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Abstract 

Among the potential roadmaps towards sustainable production, the emerging energy-cost-aware production scheduling philosophy is considered 
as one promising direction. Therein, sustainability objectives, e.g., minimization of energy consumption/cost of production processes and 
stabilization of the electricity grid, can be achieved by manufacturing enterprises in a low-cost manner. However, these sustainability goals should 
be integrated with conventional production constraints besides the due date, e.g., reasonable labor cost based on work shifts, no production at 
weekends, and changeovers for different product types. This paper formulates a mixed-integer linear programming model for energy- and labor-
cost-aware production scheduling at the unit process level, considering all the aforementioned constraints. A state-based energy model is used to 
reveal the energy consumption behavior of a process over time. It thus enables fine-grained energy-aware production scheduling. A case study is 
conducted for a blow molding process in a Belgian plastic bottle manufacturer. The measured power data enables to build an empirical energy 
model. The production scheduling is performed under real-time electricity pricing data. As a result, production loads are automatically shifted to 
the optimal periods. The optimal idle mode is automatically selected between production loads (powering off, idle, etc.). A schedule of joint 
energy cost and labor cost minimization is demonstrated to reduce 12% and 5% of total cost, compared to schedules that minimize energy and 
labor cost, respectively. In conclusion, although the labor wage is usually higher during periods with lower electricity price, energy and labor 
costs can be jointly optimized as a single objective to help factories minimize the production expenditure. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 24th CIRP Conference on Life Cycle Engineering. 
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1. Introduction 

Factories of the future (FoF) are widely considered as a key 
economic driver for a society. This is demonstrated by various 
national programs to re-boost manufacturing [1], e.g., the 
German industry 4.0 and Industrial Internet in the USA. At 
European level, FoF are also promoted as public private 
partnership in research [2]. Among the various aspects of FoF, 
sustainable manufacturing increases the added value of 
products by creating sustainable value in manufacturing, while 
balancing economic, environmental and social impacts [3].  

During recent years, energy-cost-aware production 
scheduling is emerging as a promising roadmap towards 
sustainable manufacturing. In the hierarchy of a manufacturing 
enterprise, production scheduling stays at the low level on a 

shop floor [4] and assigns production jobs for fine-grained 
machine control to reach the desired production targets.  

The early proposition of this idea is found in [5], where the 
authors pointed out that a significant amount of energy savings 
can be achieved, if non-bottleneck/underutilized machines are 
turned off, when they are idle for a certain amount of time. 
Several job dispatching rules are defined for the machine 
controller to realize this idea. The authors further integrated 
maintenance planning into the single machine production 
planning model [6]. Numerical analyses showed that enforcing 
more maintenance actions into a production plan decreases the 
energy cost of a machine, which increases the sensitivity of 
processing times to machine health status. However, besides the 
simple job dispatching rules, the authors did not propose any 
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method to schedule all jobs in advance, nor did they explicitly 
link energy consumption to energy cost via energy price. 

As further progress, Shrouf et al. [7] considered the volatile 
electricity price, and formulated an integer programming model 
to schedule jobs by shifting production loads to low-priced 
periods, without sequencing the jobs. Evidently, a lack of job 
sequencing capability does not enable a full exploitation of the 
energy cost saving potential. In their further work [8], they gave 
some hints on getting energy data on the shop floor by Internet-
of-Things (IoT) technologies (e.g., smart meters and sensors). 
Nevertheless, they did not provide any details on how to 
associate energy data to the energy and scheduling model. 

The aforementioned gaps were filled by Gong et al. [9]. 
Finite state machines (FSMs, or automata) were used to build 
an energy model based on empirical power measurements. This 
energy model can then estimate the power consumption of a 
machine at the power state level, which is sufficiently fine-
grained for production scheduling. Job sequencing was 
introduced. The effectiveness of whole energy modeling and 
scheduling method was validated on a surface grinding process, 
and was further demonstrated with various electricity price data 
in [4]. Numerical analyses showed that prolongation of 
production time span contributes to a higher energy cost saving 
ratio. In their further work [10], a rescheduling heuristic was 
proposed to handle stochastic events while still keeping the 
schedule energy-cost-effective. An average energy cost saving 
ratio between 6% and 19% was demonstrated achieved by using 
the energy-cost-aware single-machine scheduling approach. 

More recent work is seen in academia, pushing forward the 
boundary of energy-cost-aware production scheduling. Liu et 
al. [11] proposed a scheduling method for a classical job shop 
environment, instead of a single machine. Bi-objective 
optimization was deployed to minimize energy consumption 
and total tardiness. Yan et al. [12] devised a multi-level 
optimization approach for energy-efficient flexible flow shop 
scheduling. Synergistic energy savings were facilitated by 
enabling cutting parameters optimization at the machine tool 
level and energy-aware scheduling at the shop floor level. 
Zhang et al. [12] even proposed a general concept for energy-
cost-aware scheduling of multiple factories under real-time 
electricity pricing. They also investigated in [13] an energy-
conscious flow shop scheduling problem, where CO2 emissions 
from different electricity sources (natural gas and coal) are 
incorporated into the scheduling model. They concluded that 
shifting production loads from on-peak hours to mid-peak hours 
or off-peak hours can reduce the electricity cost by 6.9%, 
though this may increase CO2 emissions in some regions that 
use gas-fired power plants to meet peak power demands. 

Recent relevant literature is also found from industry. 
Merkert et al. [14] surveyed the available energy-cost-aware 
production scheduling methods, with a set of real industrial case 
studies. Hadera et al. [15] considered a steel production 
scheduling case, where various electricity sources are 
purchased in a factory, i.e., electricity markets, ToUP (time-of-
use pricing), base load contract, and onsite generation. The 
possibility of offloading surplus power back to the grid was also 
included. Harjunkoski [16] described the scheduling problem 
from the industrial perspective. A set of trends affecting 
scheduling are listed, e.g., IoT, big data, smart grids/renewable 

energy, unmanned sites, and service. Weinert et al. [17] used an 
agent-based approach for peak load management of multiple 
machines. Peak loads are avoided by shifting production loads 
under the volatile electricity price. The system run in test mode 
in a transformer factory showed good results of limiting the 
overall load under a defined threshold, while the process 
execution time tended to be prolonged. 

Despite of the vast amount of emerging work on energy-
cost-aware production scheduling, the labor cost is seldom 
integrated with the energy cost, although it is a conventional 
and fundamental factor for production management. Generally, 
a crucial aspect, which would be a long-term obstacle for the 
progress of production scheduling, is that current scheduling 
models rely on more or less simplified assumptions. This is 
often caused by missing knowledge of a production 
environment and/or a lack of empirical data (e.g., actual power 
consumption). The labor aspect falls in this situation. 

As pricing follows the general market rule of supply and 
demand, labor cost will be expensive when the supply is low 
(e.g., at weekends labor cost can be 20 to 50% higher than on 
weekdays). Labor cost hence follows the opposite trend of 
energy cost. The latter is higher in periods of peak demands, 
i.e., weekly business hours. As such, taking into account labor 
costs could reduce the energy cost saving potential of energy-
aware production planning and scheduling, since shifting to 
low-cost energy hours implies a higher labor cost. 

To this end, this paper integrates the consideration of energy- 
and labor-cost-awareness into single-machine production 
scheduling, and analyzes through a case study its performance, 
in terms of energy cost and labor cost. 

2. Model formulation 

The production scheduling problem is to automatically 
assign the sequence ( ) and start time ( iSTJ ) of JN  jobs, as 
well as the machine power states ( s , including the states for an 
optimal idle mode between two jobs) at the level of a discrete 
manufacturing machine, under volatile electricity pricing, 
without breaking the due date ( DT ) and the labor working 
rule, i.e., no production at weekends. The scheduling is based 
on single-objective optimization, namely cost minimization, 
including energy cost ( EC ) and labor cost ( LC ). 

One job contains one single product type, while different 
jobs contain different product types. Then, this requires that a 
machine changeover for each job needs to be inserted into the 
schedule. The electricity price ( EP ) varies with time slots      
( D ), but stays constant within each D . The energy 
consumption calculation is at power state level. There are SH  
shift types ( sh SH ) within one day. The wage per shift      
( pt

shW ) varies with sh and personnel type ( PT ). PT varies 
with s , which are linked to machine operations.  

2.1. Objective 

Three objective functions are formulated by Eqs. (1-3), i.e., 
minimization of joint EC and LC (schedule1), minimization of
EC (schedule2), and minimization of LC (schedule3), 
respectively. The major variables for optimization are s ,  , 
and ( 1,2,..., )i JSTJ i N . For the joint optimization in      
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Eq. (1), it is clear that the relative percentage of both types of 
costs is variant and can impact the overall scheduling outcome. 
Energy cost, for example, can make up less than 10% of overall 
production cost in automotive manufacturing industries, but 
also up to 70% in industrial gas production [18]. 

, ,min ( )
is STJ EC LC    (1) 

, ,min ( )
is STJ EC    (2) 

, ,min ( )
is STJ LC    (3)  

Evolutionary algorithms (EAs) have been used to 
successfully solve energy-aware single-objective production 
scheduling problems.  They are illustrated as (1) genetic 
algorithm [9], where the objective is to minimize energy cost 
for producing a set of jobs on a unit process; (2) particle swarm 
optimization [19], where the objective of minimizing energy 
consumption and energy cost of a line of manufacturing 
machines is investigated, respectively; (3) ant colony 
optimization [20],  integrated with two local search strategies 
to minimize the weighted energy consumption and total 
tardiness of parallel machines. 

2.2. Energy cost (EC) constraints 

The calculation of EC is indicated by Eq. (4). It consists of 
three subparts: energy cost for processing jobs ( iCJ ), energy 
cost for performing changeovers ( iCC ), and energy cost for 
keeping a machine in an idle mode between two jobs ( iCI ).  

1

1 1
( )J JN N

i i ii i
EC CJ CC CI   (4) 

Eqs. (5-7) provide detailed methods to calculate the three 
subparts, respectively. In principle, the calculation is based on 
time slot ( ts ), which is the smallest scheduling time granule. 
A standby mode enables a machine to keep its power 
consumption at a level lower than that of production, but higher 
than zero (without powering off). Next to this, an idle mode is 
defined. It includes the possibility for a machine to stay in a 
standby mode and to be completely powered off. 

i i

i i

ETSJ ETJ t
i ts ts pts STSJ t STJ

CJ EP P t                         (5)  

i i

i i C

ETSC ETC t
i ts ts sts STSC t STC s S

CC EP P t           (6) 

1 1

1 1

, 1, 2, ,

, 1

0, 2

i i

i i i

i i

i i o

STSJ STJ t
i ts ts s i Sts ETSC t ETC s S

STSJ STJ t
ts ts s i Sts ETSC t ETC s S

i S

CI EP P t N

EP P t N

N

               (7)   

In Eq. (6), cS is the set of power states ( s ) involved in a 
changeover. In Eq. (7), i  is the machine idle mode indicator 
for the ith job. iS is the set of s for switching to, staying at, 
and recovering from the i th idle mode of a machine                    

( 1,2, ,i SN ). oS  is the set of s for switching to, staying 

at, and recovering from off state between jobs ( 1i SN ). 
The case where there is no idle period between two jobs (i.e., 
the next job will just follow the end of the current job) is also 
included ( 2SN ), which of course has zero electricity cost.  

 For multiple standby modes, Eq. (8) enforces there must be 
one and only one idle mode between two adjacent jobs. 

! , , , , :i S S i1 2 N 1 N 2         (8) 

Eqs. (9-10) map the current time in ts to electricity pricing 
time slots ( D ). This mapping is frequently used in Eqs. (5-7), 
since energy calculation is based on ts (fine-grained), while 
energy cost calculation is based on D (coarse-grained). In this 
model, fined-grained energy calculation is necessary to enable 
energy modeling by FSMs [9]. 

1, [ , ( 1) )
0,ts

if t ts D ts D

otherwise
           (9) 

         (10) 

2.3. Labor cost (LC) constraints 

LC  is calculated by Eq. (11), and dependent on shift ( sh ) 
type. A shift increment in hours ( sh ) is defined in Eq. (12).  

DT pt pt
sh shsh ST pt PT

LC W    (11) 

24sh SH     (12)  

Within one sh , once a personnel type ( pt ) is required by 
an involved power state ( s ), this pt  will be included in this sh

( 1pt
sh ). Otherwise, the binary personnel occupation indicator 

pt
sh  is zero. In other words, once a person is needed sometime 

in a shift, this person will work during the whole shift, 
regardless of the actual workload. Consequently, the number of 
“man-shifts” is used in this model to measure the personnel 
resources required for a production schedule, although the cost 
of a man-shift may vary a bit by pt . As FSMs enable s to make 
transitions step by step, this make FSMs fit quite well to 
determine pt

sh  over time. Readers are referred to [9] for details 
on machine energy modeling by FSMs. 

2.4. Sequence constraints 

      Job precedence constraints are made according to 
scheduling positions. Eq. (13) defines that the end time of the 
first job ( 1ETJ ) with job ID j should include job start time       
( 1STJ ), duration for starting a machine ( TSU ), and 

production duration ( 1
jDJ ). For jobs in middle positions (i.e., 

all except the first and last positions) in Eq. (14), the start time 
and production duration are accounted for. For the last job 
defined in Eq. (15), the end time should consider the start time, 
production duration, and duration for shutting down (TSD ) 
the machine from production state. Besides, a job should have 

/ , ,  - ,, ss sts t T t T T t DT t DTD
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a unique scheduling position, as required by Eq. (16). 
1

1 1 ,jETJ STJ TSU DJ j J    (13) 

, 2,3, , 1 ,i
i i j JETJ STJ DJ i N j J  (14) 

,J

J J

N
N N jETJ STJ DJ TSD j J        (15)  

! : ,i I i j j J    (16)  

      For a changeover, its duration ( iDC ) is inserted at the end 
of the ith job to get prepared for the (i+1)th job. Thus its start 
time ( iSTC ) in Eq. (17) is the end time of the ith job ( iETJ ). 
Its end time ( iETC ) defined in Eq. (18) is iSTC  plus iDC .  

, 1,2, , 1i i JSTC ETJ i N              (17)

, 1,2 , 1i i i JETC STC DC i N      (18)  

2.5. Production resource constraints 

Eqs. (19-20) require that at the end of the ith job, a selection 
of an idle mode must ensure a sufficient accommodation period 
between the end time of the current changeover ( iETC ) and the 
start time of next job ( 1iSTJ ). 

, , , :
i

i S s i 1 is S
1 2 N D STJ ETC  (19) 

,
O

s i 1 i i Ss S
D STJ ETC if N 1  (20) 

     Eqs. (21-22) define that only one job can be produced at one 
time and preemption is not allowed.  

 ,i iSTJ ETJ i I    (21) 

1, 1,2, , 1i i JETC STJ i N   (22) 

      Eq. (23) requires that a machine should only have one 
power state at a point of time. Each state has constant power. 

, , , , ,t t
s s s s ss S

P P P t T T t DT t DT  (23) 

      Eqs. (24-25) enforce that the machine should be completely 
powered off before the due date, and before the start of the 
weekend within a week. 

  0,s

J

T
s NP ETJ TSD DT          (24) 

0,t
sP t weekend        (25) 

3. Empirical site survey 

 The case study was conducted in a Belgian plastic bottle 
manufacturer. Various extrusion blow molding (EBM) 
processes were deployed on the shop floor, so as to produce 
different types of bottles at the same time. The final bottles vary 
in shape, volume, color, etc. A full lifecycle production cost 
analysis [21] showed that, labor costs thereof take up a 
significant portion of 10% of total production cost, while the 
energy cost is limited to 3%. The raw material cost occupies 
over 50%, showing up as the main cost driver of this factory. 

One of the EBM processes is taken as the application target 

of the model in Sect.2. It comprises of three major electricity 
consumers: a main system, an extruder and a hydraulic system. 
The main system has a general power demand, which drives a 
set of energy-intensive operations, e.g., cutting, mixing, 
grinding, and pushing the input materials (plastic and color 
granules, and recycled plastic chips), heating and melting. The 
extruder continuously pushes melted plastic through a die, in 
order to produce the parison. The hydraulic system consumes 
power for provisioning mechanical movement of the process: 
clamping and closing the mold and cutting the parison. 

Power measurements on this EBM process were performed 
by three Siemens® PAC 3200 power monitors on the three 
major electricity consumers. A set of eight power states were 
identified from the collected power data. The states, state 
transitions and triggering events for state transition are 
presented by FSMs in Fig. 1. The power profile of each state 
and the required personnel type are indicated in Table 1.  

When the EBM machine is manually powered on by an 
operator at 6 am on Monday, it goes through Startup state and 
stays at Idle. This is followed by transitioning to Preheat, which 
is also initiated by the operator. The plastic is heated in the 
barrel until reaching the temperature of 140 °C. The machine 
then stays at PreheatIdle and keeps the temperature until the 
operator starts the Proheat command. The temperature then 
rises to a higher level between 140 °C and 200 °C, depending 
on the type of bottles to be produced. Once the temperature 
level is achieved, the machine transitions to ProheatIdle. If the 
retention time of ProheatIdle surpasses 30 min, additional 
cooling should be activated to avoid a further rise of the 
temperature. Once the operator gives command to start the 
production, the machine transitions to Production state, starting 
to actually produce bottles according to the schedule.  

Once the current production is completed, an operator can 

Table 1. Power profile of extrusion blow molding process and required 
personnel of each power state 

State Power 
(kW) 

Duration (Sec) Required personnel (one 
person for each type) 

Off 0  0 Operator 

Startup 3.51 442 Operator 

Idle 1.19  0 Operator 

Preheat 17.52 1395 Operator 

PreheatIdle 8.15  0 Operator 

Proheat 16.95 810 Operator 

ProheatIdle 9.00  0, and  1800 
if no cooling Operator 

Production 46.35 17.92/bottle Operator, technician, packer, 
quality checker 

Fig. 1. State-based energy model of extrusion blow molding processing 

Off

End

Start Idle Preheat

PreheatIdleProheatProheatIdleProduction

StartupPowerOn Preheat 

Proheat StartProduction 
CoolDownPro 

CoolDownIdle 

PowerOff 

CoolDownPre 

CoolDownIdle 

CoolDownPre 

CoolDownIdle 
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Table 2. Time for shifts and working days 

Early shift Late shift Night shift Start of a 
week 

End of a 
week 

6 h ~ 14 h 14 h ~ 22 h 22 h ~ 6 h 6 h Monday 6 h Saturday 

 
make the EBM machine transition to Idle, PreheatIdle, or 
ProheatIdle before starting the next job. This intrinsically 
provides multiple standby modes, in terms of saving energy 
consumption and cost. Furthermore, the transition from 
Production to Off via Idle offers the possibility to stay powered 
off between two jobs. For this reason, the duration of Off, Idle, 
PreheatIdle, and ProheatIdle is arbitrary in the energy model 
(Table 1). It then depends on the scheduler to automatically 
give the optimal idle mode between jobs.  

The exact labor costs cannot be disclosed due to 
confidentiality. But all staff is paid on an hourly basis (€/h), 
where a bonus is paid for night shifts. The variation exists in a 
night shift, where a rise of 10% wage is observed, in 
comparison to the wage of an early or late shift. Table 2 shows 
the period covered by each shift, as well as the period of a 
working week. This implies the factory is closed at weekends, 
and the EBM process should be powered off before a weekend.  

A mold or color changeover is required when the machine 
produces a distinct type of bottles. As a changeover is 
conducted at ProheatIdle or PreheatIdle state, a limited 
variation is produced in power consumption. Statistically, a 
moderate variation of 22% was observed in power 
consumption of the machine. In comparison, a high variation 
of 85% was found in the changeover time. This can be 
explained by the manual labor involved, which depends on the 
person and the specific production environment during the 
changeover. The model in this paper assumes that the EBM 
machine is always shifted to ProheatIdle for a changeover over 
13309 sec, which is the average level of the collected data.  

4. Performance analysis 

The scheduling model formulated in Sect. 2 was 
implemented and optimized by a genetic algorithm [9]. The 
scheduling time span lasts two weeks, from 19 Oct. to 1 Nov. 
2015. The electricity price, which varies each hour, was taken 
from Belpex [22], the Belgian electricity spot market.  

Three optimal production schedules were obtained, by 
optimizing respectively the objective functions of Eqs. (1-3). 
The three schedules are named schedule1, schedule2, and 
schedule3. They further go through discret-event simulation 
along the scheduling time span. The simulation data of 
scheduled personnel shifts are gathered in man-shift and 
illustrated in Fig. 2. The key energy- and cost-related 
performance of the three schedules is demonstrated in Fig. 3.  

Schedule2 (Fig. 2b) requires the most total man-shifts (89), 
morning man-shifts (32), and night man-shifts (29). In 
comparison, schedule1 (Fig. 2a) needs the least total man-shifts 
(78); both schedule1 and schedule3 require the least night man-
shifts (24). This is explained by the effectiveness of the model 
and optimization as follows. 

In optimization of sole energy cost (schedule2), the GA 
search makes a progress without any awareness of shift-based 
labor cost. It schedules more night periods for production, 

during which the electricity price is low. As observed, all the 
scheduled power-off periods in schedule2 are long enough (2 h 
42 m 3 sec, 43 h 22 m 10 sec, and 9 h 20 m 51 sec) to skip some 
high-priced periods where the electricity price varies each hour. 
But this in turn incurs not only more night shifts, but also more 
early shifts, because a changeover and other machine idling-
related state transitions need to follow an accomplished job, 
which may expand the work period from a night shift to a new 
morning shift. As a result, schedule2 achieves the lowest 
electricity cost (284 €, Fig. 3a) by performing the highest 
number of power-off between jobs (3, Fig. 3d), while it causes 
the most expensive labor cost (Fig. 3b) and total cost.  

In the optimization process to get schedule1 and schedule3, 
the GA search advances in a direction of the solution space, 
such that the work periods are compressed in a number of shifts 
which is as small as possible. The number of night man-shifts 
is minimized (24, Fig. 2ac), so as to reduce the labor cost over 

 
       (a)                              (b)                            (c) 
Fig. 2. Optimal personnel planning per shift under three different 
optimization objectives. Subfigure (a), (b) & (c) corresponds to 
minimization of joint energy and labor cost, minimization of energy cost, 
and minimization of labor cost, respectively. 

 
Fig. 3. Simulation results of optimal schedule by three different 
objectives. Objectives1-3 are minimization of joint energy and labor cost, 
minimization of energy cost, and minimization of labor cost, respectively. 
Subfigure (a): energy cost. Subfigure (b): labor cost. Subfigure (c): 
energy consumption. Subfigure (d): number of idle mode (Four possible 
idle modes are available, i.e., Off, Idle, PreheatIdle and ProheatIdle, for 
optimal selection of an idle mode between jobs. If there is no actual bar 
for an idle mode, it means this mode is never selected in a schedule). 
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the night as this is more expensive. This links back to the 
relative weight both types of costs have in the total production 
cost (10% and 3% for labor and energy costs, respectively): in 
this specific case study, the portion of the labor cost is 
significantly higher than the energy part, hence titling the 
scheduling engine to favor a lower number of man-shifts over 
a lower overall energy cost. 

Since there is no energy-cost-awareness in schedule3, no 
machine power-off is scheduled (Fig. 3d), and only the idle 
mode of staying ProheatIdle is scheduled twice during a very 
short period of 27 m 30 sec and 23 m 31 sec, respectively, 
which is not effective to skip high-priced periods. 
Consequently, the energy cost of schedule3 is the highest             
(556 €, Fig. 3a), while the labor cost is moderate (Fig. 3b).  

Schedule1 is considered the best for two reasons. First, it has 
the least man-shifts (78), and least total energy and labor cost, 
which is 12% and 5% lower than schedule2 and schedule3, 
respectively. Second, its performance indicators in energy cost 
(307 €, Fig. 3a), energy consumption (6456 kWh, Fig. 3c), and 
optimal selection of idle mode (2 power-off modes and 2 
ProheatIdle modes, Fig. 3d) are all moderate, without any 
obvious gap compared to the other two schedules. This implies 
that the integration of energy- and labor-cost-awareness is 
effective in both energy and labor performance, without greatly 
jeopardizing either of the two aspects. 

Another observation is the more or less equal energy 
consumption of the three schedules (Fig. 3c). This is explained 
by the equal number of jobs and total bottles to be produced. 
Although the number and type of selected idle mode vary in 
schedules, the energy consumption for the state transition 
between the Production state and an idle mode is minor, in 
terms of both power and state retention time (Table 1).  

Last but not the least, although this paper focuses on single-
machine scheduling, the proposed scheduling method is still 
nontrivial, as it can be simultaneously applied to multiple 
single machines. For instance, the factory under investigation 
has 17 EBM machines in total, which evidently amplifies the 
cost saving potential of this scheduling approach. 

5. Conclusion  

Aiming at enhancing the economic and environmental 
impact of manufacturing processes, this paper formulated a 
single-machine production scheduling model that considers 
energy and labor cost involved in production on the shop floor. 
Compared to the existing energy-aware production scheduling 
models, the proposed model takes into account machine 
changeovers for producing distinct product types, as well as the 
labor aspect which regroups the scheduling time horizon into 
work shifts and makes the labor cost also changing over time.  

The question that this paper addresses is: which economic 
influence will be brought by incorporating the labor into the 
energy-aware production scheduling model? A case study was 
performed at an extrusion blow molding process of a Belgian 
plastic bottle manufacturer. Empirical power measurements, 
on-site survey and the Belgian electricity spot market provide 
rich and real data to this novel scheduling model. Numerical 
analyses show that although incorporation of labor increases 
the energy cost by 9%, it reduces the joint energy and labor cost 

by 12%. The absolute joint cost is reduced significantly, as the 
energy cost takes up only around 3% of the total in the case 
studied. In conclusion, energy and labor cost can be jointly 
optimized in production scheduling. 
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