
Implementation and evaluation of a simulator
and debugger for physical computing

environments
Tom Neutens

UGent - Electronics and Information
Systems - IDLab - imec
Ghent, Oost-Vlaanderen
Tom.Neutens@UGent.be

Juta Staes
UGent - Electronics and Information

Systems - IDLab - imec
Ghent, Oost-Vlaanderen
Juta.Staes@UGent.be

Francis wyffels
UGent - Electronics and Information

Systems - IDLab - imec
Ghent, Oost-Vlaanderen
Francis.wyffels@UGent.be

ABSTRACT
In this poster abstract we present the design and evaluation of a sim-
ulation and debugging environment for a graphical programming
interface. The environment is designed to be used within a phys-
ical computing context enabling users to detect errors faster and
more efficiently. Finally, we evaluate its effect on learning progress
and show a slight difference in the learning curve when learning
programming with or without the debugger.

CCS CONCEPTS
•Computer and Information Science Education→Computer
science education;

KEYWORDS
computer science education, physical computing, debugging, simu-
lation, robotics, STEM education
ACM Reference format:
Tom Neutens, Juta Staes, and Francis wyffels. 2017. Implementation and
evaluation of a simulator and debugger for physical computing environ-
ments. In Proceedings of ACM Woodstock conference, Nijmegen, Netherlands,
November 2017 (WiPSCE ’17), 2 pages.
https://doi.org/10.1145/3137065.3137089

1 INTRODUCTION
Graphical programming environments like Scratch and Google
Blockly are fast becoming a key instrument in teaching children
how to program. For novice programmers, these graphical environ-
ments have multiple advantages over textual programming envi-
ronments. They are more intuitive [7, 9], leave users with a higher
feeling of satisfaction [3], facilitate the understanding of more ad-
vanced computer science topics and strengthen the learner’s mo-
tivation and self-efficacy [2]. However, the main disadvantage of
these graphical tools is that they do not provide any mechanisms
for finding mistakes. To fix their code, learners use techniques like:
reading through their script, experimenting with their script, trying
to rewrite the script or finding an example that works [4]. As any

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiPSCE ’17, November 2017, Nijmegen, Netherlands
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5428-8/17/11.
https://doi.org/10.1145/3137065.3137089

programmer knows, finding errors using these techniques can be
difficult. Therefore, professional programming environments pro-
vide multiple debugging tools which expedite the error correction
process. However, these tools are designed to be used by profes-
sional programmers and might be too complex for young beginner
programmers.

Traditionally, debugging is learned as a complementary skill
during the process of learning how to program. However, debugging
is difficult to master, therefore, it is necessary to teach children
how to debug their programs. Early research into the debugging
process [5] suggests it has the following steps: (1) Comparing the
program behaviour with the desired behaviour. (2) Identifying the
difference between the observed and desired behaviour. (3) Locating
the source of the error. (4) Correcting the error. Of these four steps,
locating the error has been shown to be the most difficult part of
the process [8]. Consequently, facilitating bug location might help
novice programmers during their early learning process.

In this paper, the design and evaluation of a debugging and
simulation environment for Dwenguino (an Arduino compatible
microcontroller platform) is discussed. We first provide an overview
of the design criteria for the debugger and simulator, afterwards we
give an overview of the setting in which the simulator was tested
and finally we evaluate if the simulator helped the students during
the learning process.

2 DEBUGGER DESIGN
Currently, many sophisticated debugging environments are used
by professional programmers. However, the complexity of these
systems might be bewildering for novice programmers. Therefore,
we chose to implement the debugging environment based on the
following principles [6, 11]: (1) Favoring low floor over high ceil-
ing, namely, keeping the barrier to entry low over the inclusion of
sophisticated possibilities. (2) Selecting the right level of abstrac-
tion for the target learners, specifically, novice programmers in the
two final years of primary school. (3) Visualize ongoing execution
and computation result. Additionally, we want the learners to be
more motivated when using our environment. Therefore, we im-
plemented our debugger within a physical computing context [1].
Since on-hardware debugging is often challenging, we chose to
provide a simulator alongside the debugger so children can easily
check the behaviour of their program.

We kept the barrier to entry for the debugger low by limiting
its functionality. Similar to [10], we provide learners with a simple
step button which lets the users execute their program block by

https://doi.org/10.1145/3137065.3137089
https://doi.org/10.1145/3137065.3137089


WiPSCE ’17, November 2017, Nijmegen, Netherlands T. Neutens et. al.

block. However, we decided not to implement the breakpoint block
since we did not want to mix programming code with debugger
usage. Additionally, the principle of breakpoints might be difficult
to understand by novice programmers. Therefore, we chose to
implement a pause button and provide the ability to playback their
program at slower speeds. This enables them to stop the program
close to the area where they assume the bug is located.

By providing the learners with a simulator that implements two
predefined scenario’s, we hide the complexity of the Dwenguino
microntroller board. This is preferable since an infinite amount of
robots can be built using this board. Providing the learners with
this set of robot abstractions facilitates the learning process. Both
scenarios include a two-wheeled riding robot. In the first scenario,
the robot has an infinite field of movement. In the second scenario
the movement of the robot is restricted by four surrounding walls,
the distance to these walls can be determined using a sonar sensor
mounted on the robot. Additional to these scenarios, the interface
includes a simulation of the microcontroller board’s basic function-
ality. This includes: 9 LEDs, 5 I/O-microswitches, 1 reset button, an
LCD and a buzzer.

For both scenarios, a visual representation of the robot is shown
on screen enabling learners to see the behaviour of their program.
Stepping through their program lets the children incrementally
analyze the behaviour of their program facilitating the error lo-
cation process. Additionally, the visual simulation speeds up the
debugging process since it takes less time than uploading the code
to the microcontroller and running it in the real world1.

3 EXPERIMENTAL SETUP
To evaluate the debugger we performed an experiment in four
classes of the last two years of primary school totalling 74 par-
ticipants (n = 74). The classes were from two different primary
schools, in each school, one class of the second to last year and
one class of the last year were included in the experiments. None
of the children had any programming experience. Consequently,
before the experimental workshop, all children participated in a
basic programming workshop. In this workshop, the learners used
our graphical programming environment to perform several basic
operations on the physical microcontroller board. The participants
were separated into an experimental (n = 33) and control group
(n = 41). The control group did not have access to the debugger
and simulator while the experimental group did, both groups did
have access to the physical hardware. During the first workshop,
the control group executed their programs directly on the micro-
contoller while the experimental group was encouraged to use the
debugger by telling them to test their program in the simulator
before running it on the real hardware.

During the second workshop, both control and experimental
group had to solve the same problems. To evaluate the effect of the
debugger, children participating in the second workshop took a pre-
and post-test. This test evaluated the learners’ programming ability.
Children are presented with a set of multiple choice questions that
show a program and ask how the program behaves.

1Source code and executables are available at: https://github.com/dwengovzw/
Blockly-for-Dwenguino

4 RESULTS AND DISCUSSION
Evaluating the pretest results shows that, on average, the experi-
mental group scored lower than the control group. This could be a
result of the extra information about the debugger those learners
had to process. However, when comparing the average test scores
on the post test the experimental group scores higher. This indi-
cates that learners using the debugger have more difficulties at the
beginning of the learning process but catch up with the control
group after figuring out how to effectively use the debugger. Al-
though promising, these results are not statistically significant with
an α = 0.09 when comparing the learning progress of both groups.
However, they encourage further investigation into the topic of
debugging environments for children.

REFERENCES
[1] Mikko Apiola, Matti Lattu, and Tomi A Pasanen. 2010. Creativity and intrin-

sic motivation in computer science education: experimenting with robots. In
Proceedings of the fifteenth annual conference on Innovation and technology in
computer science education. ACM, 199–203.

[2] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
scratch to "real" programming. ACM Transactions on Computing Education (TOCE)
14, 4 (2015), 25.

[3] Tracey Booth and Simone Stumpf. 2013. End-user experiences of visual and
textual programming environments for Arduino. In International Symposium on
End User Development. Springer, 25–39.

[4] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada. 1–25.

[5] Sharon McCoy Carver and David Klahr. 1986. Assessing children’s LOGO debug-
ging skills with a formal model. Journal of educational computing research 2, 4
(1986), 487–525.

[6] Sayamindu Dasgupta, ShaneMClements, Abdulrahman Y Idlbi, ChrisWillis-Ford,
and Mitchel Resnick. 2015. Extending Scratch: New pathways into program-
ming. In Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. IEEE, 165–169.

[7] Hiromichi Endoh and Jiro Tanaka. 1998. Integrating data/program structure and
their visual expressions in the visual programming system. In Computer Human
Interaction, 1998. Proceedings. 3rd Asia Pacific. IEEE, 453–458.

[8] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93–116.

[9] IA Neag, DF Tyler, and WS Kurtz. 2001. Visual programming versus textual
programming in automatic testing and diagnosis. In AUTOTESTCON Proceedings,
2001. IEEE Systems Readiness Technology Conference. IEEE, 658–671.

[10] William Robinson. 2016. From Scratch to Patch: Easing the Blocks-Text Transi-
tion. In Proceedings of the 11th Workshop in Primary and Secondary Computing
Education. ACM, 96–99.

[11] Ian Utting, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick.
2010. Alice, greenfoot, and scratch–a discussion. ACM Transactions on Computing
Education (TOCE) 10, 4 (2010), 17.

https://github.com/dwengovzw/Blockly-for-Dwenguino
https://github.com/dwengovzw/Blockly-for-Dwenguino

	Abstract
	1 Introduction
	2 Debugger design
	3 Experimental setup
	4 Results and discussion
	References

