proposed together with the proofs of convergence and uniqueness,
which are obtained by arguments of functional analysis.

2.2 Time discretization

The ISP can be seen as a system consisting of the governing PDE (2.5) and the
measurement (2.9) accompanied by the boundary conditions (2.6), (2.7) and the
initial datum (2.8). The unknown h(t) can be eliminated from the equation if the
measurement operator is applied to the PDE as follows

h(t) =
m′(t) +

´
γ
∇×∇×E · ν dγ´

γ
f(x) · ν dγ

if
ˆ
γ

f(x) · ν dγ 6= 0. (2.10)

Time discretization of an evolutionary problem means that the problem itself
is approximated by a sequence of elliptic problems that are solved successively
for every time layer. Rothe’s method can be also used for the determination of
the unknown time-dependent source h. For ease of explanation, an equidistant
time-partitioning of the time frame [0, T ] is considered, with a time step of the
size τ = T/n, for any n ∈ N. We use the notation ti = iτ and for any function z
we write

zi = z(ti), δzi =
zi − zi−1

τ
.

Consider a system with unknowns {ei, hi} for i = 1, . . . , n. The discretized
ISP is given by (DPi) and (DMPi)

δei +∇×∇× ei = hif in Ω

ei × ν = 0 on Γ

e0 = E0,

(DPi)
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hi =
m′i +

´
γ
∇×∇× ei−1 · ν dγ´
γ
f(x) · ν dγ

. (DMPi)

Note that in (DMPi) the index i in term ∇ × ∇ × eee is shifted by one. This
adjustment allows the creation of a linear decoupled scheme; for a given i, which
corresponds to the i-th time layer, �rst the discrete measured problem (DMPi) is
solved, then the discrete problem (DPi) and �nally the index i is increased by one.

2.3 A priori estimates

Let us recall the standard notation of functional spaces for vectorial �elds (cf. [3,
63]), which are used in this and further sections:

X = H(curl; Ω) ∩H(div; Ω)

XN = X ∩ {ϕ;ϕ× ν = 0 on Γ} = H0(curl; Ω) ∩H(div; Ω)

The domain Ω is supposed to be C1,1 or convex. In both cases XN ⊂ H1(Ω)

holds. This follows from [3, Thm. 2.12] if Ω ∈ C1,1, and from [3, Thm. 2.17] if Ω

is convex.

Lemma 2.3.1. Let Ω ∈ C1,1 or Ω be convex. Suppose f ∈ H0(curl; Ω), E0 ∈
H0(curl; Ω) and ∇ × ∇ × E0 ∈ XN , m ∈ C1([0, T ]) and

´
γ
f(x) · ν dγ 6= 0.

Then for any i = 1, . . . , n there exists a unique couple {ei, hi}, which solves (DPi)
and (DMPi). Moreover hi ∈ R, ei ∈ H0(curl; Ω) and ∇×∇× ei ∈ XN .

Proof. For a given ei−1 ∈ H0(curl; Ω) and∇×∇× ei−1 ∈ XN , the value of hi
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from (DMPi) can be calculated. We successively deduce that

|hi|2 =

∣∣∣∣∣m
′
i +
´
γ
∇×∇× ei−1 · ν dγ´
γ
f(x) · ν dγ

∣∣∣∣∣
2

≤ C
(

1 +

ˆ
γ

|∇ ×∇× ei−1 · ν|2 dγ
)

≤ C
(

1 + ‖∇ ×∇× ei−1‖2L2(γ)

)
γ⊂∂G
≤ C

(
1 + ‖∇ ×∇× ei−1‖2L2(∂G)

)
H1(G)⊂L2(∂G)

≤ C
(

1 + ‖∇ ×∇× ei−1‖2H1(G)

)
G⊂Ω
≤ C

(
1 + ‖∇ ×∇× ei−1‖2H1(Ω)

)
[3]

≤ C
(

1 + ‖∇ ×∇× ei−1‖2XN
)

≤ Ci.

(2.11)

The PDE from (DPi) can be rewritten as

1

τ
ei +∇×∇× ei = hif +

1

τ
ei−1.

The Lax-Milgram lemma guarantees that ei ∈ H0(curl; Ω) is a unique solution
of the elliptic equation on the i-th time layer. It can be further seen that

∇×∇× ei = hif − δei ∈ L2(Ω),

and
∇×∇×∇× ei = hi∇× f − δ∇× ei ∈ L2(Ω).

According to f ∈ H0(curl; Ω) for ν associated with Γ

∇×∇× ei × ν = hif × ν − δei × ν = 0,

must hold. Thus∇×∇× ei ∈ XN .

Lemma 2.3.2. Let the assumptions of Lemma 2.3.1 be ful�lled. Then there exists a
positive constant C such that

(i) max
1≤j≤n

‖ej‖2 +

n∑
i=1

‖ei − ei−1‖2 +

n∑
i=1

‖∇ × ei‖2 τ ≤ C

(
1 +

n∑
i=1

h2
i τ

)



2.3. A priori estimates 41

(ii) max
1≤j≤n

‖∇ × ej‖2 +

n∑
i=1

‖∇ × ei −∇× ei−1‖2 +

n∑
i=1

‖δei‖2 τ

≤ C

(
1 +

n∑
i=1

h2
i τ

)
.

Proof. (i) Scalar multiplication of (DPi) by eiτ , application of Green’s theorem,
and summation for i = 1, . . . , j give

j∑
i=1

(δei, ei) τ +

j∑
i=1

‖∇ × ei‖2 τ =

j∑
i=1

hi (f , ei) τ.

Using Abel’s summation (B.0.13) yields

1
2 ‖ej‖

2
+ 1

2

j∑
i=1

‖ei − ei−1‖2 +

j∑
i=1

‖∇ × ei‖2 τ = 1
2 ‖e0‖2 +

j∑
i=1

hi (f , ei) τ

≤ 1
2

(
‖e0‖2 + ‖f‖2

j∑
i=1

h2
i τ +

j∑
i=1

‖ei‖2 τ

)

≤ C

(
1 +

n∑
i=1

h2
i τ

)
+

j∑
i=1

‖ei‖2 τ.

The next steps in proof of this part of Lemma 2.3.2 are applications of the discrete
Grönwall lemma (cf. [5]) and taking the maximum over 1 ≤ j ≤ n.

(ii) If (DPi) is multiplied by δeiτ and Green’s theorem is involved and after-
wards the result is summed up for i = 1, . . . , j, the following equality is obtained

j∑
i=1

‖δei‖2 τ +

j∑
i=1

(∇× ei, δ∇× ei) τ =

j∑
i=1

hi (f , δei) τ.
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Further, Abel’s summation, Cauchy’s and Young’s inequalities are applied to get

1
2 ‖∇ × ej‖

2
+ 1

2

j∑
i=1

‖∇ × ei −∇× ei−1‖2 +

j∑
i=1

‖δei‖2 τ =

= 1
2 ‖∇ × e0‖2 +

j∑
i=1

hi (f , δei) τ

≤ 1
2 ‖∇ × e0‖2 + Cε ‖f‖2

j∑
i=1

h2
i τ + ε

j∑
i=1

‖δei‖2 τ

≤ Cε

(
1 +

n∑
i=1

h2
i τ

)
+ ε

j∑
i=1

‖δei‖2 τ.

Fixing a su�ciently small 0 < ε < 1 closes the proof of this part.

Lemma 2.3.3. Let the assumptions of Lemma 2.3.1 be ful�lled. Then there exists a
positive constant C such that

(i) max
1≤j≤n

‖∇ ×∇× ej‖2 +

n∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 +

+

n∑
i=1

‖∇ ×∇×∇× ei‖2 τ ≤ C

(ii)
n∑
i=1

h2
i τ ≤ C.

(iii) Suppose∇ ·E0, ∇ · f ∈ L2(Ω). Then max
1≤j≤n

‖∇ · ej‖ ≤ C.

(iv) Assume ∇×∇× f ∈ L2(Ω). Then
max

1≤j≤n
‖∇ ×∇×∇× ej‖2 +

+

n∑
i=1

‖∇ ×∇×∇× ei −∇×∇×∇× ei−1‖2 +

+

n∑
i=1

‖δ∇×∇× ei‖2 τ ≤ C.
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Proof. (i) First, the ∇× operator is applied to (DPi). Then a scalar product of the
relation with∇×∇×∇×eiτ is taken. Afterwards Green’s theorem is used and
the result is summed up for i = 1, . . . , j to obtain

j∑
i=1

(δ∇×∇× ei,∇×∇× ei) τ+

j∑
i=1

‖∇ ×∇×∇× ei‖2 τ (2.12)

=

j∑
i=1

hi (∇× f ,∇×∇×∇× ei) τ. (2.13)

The LHS of (2.12) can be rewritten as follows

1
2 ‖∇ ×∇× ej‖

2 − 1
2 ‖∇ ×∇× e0‖2 +

+ 1
2

j∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 +

j∑
i=1

‖∇ ×∇×∇× ei‖2 τ.

We recall Nečas inequality [65] or [6, (7.116)]

‖z‖2L2(∂G) ≤ ε ‖∇z‖
2
L2(G) + Cε ‖z‖2L2(G) , ∀z ∈ H1(G), 0 < ε < ε0. (2.14)

In order to estimate the RHS of (2.13) �rst Cauchy’s and Young’s inequalities are
engaged to obtain

j∑
i=1

hi (∇× f ,∇×∇×∇× ei) τ ≤
j∑
i=1

|hi| ‖∇ × f‖ ‖∇ ×∇×∇× ei‖ τ

≤ ε
j∑
i=1

‖∇ ×∇×∇× ei‖2 τ + Cε

j∑
i=1

h2
i τ .

The part of the proof, where the term containing hi is estimated, proceeds in a
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similar way as in Lemma 2.3.1. The result of applying (2.14) is

j∑
i=1

h2
i τ =

j∑
i=1

∣∣∣∣∣m
′
i +
´
γ
∇×∇× ei−1 · ν dγ´
γ
f(x) · ν dγ

∣∣∣∣∣
2

τ

≤ C
j∑
i=1

(
1 +

ˆ
γ

|∇ ×∇× ei−1 · ν|2 dγ
)
τ

≤ C
j∑
i=1

(
1 + ‖∇ ×∇× ei−1‖2L2(γ)

)
τ

γ⊂∂G
≤ C

j∑
i=1

(
1 + ‖∇ ×∇× ei−1‖2L2(∂G)

)
τ

(2.14)

≤
j∑
i=1

(
C + η ‖∇ ×∇× ei−1‖2H1(G) + Cη ‖∇ ×∇× ei−1‖2L2(G)

)
τ

G⊂Ω
≤

j∑
i=1

(
C + η ‖∇ ×∇× ei−1‖2H1(Ω) + Cη ‖∇ ×∇× ei−1‖2

)
τ

[3]

≤
j∑
i=1

(
C + η ‖∇ ×∇× ei−1‖2XN + Cη ‖∇ ×∇× ei−1‖2

)
τ

≤
j∑
i=1

(
C + η ‖∇ ×∇×∇× ei−1‖2 + Cη ‖∇ ×∇× ei−1‖2

)
τ.

Combination of the previous results yields

‖∇ ×∇× ej‖2 +

j∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2

+(1− ε− ηCε)
j∑
i=1

‖∇ ×∇×∇× ei‖2 τ

≤ Cε + CεCη

j∑
i=1

‖∇ ×∇× ei‖2 τ.

The necessary steps to be made at this point are �xing a su�ciently small ε, and
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then small η to get

‖∇ ×∇× ej‖2 +

j∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 +

j∑
i=1

‖∇ ×∇×∇× ei‖2 τ ≤ C + C

j∑
i=1

‖∇ ×∇× ei‖2 τ.

The rest of the proof follows from Grönwall’s argument.

(ii) This part can be obtained readily by combination of (2.11) and the the
proof of part (i) stated above.

(iii) Applying the divergence operator to the PDE from (DPi) results in

δ∇ · ei = hi∇ · f .

Summation for i = 1, . . . , j gives

‖∇ · ej‖ =

∥∥∥∥∥∇ · e0 +∇ · f
j∑
i=1

hiτ

∥∥∥∥∥ ≤ ‖∇ · e0‖+ ‖∇ · f‖
j∑
i=1

|hi| τ ≤ C

by Cauchy’s inequality and (ii).

(iv) Apply the∇× operator to (DPi) and take a scalar product of the relation
with ∇×∇×∇× δeiτ . Then make use of Green’s theorem and sum the result
up for i = 1, . . . , j to get

j∑
i=1

‖δ∇×∇× ei‖2 τ +

j∑
i=1

(∇×∇×∇× ei, δ∇×∇×∇× ei) τ

=

j∑
i=1

hi (∇× f ,∇×∇×∇× δei) τ .

(2.15)

The LHS can be rewritten as follows

1
2 ‖∇ ×∇×∇× ej‖

2 − 1
2 ‖∇ ×∇×∇× e0‖2

+ 1
2

j∑
i=1

‖∇ ×∇×∇× ei −∇×∇×∇× ei−1‖2 +

j∑
i=1

‖∇ ×∇× δei‖2 τ.
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For the RHS of (2.15), it can be deduced that

j∑
i=1

hi (∇× f ,∇×∇×∇× δei) τ

=

j∑
i=1

hi (∇×∇× f ,∇×∇× δei) τ

≤
j∑
i=1

|hi| ‖∇ ×∇× f‖ ‖∇ ×∇× δei‖ τ

≤ C
j∑
i=1

|hi| ‖∇ ×∇× δei‖ τ

≤ Cε
j∑
i=1

h2
i τ + ε

j∑
i=1

‖∇ ×∇× δei‖2 τ

(ii)

≤ Cε + ε

j∑
i=1

‖∇ ×∇× δei‖2 τ.

Freezing a su�ciently small positive ε, we conclude the proof.

2.4 Existence of a solution

Before we start the proof of existence of a solution, let us �rst introduce the fol-
lowing piecewise linear and piecewise constant functions in time, respectively.

En : [0, T ]→ L2(Ω) : t 7→

E0 t = 0

ei−1 + (t− ti−1)δei t ∈ (ti−1, ti]
, 0 ≤ i ≤ n,

En : [0, T ]→ L2(Ω) : t 7→

E0 t = 0

ei t ∈ (ti−1, ti]
, 0 ≤ i ≤ n.

Similarly, the functions hn,mn andm′n are de�ned. These prolongations are also
called Rothe’s (piece-wise linear and continuous, or piece-wise constant) func-
tions. With the help of the above-de�ned functions, it is now possible to rewrite
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(DPi) and (DMPi) for the whole time frame as

∂tEn(t) +∇×∇×En(t) = hn(t)f in Ω

En(t)× ν = 0 on Γ

En(0) = E0,

(2.16)

hn(t) =
m′n(t) +

´
γ
∇×∇×En(t− τ) · ν dγ´
γ
f(x) · ν dγ

. (2.17)

At this point, everything is prepared for the proof of existence of a weak solution
to (2.5), (2.6), (2.8) and the measurement (2.9) itself.

Theorem 2.4.1. Let Ω ∈ C1,1 or Ω be convex. Suppose f ∈ XN , E0 ∈ XN and
∇ × ∇ × E0 ∈ XN , m ∈ C1([0, T ]) and

´
γ
f(x) · ν dγ 6= 0, ∇ × ∇ × f ∈

L2(Ω). Then there exists a weak solution {E, h}, which solves (2.5), (2.3), (2.4) and
(2.10). Moreover h ∈ L2([0, T ]), E ∈ C([0, T ],L2(Ω)) ∩ L∞([0, T ], XN ) with
∂tE ∈ L2([0, T ],L2(Ω)) and ∇×∇×E ∈ C([0, T ],L2(Ω)) ∩ L∞([0, T ], XN )

with ∂t∇×∇×E ∈ L2([0, T ],L2(Ω)).

Proof. The re�exivity of L2([0, T ]) together with
ˆ T

0

h
2

n(t) dt ≤ C gives for a

subsequence (denoted by the same symbol again)

hn ⇀ h in L2([0, T ]).

According to [3, Thm. 2.8] the following compact embedding holds

XN b L2(Ω).

A priori estimates from Lemmas 2.3.2 and 2.3.3 imply thatˆ T

0

‖∂tEn(t)‖2 dt ≤ C, ‖En(t)‖XN ≤ C, ∀t ∈ [0, T ].

Having the two above-stated estimates, we are allowed to apply [56, Lemma 1.3.13]
to get the existence of a vector �eldE ∈ C([0, T ],L2(Ω))∩L∞([0, T ], XN ) with
∂tE ∈ L2([0, T ],L2(Ω)) (E is di�erentiable a.e. in [0, T ]) and a subsequence of
En (which we denote by the same symbol again) such that

En → E, in C
(
[0, T ],L2(Ω)

)
(2.18a)

En(t) ⇀ E(t), in XN , ∀t ∈ [0, T ] (2.18b)

En(t) ⇀ E(t), in XN , ∀t ∈ [0, T ] (2.18c)

∂tEn ⇀ ∂tE, in L2
(
[0, T ],L2(Ω)

)
. (2.18d)
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In the light of these considerations, we can integrate (2.16) in time, pass to the
limit for τ → 0 in the corresponding variational formulation and di�erentiate
with respect to the time variable to arrive at

(∂tE(t),ϕ) + (∇×E(t),∇×ϕ) = h(t) (f ,ϕ) , (2.19)

which is valid for all ϕ ∈ H0(curl; Ω) and ∀t ∈ [0, T ]. It can be seen that (2.19)
is the variational formulation of (2.5). Thus {E, h} is a weak solution to (2.5).

The next step of the proof is to pass to the limit for τ → 0 in (2.17). The most
di�cult task concerns the term

ˆ
γ

∇ × ∇ × En(t − τ) · ν dγ. To handle this,

better convergence of approximates is needed. A priori estimates from Lemmas
2.3.2 and 2.3.3 yield

ˆ T

0

‖∂t∇×∇×En(t)‖2 dt ≤ C, ‖∇ ×∇×En(t)‖XN ≤ C, ∀t ∈ [0, T ].

Similarly as in the previous part of this proof we employ [56, Lemma 1.3.13] to
get ∇ × ∇ × E ∈ C([0, T ],L2(Ω)) ∩ L∞([0, T ], XN ) with ∂t∇ × ∇ × E ∈
L2([0, T ],L2(Ω)) (∇ × ∇ × E is di�erentiable a.e. in [0, T ]) and the following
convergences in the sense of subsequences


∇×∇×En → ∇×∇×E, in C

(
[0, T ],L2(Ω)

)
(2.20a)

∇×∇×En(t) ⇀ ∇×∇×E(t), in XN , ∀t ∈ [0, T ] (2.20b)

∇×∇×En(t) ⇀ ∇×∇×E(t), in XN , ∀t ∈ [0, T ] (2.20c)

∂t∇×∇×En ⇀ ∂t∇×∇×E, in L2
(
[0, T ],L2(Ω)

)
(2.20d)
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It holds

∣∣∣∣ˆ
γ

∇×∇× [En(t)−En(t− τ)] · ν dγ
∣∣∣∣2

≤ C ‖∇ ×∇× [En(t)−En(t− τ)]‖2L2(γ)

≤ ‖∇×∇× [En(t)−En(t− τ)]‖2L2(∂G)

(2.14)

≤ ε ‖∇ ×∇× [En(t)−En(t− τ)]‖2H1(G)

+Cε ‖∇ ×∇× [En(t)−En(t− τ)]‖2L2(G)

G⊂Ω
≤ ε ‖∇ ×∇× [En(t)−En(t− τ)]‖2H1(Ω)

+Cε ‖∇ ×∇× [En(t)−En(t− τ)]‖2

[3]

≤ ε ‖∇ ×∇× [En(t)−En(t− τ)]‖2XN

+Cε

ˆ t

t−τ
‖∂t∇×∇×En(s)‖2 ds

≤ ε+ Cετ.

For the limit case, when n→∞, and then for ε→ 0, we �nd that

lim
n→∞

∣∣∣∣ˆ
γ

∇×∇× [En(t)−En(t− τ)] · ν dγ
∣∣∣∣2 = 0.
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In a similar way, we deduce that

∣∣∣∣ˆ
γ

∇×∇× [En(t)−E(t)] · ν dγ
∣∣∣∣2

≤ C ‖∇ ×∇× [En(t)−E(t)]‖2L2(γ)

≤ ‖∇×∇× [En(t)−E(t)]‖2L2(∂G)

(2.14)

≤ ε ‖∇ ×∇× [En(t)−E(t)]‖2H1(G)

+Cε ‖∇ ×∇× [En(t)−E(t)]‖2L2(G)

G⊂Ω
≤ ε ‖∇ ×∇× [En(t)−E(t)]‖2H1(Ω)

+Cε ‖∇ ×∇× [En(t)−E(t)]‖2

[3]

≤ ε ‖∇ ×∇× [En(t)−E(t)]‖2XN
+Cε ‖∇ ×∇× [En(t)−E(t)]‖2

≤ ε+ Cε ‖∇ ×∇× [En(t)−E(t)]‖2 .

Passing to the limit for n→∞ and using (2.20a) we get

lim
n→∞

∣∣∣∣ˆ
γ

∇×∇× [En(t)−E(t)] · ν dγ
∣∣∣∣2 ≤ ε.

Now, we let go ε→ 0 to obtain

lim
n→∞

∣∣∣∣ˆ
γ

∇×∇× [En(t)−E(t)] · ν dγ
∣∣∣∣2 = 0.

The measurement obeysm ∈ C1([0, T ]), thusm′n(t)→ m′(t) for any t ∈ [0, T ].

Collecting the considerations above we see that we may pass to the limit for
n→∞ in (2.17) to arrive at (2.10).



2.5. Uniqueness of a solution 51

2.5 Uniqueness of a solution

In this section, the uniqueness of a solution to the ISP (2.5), (2.6), (2.8) and (2.10)
is proven.

Theorem 2.5.1. Let the assumptions of Theorem 2.4.1 be satis�ed. Then there exists
at most one weak solution to the ISP (2.5), (2.6), (2.8) and (2.10).

Proof. Due to the linearity of the problem it is su�cient to show that if m = 0

and E(0) = 0 then E(t) = 0 and h(t) = 0 for any t ∈ [0, T ]. We will follow a
similar way as we used for the time discretization. Therefore only the main points
are pointed out.

1st step Take a scalar product of (2.5) with E, integrate over Ω, make use of
Green’s theorem and integrate in time to get in a standard way, similarly as
in Lemma 2.3.2(i)

‖E(t)‖2 +

ˆ t

0

‖∇ ×E(s)‖2 ds ≤ C
ˆ t

0

h2(s) ds, ∀t ∈ [0, T ].

2nd step Take a scalar product of (2.5) with ∂tE, integrate over Ω, apply Green’s
theorem and integrate in time to get as in Lemma 2.3.2(ii)

‖∇ ×E(t)‖2 +

ˆ t

0

‖∂tE(s)‖2 ds ≤ C
ˆ t

0

h2(s) ds, ∀t ∈ [0, T ].

3rd step Apply the∇× operator to (2.5) and take a scalar product with∇×∇×
∇ × E. Then integrate over Ω, involve Green’s theorem and integrate in
time to get similarly to Lemma 2.3.3(i) for all t ∈ [0, T ]

‖∇ ×∇×E(t)‖2 +

ˆ t

0

‖∇ ×∇×∇×E(s)‖2 ds ≤ C
ˆ t

0

h2(s) ds.
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4th step Start from (2.10) with m = 0. Then it can be deduced that

ˆ t

0

h2(s) ds =

ˆ t

0

∣∣∣∣∣
´
γ
∇×∇×E(s) · ν dγ´

γ
f(x) · ν dγ

∣∣∣∣∣
2

ds

≤ C
ˆ t

0

(ˆ
γ

|∇ ×∇×E(s) · ν|2 dγ
)

ds

≤ C
ˆ t

0

(
‖∇ ×∇×E(s)‖2L2(γ)

)
ds

γ⊂∂G
≤ C

ˆ t

0

(
‖∇ ×∇×E(s)‖2L2(∂G)

)
ds

(2.14)

≤
ˆ t

0

(
η ‖∇ ×∇×E(s)‖2H1(G) + Cη ‖∇ ×∇×E(s)‖2L2(G)

)
ds

G⊂Ω
≤
ˆ t

0

(
η ‖∇ ×∇×E(s)‖2H1(Ω) + Cη ‖∇ ×∇×E(s)‖2

)
ds

[3]

≤
ˆ t

0

(
η ‖∇ ×∇×E(s)‖2XN + Cη ‖∇ ×∇×E(s)‖2

)
ds

≤
ˆ t

0

(
η ‖∇ ×∇×∇×E(s)‖2 + Cη ‖∇ ×∇×E(s)‖2

)
ds.

(2.21)

Combining this relation with the third step yields

‖∇ ×∇×E(t)‖2 + (1− η)

ˆ t

0

‖∇ ×∇×∇×E(s)‖2 ds

≤ Cη
ˆ t

0

‖∇ ×∇×E(s)‖2 ds.

Fixing a small positive η, Grönwall’s argument returns

max
t∈[0,T ]

‖∇ ×∇×E(t)‖2 +

ˆ T

0

‖∇ ×∇×∇×E(s)‖2 ds = 0.

This and (2.21) imply that
ˆ T

0

h2(s) ds = 0. Taking into account the 1st
and 2nd steps, we also see that

max
t∈[0,T ]

‖E(t)‖2 + max
t∈[0,T ]

‖∇ ×E(t)‖2 = 0,

which concludes the proof of uniqueness.
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Theorem 2.4.1 shows convergence of iterates for a subsequence. Theorem 2.5.1
ensures the uniqueness of a solution. Combination of both results implies conver-
gence for the whole sequences of approximations En, hn.

2.6 Error estimates

Finally, in this section, the error estimates between the semi-discretized and the
exact solution are proposed.

Theorem 2.6.1. Suppose the conditions of Theorem 2.4.1 are ful�lled. Then

max
t∈[0,T ]

‖EEE(t)−EEEn(t)‖2 ≤ Cτ,

T̂

0

∥∥∇× (EEE(t)−EEEn(t)
)∥∥2

dt ≤ Cτ,

max
t∈[0,T ]

‖∇ ×∇× (EEE(t)−EEEn(t))‖2 ≤ Cτ,

T̂

0

∥∥∇×∇×∇× (EEE(t)−EEEn(t)
)∥∥2

dt ≤ Cτ,

T̂

0

∣∣h(t)− hn(t)
∣∣2 dt ≤ Cτ.

Proof. The proof is split into several parts. First the terms

tˆ

0

∣∣hn(s)− h(s)
∣∣2 ds,

‖EEE(t)−EEEn(t)‖2 +

tˆ

0

‖∇ × (EEE(s)−EEEn(s))‖2 ds,

‖∇ ×∇× (EEE(t)−EEEn(t))‖2 +

tˆ

0

∥∥∇×∇×∇× (EEE(s)−EEEn(s))
∥∥2 ds,
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are estimated. The partial estimates are then combined together and Grönwall’s
lemma gives the �nal argument to conclude the proof. Several auxiliary estimates
are used in order to perform the individual steps of this proof. Among them∥∥EEEn(t)−EEEn(t)

∥∥ = ‖ei−1 + (t− ti−1)δei − ei‖ ≤ ‖δei‖ τ, ∀t ∈ [ti−1, ti] ,

which is valid for any norm.

Step I.
First subtract the measurement problem (MP) (2.10) from the discretized measure-
ment problem (DMP) (2.17) to get

hn(t)− h(t) =

=
1´

γ

fff · νdγ

m′n(t)−m(t) +

ˆ

γ

∇×∇×
(
EEEn(t− τ)−EEE(t)

)
· ν dγ

 .

Using the assumptions m ∈ C2([0, T ]) and
´
γ
fff · ν dγ 6= 0 gives

∣∣hn(t)− h(t)
∣∣ ≤ C

τ +

ˆ

γ

∣∣∇×∇× (EEEn(t− τ)−EEE(t)
)
· ν
∣∣ dγ

 .

An easy calculation yields∣∣hn(t)− h(t)
∣∣2 ≤ C (τ2 +

∥∥∇×∇× (EEEn(t− τ)−EEE(t)
)∥∥2

L2(γ)

)
,

which can be rewritten as∣∣hn(t)− h(t)
∣∣2 ≤ C(τ2 +

∥∥∇×∇× (EEEn(t− τ)−EEEn(t)
)∥∥2

L2(γ)

+
∥∥∇×∇× (EEEn(t)−EEE(t)

)∥∥2

L2(γ)

)
.

(2.22)

The second term on the right-hand side can be further estimated using the facts
that γ ⊂ ∂G, G ⊂ Ω, the trace theorem and [3] as follows∥∥∇×∇× (EEEn(t− τ)−EEEn(t)

)∥∥2

L2(γ)
≤ ‖∇×∇× (ei − ei−1)‖2L2(γ)

≤ ‖∇×∇× (ei − ei−1)‖2L2(∂G)

≤ ε ‖∇ ×∇× (ei − ei−1)‖2H1(G) + Cε ‖∇ ×∇× (ei − ei−1)‖2L2(G)

≤ ε ‖∇ ×∇× (ei − ei−1)‖2H1(Ω) + Cε ‖∇ ×∇× (ei − ei−1)‖2

≤ ε ‖∇ ×∇× (ei − ei−1)‖2XN + Cε ‖∇ ×∇× (ei − ei−1)‖2

≤ ε ‖∇ ×∇×∇× (ei − ei−1)‖2 + Cε ‖∇ ×∇× (ei − ei−1)‖2 .

(2.23)
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The third term in (2.22) can be estimated in a similar manner as∥∥∇×∇× (EEEn(t)−EEE(t)
)∥∥2

L2(γ)
≤
∥∥∇×∇× (EEEn(t)−EEE(t)

)∥∥2

L2(∂G)

≤ ε
∥∥∇×∇× (EEEn(t)−EEE(t)

)∥∥2

H1(G)
+ Cε

∥∥∇×∇× (EEEn(t)−EEE(t)
)∥∥2

L2(G)

≤ ε
∥∥∇×∇× (EEEn(t)−EEE(t)

)∥∥2

H1(Ω)
+ Cε

∥∥∇×∇× (EEEn(t)−EEE(t)
)∥∥2

≤ ε
∥∥∇×∇× (EEEn(t)−EEE(t)

)∥∥2

XN
+ Cε

∥∥∇×∇× (EEEn(t)−EEE(t)
)∥∥2

≤ ε
∥∥∇×∇×∇× (EEEn(t)−EEE(t)

)∥∥2
+ Cε

∥∥∇×∇× (EEEn(t)−EEE(t)
)∥∥2

.

(2.24)

Substituting (2.23) and (2.24) into (2.22) and integrating over the time frame
´ t

0
ds

results in
tˆ

0

∣∣hn(s)− h(s)
∣∣2 ds ≤ Cετ + ε

tˆ

0

∥∥∇×∇×∇× (EEEn(s)−EEE(s)
)∥∥2 ds

+ Cε

tˆ

0

∥∥∇×∇× (EEEn(s)−EEE(s)
∥∥2 ds. (2.25)

Step II.
In order to administer the second step, it is �rst needed to subtract (2.16) from (2.5),
multiply the result with test function ϕ, and integrate over Ω to get the following
formulation

(∂t(EEE(t)−EEEn(t)),ϕ)+
(
∇×

(
EEE(t)−EEEn(t)

)
,∇×ϕ

)
= (h(t)−hn(t)) (fff,ϕ) .

Using the de�nition of the norm in H(curl; Ω)∗ we are allowed to write

‖∂t(EEE −EEEn)‖H(curl;Ω)∗ = sup
ϕ∈H(curl;Ω)

‖ϕ‖H(curl;Ω)≤1

(∂t(EEE −EEEn),ϕ)

= sup
ϕ∈H(curl;Ω)

‖ϕ‖H(curl;Ω)≤1

[
(h− hn) (fff,ϕ)−

(
∇×

(
EEE −EEEn

)
,∇×ϕ

)]
≤ C

(∣∣h− hn∣∣+
∥∥∇× (EEE −EEEn)∥∥) .

For the sake of clarity, the argument t is omitted for the functionsEEE(t),EEEn(t),
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EEEn(t), h(t) and hn(t). Choose the test function ϕ to be ϕ = EEE −EEEn to get(
∂t(EEE −EEEn),EEE −EEEn

)
+
(
∇×

(
EEE −EEEn

)
,∇×

(
EEE −EEEn

))
= (h− hn)

(
fff,EEE −EEEn

)
.

Adding ±EEEn and subsequent use of Cauchy’s inequality results in

1
2∂t ‖EEE −EEEn‖

2
+
∥∥∇× (EEE −EEEn)

∥∥2 ≤

≤
∣∣(∂t(EEE −EEEn),EEEn −EEEn

)∣∣+
∣∣h− hn∣∣ ‖f‖ ∥∥EEE −EEEn∥∥

≤
∣∣(∂t(EEE −EEEn),EEEn −EEEn

)∣∣+ C
∣∣h− hn∣∣ ∥∥EEE −EEEn +EEEn −EEEn

∥∥
≤
∣∣(∂t(EEE −EEEn),EEEn −EEEn

)∣∣
+ C

(∣∣h− hn∣∣2 + ‖EEE −EEEn‖2 +
∥∥EEEn −EEEn∥∥2

)
≤C ‖∂t(EEE −EEEn)‖H(curl;Ω)∗

∥∥EEEn −EEEn∥∥H(curl;Ω)

+ C
∣∣h− hn∣∣2 + C ‖EEE −EEEn‖2 + Cτ2 ‖δei‖2

≤C
[∣∣h− hn∣∣+

∥∥∇× (EEE −EEEn)
∥∥] ∥∥EEEn −EEEn∥∥H(curl;Ω)

+ C
∣∣h− hn∣∣2 + C ‖EEE −EEEn‖2 + Cτ2 ‖δei‖2

≤ϑ
∥∥∇× (EEE −EEEn)

∥∥2
+ Cϑτ

2 ‖δei‖2H(curl;Ω)

+ C
∣∣h− hn∣∣2 + C ‖EEE −EEEn‖2 + Cτ2 ‖δei‖2 .

Integrating the result over time
´ t

0
ds leads to

‖EEE(t)−EEEn(t)‖2 + (1− ϑ)

tˆ

0

∥∥∇× (EEE(s)−EEEn(s))
∥∥2 ds

≤ C

 tˆ

0

∣∣h(s)− hn(s)
∣∣2 ds+

tˆ

0

‖EEE(s)−EEEn(s)‖2 ds

+ Cϑτ
2,

(2.26)

which rounds out the second part of the proof.

Step III.
The third step begins similarly as the previous step by subtracting (2.16) from
(2.5). After that, the curl ∇× operator is applied, the result is multiplied by the
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test function ϕ and integrated over Ω.

(∇× ∂t(EEE −EEEn),ϕ) +
(
∇×∇×∇× (EEE −EEEn),ϕ

)
=

= (h− hn) (∇× fff,ϕ) .

The test function is set to be ϕ = ∇ × ∇ × ∇ × (EEE −EEEn), Green’s theorem is
utilized, the arti�cial zero 000 = ±EEEn is added and the Cauchy-Schwarz inequality
is used to get

1
2∂t ‖∇ ×∇× (EEE −EEEn)‖2 +

∥∥∇×∇×∇× (EEE −EEEn)
∥∥2

≤
∣∣(∂t∇×∇× (EEE −EEEn),∇×∇× (EEEn −EEEn)

)∣∣
+
∣∣h− hn∣∣ ‖∇ × fff‖∥∥∇×∇×∇× (EEE −EEEn)

∥∥ .
The right-hand-side (RHS) of this expression can be further estimated using sim-
ilar techniques as in previous step as follows

RHS

≤ ‖∂t∇×∇× (EEE −EEEn)‖H(curl;Ω)∗

∥∥∇×∇× (EEEn −EEEn)
∥∥
H(curl;Ω)

+ C
∣∣h− hn∣∣ ∥∥∇×∇×∇× (EEE −EEEn)

∥∥
≤ ‖∂t∇×∇× (EEE −EEEn)‖H(curl;Ω)∗

∥∥∇×∇× (EEEn −EEEn)
∥∥
H(curl;Ω)

+ η
∥∥∇×∇×∇× (EEE −EEEn)

∥∥2
+ Cη

∣∣h− hn∣∣2
≤ C

[∣∣h− hn∣∣+
∥∥∇×∇×∇× (EEE −EEEn)

∥∥] ‖∇ ×∇× δei‖H(curl;Ω) τ

+ η
∥∥∇×∇×∇× (EEE −EEEn)

∥∥2
+ Cη

∣∣h− hn∣∣2
≤ θ

∣∣h− hn∣∣2 + θ
∥∥∇×∇×∇× (EEE −EEEn)

∥∥2
+ Cθτ

2 ‖∇ ×∇× δei‖2

+ η
∥∥∇×∇×∇× (EEE −EEEn)

∥∥2
+ Cη

∣∣h− hn∣∣2 .
Supposing θ and η are small enough, we can write

∂t ‖∇ ×∇× (EEE −EEEn)‖2 +
∥∥∇×∇×∇× (EEE −EEEn)

∥∥2

≤ C
(∣∣h− hn∣∣2 + ‖∇ ×∇× δei‖2 τ2

)
.

(2.27)

Integrating (2.27) in time
´ t

0
ds provides us with the �nal result of this part of the
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proof.

‖∇ ×∇× (EEE(t)−EEEn(t))‖2 +

tˆ

0

∥∥∇×∇×∇× (EEE(s)−EEEn(s))
∥∥2 ds

≤ C

τ2 +

tˆ

0

∣∣h(s)− hn(s)
∣∣2 ds+

tˆ

0

‖∇ ×∇× (EEE(s)−EEEn(s))‖2 ds

 .
(2.28)

Step IV.
The last step is to combine the previous results together:

• add (2.26) to (2.28),

• substitute
t́

0

∣∣h(s)− hn(s)
∣∣2 ds from (2.25),

• assume the constants ε and ϑ are small enough,

• apply Grönwall’s lemma,

• use the result in (2.25) to get the estimate for
∣∣h− hn∣∣.

2.7 Numerical Computations

A few tangible examples are o�ered in this section to demonstrate that the above-
proved theoretical results are also valid in practice. The main objective of the ex-
periments was to test whether the computational scheme gives reasonable results
and if it converges as postulated.
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2.7.1 First Experiment

We consider the inverse source problem (2.3)-(2.5) in Ω = (0, 1)× (0, 1)× (0, 1)

and T = 1. Furthermore, we set

fff(xxx) = (sinx1 + 2 sinx2, sinx2 + 2 sinx3, sinx3 + 2 sinx1) ,

γ = {x ∈ ∂Ω : x1 = 0} ,

m(t) = (cos 1− 1)et.

It can be easily seen that the exact solution we are looking for is

E(t,xxx) =
(
et(sinx1 + 2 sinx2), et(sinx2 + 2 sinx3), et(sinx3 + 2 sinx1)

)
,

h(t) = et.

We split the time interval (0, T ) into 100 equidistant subintervals meaning that
the time step iss τ = 0.01. We create a uniform mesh in our space domain as in
Figure 2.1. We uniformly divide the unit cube into 1000 small cubes and each one
of the cubes is split into 6 tetrahedra. We employe Lagrange FEM of second order,
which results into a system with 27783 degrees of freedom (DoF).

Figure 2.1: Mesh in domain: The left hand side of the cube (colored black) is de-
noted γ ⊂ ∂Ω. Measurementm(t) is performed only on this subset of the bound-
ary.

Since we know the exact solution E, we are able to calculate the error of our
numerical scheme. This can be seen on Figures 2.2 and 2.3. Using the numerical
scheme we proposed and proved in the previous sections are able to reconstruct
the function h(t) very precisely, which is demonstrated in Figure 2.4 (left). Ac-
cording to our proofs, we expect that the decay in error between exact function
h(t) and its numerical reconstruction correlates with the diminishing of the time
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(a) Exact solution E (b) Numerical solution Eapp

Figure 2.2: Exact and numerical solutions for E

Figure 2.3: Relative error E −Eapp

|E|
depicted for t = T . Its absolute value is

denoted by color.
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(a) Reconstruction of h(t) (b) Decay of error

Figure 2.4: Reconstruction of the function h(t) and its error

step τ . The errors for several values of τ are plotted in Figure 2.4 (right). The lin-
ear regression line through data points is given by 0.9444 log2 τ−0.78948, which
is even better result than expected. To prove the optimal convergence rate O(τ),
a better a priori estimates for the approximate solution are needed.

2.7.2 Second Experiment

In the second example, we take xxx ∈ R3, xxx ∈ {(x1, x2, x3) : x2
1 + x2

2 + x2
3 ≤ 1}

and t ∈ (0, T ) where T = 1. Furthermore we set

fff(xxx) = (x1, x2, x3) ,

γ = {x ∈ ∂Ω : x1 ≥ 0} ,

m(t) = 2πet.

The exact solution we are using for testing is

EEE(t,xxx) =
(
etx1, e

tx2, e
tx3

)
= etx,

h(t) = et.

We split the time interval (0, T ) into 100 equidistant subintervals (with the time
step of the length τ = 0.01). We create then a quasi-uniform mesh on our space
domain consisting of tetrahedra as can be seen on Figure 2.5. We use the Lagrange
FEM of second order, which creates a system with 17871 DoF.
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Figure 2.5: Mesh in domain.
The right-hand-side of the sphere (colored black) is denoted γ ⊂ ∂Ω. Measure-
ment m(t) is performed only on this subset of the boundary

The approximation of E and its error are depicted in Figures 2.6 and 2.7.
Our numerical scheme is able to reconstruct the function h(t) almost perfectly,
see Figure 2.8 (left). The errors for various values of τ are plotted in Figure 2.8.
The linear regression line through data points is given by 0.97942 log2 τ−0.3418,
which is also better than the theoretical result.

Noisy data One important aspect that is worth a short discussion is the term
“measurement” itself. The measurement is in practice never exact either due to
the imperfect measuring devices or due to the computer precision limit. Certain
level of noise is always introduced into the computational process. Therefore, it
is very important to know how (or more importantly if) the proposed numerical
scheme can handle such inaccuracy. To test this ability we run our model several
times. Each time the measurement m(t) is slightly modi�ed.

The modi�cation reads as follows. First a random noise of a certain level,
represented by the function δ(t), is added to the measurement

mnoisy(t) := m(t) + δ(t).

Then, since the assumption m ∈ C1([0, T ]) was made, smoothing the data is the
next step. This can be done very easily by approximating the noisy data with a
smooth function. Most of the modern solvers can handle this task automatically.
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(a) Exact solution E (b) Numerical solution Eapp

Figure 2.6: Exact and numerical solutions for E

Figure 2.7: Relative error E −Eapp

|E|
depicted for t = T . Its absolute value is

denoted by color.
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(a) Reconstruction of h(t) (b) Decay of the error

Figure 2.8: Reconstruction of the function h(t) and its error

Figure 2.9: Reconstruction of the function h(t) when the measurement m(t) con-
tain a certain level of noise

Figure 2.9 demonstrates, that our scheme is able to deal with the noisy data
providing that the noise level is low.



Chapter 3

Determination of a
time-dependent convolution
kernel from a boundary
measurement in nonlinear
Maxwell’s equations

3.1 Problem formulation

This chapter, similarly to Chapter 2.1, deals with a problem that is derived from
the standard Maxwell’s equations (1.14), (1.15), (1.16), (1.17), which are described
in Section 1.5. The work presented in this chapter has been published [79] in the
journal Computers & Mathematics with applications.

The assumptions of smooth or convex domain Ω remains valid in this part of
our thesis as well as all other notations mentioned in previous chapter.

Physical laws binding the four unknowns vectorial �elds B,D,E,H from

65
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Maxwell’s equations are usually accompanied by constitutive relations of the type

D = D (E,H) , B = B (E,H) ,

where the exact form of the relationships depends on the situation under con-
sideration. The dependencies can be linear (in linear materials) or nonlinear (in
superconductors, nonlinear optics,. . . ). Note that in the previous chapter we as-
sumed linear homogeneous magnetic material, where the relationBBB = µHHH holds
true. However, in practical situations the relation between magnetic and electric
�elds is often much more general. In some situations, the present values of so-
lutions depend on their past behaviour. Hysteresis may be expressed by using a
memory term in the form of a time integral. Applications can be found in chiral
media [83], meta-materials [47, 48] or polarized media [85]. The authors of [8]
have considered a nonlinear memory e�ect for polarization P of the type

P (t) = (g∗ [E + f(E)]) (t).

Here the symbol∗ stands for the convolution in time, which is usually understood
as (K ∗u(x))(t) =

´ t
0
K(t − s)u(x, s) ds. The formulation from [8] can be

interpreted as a generalization of the Debye or Lorentz polarization models [7]in
the sense that the polarization dynamics is driven by a nonlinear function of the
electric �eld.

In our work, we adopt a generalized Ohm’s law1 of the following form

J = σ∗E − 1∗ g(E).

Further, we assume that
D = εE

with a constant absolute permittivity ε, and a nonlinear magnetic material, i.e.

B = µ (H − 1∗f(E))

with a positive variable permeability µ. Elimination of H from the set of four
Maxwell’s equations ((1.14), (1.15), (1.16), (1.17)) leads to

εEtt + (σ∗E)t +∇×
(

1

µ
∇×E

)
= g(E) +∇× f(E)− Jappt .

1Note that in previous chapter we assumed Ohm’s law in standard form J = σE.
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The conductivity term σ is assumed to be separable, i.e.

σ(x, t) = α(t)σ̃(x), (3.1)

where the given σ̃(x) describes the heterogeneity of the material. We assume
that σ̃ is constant along Γ with σ̃|Γ = σΓ, σΓ 6= 0. This means that the possible
inhomogeneity is an interior one. The hereditary weight α(t) is unknown and
is has to be determined. A perfect contact on the boundary is assumed and the
initial data are given.

Direct problem

For the ease of explanation, it can be without any loss of generality assumed that
ε = 1 and that the term Japp is omitted for a better readability2.

Collecting all previous premises gives

Ett + σ̃ (α∗E)t +∇×
(

1

µ
∇×E − f(E)

)
= g(E), (3.2)

E × ν = 0, (3.3)

E(x, 0) = E0(x), (3.4)

Et(x, 0) = V 0(x), (3.5)

where (3.2) is the governing equation de�ned in Ω × [0, T ], (3.3) is a boundary
condition modelling perfect conductivity on the boundary Γ and (3.4) together
with (3.5) express initial conditions. As stated above, the weight function α(t) is
unknown, thus this problem can not be solved directly.

Inverse problem

The inverse problem (IP) is to �nd a couple {E(x, t), α(t)}. The missing data
function α(t) will be recovered by means of the following measurement along Γ

ˆ
Γ

E · ν dγ = m(t), (normal component measurement). (3.6)

2The term Japp can be handled in a standard way adopting suitable regularity assumptions.



68 Determination of a time-dependent convolution kernel

Remark 3.1.1. As mentioned in Chapter 2, such an integral over-determination can
be seen in e.g [50, 68, 80]. This appears mostly for di�usion processes as in [39, 40,
41, 68, 77, 78].

Overview of existing literature Identi�cation of the missing memory ker-
nels in evolutionary PDEs was implemented in 1990’s by the Russian and Italian
schools. This started the research in this area, cf. [12, 17, 18, 19, 20, 30, 31, 34, 51, 52,
53]. The paper [31] studies a linear hyperbolic equation without a damping term,
where the time convolution operator acts on the Laplacian of the solution. The
unknown data are revealed from a point measurement. No constructive algorithm
for �nding a solution for this IP is presented. The paper [30] deals with identi-
�cation of convolution kernels in abstract linear hyperbolic integro-di�erential
problems. The local solvability in time of this IP is shown. However, there is no
constructive algorithm for recovery of the missing convolution kernel. The article
[51] is devoted to a one dimensional integro-di�erential linear hyperbolic prob-
lem. The error estimates (for a numerical scheme based on �nite di�erences with
dependent time and space mesh-steps) are derived under high regularity of solu-
tion. [12] presents a nice study of properties of Dirichlet-to-Neumann maps for
memory reconstruction for linear settings. In [20] a global in time existence and
uniqueness result for an inverse problem arising in the theory of heat conduction
for materials with memory has been studied. The paper [18] derives some local
and global in time existence results for the recovery of memory kernels.

A constructive and very interesting technique for the recovery of missing con-
volution kernels has been developed in [22, 23, 81] for scalar parabolic and hyper-
bolic equations. Here the additional measurement was a space integral of the
solution over Ω, namely

´
Ω
u(x, t) dx = m(t). The goal of this chapter is an

adaptation of this approach for vectorial electromagnetic �elds. The natural func-
tion space (where the solution is expected to live) is H(curl; Ω) or its subspace.
Unfortunately, H(curl; Ω) is not compactly embedded into L2(Ω), which causes
troubles in the convergence analysis. This can be overcome with additional as-
sumptions. For that purpose, vectorial function spaces of non-divergence free
vectorial �elds will be used.

Another very important highlight of this part of our thesis is that we consider
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a “non invasive” measurement (3.6), where the integral is taken over the boundary
Γ, which represents a new and essential aspect. Only the normal component of the
electrical �eld is measured. We prove the existence and uniqueness of a solution
of the IP given by (3.3), (3.4), (3.6) and (3.2). Moreover, we propose a numerical
scheme for approximations based on the backward Euler’s method. Finally, we
show the existence of approximations at each time step of the time partitioning
and we establish some regularity results. The convergence of iterates towards the
exact solution is obtained by arguments of functional analysis.

To see clearly how the the governing PDE (3.2) and the measurement (3.6) are
associated with each other, let us �rst apply the divergence operator to (3.2) to get

∇ · (Ett + σ̃ (α∗E)t − g(E)) = 0.

Integration over Ω and the subsequent use of the mass balance argument (diver-
gence theorem) imply

ˆ
Γ

Ett · ν +

ˆ
Γ

σ̃ (α∗E)t · ν =

ˆ
Γ

g(E) · ν.

Employing the assumption that σ̃|Γ = σΓ leads to
ˆ

Γ

σ̃ (α∗E)t · ν = σΓ

ˆ
Γ

(α∗Et + αE0) · ν

= σΓ

[
α∗
ˆ

Γ

(E · ν)t + α

ˆ
Γ

E0 · ν
]
.

Thus, it can be written

m′′ + σΓ [α∗m′ + αm0] = (g(E) · ν, 1)Γ . (MP)

In the following text the standard notation of functional spaces for vectorial �elds
X and XN

3 is used as de�ned in [3, 63].
Note: All other symbols standing for constants, norms, spaces, etc. have exactly
the same meaning as in the previous chapter.

3The domain Ω is supposed to be Ω ∈ C1,1 or convex, that’s why we have XN ⊂ H1(Ω). This
follows from [3, Thm. 2.12] if Ω ∈ C1,1, and from [3, Thm. 2.17] if Ω is convex.
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Variational formulation The variational form of (3.2) for ϕ ∈ H0(curl; Ω)

and a.e. in [0, T ] reads as

(Ett,ϕ) + (α∗Et + αE0, σ̃ϕ) +

(
1

µ
∇×E,∇×ϕ

)
= (f(E),∇×ϕ) + (g(E),ϕ) .

(P)

The weak formulation of the IP given by (3.3), (3.4), (3.6) and (3.2) is to �nd a
couple {E(x, t), α(t)} obeying (P), (MP) and (3.4) such that

• α ∈ L2((0, T )),

• E ∈ C([0, T ],L2(Ω)) ∩ L∞((0, T ), XN ),

• Et ∈ L2((0, T ),L2(Ω)) ∩ C ([0, T ], X∗N ),

• Ett ∈ L2((0, T ),H0(curl; Ω)∗)

3.2 Time discretization

Using a simple discretization in time (backward Euler), a time-dependent problem
is approximated by a sequence of elliptic problems, which have to be solved suc-
cessively for increasing ti. Solutions of these steady-state settings approximate the
transient solution at the points of the time partitioning. The advantage of using
Rothe’s method is twofold: next to the proof of existence and possible uniqueness
of a solution to the original problem, also a numerical algorithm is contained in
this approach.

Let us �rst de�ne the discrete convolution in time as follows 4

(K ∗ v)i :=

i∑
k=0

Ki−kvkτ.

4For ease of explanation, we consider an equidistant time-partitioning of the time frame [0, T ]

with a step τ = T/n, for any n ∈ N. We use the notation ti = iτ and for any function z we write
zi = z(ti), δzi =

zi−zi−1

τ
.
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A simple calculation yields5

δ (K ∗ v)i =
(K ∗ v)i − (K ∗ v)i−1

τ
= K0vi +

i−1∑
k=0

δKi−kvkτ, i ≥ 1.

(3.7)
Consider a system with unknowns (ei, αi) for i = 1, . . . , n. At time layer ti the
problem (P) can be approximated by

(
δ2ei,ϕ

)
+ ((α∗ δe)i + αie0, σ̃ϕ) +

(
1

µ
∇× ei,∇×ϕ

)
(DPi)

= (f(ei−1),∇×ϕ) + (g(ei−1),ϕ)

with e0 = E0 and δe0 = V 0. The measurement problem (MP) can be approxi-
mated by

m′′i + σΓ [(α∗m′)i + αim0] = (g(ei−1) · ν, 1)Γ (DMPi)

with m0 = m(0).

Remark 3.2.1. The initial and boundary conditions may naturally disagree at t =

0, which leads to a schock at the beginning of the process. Compatibility conditions
for PDEs are relations between the initial conditions, the PDE, and the boundary
conditions, which are necessary for getting better regularity of a solution. This in
fact means that the governing PDE is ful�lled at t = 0, see e.g. [57]. Thus, the
compatibility condition – following the derivation of (MP) – allows us to put t = 0

in (MP) to get

m′′(0) + σΓα(0)m0 = (g(E0) · ν, 1)Γ .

This implies the relation

α0 := α(0) =
(g(E0) · ν, 1)Γ −m′′(0)

σΓm0

tacitly assuming thatm0 = m(0) 6= 0.

The system (DPi) and (DMPi) represents a linear decoupled scheme. The al-
gorithm for �nding a solution follows the scheme

5If the upper summation bound in a sum is less than the lower summation bound, the sum is empty
and it vanishes per de�nition.
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1. set i = 1,

2. solve the discrete measured problem (DMPi) to get αi,

3. then solve (DPi) to get ei,

4. increase the index i by one and jump to step 2.

3.3 A priori estimates

Lemma 3.3.1. Let f and g be global Lipschitz continuous functions. Suppose that
E0 ∈ L2(Ω), V 0 ∈ L2(Ω), 0 < σ∗ ≤ σ̃ ≤ σ∗, 0 < µ∗ ≤ µ ≤ µ∗,m ∈ C2([0, T ])

andm(0) 6= 0. Assume the validity of (MP) at t = 0. There exists τ0 > 0 such that
for any 0 < τ ≤ τ0 and any i = 1, . . . , n, there exists a unique couple {ei, αi} ∈
{H0(curl; Ω),R}, which solves (DPi) and (DMPi).

Proof. For a given e0, . . . , ei−1 ∈ L2(Ω) and α0, . . . , αi−1 ∈ R the αi can be
eliminated from (DMPi). The relation

m′′i + σΓ

[
i∑

k=0

αi−km
′
kτ + αim0

]
= (g(ei−1) · ν, 1)Γ

can be rewritten as

σΓαi [m0 +m′0τ ] = (g(ei−1) · ν, 1)Γ −m
′′
i − σΓ

i∑
k=1

αi−km
′
kτ,

which implies

αi =
(g(ei−1) · ν, 1)Γ −m′′i − σΓ

∑i
k=1 αi−km

′
kτ

σΓ [m0 +m′0τ ]
. (3.8)

That means one can get αi ∈ R for any su�ciently small time step τ ≤ τ0.
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Let us rewrite (DPi) as( ei
τ2
,ϕ
)

+ (α0ei, σ̃ϕ) +

(
1

µ
∇× ei,∇×ϕ

)
= (f(ei−1),∇×ϕ) + (g(ei−1),ϕ) +

(
ei−1

τ2
+
δei−1

τ
,ϕ

)
−

(
αie0 − α0ei−1 +

i−1∑
k=0

αi−kδekτ, σ̃ϕ

)
.

The left-hand-side (LHS) represents an elliptic continuous bilinear form in the
space H0(curl; Ω). The right-hand-side (RHS) is a linear bounded functional on
H0(curl; Ω). We apply the Lax-Milgram lemma to get the existence of a unique
ei ∈ H0(curl; Ω).

Lemma 3.3.2. Let f and g be global Lipschitz continuous functions. Assume that
|g(·)| ≤ C , E0 ∈ H0(curl; Ω), V 0 ∈ L2(Ω), 0 < σ∗ ≤ σ̃ ≤ σ∗,
0 < µ∗ ≤ µ ≤ µ∗, m ∈ C2([0, T ]) and m(0) 6= 0. Moreover, assume the validity
of (MP) at t = 0.
Then there exist a positive constant C and τ0 such that for any 0 < τ ≤ τ0 we have

(i) max
1≤j≤n

|αj | ≤ C,

(ii) max
1≤j≤n

‖δej‖2 + max
1≤j≤n

‖∇ × ej‖2 +

n∑
i=1

‖δei − δei−1‖2

+

n∑
i=1

‖∇ × ei −∇× ei−1‖2 ≤ C ,

(iii) max
1≤j≤n

∥∥δ2ej
∥∥
H0(curl;Ω)∗

≤ C .

Proof. (i) The relation (3.8) implies

|αi| ≤ C

(
1 +

i−1∑
k=1

|αk| τ

)
.

We employ the Grönwall argument (cf. [5]) to conclude the proof.
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(ii) Set ϕ = δeiτ in (DPi).Then sum (DPi) up for i = 1, . . . , j to obtain

j∑
i=1

(
δ2ei, δei

)
τ +

j∑
i=1

(
1

µ
∇× ei,∇× δei

)
τ =

j∑
i=1

(f(ei−1),∇× δei) τ

+

j∑
i=1

(g(ei−1), δei) τ −
j∑
i=1

((α∗ δe)i + αie0, σ̃δei) τ. (3.9)

Let {ai} be any sequence of real numbers, then the following obvious identity
holds true (Abel’s summation - see Appendix B)

j∑
i=1

ai(ai − ai−1) = 1
2

[
a2
j − a2

0 +

j∑
i=1

(ai − ai−1)2

]
.

Thus, the LHS of (3.9) can be estimated from below by

j∑
i=1

(
δ2ei, δei

)
τ = 1

2

[
‖δej‖2 − ‖V 0‖2 +

j∑
i=1

‖δei − δei−1‖2
]

and

j∑
i=1

(
1

µ
∇× ei,∇× δei

)
τ

≥ 1

2µ∗

(
‖∇ × ej‖2 +

j∑
i=1

‖∇ × ei −∇× ei−1‖2
)
− 1

2µ∗
‖∇ × e0‖2 .

For any real sequences {zi}∞i=1 and {wi}∞i=1 the following (summation by parts)
identity takes place

j∑
i=1

zi(wi − wi−1) = zjwj − z0w0 −
j∑
i=1

(zi − zi−1)wi−1. (3.10)

For the �rst term on the RHS of (3.9), we use (3.10) together with Cauchy’s and
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Young’s inequalities to deduce

j∑
i=1

(f(ei−1),∇× δei) τ

= (f(ej),∇× ej)− (f(e0),∇× e0)−
j∑
i=1

(δf(ei),∇× ei) τ

≤ ε ‖∇ × ej‖2 + Cε ‖ej‖2 + Cε + C

j∑
i=1

‖δei‖2 τ + C

j∑
i=1

‖∇ × ei‖2 τ

≤ ε ‖∇ × ej‖2 + Cε + C

j∑
i=1

‖δei‖2 τ + C

j∑
i=1

‖∇ × ei‖2 τ.

The last terms on the RHS of (3.9) can be estimated in a similar way as∣∣∣∣∣
j∑
i=1

(g(ei−1), δei)

∣∣∣∣∣ τ ≤ C + C

j∑
i=1

‖δei‖2 τ

and ∣∣∣∣∣
j∑
i=1

((α∗ δe)i + αie0, σ̃δei) τ

∣∣∣∣∣ ≤ C + C

j∑
i=1

‖δei‖2 τ.

Putting estimates together and �xing a su�ciently small ε > 0, we obtain

‖δej‖2 + ‖∇ × ej‖2 +

j∑
i=1

‖δei − δei−1‖2 +

j∑
i=1

‖∇ × ei −∇× ei−1‖2

≤ C + C

j∑
i=1

‖δei‖2 τ + C

j∑
i=1

‖∇ × ei‖2 τ.

Applying the discrete Grönwall lemma and taking the maximum over 1 ≤ j ≤ n,
we conclude the proof of this part.

(iii) Please note that e0 ∈ L2(Ω), Lemma 3.3.2 (ii) together with

ej = e0 +

j∑
i=1

δeiτ

imply
max

1≤j≤n
‖ej‖ ≤ C.



76 Determination of a time-dependent convolution kernel

Relation (DPi) implies(
δ2ei,ϕ

)
=− ((α∗ δe)i + αie0, σ̃ϕ)

−
(

1

µ
∇× ei,∇×ϕ

)
+ (f(ei−1),∇×ϕ) + (g(ei−1),ϕ) .

A simple calculation yields∣∣(δ2ei,ϕ
)∣∣ ≤ C ‖ϕ‖+ C ‖∇ ×ϕ‖ .

Therefore

∥∥δ2ei
∥∥
H0(curl;Ω)∗

= sup
ϕ∈H0(curl;Ω)

‖ϕ‖H0(curl;Ω)
≤1

(
δ2ei,ϕ

)
≤ C.

Lemma 3.3.3. Let f and g be global Lipschitz continuous functions. Suppose that
|g(·)| ≤ C ,E0 ∈ H1(Ω), V 0 ∈ H(div; Ω), 0 < σ∗ ≤ σ̃ ≤ σ∗, 0 < µ∗ ≤ µ ≤ µ∗,
σ̃ ∈ H1,∞(Ω), m ∈ C2([0, T ]) and m(0) 6= 0. Assume the validity of (MP) at
t = 0. There exist C, τ0 > 0 such that for any 0 < τ ≤ τ0 we have

max
1≤j≤n

‖∇ · δej‖2 +

n∑
i=1

‖∇ · δei −∇ · δei−1‖2 ≤ C.

Proof. Lemma 3.3.2 says that ei ∈ H0(curl; Ω), which implies
∇ · ei ∈ H−1(Ω) =

(
H1

0 (Ω)
)∗. First show that ∇ · ei ∈ L2(Ω). Let Φ ∈ H1

0 (Ω).
Set ϕ = ∇Φ in (DPi) to get(

δ2ei,∇Φ
)

+ ((α∗ δe)i + αie0, σ̃∇Φ) = (g(ei−1),∇Φ) , (3.11)

which can be rewritten as( ei
τ2
,∇Φ

)
+ (α0ei, σ̃∇Φ) = (g(ei−1),∇Φ) +

(
ei−1

τ2
+
δei−1

τ
,∇Φ

)
−

(
αie0 − α0ei−1 +

i−1∑
k=0

αi−kδekτ, σ̃∇Φ

)
.

Now, we apply the Green theorem and

∇ · (vu) = v∇ · u+ u · ∇v
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to obtain(
∇ · ei
τ2

,Φ

)
+ α0 (σ̃∇ · ei + ei · ∇σ̃,Φ)

= (∇ · g(ei−1),Φ) +

(
∇ · ei−1

τ2
+
∇ · δei−1

τ
,Φ

)
−

(
αi∇ · e0 − α0∇ · ei−1 +

i−1∑
k=0

αi−kδ∇ · ekτ, σ̃Φ

)

−

(
αie0 − α0ei−1 +

i−1∑
k=0

αi−kδekτ,Φ∇σ̃

)
.

Keeping just the terms containing ∇ · ei on the left, we arrive at([
1

τ2
+ α0σ̃

]
∇ · ei,Φ

)
= (∇ · g(ei−1),Φ)− α0 (ei · ∇σ̃,Φ)

+

(
∇ · ei−1

τ2
+
∇ · δei−1

τ
,Φ

)
−

(
αi∇ · e0 − α0∇ · ei−1 +

i−1∑
k=0

αi−kδ∇ · ekτ, σ̃Φ

)

−

(
αie0 − α0ei−1 +

i−1∑
k=0

αi−kδekτ,Φ∇σ̃

)
.

If E0 ∈ H1(Ω), V 0 ∈ H(div; Ω), σ̃ ∈ H1,∞(Ω) then the RHS for i = 1

is a linear bounded functional on L2(Ω). The space H1
0 (Ω) is dense in L2(Ω).

Thus, by the Hahn-Banach theorem we get
[

1
τ2 + α0σ̃

]
∇ · e1 ∈ L2(Ω) and also

∇ · e1 ∈ L2(Ω). Applying Lemma 3.3.2 we have e1 ∈ XN ⊂ H1(Ω), according
to [3]. Repeating this bootstrap argument for increasing i we conclude that ei ∈
H1(Ω) for i = 1, . . . , n.

The next goal is to get stability estimates for∇·ei. Applying Green’s theorem
in (3.11) results in(
δ2∇ · ei,Φ

)
+ ((α∗ δ∇ · e)i + αi∇ · e0, σ̃Φ) = (∇ · g(ei−1),Φ)

− ((α∗ δe)i + αie0,Φ∇σ̃) .

This relation is valid for any Φ ∈ L2(Ω), which follows from the density argument
H1

0 (Ω) = L2(Ω).
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Now, set Φ = δ∇ · eiτ and sum up for i = 1, . . . , j to get

j∑
i=1

(
δ2∇ · ei, δ∇ · ei

)
τ

=

j∑
i=1

(∇ · g(ei−1),∇ · δei) τ −
j∑
i=1

((α∗ δe)i + αie0,∇ · δei∇σ̃) τ

−
j∑
i=1

((α∗ δ∇ · e)i + αi∇ · e0, σ̃∇ · δei) τ. (3.12)

Abel’s summation applied to the LHS gives

j∑
i=1

(
δ2∇ · ei, δ∇ · ei

)
τ

= 1
2

[
‖∇ · δej‖2 − ‖∇ · V 0‖2 +

j∑
i=1

‖∇ · δei −∇ · δei−1‖2
]
.

The terms on the RHS of (3.12) can be estimated as follows

∣∣∣∣∣
j∑
i=1

(∇ · g(ei−1),∇ · δei) τ

∣∣∣∣∣
≤

j∑
i=1

‖∇ · g(ei−1)‖ ‖∇ · δei‖ τ

≤ C
j∑
i=1

‖ei−1‖H1(Ω) ‖∇ · δei‖ τ

[3]
≤ C

j∑
i=1

‖ei−1‖XN ‖∇ · δei‖ τ

Lemma 3.3.2
≤ C

j∑
i=1

(1 + ‖∇ · ei−1‖) ‖∇ · δei‖ τ

≤ C + C

j∑
i=1

‖∇ · δei‖2 τ,
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∣∣∣∣∣
j∑
i=1

((α∗ δe)i + αie0,∇ · δei∇σ̃) τ

∣∣∣∣∣
≤ C

j∑
i=1

‖(α∗ δe)i + αie0‖ ‖∇ · δei∇σ̃‖ τ

Lemma 3.3.2
≤ C

j∑
i=1

‖∇ · δei‖ τ

≤ C + C

j∑
i=1

‖∇ · δei‖2 τ,

and ∣∣∣∣∣
j∑
i=1

((α∗ δ∇ · e)i + αi∇ · e0, σ̃∇ · δei) τ

∣∣∣∣∣
≤

j∑
i=1

‖(α∗ δ∇ · e)i + αi∇ · e0‖ ‖σ̃∇ · δei‖ τ

Lemma 3.3.2
≤ C + C

j∑
i=1

‖∇ · δei‖2 τ.

Putting things together we arrive at

‖∇ · δej‖2 +

j∑
i=1

‖∇ · δei −∇ · δei−1‖2 ≤ C

(
1 +

j∑
i=1

‖∇ · δei‖2 τ

)
.

The rest of the proof follows from Grönwall’s argument.

3.4 Existence of a solution

Let us introduce the following piece-wise linear in time function, where 0 ≤ i ≤
n,

En : [0, T ]→ L2(Ω) : t 7→

E0 t = 0

ei−1 + (t− ti−1)δei t ∈ (ti−1, ti]
,
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and the piece-wise constant function

En : [0, T ]→ L2(Ω) : t 7→

E0 t = 0

ei t ∈ (ti−1, ti]
, 0 ≤ i ≤ n.

Analogously the iterates for Et are de�ned

V n : [0, T ]→ L2(Ω) : t 7→

V 0 t = 0

δei−1 + (t− ti−1)δ2ei t ∈ (ti−1, ti]
,

and

V n : [0, T ]→ L2(Ω) : t 7→

V 0 t = 0

δei t ∈ (ti−1, ti]
, 0 ≤ i ≤ n.

Similarly, we de�nem′n andm′′n. Using Rothe’s functions, it is possible to rewrite
(DPi) and (DMPi) on the whole time frame as (for t ∈ (ti−1, ti])

(∂tV n(t),ϕ) +
((
αn∗V n

)
(ti) + αn(t)E0, σ̃ϕ

)
+

(
1

µ
∇×En(t),∇×ϕ

)
=
(
f(En(t− τ)),∇×ϕ

)
+
(
g(En(t− τ)),ϕ

)
(DP)

and (MP) as

m′′n(t) + σΓ
[(
αn∗m′n) (ti) + αn(t)m0

]
=
(
g(En(t− τ)) · ν, 1

)
Γ
. (DMP)

The objective of this section is to prove the existence of a solution to (P) and
(MP), which represents a weak solution to (3.3), (3.4), (3.6) and (3.2).

Theorem 3.4.1. Let Ω ∈ C1,1 or Ω be convex. Let f and g be global Lipschitz
continuous functions. Suppose |g(·)| ≤ C , E0 ∈ H1(Ω), V 0 ∈ H(div; Ω), 0 <

σ∗ ≤ σ̃ ≤ σ∗, 0 < µ∗ ≤ µ ≤ µ∗, σ̃ ∈ H1,∞(Ω), m ∈ C2([0, T ]) and m(0) 6= 0.
Assume the validity of (MP) at t = 0. Then there exists a weak solution {E, α}
to (P) and (MP). Moreover, it holds that α ∈ L2((0, T )), E ∈ C([0, T ],L2(Ω)) ∩
L∞((0, T ), XN ) with ∂tE ∈ L2((0, T ),L2(Ω)) ∩ C ([0, T ], X∗N )

and Ett ∈ L2 ((0, T ),H0(curl; Ω)∗).



3.4. Existence of a solution 81

Proof. Bounded sets in L2((0, T )) are weakly closed. Therefore the stability esti-
mate (cf. Lemma 3.3.2) ˆ T

0

α2
n(t) dt ≤ C

gives for a subsequence (denoted by the same symbol again)

αn ⇀ α in L2((0, T )). (3.13)

According to [3, Thm. 2.8] XN is compactly embedded (b) in L2(Ω), so the fol-
lowing diagram is valid

H1(Ω) H0(curl; Ω)

⊂ ⊂ ⊂

XN b L2(Ω)

'

X∗N

b

L2(Ω)∗

⊂ ⊂ ⊂

H1(Ω)∗ H0(curl; Ω)∗

Here the Hilbert space L2(Ω) is identi�ed with its dual by the Riesz representation
theorem.

A priori estimates from Lemmas 3.3.2 and 3.3.3 imply
ˆ T

0

‖∂tEn(t)‖2 dt ≤ C, ‖En(t)‖XN ≤ C, ∀t ∈ [0, T ].

Now, Kačur’s lemma [56, Lemma 1.3.13] is applied to get existence of a vector
�eld E ∈ C([0, T ],L2(Ω)) ∩ L∞((0, T ), XN ) with ∂tE ∈ L2([0, T ],L2(Ω)) (E
is di�erentiable a.e. in [0, T ]) and a subsequence of En (which we denote by the
same symbol again) such that

En → E, in C
(
[0, T ],L2(Ω)

)
(3.14a)

En(t) ⇀ E(t), in XN , ∀t ∈ [0, T ] (3.14b)

En(t) ⇀ E(t), in XN , ∀t ∈ [0, T ] (3.14c)

V n = ∂tEn ⇀ ∂tE, in L2
(
(0, T ),L2(Ω)

)
. (3.14d)

Lemma 3.3.2 gives the estimate ‖∂tV n‖X∗N ≤ C ‖∂tV n‖H0(curl;Ω)∗ ≤ C . This
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together with XN b L2(Ω) =⇒ L2(Ω) b (XN )∗ imply

‖V n‖X∗N ≤ ‖V n‖ ≤ C

and for ϕ ∈ XN also

|(V n(t)− V n(s),ϕ)| =
∣∣∣∣ˆ t

s

(∂tV n,ϕ)

∣∣∣∣
≤
∣∣∣∣ˆ t

s

‖∂tV n‖X∗N ‖ϕ‖XN

∣∣∣∣ ≤ C |t− s| ‖ϕ‖XN .
Therefore, the sequence V n must be equi-bounded and equi-continuous in the
space C ([0, T ], X∗N ), hence it is compact there.

For ϕ ∈ XN and t ∈ [ti−1, ti] we have

∣∣(V n − V n,ϕ
)∣∣ =

∣∣∣∣ˆ ti

t

(∂tV n,ϕ)

∣∣∣∣ ≤ O (τ) ‖ϕ‖XN
n→∞−→ 0

and we also see that

V n → V in C ([0, T ], X∗N ) . (3.15)

Combining this with (3.14d) we deduce that V = ∂tE. Lemma 3.3.2 yields
∂tV n ∈ L2 ((0, T ),H0(curl; Ω)∗) and due to the re�exivity of this space, it is
true that (for a subsequence)

∂tV n ⇀ Ett in L2 ((0, T ),H0(curl; Ω)∗) .

We are allowed to write for ϕ ∈ XN and t ∈ [ti−1, ti] that

∣∣(αn∗ (V n,ϕ
))

(ti)−
(
αn∗ (V n,ϕ

))
(t)
∣∣ ≤ ∣∣∣∣ˆ ti

t

(
V n(ti − s),ϕ

)
αn(s) ds

∣∣∣∣
+

∣∣∣∣ˆ t

0

((
V n(ti − s),ϕ

)
−
(
V n(t− s),ϕ

))
αn(s) ds

∣∣∣∣ ≤ O (τ) ‖ϕ‖XN
n→∞−→ 0,

because of ‖∂tV n‖X∗N + |αn| ≤ C .

The relations (3.13), (3.15) and the Lebesgue dominated theorem yield forϕ ∈ XN

that (
αn∗ (V n,ϕ

))
(t)→ (α∗ (∂tE,ϕ)) (t) as n→∞.
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A simple calculation gives∣∣(g(En(t− τ))− g(En(t)),ϕ
)∣∣ ≤ C ∥∥En(t− τ)−En(t)

∥∥ ‖ϕ‖ ≤ O (τ) ‖ϕ‖

and∣∣(f(En(t− τ))−En(t)),∇×ϕ
)∣∣ ≤

≤ C
∥∥En(t− τ)−En(t)

∥∥ ‖∇ ×ϕ‖ ≤ O (τ) ‖∇ ×ϕ‖ .

Now, we integrate the relation (DP) in time over t ∈ [0, η] ⊂ [0, T ]. Based on the
considerations above and we may pass to the limit for n → ∞ and ϕ ∈ XN to
get

(Et(η)− V 0,ϕ) +

ˆ η

0

(α∗Et + αE0, σ̃ϕ) +

ˆ η

0

(
1

µ
∇×E,∇×ϕ

)
=

ˆ η

0

(f(E),∇×ϕ) +

ˆ η

0

(g(E),ϕ) .

The process is straightforward, therefore we omit further details. Di�erentiation
with respect to η brings us to

(Ett,ϕ) + (α∗Et + αE0, σ̃ϕ) +

(
1

µ
∇×E,∇×ϕ

)
= (f(E),∇×ϕ) + (g(E),ϕ) ,

which is valid a.e. in [0, T ] and for ϕ ∈ XN . Taking into account the density of
XN in H0(curl; Ω) we conclude the validity of (P) for any ϕ ∈ H0(curl; Ω) and
Ett(t) ∈ (H0(curl; Ω))∗ a.e. in [0, T ].

The next step is to check the validity of (MP). We know that |αn| ≤ C and
m ∈ C2([0, T ]). Therefore we successively deduce for t ∈ [ti−1, ti] that∣∣(αn∗m′n) (ti)−

(
αn∗m′n) (t)

∣∣
≤
∣∣∣∣ˆ ti

t

m′n(ti − s)αn(s) ds
∣∣∣∣+

∣∣∣∣ˆ t

0

(
m′n(ti − s)−m′n(t− s)

)
αn(s) ds

∣∣∣∣
≤ O (τ) + C

ˆ t

0

∣∣m′n(ti − s)−m′n(t− s)
∣∣ ds→ 0 as n→∞.

Using (3.13), it is easy to observe that(
αn∗m′n) (t)→ (α∗m′) (t) as n→∞.
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Lemma’s 3.3.2 and 3.3.3 together with XN ⊂ H1(Ω) give

‖En(t)‖H1(Ω) ≤ C.

From the Nečas inequality [65], [6, (7.116)] or B.0.11 in Appendix.

‖z‖2Γ ≤ ε ‖∇z‖
2

+ Cε ‖z‖2 , ∀z ∈ H1(Ω), 0 < ε < ε0 (3.16)

and the strong convergence in C
(
[0, T ],L2(Ω)

)
cf. (3.14a) follows the strong

convergence on the boundary

‖En(t)−E(t)‖2Γ ≤ ε ‖En(t)−E(t)‖2H1(Ω) + Cε ‖En(t)−E(t)‖2

≤ ε+ Cε ‖En(t)−E(t)‖2

i.e.
En → E in C

(
[0, T ],L2(Γ)

)
.

Analogously it can be deduced that

max
t∈[0,T ]

‖En(t)−En(t− τ)‖Γ → 0 as n→∞.

Now, the relation (DMP) has to be integrated in time over t ∈ [0, η] ⊂ [0, T ]. Once
the considerations above are taken into account, it is possible to pass to the limit
for n→∞ to get

ˆ η

0

m′′ +

ˆ η

0

σΓ [α∗m′ + αm0] =

ˆ η

0

(g(E) · ν, 1)Γ .

Di�erentiation with respect to η con�rms the validity of (MP), and we conclude
the proof.

3.5 Uniqueness

The existence of a solution to problems (P) and (MP) is proven in the previous
section. In order to guarantee that there exists at most one solution a proof has
to be made. Before the proof itself, a handful of estimates are made that are used
later in this section.
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Let u : R3 → R be a di�erentiable function. Fix vectorial �elds a, b : Ω ⊂
R3 → R3 and de�ne v(t) = u (a+ t(b− a)). Since v is a di�erentiable function
in one variable, the mean value theorem gives

v(1)− v(0) = v′(c)

for some c between 0 and 1. But since v(1) = u(b) and v(0) = u(a), computing
v′(c) explicitly gives

u(b)− u(a) = ∇u (a+ c(b− a)) · (b− a).

If u ∈ C2 and a, b ∈ H1,∞(Ω) it holds that

|∂xi (u(b)− u(a))| ≤ C (|b− a|+ |∂xi (b− a)|) .

Applying these considerations to each component of a 3-dimensional vector func-
tion h = (h1, h2, h3) it can be concluded that

‖∇ × [h(a)− h(b)]‖ ≤ C ‖b− a‖H1(Ω) if h ∈ C2;a, b ∈ H1,∞(Ω) (3.17)

and

‖∇ · [h(a)− h(b)]‖ ≤ C ‖b− a‖H1(Ω) if h ∈ C2;a, b ∈ H1,∞(Ω). (3.18)

Now, we address the uniqueness of solution to the inverse problem (P), (MP). We
are able to prove it within a class of regular solutions.

Theorem 3.5.1. [uniqueness] Let f , g ∈ C2. There exists at most one solution
{E, α} to the (P), (MP) obeying

• α ∈ L2((0, T )),

• E ∈ C([0, T ],L2(Ω)) ∩ L∞
(
(0, T ),H1,∞(Ω)

)
,

• Et ∈ L2((0, T ),L2(Ω)) ∩ C ([0, T ], X∗N ),

• Ett ∈ L2((0, T ),H0(curl; Ω)∗)

Proof. Having two solutions {E1, α1} and {E2, α2} to the (P), (MP), we denote

E = E1 −E2, α = α1 − α2.

We split the proof into a few steps.
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Estimate for |α|: Subtracting (MP) for both solutions from each other, we read-
ily get

|α(t)| ≤ C
(
‖E(t)‖Γ +

ˆ t

0

|α|
)
.

Grönwall’s argument implies that

|α(t)| ≤ C
(
‖E(t)‖Γ +

ˆ t

0

‖E‖Γ

)
=⇒
ˆ t

0

α2 ≤ C
ˆ t

0

‖E‖2Γ ≤ C
ˆ t

0

‖E‖2H1(Ω) .

(3.19)

Estimate for ‖Et‖ and ‖∇ ×E‖: Taking a di�erence of corresponding rela-
tions (P) for both solutions, we get

(Ett,ϕ) +

(
1

µ
∇×E,∇×ϕ

)
= (f(E1)− f(E2),∇×ϕ) +

+ (g(E1)− g(E2),ϕ)− (α1∗Et + α∗E2t + αE0, σ̃ϕ) .

Setting ϕ = Et and subsequent integration in time result in

1
2 ‖Et(η)‖2 + 1

2

(
1

µ
∇×E(η),∇×E(η)

)
=

=

ˆ η

0

(∇× [f(E1)− f(E2)],Et) +

ˆ η

0

(g(E1)− g(E2),Et)

−
ˆ η

0

(α1∗Et + α∗E2t + αE0, σ̃Et) .

The lower bound of the LHS is

1
2 ‖Et(η)‖2 +

1

2µ∗
‖∇ ×E(η)‖2 .

It can be easily seen that∣∣∣∣ˆ η

0

(g(E1)− g(E2),Et)

∣∣∣∣ ≤ ˆ η

0

‖g(E1)− g(E2)‖ ‖Et‖

≤ C
ˆ η

0

‖E‖ ‖Et‖ ≤ C
ˆ η

0

(
‖Et‖2 + ‖E‖2

)
.
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We successively deduce that∣∣∣∣ˆ η

0

(∇× [f(E1)− f(E2)],Et)

∣∣∣∣
≤
ˆ η

0

‖∇ × [f(E1)− f(E2)]‖ ‖Et‖

(3.17)

≤ C

ˆ η

0

‖E‖H1(Ω) ‖Et‖

≤ C
ˆ η

0

(
‖E‖2H1(Ω) + ‖Et‖2

)
,

∣∣∣∣ˆ η

0

(α1∗Et, σ̃Et)

∣∣∣∣
≤ C

ˆ η

0

‖α1∗Et‖ ‖Et‖

≤
ˆ η

0

(|α1| ∗ ‖Et‖) ‖Et‖

≤

√ˆ η

0

(|α1| ∗ ‖Et‖)2

√ˆ η

0

‖Et‖2 Cauchy’s inequality

≤
ˆ η

0

|α1|
ˆ η

0

‖Et‖2 Young’s inequality

≤ C
ˆ η

0

‖Et‖2 ,

and∣∣∣∣ˆ η

0

(α∗E2t, σ̃Et)

∣∣∣∣
≤ C

ˆ η

0

‖α∗E2t‖ ‖Et‖

≤ C
ˆ η

0

(|α| ∗ ‖E2t‖) ‖Et‖

≤ C

√ˆ η

0

(|α| ∗ ‖E2t‖)
2

√ˆ η

0

‖Et‖2 Cauchy’s inequality

≤ C
ˆ η

0

|α|

√ˆ η

0

‖E2t‖
2

√ˆ η

0

‖Et‖2 Young’s inequality

≤ C
ˆ η

0

(
α2 + ‖Et‖2

)
.
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Putting estimates (within this step) together we arrive at

‖Et(η)‖2 + ‖∇ ×E(η)‖2 ≤ C
ˆ η

0

(
α2 + ‖E‖2H1(Ω) + ‖Et‖2

)
(3.19)

≤ C

ˆ η

0

(
‖E‖2H1(Ω) + ‖Et‖2

)
.

(3.20)

Estimate for ‖∇ ·E‖ : Taking the di�erence of the corresponding relations (P)
for both solutions and integrating in time for ϕ = ∇Φ, Φ ∈ H1

0 (Ω)

produces

(Et,∇Φ) =

(ˆ t

0

[g(E1)− g(E2)],∇Φ

)
− (α1∗E + α∗E2, σ̃∇Φ) .

From the Green theorem and

∇ · (vu) = v∇ · u+ u · ∇v,

it follows that

(∇ ·Et,Φ) =

(ˆ t

0

∇ · [g(E1)− g(E2)],Φ

)
− (α1∗∇ ·E + α∗∇ ·E2, σ̃Φ)− (α1∗E + α∗E2,Φ∇σ̃) .

This relation is valid for any Φ ∈ H1
0 (Ω), thus by the density argument it

holds true for Φ ∈ L2(Ω). If ϕ = ∇·E is set, the integration in time yields

1
2 ‖∇ ·E(η)‖2 =

ˆ η

0

(ˆ t

0

∇ · [g(E1)− g(E2)],∇ ·E(t)

)
−
ˆ η

0

(α1∗∇ ·E + α∗∇ ·E2, σ̃∇ ·E)

−
ˆ η

0

(α1∗E + α∗E2,∇ ·E∇σ̃) .

Consecutive deduction givesˆ η

0

(ˆ t

0

∇ · [g(E1)− g(E2)],∇ ·E(t)

)
≤
ˆ η

0

‖∇ ·E(t)‖
ˆ t

0

‖∇ · [g(E1)− g(E2)]‖

(3.18)

≤ C

ˆ η

0

‖∇ ·E(t)‖
ˆ t

0

‖E‖H1(Ω)

≤ C
ˆ η

0

‖E‖2H1(Ω) ,
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∣∣∣∣ˆ η

0

(α1∗∇ ·E, σ̃∇ ·E)

∣∣∣∣
≤ C

ˆ η

0

‖α1∗∇ ·E‖ ‖∇ ·E‖

≤
ˆ η

0

(|α1| ∗ ‖∇ ·E‖) ‖∇ ·E‖

≤

√ˆ η

0

(|α1| ∗ ‖∇ ·E‖)2

√ˆ η

0

‖∇ ·E‖2 Cauchy’s inequality

≤
ˆ η

0

|α1|
ˆ η

0

‖∇ ·E‖2 Young’s inequality

≤ C
ˆ η

0

‖∇ ·E‖2 ,

and ∣∣∣∣ˆ η

0

(α∗∇ ·E2, σ̃∇ ·E)

∣∣∣∣ ≤ C ˆ η

0

‖α∗∇ ·E2‖ ‖∇ ·E‖

≤ C
ˆ η

0

(|α| ∗ ‖∇ ·E2‖) ‖∇ ·E‖

≤ C
ˆ η

0

α2 + C

ˆ η

0

‖∇ ·E‖2 .

It can be similarly obtained that∣∣∣∣ˆ η

0

(α1∗∇ ·E,E∇σ̃)

∣∣∣∣ ≤ C ˆ η

0

(
‖E‖2 + ‖∇ ·E‖2

)
and ∣∣∣∣ˆ η

0

(α∗∇ ·E2,E∇σ̃)

∣∣∣∣ ≤ C ˆ η

0

α2 + C

ˆ η

0

‖E‖2 .

Assembling the estimates (within this step) together we arrive at

‖∇ ·E(η)‖2 ≤ C
ˆ η

0

‖E‖2H1(Ω) +C

ˆ η

0

α2
(3.19)

≤ C

ˆ η

0

‖E‖2H1(Ω) . (3.21)

Summary : Putting the relations (3.20) and (3.21) together gives

‖Et(η)‖2 +‖∇ ×E(η)‖2 +‖∇ ·E(η)‖2 ≤ C
ˆ η

0

(
‖Et‖2 + ‖E‖2H1(Ω)

)
.

Using the embedding XN ⊂ H1(Ω) results in

‖Et(η)‖2 + ‖∇ ×E(η)‖2 + ‖∇ ·E(η)‖2

≤ C
ˆ η

0

(
‖Et‖2 + ‖∇ ×E‖2 + ‖∇ ·E‖2

)
.
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Finally, the application of the Grönwall lemma leads to observation that
E = 0 a.e. in Ω× (0, T ).

3.6 Numerical computations

The last section of this chapter proposes an illustrative example, which is to sup-
port the theoretical outcomes from the previous sections. The main objective of
these numerical experiments is to test the convergence of the algorithm.

We consider the following test case: Find {E(x, t), α(t)} such that

εEEEtt + (σ ∗EEE)t +∇×
(

1

µ
∇×EEE

)
= FFF + ggg(EEE) in Ω× (0, T )

EEE × ν = 000, in Γ× (0, T )
(3.22)

when the additional measurement (3.6) is considered.

Numerical setting

We set Ω =
{
xxx = (x, y, z) ∈ R3 | x2 + y2 + z2 < 1

}
and t ∈ (0, T ) along with

T = 1. To preserve the ability to compute and analyze the error of the obtained
numerical results, we prescribe the exact solution EEE and the time convolution
kernel function α(t) as

EEE(xxx, t) = et
(
x− 1 + |x|2 , y − 1 + |x|2 , z − 1 + |x|2

)
,

α(t) = t3 + t+ 1.
(3.23)

Furthermore, we set

ε(xxx) = 1,

σ̃(xxx) = 2− |x|2 ,

µ(xxx) =
1

x+ y + z + 5
,

m(t) = 4πet.
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and the nonlinear term ggg(EEE) = EEE2, where the square operation was de�ned
component-wise6. The vectorial �eld FFF in (3.22) takes the following form
FFF (xxx) = (Fx, Fy, Fz) , where

Fx = et(20− 6x− 6y) + et(−1 + x+ |xxx|)+

+ (−7 + 8et − 6t− 3t2)(2− |xxx|)(−1 + x+ |xxx|)− e2t(−1 + x+ |xxx|)2,

Fy = et(20− 6x− 6z) + et(−1 + y + |xxx|)+

+ (−7 + 8et − 6t− 3t2)(2− |xxx|)(−1 + y + |xxx|)− e2t(−1 + y + |xxx|)2,

Fz = et(20− 6y − 6z) + et(−1 + z + |xxx|)+

+ (−7 + 8et − 6t− 3t2)(2− |xxx|)(−1 + z + |xxx|)− e2t(−1 + z + |xxx|)2.

One can check that {E(x, t), α(t)} de�ned in (3.23) is truly a solution of the equa-
tion (3.22).

In order to obtain a numerical solution, the time interval (0, 1) is split into 100

subintervals meaning the length of the time step τ is 0.01. Consequently the do-
main — the unit cube — is automatically divided into 4010 cells (tetrahedra) whose
diameter may vary in range between 0.206825306587 and 0.332772041371. On
every time step we use the Lagrange FEM of second order, which resulted in a
system with 18015 DoF.

The approximation of EEE at time t = T and its error are shown in Figure 3.2
and Figure 3.3, respectively. The quality of reconstruction of the function α(t) can
be seen in Figure 3.4. Figure 3.1 displays the decay of error for various values of
τ . The linear regression lines through the data points are:

2.447371 log2 τ − 0.750418 for the error of approximation ofEEE depending on τ

0.875556 log2 τ − 0.146030 for the error of approximation of α depending on τ .

Noisy data Similarly, as in previous chapter, the ability of the proposed scheme
to handle noisy data is tested. The noise is introduced in the same way as de-
scribed in Section 2.7.2. Figure 3.5 shows how the numerical scheme performs
when certain level of inaccuracy is introduced into the measurement process.

6EEE(xxx, t) = (E1(xxx, t), E2(xxx, t), E3(xxx, t)) andEEE2 = (E2
1(xxx, t), E2

2(xxx, t), E2
3(xxx, t))
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Figure 3.1: Decay of error ofEEE and α(t) depending on the size of time step τ

(a) Exact solutionEEE (b) Numerical solutionEEEapp

Figure 3.2: Exact and Numerical solutions ofEEE at time t = T
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Figure 3.3: Relative error EEE−EEEapp
|EEE| at t = T . The absolute value of the error is

indicated with color
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Figure 3.4: Reconstruction of function α(t) = t3 + t + 1. For the sake of clarity

only every 5th time step is plotted.
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Figure 3.5: Reconstruction of the function α(t) when the measurement m(t) con-
tain a certain level of noise
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Chapter 4

Model order reduction

In this chapter, we propose a discussion about advantages and drawbacks that
may occur when standard computational techniques are used for solving partial
di�erential equations. A new class of techniques called Model Order Reduction is
introduced and compared with standard techniques in later sections of this chap-
ter.

Mathematical modelling and numerical experiments together with a new the-
ory development form a core part of many branches of science. Discovering a new
theory leads to a set of experiments, which can and usually are supplemented with
a number of simulations, in order to save time and/or money. On the other hand,
experiments may often inspire scientist who then propose a new theorey, that is
then validated by simulations. Performing simulations has become an important
part of today’s (not only) technological world. The relationship between these
three feet, the modern science stands on, is illustrated in Figure 4.1. Computer
simulations are nowadays performed frequently for many physical, chemical and
other processes. The demand for more realistic simulations is ever increasing,
which places a heavy burden not only onto the shoulders of researchers. Realistic
simulations request the error between computer and physical approximation of
some phenonema to be small. Moreover, many aspects of the physical world have
to be taken into account. One aspect, which makes more realistic computations
possible, is the decreasing price of computational power. However, there is still

97
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Figure 4.1: Theory - Experiments - Simulations

a lot of space left for mathematicians to develop models which correspond better
with reality, and to develop newer, faster and more reliable numerical methods.
In fact, the increase in computational power is tied to developments in numer-
ical algorithms. Iterative solution techniques are the main cause of speed-up in
algorithms. The main contributions in this area can be found in [10, 11, 42] or
[72].

The counter side of having supercomputers available for a wide range of scien-
tists is the decreased need for sophisticated solution methods. It is not uncommon
that instead of constructing a special algorithm to solve a certain problem a brute
force approach is used (e.g. using a very �ne mesh or very small time step in time
discretization methods). The question which would be good to know the answer
to is whether all the knowledge can be used together. That is to say, the goal is to
combine new algorithms and the power of modern computers to get even better
results than ever in history and/or get the results in less time.
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Figure 4.2: The concept of model order reduction

4.1 Model Order Reduction

The de�nition of model order reduction (MOR) depends on the context. A very de-
tailed overview of current state-of-the-art MOR techniques can be found in [74].It
was �rst developed in the area of systems and control theory in order to reduce
the complexity of the models, while their input-output behaviour was required to
be preserved as much as possible. This approach has been adopted also by math-
ematicians, especially after [27] was published. The goal of MOR is to simplify
computations to perform simulations within an reasonable amount of time and
with limited storage capacity. MOR tries to capture the essential features of the
structure of a model. This in fact means that the original model is substituted
by a surrogate model of a smaller dimension. Moreover, the process of acquir-
ing the essential parts of the model has to be done automatically. The concept
of model order reduction is illustrated in Figure 4.2. The desire for making com-
plicated formulas simpler is obvious throughout the history of mathematics. Just
to name a few of the ideas: Fourier tried to approximate a function with a few
trigonometric terms, Lanczos looked for a way how to reduce a matrix in tridi-
agonal form or Arnoldi came up with an idea that a smaller matrix could under
some circumstances approximate the original matrix. The techniques based on
these ideas have been incorporated into many numerical solvers used today. The
integral methods in the �eld of model order reduction were published in the last
two decades of previous century. Among them Moore’s Truncated Balanced Re-
alization in 1981, Hankel-norm reduction published by Glover in 1984 or Proper
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Orthogonal Decomposition proposed by Sirovich in 1987. The last listed method
is the subject of our deeper interest in later sections.

4.2 Proper Orthogonal Decomposition

The method known as Proper Orthogonal Decomposition (POD) is widely dis-
cussed in literature. The original concept was introduced by Pearson [66]. The
method is also known under the name Karhunen-Loève decomposition [55, 61],
or principal component analysis [46]. The essence of this method is that it gives
an optimally ordered, orthonormal basis in the least-squares sense for a given set
of theoretical, experimental or computational data [2]. Truncation of this optimal
basis then yields the reduced order model (also labeled as surrogate model). The
choice of data is obviously crucial. To choose the data properly one has to rely
on intuition, simulations or guesswork. Very famous is the method of snapshots
[75]. POD has recently been used for solving PDEs [1, 25, 43, 45].

POD is an element of a group of projection methods, where the dynamical
system is projected onto a subspace of the original phase space. It can be com-
bined with the Galerkin method [44, 45, 59]. Such a combination gives a powerful
tool for deriving surrogate models for high-dimensional dynamical systems. The
reason why this approach is so compelling is that the subspace obtained via POD
is composed of basis functions that inherit the special characteristics of the solu-
tion. The choice of basis functions in standard �nite element method is, on the
contrary, independent of the system dynamics. One of the main advantages of
POD is the fact, that it only uses standard matrix computations, even though it
can be applied to very sophisticated problems.

4.2.1 POD basis construction

Once the basic idea of proper orthogonal decomposition is known, a more detailed
principle of how this method works is proposed. Let’s express the above-stated
paragraphs in mathematical language. Imagine a vector space S of dimension n
and a given set of data in the space S. If the goal is to cope with a dynamical
system described by partial di�erential equations, the data set is in fact the phase
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space of a di�erential system, which can be obtained after semi-discretization via
a method of lines. For the sake of clarity assume S = Rn. The sampled data set
U = {u1(t), . . . , um(t)}, where ui(t) ∈ Rn for i = 1, . . . ,m and t ∈ [0, T ], are
the trajectories obtained once the method of lines has been applied. The objective
is to �nd a subspace Sd ⊂ S, of dimension d � n that approximates the data in
some optimal least-square sense. E.g an orthogonal projection Πd : S → Sd is
sought, which minimizes the total least-square distance

‖U −ΠdU‖2 :=

m∑
i=1

T̂

0

‖ui(t)−Πdui(t)‖2 dt.

To �nd solution to this problem, the term correlationmatrix needs to be introduced
�rst. The correlation matrix K ∈ Rn×n is de�ned by

K =

m∑
i=1

T̂

0

ui(t)ui(t)
T dt.

From the de�nition it follows thatK is a symmetric positive semi-de�nite matrix,
whose eigenvalues are real, non-negative, and can be ordered as λ1 ≥ · · · ≥ λn ≥
0. Vectors ωj for which

Kωj = λjωj , for i = 1, . . . , n

holds, are called the eigenvectors. Thanks to the special structure of matrix K ,
they can be chosen as an orthonormal basis of space S. The subspace Sd is then
given as Sd = span{ω1, . . . , ωd}. The vectors ω1, . . . , ωd are then used to com-
pute the so-called POD modes πi, which are in fact the columns of the projection
matrix Π = [π1, . . . , πn]. To be more speci�c, the following result is achieved
[73]:

Theorem 4.2.1. Let K be the correlation matrix of the data and let λ1 ≥ · · · ≥
λn ≥ 0 be the ordered eigenvalues ofK . Then it holds that

min
Sd
‖U −ΠdU‖ =

n∑
j=n−d+1

λj ,

where the minimum is taken over all subspaces Sd of dimension d. Further, the
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optimal orthogonal projection Πd : S → Sd with ΠdΠ
T
d = I , is given by

Πd =

d∑
j=1

ωjω
T
j .

The above-stated result allows us to rewrite every data vector ui(t) ∈ S as

ui(t) =

n∑
j=1

cij(t)ωj ,

where cij(t) = (ui(t), ωj). Then, since (ωi, ωj) = δij , it holds that

Πdui(t) =

d∑
j=1

ωjω
T
j

(
n∑
l=1

cil(t)ωl

)
=

d∑
j=1

cij(t)ωj .

Dimension of the basis

The question, how to determine the dimension d has not been answered yet. We
only mentioned that d � n, which is natural to demand, because the goal is to
get a system that is in some way reduced. The only tool to operate with is the
ordered set of the eigenvalues λi. For dynamical systems, the larger eigenvalues
correspond to the more important characteristics of the system. Therefore relative
information content was de�ned in [1] as

I(d) =

d∑
j=1

λj

n∑
j=1

λj

.

If I(d) is near to 1 for some d (e.g. I(d) > 0.999), then it is considered enough to
take the subspace Sd of that dimension.

Remark 4.2.1. In order to get d signi�cantly smaller than n, the assumption of fast
decaying eigenvalues must be made. For some applications (e.g. heat transfer) an
exponential decrease can be observed, however, it is not the case for all applications.
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4.2.2 Method of Snapshots

For problems arising from a real world applications, one has to deal with many
degrees of freedom. That means the dimension n of the phase space is often very
large. To calculate the POD modes, it is required to solve a very large eigenvalue
problem for a full matrix K ∈ Rn×n, which is a hard if even feasible task. The
method of snapshots proposed by Sirovich [75] overcomes this problem. Instead of
solving the eigensystem for matrix K of dimension n × n, only a smaller matrix
of dimension m×m, where m is the number of snapshots, is considered.

Snapshots are built from the trajectories of the dynamical system by evaluating
them at certain discrete time instances t1, . . . , tm ∈ [0, T ]. For more detailed
discussion, the reader is referred to [44, 45] and the references therein. Snapshots
ui = u(ti) ∈ Rn form a new correlation matrix K de�ned as

K =

m∑
i=1

u(ti)u(ti)
T .

The matrix U = (u(t1), . . . , u(tm)) ∈ Rn×m is created. The columns consist
of the snapshots. That is to say, that the trajectories of the dynamical system
can be in this constitution found in each row of the matrix U . The de�nition
of correlation matrix can be now rewritten to K = UUT . The trick method of
snapshots proposes is to consider matrix UTU ∈ Rm×m instead. Solving the
eigenvalue problem

UTUωj = λjωj , j = 1, . . . ,m, ωj ∈ Rm

is much easier task to do. Once the orthonormal basis of eigenvectors
{ω1, . . . , ωm} is obtained, the POD modes are then given by

πj =
1√
λj
Uωj , j = 1, . . . ,m.

The projection matrix Π is then given as

Π =

[
1√
λ1

Uω1, . . . ,
1√
λm

Uωm

]
.

Remark 4.2.2. The questions which remain unanswered are how many snapshots
to take and which time instances to choose. There exists no exact instruction yet;
however, the greedy algorithm [21], which chooses the snapshots independently, can
be and in practice is very often (e.g. see [37]) used in practice.
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Singular Value Decomposition

There exists a strong link between POD and singular value decomposition. From a
standard SVD it is known that for a rectangular matrix U ∈ Rn×m there exist real
numbers σ1 ≥ · · · ≥ σd > 0 and two unitary matrices Φ ∈ Rn×n and Ψ ∈ Rm×m

such that

ΦTYΨ =

(
Σd 0

0 0

)
= Σ ∈ Rn×m,

where Σd = diag(σ1, . . . , σd) ∈ Rd×d.

The positive numbers σi are called singular values of U and the columns of
matrices Φ and Ψ are called left and right singular vectors, respectively. The fol-
lowing holds

Uψi = σiφi and Y Tφi = σiψi, i = 1, . . . , d.

The link between POD and SVD lies in fact that φi and ψi are in fact the eigen-
vectors of matrices UUT and UTU , with eigenvalues λi = σ2

i for i = 1, . . . , d.
Thus the POD modes can be very practically determined as

πi =
1

σi
Uψi.

Method of snapshots applied to parabolic inverse problems

This paragraph is based on the technique proposed by [44, 45]. The standard
approach how to cope with inverse problems where some parameter (e.g. term
source, convolution kernel, di�usion coe�cient, etc.) are sought is to use the
minimization technique, where a functional J is de�ned and minimized in order
to identify the missing parameter. In order to perform the minimization, the gra-
dient descent method [64] is usually applied. This method can be applied for a
wide variety of problems, even for in�nite-dimensional ones. In that case, the
search space is typically a function space and Fréchet derivative (Appendix A.0.8)
is needed to determine the descent direction. Schematically the minimization al-
gorithm reads as

Jnew = Jold − τJ ′old,
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where J ′ denotes the gradient or the Fréchet derivative and τ is the length of the
step. This process is repeated until we are satis�ed with the new value of J .

To conduct the minimization procedure, an adjoint problem to the direct prob-
lem usually has to be derived and solved. Assume that the unknown parameter
is denoted as p, u is the unknown function from the direct problem, and v is the
unknown in the correlating adjoint problem. The scheme to solve such a problem
reads as

1. set an initial guess p = p0

2. until the stopping criteria are met

(a) use the value of p to evaluate u from the direct problem

(b) solve the adjoint problem for v using the value of u obtained in the
previous step

(c) make use of the value v to determine the new approximation of the
sought parameter p

(d) check the stopping criteria1

The process, if successful — meaning if stopping criteria have been met— ends
with functionuk and parameter pk after k repetitions of the procedure, where both
uk and pk approximate the function u and the missing parameter p adequately.

In order to incorporate the POD to the previous scheme, the algorithm needs
to be modi�ed as follows

1. de�ne the functional J

2. use an initial guess p0 as a value of the unknown parameter p

3. do until the stopping criteria2 are met
1There are many ways how to de�ne the stopping criteria. A simple example is ‖pnew − pold‖ <

tolerance.
2A good way how to de�ne the stopping criterium here is to check the value of the functional J .

Since J is usually de�ned as a non-negative functional and it is supposed to be 0 if the exact solution
is found, the stopping criterium can be J < ε, where ε is the tolerance we are willing to accept.
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(a) calculate the direct problem to get u(ti) for i = 1, . . . , n

(b) use the solutions ui = u(ti) as a columns of the snapshot matrix U =

[u1, . . . , un]

(c) calculate the projection matrix Π using POD method

(d) project the direct and adjoint problems to a subspace with smaller di-
mension to get p, u and v

(e) do until stopping criteria3 are met

i. use the value of p = Πp to evaluate u(ti) for i = 1, . . . , n

ii. solve the projected adjoint problem to get v(ti) for i = 1, . . . , n

iii. make use of the value v to determine new value of p

(f) project the solutions u and p back to the original full-size dimension
to get u and p, respectively

It is worth mentioning, that the adjoint problem is solved only on the reduced
low-dimensional space, which lessens both time and the computational power.
The reader is now referred to the next section, where this algorithm is put into
practice, for better illustration.

4.3 Numerical Examples

In this section, we propose a couple of examples which are to demonstrate how
model order reduction via proper orthogonal decomposition can be put into prac-
tice. In further parts of our thesis we assume a real valued function u = u(t, x)

de�ned on [0, T ]× Ω, where Ω ⊂ Rn and Γ = ∂Ω.

3Even here exist more than one way how to de�ne the stopping criterium. For example the rel-
ative error between the two last approximations of the parameter p must be less than tolerance:
‖pnew−pold‖
‖pold‖

< ε
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4.3.1 Identi�cation of a space-dependent source from �nal
time data

Given the function gN = gN (x) and f = f(x), the forward problem

∂tu−∆u = f in Ω× [0, T ]

∂nu = gN on Γ× [0, T ]

u(0) = u0 in Ω,

(4.1)

de�nes the mapping
f 7→ [u(T )] (f) ≡ uT (f).

The associated optimization (inverse) problem is to �nd f such that uT (f) approx-
imates a given gT as well as possible. This can be formulated as the minimization
problem

J(f) = 1
2 ‖uT (f)− gT ‖2 → min .

Minimization problem The variational formulation of (4.1) reads as

(∂tu, ϕ) + (∇u,∇ϕ) = (gN , ϕ)Γ + (f, ϕ) ∀ϕ ∈ H1(Ω) and a.e. in [0, T ]

u(0) = u0 in Ω.

The directional derivative of the functional J at f in the direction g = g(x) is

δJ(f ; g) ≡ lim
ε→0

J(f + εg)− J(f)

ε
= (δuT (f ; g), uT (f)− gT ) ,

where the variation (directional derivative) δu(f ; g) (from now on referred to as
δu) solves the problem

∂tδu−∆δu = g in Ω× [0, T ]

∂nδu = 0 on Γ× [0, T ]

δu(0) = 0 in Ω.

(4.2)

We use the steepest descent minimization method to solve this problem, so we
need Fréchet derivative J ′(f)g, not only the variation δJ(f ; g). To this end, the
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adjoint problem is de�ned as follows: First multiply the equation (4.2) by ∂tv =

∂tv(t, x) and use integration by parts formula to get

T̂

0

(∂tδu−∆δu, ∂tv) dt =

T̂

0

(∂tδu, ∂tv + ∆v) dt+ (∇δu,∇v)|T0

−
T̂

0

(∂tδu, ∂nv)∂Ω dt =

T̂

0

(g, ∂tv) dt.

Let v satisfy the adjoint problem

∂tv + ∆v = (uT − gT ) in Ω× [0, T ]

∂nv = 0 on Γ× [0, T ]

v(T ) = 0 in Ω,

(4.3)

with its variational formulation

− (ϕ, ∂tv) + (∇ϕ,∇v) = − (ϕ, uT − gT ) ∀ϕ ∈ H1(Ω)and a.e. in [0, T ]

v(T ) = 0 in Ω.

Then

δJ(f ; g) =

T̂

0

(∂tδu, uT − gT ) dt =

T̂

0

(g, ∂tv) dt = (g,−v(0)) .

Therefore,
J ′(f) = −v(0).

The algorithm for the method of steepest descent reads as

1. use the initial guess f0 as the value of the function f ,

2. use f to calculate u in (4.1),

3. employ u to evaluate v in (4.3),

4. fnew = f + τvk(0),

5. update the approximation of f := fnew ,
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6. check the stopping criteria and repeat the whole procedure if necessary.

where τ > 0 is a suitable step length and v is solution to (4.3) for the current ap-
proximation of u, which is in turn the solution of (4.1) when the presently known
aproximation of the function f is used.

Minimization problem combinedwith POD Assume (4.1) and its variational
formulation. Space approximation for the �nite element spaceV n = span{ϕ1, . . . , ϕn}
gives

u(t, x) =

n∑
i=1

ui(t)ϕi(x).

Set
Sij = (ϕi, ϕj) , Mij = (∇ϕi,∇ϕj) .

Then the space discretized problem can be written as

Su′ +Mu = Sf, u ∈ Rn

u(0) = u0.

Time discretization:
δui =

ui − ui−1

τ
,

where ui = u(ti), ti = iτ, τ = T/N for N ∈ N. The time discretized system
reads as

Sδui +Mui = Sf, for i = 1, . . . , N

or
Aui = b, for i = 1, . . . , N, (4.4)

where
A = S + τM and b = S(τf + ui−1).

The columns of the snapshot matrix U according to [45] are formed by either ui
or δui. The correlation matrix is then K = 1

NU
TU . Solving the eigenvalue or

singular value problem provides us with the POD modes necessary to build the
projection matrix Πd for a chosen d. Multiply then (4.4) by Πd to get

ΠdAui = Πdb
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then multiply the result with identity matrix I = ΠT
d Πd as

ΠdAΠT
d Πdui = Πdb,

which results in

Aui = b, (4.5)

where A = ΠdAΠT
d , ui = Πdui and b = Πdb. Hence, we have the surrogate

problem to solve, where instead of problem (4.4), we only have to handle system
(4.5) of much smaller dimension, which can be calculated by hand or in almost no
time by computer.

Remark 4.3.1. To get the snapshots, the full-scale problem has to be computed �rst.
Thus, we in fact do not need to calculate the surrogate model, once the original prob-
lem has already been computed. However, it is perfectly suitable for the minimization
problem where the forward and adjoint problem are calculated repeatedly for chang-
ing parameter function fk .

The overall algorithm reads as follows:

1. set i = 0

2. Calculate the full size problem (4.4) with f i to get the snapshot matrix U =[
ui1, . . . , u

i
N

]
3. Use solutions obtained in the previous step to create projection matrix Πd

and project (4.4) to smaller subspace

4. Administer the whole minimization procedure within the low dimensional
space to get uik and f ik .

5. Project solutions uik and f ik back to the high dimensional space as ui+1 =

ΠT
d u

i
k and f i+1 = ΠT

d f
i

k .

6. Check stopping criteria. If not ful�lled, increase the index i by one and
repeat the algorithm.
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Minimization Minimization + POD
# of iterations 6 3
total time 459sec 71 sec
u(T )− uT 3.5% 7.2%

Table 4.1: Comparison of a standard minimization technique with POD method

Numerical results To test both schemes in practice, we solved (4.1) in the fol-
lowing setting.

We assumed unit square domain Ω = [0, 1]× [0, 1] and the time interval [0, T ],
where T = 1. The domain Ω was split into 2500 subdomains and each of them
was split into two triangles by a diagonal cut. To calculate the elliptic problems the
automated FEM solver using FEniCS libraries was used. Use of Lagrange elements
of �rst order resulted in a system with 10210 degrees of freedom. The time interval
was split into 100 subintervals of equal length. Apart from that,

gN = 0,

u(0) = const(2),

fexact = e−
(x−0.7)2+(y−0.6)2

0.62 ,

fguess = const(1),

was set, where the value of fexact was �rst used to calculate ui for all time in-
stances. Numerical experiments showed following results

Table 4.1 demonstrates that in this setting, the minimization technique with
implemented POD method was more than six times faster than the standard min-
imization technique. The reason for that is that the full-size system with 10210
unknowns was calculated only 3 times instead of 6. The other reason is that the
adjoint problem was only calculated on the low-dimensional subspace, where the
system with 10210 unknowns was substituted by a system with 4 unknowns. De-
spite the fact, that only “rough” calculations were made the �nal approximations
of sought function f(x) gained by both methods are of equal quality and precision.
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4.3.2 Identi�cation of a time-dependent source from a sur-
face measurement

The problem proposed in this example is very similar to the one from Chapter 2.
However, for the sake of clarity, it is simpler. In this setting the direct problem is
de�ned as

∂tu−∆u =f(x)h(t) in Ω× [0, T ]

∂nu =gN on Γ× [0, T ]

u(0) =u0 in Ω.

(4.6)

The measurement is given as

m(t) =

ˆ

Γ

u ds (4.7)

Minimization of the functional

If the functional J that is to be minimized is de�ned as

J(h) =
1

2

T̂

0

[ˆ
Γ

u ds−m(t)

]2

dt,

using similar technique as in previous example, one the derivation of the adjoint
problem reads as follows.

First, the problem where the variation (directional derivative) δu = δu(h; g)

is de�ned as

∂tδu−∆δu =f(x)g(t) in Ω× [0, T ]

∂nδu =0 on Γ× [0, T ]

δu(0) =0 in Ω.

(4.8)

The equation 4.8 is then multiplied by the adjoint variable v = v(x, t) and the
integration by parts in time and space is used to get

T̂

0

(δu,−∂tv −∆v) dt+ (δu, v) |T0 +

T̂

0

(δu, ∂nv)∂Ω dt =

T̂

0

g (f, v) dt.
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Assume that v satis�es the problem

−∂tv −∆v =0 in Ω× [0, T ]

∂nv =

ˆ

Γ

u ds−m(t) on Γ× [0, T ]

v(T ) = 0 in Ω.

(4.9)

Then

δJ(h; g) =

T̂

0

ˆ

Γ

ˆ
Γ

u ds−m(t)

 δu ds dt

=

T̂

0

δu,
ˆ

Γ

u ds−m(t)


Γ

dt

=

T̂

0

g(t) (f, v(t)) dt

(4.10)

thus
J ′(h) = (f, v) (t).

The unmodi�ed minimization technique gives the following algorithm

1. set h(t) to be an arbitrary initial guess

2. compute the forward problem (4.6) to get u

3. make use of u to calculate v

4. use v to calculate the new value hnew(t) = h(t)− τ (f, v) (t).

Adjoint problem II. There exists another way (and possibly even more) how
to derive the adjoint problem, where the problem 4.8 is multiplied by the adjoint
variable vt and the integration by parts in time and space is done in a di�erent
order to get

T̂

0

(∂tδu,−∂tv −∆v) dt+(δu,∆v) |T0 +

T̂

0

(∂tδu, ∂nvt)∂Ω dt =

T̂

0

g (f, vt) dt.
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If the adjoint problem is then assumed to be

−∂tv −∆v =0 in Ω× [0, T ]

∂nv =

tˆ

0

ˆ
Γ

u ds−m(t)

 dt on Γ× [0, T ]

v(T ) = 0 in Ω,

(4.11)

the Fréchet derivative of the functional J is then de�ned as

J ′(h) = (f, vt) (t). (4.12)

The (dis)advantages of this approach are discussed in the latest section 4.3.2 of
this chapter.

Modi�cation of the algorithm using POD Once the model order reduction
via proper orthogonal decomposition method is employed, the above-stated algo-
rithm is modi�ed as follows

1. set h(t) to be an arbitrary initial guess, set the tolerance ε

2. compute the forward problem (4.6) to get u(ti) for i = 1, . . . , n

3. if not J(h) < ε then

(a) make use of ui = u(ti) as snapshots to get the projection matrix Πd

(b) project the forward problem (4.6) and the adjoint problem (4.9) to a
subspace of dimension d

(c) do

i. set h(t) = h(t)

ii. calculate u for all time instances
iii. calculate v for all time instances
iv. evaluate hnew(t) = h(t)− τ (f, v) (t)

(d) until stopping criteria are met

(e) project u back to full-dimensional space and assign it to unew
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Decoupling scheme

The same problem (4.6) with (4.7) can be approached from a di�erent point of view.
It is possible to get a decoupling scheme similarly as in Chapter 2. The application
of the measurement operator to the equation (4.6) gives

h(t) =

m′(t)−
´
Γ

∆u ds
´
Γ

f ds
,

under assumption that
´

Γ
f ds 6= 0. The time derivative approximated by back-

ward Euler’s di�erence yields

ui − τ∆ui = τh(ti)f(x) + ui−1 (4.13)

and

h(ti+1) =

δm(ti+1)−
´
Γ

∆ui ds
´
Γ

f ds
. (4.14)

The overall computational algorithm reads as

1. from the initial value u(0) calculate value of h(ti+1),

2. use h(ti+1) to calculate u(ti+1),

3. increase index by one.

Numerical results All three methods described above were tested for the fol-
lowing setting. The domain Ω = [0, 1] × [0, 1] was split into 5000 triangles of
equal size and shape, which resulted into a linear system with 10210 degrees of
freedom. The time domain [0, T ], where T = 1 was divided into 100 subinter-
vals. For the purpose of demonstration the function f in (4.6) was set to f(x, y) =

−4− x2 − y2 and the initial condition u(0) = 2x2 + 2y2. It is easy to see that if
hexact(t) = 2e−t, then uexact(x, y, t) = 2e−t(x2 + y2) is the solution to problem
(4.6). For the method where the functional J was minimized, the initial guess of
function h(t) = 0. The overview of results of all methods is shown in Table (4.2)

Figure 4.3 demonstrates how these three methods performed.
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Minimization Minimization + POD Decoupling scheme
# of iterations 30 7 1
total time 2106 sec 256 sec 324 sec
∆h 5.3% 7.1% 1.3%
DoF 10210 10210 32743

Table 4.2: Comparison of a standard minimization technique, POD method, and
decoupling scheme

Figure 4.3: Reconstruction of the function h(t) by all three methods
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Figure 4.4: Reconstruction of the function h(t) by the decoupling scheme

Remark 4.3.2. Number of iterations for Minimization + POD method is not the
total number of iterations. The number stated in the table depicts the number of
outer iterations, which means, how many times the full scale problem was solved.

Remark 4.3.3. The last row in the table stands for the relative error between exact

and calculated solution, where ∆h =
‖hexact(t)− hnumerical(t)‖

‖hexact(t)‖
.

Observations and conclusion

The decoupling scheme achieved better approximation then the other two meth-
ods, which makes it the winner of this imaginary competition. The goal of this
comparison is in fact not to say which method is the best, but to highlight the
advantages and disadvantages of every method.

From the above-stated table it is clear that the decoupling scheme o�ers the
best approximating ability. (see Figure 4.4) The reason why this method gives
such an accurate approximation of a solution is that it tries to approximate the
solution on every time layer only once as well as possible. The method starts from
time t = 0 and ends for time t = T . No repetition of this procedure is needed
nor possible, thus the number of calculations needed to �nish the computational
process is known beforehand. There is also no need to initially guess the solution,
which is sometimes tricky. The only two things which in�uence the output is the
size of the time step and how well the �nite elements approximate the solution
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in spatial dimensions. However, the cost for such a good approximation is that
by design it requires �nite elements of higher order, since in (4.14) the second
derivative of u is computed, it is needed to use at least 2nd order �nite elements
to approximate the solution. This caused a system with 32743 degrees of freedom
had to be calculated for every time layer, which is way more expensive operation
that to compute a system with 10210 DoF. Moreover, the proof of convergence
can be very likely concluded for highly regular solutions only.

On the other hand the minimization technique is more universal and can be
applied to a wide variety of problems. The drawbacks of this approach are twofold.
First the adjoint problem has to be derived, which is not always obvious. Second,
due to the fact that the number of iterations is not �xed, one has to choose the
stopping criteria very carefully to get reasonable results in acceptable time. In our
experiments the minimization technique reached the limit of 30 iterations. For
this particular example, the main drawback - time consumption - is obvious from
the Table 4.2. The other thing which is worth mentioning is that the minimization
technique does not give, in this case, a good approximation of the function h(t)

for the whole time interval. This is caused due to the fact that, by de�nition of
(4.9), v(T ) = 0, which means that the correction (f, v) (t) in

hnew(t) = h(t)− τk (f, v) (t)

decays to zero as t→ T . This e�ect can be seen in Figure 4.5 (b).

The only way to overcome this problem is to use the brute force method where
the length of the time interval [0, T ] is doubled tripled and then only the �rst
half or third of the results, respectively, is taken into account. See Figure 4.5 (a).
Such an approach increases the computational time inadequately; however, we
are not aware of any better method. Deriving the adjoint problem as stated in
(4.11) seems to solve the problem with the steady state at the �nal time t = T

since the derivative of the function v at the �nal time vt(T ) rather than v(T )

is used to compute the Fréchet derivative of the functional J(h); however, the
numerical experiments showed the opposite. The solution near the �nal time T
stays steady and the overall error is even worse. Possibly due to the fact, that the
two extra steps — the numerical integration in the boundary condition of (4.11)
and the numerical di�erentiation in (4.12) — introduce more inaccuracy into the
process of numerical computation.
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(a) time interval (0,T) (b) time interval (T,2T)

Figure 4.5: Minimization technique requires doubling of the time interval

If the time needed to �nish the computations was the only criterium, then the
minimization technique combined with proper orthogonal decomposition would
be the best choice. This approach was even faster than the decoupling scheme
partially due to the fact that only �nite elements of 1st order were necessary to
use. The use of �nite elements of higher order only caused that the relative error
between exact and computed solution improved by merely 0.1% (see Figure 4.6)
for the cost of quadrupling the computational time, which is obviously not a rea-
sonable compromise. All disadvantages of the standard minimization technique
apply to this method as well. Apart from that, this approach seems to have a great
potential to deliver good approximation in reasonable time.

The conclusion is that there is still a lot of space for improving and discovering
new, better and faster methods for solving PDEs. For example, to �nd a way how
to use the model order reduction techniques and their ability to decrease the time
consumption of standard minimization method in combination with the decou-
pling scheme in order to get even better results in less time remains the subject of
our further study.



120 Model order reduction

Figure 4.6: Di�erence between the minimization technique combined with 1st and
2nd order �nite elements



Conclusions and future
research

This thesis was devoted to the study of advanced numerical methods for inverse
problems in evolutionary PDEs. Inverse problems form a dynamically developing
proli�c �eld. Their applications are numerous, the problems diverse and the meth-
ods employed inevitably various. Particularly in their formulations and analysis,
but also in their method of solution, there exists no “general” approach to inverse
problems. Nevertheless, the formulations and solving of di�erent inverse prob-
lems can give rise to ideas, procedures and observations that are useful from one
application to the next.

The �rst chapter is a brief introduction to the mathematical terms which are
used throughout this dissertation. It is crucial for the reader to be familiar with
topics stated in that part, because they provide a suitable toolkit for handling equa-
tions and expressions occurring in the main part of this work.

The �rst part, covering Chapter 2 and Chapter 3, studies inverse problems for
Maxwell’s equations. The reason why this part is devoted to the mathematical
modelling of electromagnetism is the need for better, more detailed, and more re-
alistic models. For example, memory e�ects occur in almost all electromagnetic
phenomena and the models have to be adjusted accordingly. More speci�cally,
a time-dependent source and a time-dependent convolution kernel are sought in
Chapter 2 and Chapter 3, respectively. To solve such problems, an additional in-
formation is required. One of the highlights of this part is, that in both chap-
ters we have assumed, unlike most authors, only two-dimensional measurements.
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Non-invasive measurements correspond better with the physical properties and
abilities of modeled phenomena. Theoretical results in both chapters, which in-
clude proofs of uniqueness and existence of a solution, have been concluded based
on Rothe’s method and the arguments of functional analysis. Besides the well-
posedness result we have proposed a numerical scheme for �nding the solution.
The algorithm we have designed is, moreover, non-iterative in the sense that the
solution for each time instance is evaluated only once. The results of our work are
illustrated with a couple of numerical examples using exact measurements. How
to deal with noisy data? In such a case we suggest to regularize the measurements
�rst and then to apply the suggested scheme. It could be interesting to look closer
on how exactly the data should be regularized, which opens a possibility for future
work.

The second part of this thesis contains Chapter 4, which presents model order
reduction techniques as a new set of tools, which allows the current state-of-the-
art methods for solving PDEs to be improved in a manner that the computational
time is boosted, and the ability to approximate the exact solution is preserved.
The aim of this chapter was to test the abilities of the MOR technique, namely the
proper orthogonal decomposition method, and to compare it with techniques con-
sidered to be standard, in order to raise a discussion about bene�ts and drawbacks
of both approaches. The results and our observations are summarized at the end
of this chapter. We suppose the combination of MOR techniques and decoupling
scheme proposed in Part I of this dissertation, could bear fruit in achieving even
better results. This remains our objective for further studies.
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Appendix A

Di�erential operators and
functions in n-dimensional
spaces

De�nition A.0.1. (The space Rn) Let n ∈ N be the dimension of the space Rn.
Every element of this space is an n-tuple of the form xxx = (x1, . . . , xn) ∈ Rn, which
can be uniquely expressed as

xxx =

n∑
i=1

xieeei,

where xi are called Cartesian coordinates and eeei form the standard basis of a real
space Rn:

eee1 = (1, 0, . . . , 0), eee2 = (0, 1, . . . , 0), . . . , eeen = (0, 0, . . . , 1).

The Euclidean inner product of two vectors xxx and yyy is de�ned as

xxx · yyy =

n∑
i=1

xiyi.
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The cross (vector) product of two vectors xxx,yyy ∈ R3 is de�ned as

xxx× yyy =

∣∣∣∣∣∣∣
eee1 eee2 eee3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ .
De�nition A.0.2. (Gradient, Divergence, and Rotor operators) Let Ω ⊂ Rn.
A scalar �eld φ is de�ned as

φ : Ω→ F : xxx→ φ(xxx).

A vector �eld fff is de�ned as

fff : Ω→ Fd : xxx→ fff(xxx) := f1(xxx)eee1 + . . .+ fd(xxx)eeed,

where F stands for R or C and fj are scalar �elds de�ned on Ω for j = 1, . . . d.
The gradient is an operator represented by symbol ∇ and is de�ned as

∇ = eee1∂x1
+ . . .+ eeen∂xn = (∂x1

, . . . , ∂xn).

The divergence operator applied to the vector �eld fff is de�ned as

∇ · fff =

n∑
i=1

∂xifi.

The rotor (also called Curl) operator, represented by symbol ∇×, can only act on a
3-dimensional vector �eld fff as

∇× fff =

∣∣∣∣∣∣∣
eee1 eee2 eee3

∂x1
∂x2

∂x3

f1 f2 f3

∣∣∣∣∣∣∣ .
De�nition A.0.3. (Laplace operator for scalar and vector �elds). The Laplace oper-
ator ∆ is de�ned as

∆φ = ∇2φ = ∇ · ∇φ =

n∑
i=1

∂2φ

∂x2
i

for the scalar �eld φ and as

∆fff = (∆f1, . . . ,∆fd)

for the vector �eld fff .
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A list of vector calculus identities according to [28] is stated in Appendix A.

De�nition A.0.4. A function f is a mapping from setX to set Y which associates
every element x ∈ X with one and only one element y := f(x) ∈ Y . The set X is
usually called the domain of the function f , whereas the set f(X) ⊂ Y is called the
range of function f .

De�nition A.0.5. Let X be a set. If there exists a function dX de�ned on X with
the properties

1. dX(x1, x2) = dX(x2, x1)

2. dX(x1, x2) ≥ 0 and dX(x1, x2) = 0 i� x1 = x2

3. dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3)

holding for every x1, x2, x3 ∈ X . Then the pair (X, dX) is called a metric space.

De�nition A.0.6. A subset S of a metric space (X, dX) is bounded if there exist
x ∈ X and r > 0 such that for all s ∈ S holds dX(x, s) < r . The whole space X
is called bounded if it is bounded as a subset of itself.

De�nition A.0.7. (Important properties of functions). A mapping f between spaces
(X, dX) and (Y, dY ) is

• bounded if f(X) is a bounded subset of Y ;

• continuous if

(∀x2 ∈ X)(∀ε > 0)(∃δ(ε, x2) > 0)

(∀x1 ∈ X : dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε);

• Lipschitz continous if there exists L > 0 such that

dY (f(x1), f(x2)) ≤ LdX(x1, x2);

• a contraction if the mapping is Lipschitz continuous with L < 1.

For a more detailed overview of important properties of functions and multi-
dimensional spaces, the reader is refered to [9].
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De�nition A.0.8. (Fréchet derivative) Let V andW be Banach spaces and U ⊂ V
be an open subset of V . A function f : U → W is called Fréchet di�erentiable at
x ∈ U if there exists a bounded linear operator A : V →W such that

lim
h→0

‖f(x+ h)− f(x)−Ah‖W
‖h‖V

= 0.

Functional spaces

De�nition A.0.9. (Lp space): Let p ∈ [1,∞). The space Lp(Ω) is the set of all
measurable functions f from the bounded domain Ω to F, for which

‖f‖p =

ˆ
Ω

|f |p dx

 1
p

<∞

De�nition A.0.10. (Lp((0, T ), X) space): The space Lp((0, T ), X) is de�ned as a
the set of all measurable functions u(t, x) for which

‖f‖Lp((0,T ),x) =

 T̂

0

‖u(t)‖pX dt


1
p

<∞

De�nition A.0.11. (Hk,p space): The space Hk,p is de�ned as a set of functions
u ∈ Lp(Ω) whose generalized derivatives up to the order of k exist and belong to the
space Lp(Ω).

De�nition A.0.12. (Sobolev vector �elds): Let Ω ⊂ R3 be a bounded domain whose
boundary Γ is Lipschitz continuous. Suppose furthermore that u = (u1, u1, u3) ∈
L2(Ω) := (L2(Ω))3 and v = (v1, v2, v3) ∈ L2(Ω). Then the inner product in
space L2(Ω) is de�ned as

(u,v) =

3∑
i=1

(ui, vi)L2(Ω) .

The spacesH1(Ω),H(curl,Ω) andH(div,Ω) are de�ned as

H1(Ω) :=
{
u ∈ L2(Ω) : ∇u ∈

(
L2(Ω)

)3×3
}

H(curl; Ω) :=
{
u ∈ L2(Ω) : ∇× u ∈ L2(Ω)

}
H(div; Ω) :=

{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
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The spaces H1
0(Ω), H0(curl; Ω) and H0(div; Ω) are de�ned as the closure of

(C∞0 (Ω))
3 in theH1(Ω),H(curl; Ω) andH(div; Ω) norms, respectively.



130 Di�erential operators and functions in n-dimensional spaces

Di�erentiation identities

In the following part, fff denotes a vector �eld and φ, ψ denote scalar �elds. Dis-
tributive properties

∇(φ+ ψ) = ∇φ+∇ψ

∇ · (fff + ggg) = ∇ · fff +∇ · ggg

∇× (fff + ggg) = ∇× fff +∇× ggg

Gradient of product
∇(φψ) = φ∇ψ + ψ∇φ

Product of a scalar and a vector

∇ · (φfff) = φ(∇ · fff) + fff · (∇φ)

∇× (φfff) = φ(∇× fff) + (∇φ)× fff

Curl of the gradient
∇× (∇φ) = 000

Divergence of the gradient
∇2φ = ∇ · (∇φ)

Rotor of the rotor
∇× (∇× fff) = ∇(∇ · fff)−∇2fff

Divergence of the rotor
∇ · (∇× fff) = 0
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Integration identities

In the following V denotes a 3d volume with corresponding 2d boundary S = ∂V

and ν stands for normal unit vector. Divergence theorem
‹
∂V

fff dS =

˚
V

(∇ · fff) dV

‹
∂V

φdS =

˚
V

∇φ dV
‹
∂V

(ν × fff) dS =

˚
V

(∇× fff) dV

Green’s �rst identity
‹
∂V

ψ(∇φ · ν) dS =

˚
V

(ψ∇2φ+∇φ · ∇ψ) dV

Green’s second identity
‹
∂V

[(ψ∇φ− φ∇ψ) · ν] dS =

‹
∂V

[
ψ
∂φ

∂ν
− φ∂ψ

∂ν

]
dS

=

˚
V

(ψ∇2φ− φ∇2ψ) dV

Stokes’ theorem ˛
∂S

fff · dlll =

¨
S

(∇× fff) dS

˛
∂S

φ dlll =

¨
S

(ν ×∇φ) dS
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Appendix B

Important inequalities

Lemma B.0.1. For a, b ∈ R, it holds that

(a+ b)2 ≤ 2(a2 + b2)

Lemma B.0.2. Cauchy-Schwarz inequality - discrete version Suppose that
a1, a2, . . . , an and b1, b2, . . . , bn, for n ∈ N ∪ {∞} are two sequences of elements
satisfying conditions

∑n
j=1 |aj |2 <∞ and

∑n
j=1 |bj |2 <∞. Then

∣∣∣∣∣∣
n∑
j=1

ajbj

∣∣∣∣∣∣
2

≤

 n∑
j=1

|aj |2
 n∑

j=1

|bj |2
 .

Lemma B.0.3. Cauchy-Schwarz inequality - continuous version Let Ω ⊂ Rn

be an open subset. Let f : Ω→ F and g : Ω→ F be measurable functions satisfying
conditions

´
Ω
|f(xxx)|2dxxx <∞ and

´
Ω
|g(xxx)|2dxxx <∞. Then

∣∣∣∣∣∣
ˆ

Ω

f(xxx)g(xxx)dxxx

∣∣∣∣∣∣
2

≤

ˆ
Ω

|f(xxx)|2dxxx

ˆ
Ω

|g(xxx)|2dxxx


Lemma B.0.4. Hölder inequality - discrete version Consider n ∈ N∪{∞}, p ∈
(1,∞) and q such that 1

p + 1
q = 1. Assume {aj}nj=1 and {bj}nj=1 are sequences
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satisfying conditions
∑n
j=1 |aj |p <∞ and

∑n
j=1 |aj |q <∞. Then∣∣∣∣∣∣

n∑
j=1

ajbj

∣∣∣∣∣∣ ≤
 n∑
j=1

|aj |p
 1

p
 n∑
j=1

|bj |q
 1

q

.

Lemma B.0.5. Hölder inequality - continuous version Let Ω be an open subset
of Rn. Assume p ∈ (1,∞) and q such that 1

p + 1
q = 1. Moreover, let f : Ω→ F and

g : Ω → F be measurable functions satisfying conditions
´

Ω
|f(xxx)|pdxxx < ∞ and´

Ω
|g(xxx)|qdxxx <∞. Then

ˆ

Ω

|f(xxx)g(xxx)|dxxx ≤

ˆ
Ω

|f(xxx)|pdxxx

 1
p
ˆ

Ω

|g(xxx)|qdxxx

 1
q

.

Remark B.0.1. Cauchy-Schwarz inequality is a special case of Hölder inequality,
where p = q = 2.

Lemma B.0.6. Young inequality Assume a, b ∈ R+
0 , p ∈ (1,∞) and q such that

1
p + 1

q = 1. Then

ab ≤ ap

p
+
bq

q
.

Lemma B.0.7. ε-Young inequality. Assume a, b, p, q as in B.0.6. Furthermore,
assume ε ∈ R+

0 . Then
ab ≤ εap + Cεb

q,

where Cε = (εp)−q/p

q .

The following class of inequalities is based on the studies of Grönwal [32] and
are of critical importance in process of studying various types of equations.

Lemma B.0.8. Grönwall inequality - original version Let u : [α, α+ h]→ R
be a continuous function which satis�es

0 ≤ u(t) ≤
tˆ

α

[a+ bu(s)] ds, for t ∈ [α, α+ h] ,

where a, b are nonnegative constants. Then

u(t) ≤ ahebh for t ∈ [α, α+ h] .
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Lemma B.0.9. Grönwall inequality - discrete version Let q > 0 be a real
number and {ai}ni=1, {bi}ni=1 be two sequences of real nonnegative numbers, where
n ∈ N ∪ {∞}. If

an ≤ bn +

n−1∑
j=1

qaj , for all n,

then

an ≤ bn + enq
n−1∑
j=1

qbj , for all n.

Lemma B.0.10. Grönwall inequality - continuous version Let u(t), a(t) and
b(t) be continuous functions from I = [α, β] to F. Moreover, let b(t) be nonnegative
in I and a(t) be nondecreasing in I . If

u(t) ≤ a(t) +

tˆ

α

b(s)u(s)ds, t ∈ I,

then
u(t) ≤ a(t)e

´ t
α
b(s)ds, t ∈ I.

Lemma B.0.11. Nečas inequality [65] Let Γ be a Lipschitz continuous boundary
of Ω. Then for all u ∈ H1(Ω), 0 < ε < ε0 holds

‖u‖2Γ ≤ ε ‖∇u‖
2

+ C(ε) ‖u‖2 .

Lemma B.0.12. Triangle inequality Let a and b be elements of a vector spaceX .
Then

‖a+ b‖X ≤ ‖a‖X + ‖b‖X
Lemma B.0.13. Abel’s summation rule Let {ai}ni=0 , n ≥ 1 be a sequence of real
numbers. Then

2

n∑
i=1

(ai − ai−1)ai = a2
n − a2

0 +

n∑
i=1

(ai − ai−1)2.

If two sequences {wi}ni=0 and {zi}ni=0 are condidered, then a similar equality rule
holds

n∑
i=1

(zi − zi−1)wi = znwn − z0w0 +

n∑
i=1

(wi − wi−1)zi−1.

This rule is often refered to as the summation by parts formula or discrete per-partes
formula.
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Appendix C

Functional analysis

De�nition C.0.1. (Scalar product.) Suppose X is a vector space over the complex
numbers. A scalar product on X is a mapping (., .)X : X × X → C ful�lling
following criteria:

1. if a ∈ X then (a, a)X = 0 i� a = 0,

2. ∀a, b ∈ X holds (a, b)X = (b, a)X ,

3. ∀a, b, c ∈ X and α, β ∈ C holds

(αa+ βb, c)X = α (a, c)X + β (b, c)X

The norm associated with space X and scalar product (., .)X is de�ned as

‖Φ‖X =
√

(Φ,Φ)X , ∀Φ ∈ X.

This norm naturally satis�es the usual triangle inequality (B.0.12).

De�nition C.0.2. (Hilbert space.) LetX be a vector space equipped with the scalar
product (., .)X . If X is complete with respect to the norm ‖.‖X , then X is called a
Hilbert space.

Example 13. Avery basic example of a Hilbert space is the space of square-integrable
functions on an open domain Ω ⊂ R3, denoted by L2(Ω). The scalar product is then
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de�ned as

(φ, ψ)L2(Ω) =

ˆ
Ω

φψdΩ

The subscript L2(Ω) is often omitted for both norm and scalar product.

De�nition C.0.3. (Convergent sequence.) A sequence {ui}∞i=1 is said to be conver-
gent to an element u of a normed space X if

lim
i→∞

‖u− ui‖X = 0.

This type of convergence is usually denoted as ui → u and is often called strong
convergence or convergence in norm. This happens when it is necessary to distin-
guish between strong and weak convergence. A sequence {vi}∞i=1 is said to converge
weakly to the element v ∈ X if

(vi,Φ)X → (v,Φ)X , ∀Φ ∈ X∗,

which is in standard notation depicted as vi ⇀ v.

The de�nition of weak convergence is important because, unfortunately, in
general bounded sets in Hilbert spaces do not contain convergent subsequences.
This only holds true if talking about weak convergence.

De�nition C.0.4. (Linear operator.) A mapping A between two Hilbert spaces X
and Y is often called an operator. An operator A : X → Y is labeled linear if

A(αa+ βb) = αA(a) + βA(b),

where a, b ∈ X and α, β ∈ C.

(Bounded operator.) An operator A is bounded if a constant C exists such that

‖A(Φ)‖Y ≤ C ‖Φ‖X , ∀Φ ∈ X.

Note that if it is clear which symbol stands for an operator and which for an element
of a space, the notation A(u) is abbreviated to Au.

Lemma C.0.1. A linear operator is bounded if and only if it is continuous.

De�nition C.0.5. The norm (often marked as natural norm) of a bounded linear
operator A : X → Y is de�ned as follows

‖A‖X→Y = sup
u6=0,u∈X

‖A(u)‖Y
‖u‖X

.
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De�nition C.0.6. (Adjoint operator.) Suppose A : X → Y is an operator between
two Hilbert spaces, which is linear and bounded. A unique operator A∗ : Y → X ,
which is called the adjoint operator exists, such that

(Ax, y)Y = (x,A∗y)X , ∀x ∈ X, y ∈ Y.

Moreover, this operator is unique.

De�nition C.0.7. (Dual space.) Let X be a Banach space. The dual space X ′ is
the space consisting of linear and bounded functionals de�ned onX . f ∈ X ′ means
f : X → C is a linear and bounded operator (functional) mapping elements from
the space X to C. For every f ∈ X ′, its norm is de�ned as

‖f‖X′ = sup
x∈X,x 6=0

|f(x)|
‖x‖X

.

(Dual pairing) 〈g, u〉X is de�ned by

〈g, u〉X = g(u), ∀u ∈ X, g ∈ X ′.

De�nition C.0.8. (Dual operator.) The operator AT : Y ′ → X ′ is called dual
operator, where X ′ and Y ′ are the dual spaces to X and Y , respectively, when

〈Ax, y〉Y =
〈
x,AT y

〉
X
, ∀x ∈ X, y ∈ Y ′.

RemarkC.0.1. Note that the terms dual and adjoint operator stand for two separate
de�nitions. Even though they are very often denoted by the same symbol ∗.

Theorem C.0.1. Hahn-Banach theorem. Let f be a continuous linear functional
de�ned on a linear subset M ⊂ X , where X is a normed linear space. Then there
exists a continuous linear functional f̃ de�ned on X such that

f(u) = f̃(u) ∀u ∈M

and ∥∥∥f̃∥∥∥
X′

= sup
x∈X,‖x‖X≤1

〈
f̃ , x

〉
= sup
x∈M,‖x‖X≤1

〈f, x〉 = ‖f‖M ′ .

Theorem C.0.2. . Riesz’ representation theorem. Suppose X is a Hilbert space.
For every f ∈ X ′ a unique u ∈ X exists, such that

(u, v)X = f(v), ∀v ∈ X.

Moreover, ‖u‖X = ‖f‖X′
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De�nition C.0.9. (Bilinear form.) A mapping a(., .) : X × X → C is called a
bilinear form on X if

a(α1u1 + α2u2, v) = α1a(u1, v) + α2a(u2, v), ∀u1, u2, v ∈ X,α1, α2 ∈ C,

and

a(u, β1v1 + β2v2) = β1a(u, v1) + β2a(u, v2), ∀u, v1, v2 ∈ X,β1, β2 ∈ C

A bilinear form is said to be

• symmetric if a(u, v) = a(v, u) for all u, v ∈ X

• elliptic if ∃Cm > 0 : Cm ‖u‖2X ≤ a(u, u), ∀u ∈ X

• bounded if ∃CM > 0 : |a(u, v)| ≤ CM ‖u‖X ‖v‖X , ∀u, v ∈ X

Theorem C.0.3. Lax-Milgram lemma. Let a(., .) be a elliptic, and continuous
bilinear form on a Hilbert spaceX . Moreover, let f ∈ X ′. Then there exists a unique
weak solution to the variational formulation given by

a(u, v) = f(v), ∀v ∈ X,

and it holds true that
‖x‖X ≤

1

Cm
‖f‖X′ .
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