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We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional
quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent
variational principle to the variational manifold of continuous matrix product states. This allows for a full
quantum description of many body system —including entanglement and correlations— and thus extends
significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known
to fail for (quasi) one-dimensional systems. By linearizing around a stationary solution, we furthermore
derive an associated generalization of the Bogoliubov – de Gennes equations. This framework is applied
to compute the steady state response amplitude to a periodic perturbation of the potential.

In 1961, Gross and Pitaevskii developed the mean-field
theory description of cold Bose gasses[1–3], which re-
sulted in the ubiquitous Gross-Pitaevskii equation (GPE)

i
∂φ(x, t)

∂t
= (−∆+v(x))φ(x, t)+2g|φ(x, t)|2φ(x, t),

where φ(x, t) is the order parameter of the Bose-Einstein
condensate in a trapping potential v(x). Ever since, this
equation constitutes the cornerstone for the theoretical de-
scription of cold atomic gasses [4–6]. Its success can be
explained by the fact that the GPE agrees with the full
quantum solution for the three-dimensional problem in the
weak-density limit, which corresponds with the typical ex-
perimental setup of trapped dilute gasses (see Ref. 7 and
references therein). By linearizing around stationary solu-
tions of the GPE, one obtains the Bogoliubov – de Gennes
equations (BdGE), which describe small scale excitations
on top of the background state and can be used to compute
linear response to perturbations.

The GPE without trapping potential [v(x) = 0] is also
known as the nonlinear Schrödinger equation and appears
in several areas of theoretical physics as it offers a canon-
ical description for slowly varying, quasi-monochromatic
wave packets in dispersive, weakly nonlinear media [8, 9].
As such, it has also stimulated an abundance of mathemat-
ical research towards showing the stability of its (solitary
wave) solutions [10–12], as well as towards the develop-
ment of numerical integrators [13–17].

In the case of one spatial dimension [18, 19], as re-
alized in highly elongated traps [20–24], both the GPE
[25] and the full quantum mechanical problem known as
the Lieb-Liniger model [26–28] are integrable for con-
stant potential, but the respective solutions do not agree.
One-dimensional Bose gasses have no condensation (only
quasi long-range order) [29], show quasi-fermionic behav-
ior [30–33] and have excitations which cannot be predicted
from Bogoliubov’s theory [27, 34]. This behavior has no
classical counterpart and is dominated by quantum corre-
lations. This paper develops a generalization of the one-
dimensional GPE and the BdGE, where quantum correla-

tions are taken into account. They are formulated in terms
of non-commuting matrices and —following the typical
nomenclature of integrable systems— are referred to as the
quantum Gross-Pitaevskii equation (QGPE) and quantum
Bogoliubov – de Gennes equations (QBdGE). We apply the
latter to compute linear response behaviour in the density
profile when a periodic perturbation to the potential is ap-
plied.

The normal GPE can be derived by applying the Dirac-
Frenkel time-dependent variational principle (TDVP) [35–
37] to a variational mean field ansatz |Ψ[φ]〉 in the canon-
ical [|Ψ[φ]〉 ∼ (

∫
φ(x)ψ̂†(x) dx)N |Ω〉 for N particles]

or grand-canonical [|Ψ[φ]〉 ∼ e
∫
φ(x)ψ̂†(x) dx |Ω〉] ensem-

ble, where ψ̂†(x) is the bosonic field creation operator in
second quantization and |Ω〉 is the Fock vacuum. For one-
dimensional bosonic systems, the GPE is obtained by ap-
plying this ansatz to the Lieb Liniger Hamiltonian [26]

Ĥ =

∫
dx

dψ̂†

dx
(x)

dψ̂

dx
(x) + v(x)ψ̂†(x)ψ̂(x)

+gψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (1)

The variational manifold of continuous matrix product
states (cMPS) [38–40] can be seen as a generalization of
this grand-canonical ansatz in which the variational func-
tion φ(x) is replaced by a matrix valued function R(x):

|Ψ[R,v1,v2]〉 = v†1Pe
∫ x2
x1

R(x)⊗ψ̂†(x) dx
v2 |Ω〉 . (2)

Here P denotes the path-ordered exponential and v1,2 are
D-dimensional boundary vectors. By choosing the bond
dimensions D = 1, we clearly recover the mean field
ansatz. The cMPS ansatz was conceived as a contin-
uum limit of the matrix product state (MPS) ansatz [41–
43], which underlies the highly successful density ma-
trix renormalization group [44] for the description of one-
dimensional quantum spin systems. By enlarging the re-
finement parameter D, the exact quantum state can be in-
creasingly well approximated. Indeed, the cMPS ansatz
was shown to represent both the ground state [38] and
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the two types of elementary excitations [45] of the Lieb-
Liniger model very well for moderate values of D. The
goal of this paper is to apply the TDVP formalism to the
cMPS manifold in order to derive the matrix or quantum
analogue of the GPE.

Quantum Gross-Pitaevskii Equation — For a complex
manifold, the TDVP can be understood as a replacement of
Schrödinger’s equation by

i
d

dt
|Ψ〉 = P̂ΨĤ |Ψ〉 , (3)

where PΨ is a projector onto the tangent space of the varia-
tional manifold at the point |Ψ〉. Whereas the Schrödinger
equation would immediately take an initial state away from
the variational manifold, this extra projector assures that
the evolution remains within the manifold. The QGPE
can thus be obtained by finding a time derivative ∂tR (and
∂tv1,2) such that d |Ψ[R,v1,v2]〉 /dt has the same inner
product as Ĥ |Ψ〉 with any possible tangent vector. Us-
ing the expressions of tangent vectors and overlaps with
Hamiltonians obtained in [40], we obtain [see Supplemen-
tary Material for details]

i∂tR(x) =
(
−∂2

x + v(x)
)
R(x) + g

(
ρ−1
L (x)R†(x)ρL(x)

)
R2(x) + gR2(x)

(
ρR(x)R†(x)ρ−1

R (x)
)

−
(
ρ−1
L (x)R†(x)ρL(x)

)
[R(x), ∂xR(x)]− [R(x), ∂xR(x)]

(
ρR(x)R†(x)ρ−1

R (x)
) (4)

where ρL(x) and ρR(x) areD×D reduced density matri-
ces defined by the equations

ρL(x1) = v1v
†
1, ∂xρL(x) = R†(x)ρL(x)R(x),

(5a)

ρR(x2) = v2v
†
2, −∂xρR(x) = R(x)ρR(x)R†(x).

(5b)

Note that the original GPE can be read off from the
first line of (4) for D = 1, while the second line —
involving a commutator [R(x), ∂xR(x)]— has no mean
field analogue. Since the non-vanishing of this term is
tantamount to the presence of quantum correlations, it
would be extremely interesting to investigate its physical
consequences in more detail.

Gauge invariance — As is well known in the litera-
ture of MPS, efficient and robust algorithms make crucial
use of gauge transforms, i.e. transformations of the kind
R(x) → G−1(x)R(x)G(x) for an arbitrary matrix func-
tion G(x) that leaves the physics invariant. A manifestly
gauge invariant QGPE is obtained by introducing two more
D×D matrix valued functions P (x) andQ(x), which can
be interpreted as theA0 andA1 components of a gauge po-
tential. The spatial and temporal derivates are then replaced
by covariant derivatives

∂xR(x)→ DxR(x) ≡ ∂xR(x) + [Q(x), R(x)] (6a)
∂tR(x)→ DtR(x) ≡ ∂tR(x) + [P (x), R(x)]. (6b)

and the cMPS acquires the conventional form [38]

|Ψ[Q,R,v1,v2]〉 = v†1Pe
∫ x2
x1

Q(x)⊗Î+R(x)⊗ψ̂†(x) dx
v2 |Ω〉 .

The manifestly covariant QGPE becomes

iDtR(x) =
(
−D2

x + v(x)
)
R(x) + g

(
ρ−1
L (x)R†(x)ρL(x)

)
R2(x) + gR2(x)

(
ρR(x)R†(x)ρ−1

R (x)
)

−
(
ρ−1
L (x)R†(x)ρL(x)

)
[R(x),DxR(x)]− [R(x),DxR(x)]

(
ρR(x)R†(x)ρ−1

R (x)
) (7)

in combination with a new equation for the time evolution of Q(x)

i∂tQ(x)− i∂xP (x)− i[Q(x), P (x)] = −ρL(x)−1R(x)†ρL(x)
{
gR(x)2 − [R(x),DxR(x)]

}
ρR(x)R(x)†ρR(x)−1.

Note that the left hand side can be recognised as the only nonzero component F0,1 of the antisymmetric field ten-
sor. The defining equations for the density matrices ρL,R are changed to ∂xρL(x) = Q(x)†ρL(x) + ρL(x)Q(x) +
R†(x)ρL(x)R(x) and similarly for ρR(x).

These equations as well as the corresponding cMPS are in-
variant under arbitrary x- and t-dependent gauge transfor-

mation G(x, t) ∈ GL(D)

ρL(x, t)→ G†(x, t)ρL(x, t)G(x, t)

ρR(x, t)→ G−1(x, t)ρR(x, t)G†−1(x, t)

R(x, t)→ G−1(x, t)R(x, t)G(x, t)

Q(x, t)→ G−1(x, t) (Q(x, t) + ∂x)G(x, t)

P (x, t)→ G−1(x, t) (P (x, t) + ∂t)G(x, t). (8)
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A great benefit from working in this representation is
that the matrices R(x, t), Q(x, t), P (x, t) can be cho-
sen to be independent of x for translational invariant sys-
tems, greatly reducing the complexity of integrating the
QGPE. Furthermore, it allows to fix the cMPS to remain
in e.g. the left canonical form ρL(x, t) = 11 [and thus
Q(x)† + Q(x) + R(x)†R(x) = 0] by choosing P (x) =
−iR†(x)DxR(x) + iF (x) with F (x) a hermitian matrix.
This F (x) can be chosen freely in the case of real time evo-
lution, but has to properly chosen in the case of imaginary
time evolution. One particular choice is the solution of

∂xF −Q†F − FQ−R†FR =

(DxR)†(DxR) + v(x)R†R+ g(R†)2R2
(9)

which ensures that ∂tQ(x) +R(x)†∂tR(x) = 0.
Boundary Conditions — For finite systems, the QGPE

needs to be supplemented with appropriate boundary con-
ditions to fully specify the problem. These will also af-
fect the evolution equation for the boundary vectors v1,2,
which we derive presently. As the TDVP can be obtained
from extremizing an action, there are only two types of
self-consistent boundary conditions (similar to e.g. the
classical wave equation for a vibrating string), unless ex-
plicit boundary terms are included in the Hamiltonian from
Eq. (15). These can be derived by considering the quan-
tized field operator ψ̂(x) and expressing stability with re-
spect to variations of ψ̂†(x). When the value of ψ̂(x) is
fixed at the boundaries, Dirichlet conditions are obtained:

ψ̂(x1) = a ⇒ v†1R(x1) = av†1, (10a)

ψ̂(x2) = b ⇒ R(x2)v2 = bv2. (10b)
Alternatively homogenous Neumann or mixed boundary
conditions could be used. While the resulting boundary
conditions for the variational parameters R are inherently
gauge invariant, they only correspond to D instead of D2

equations each. In e.g. the case of Dirichlet conditions,
they only fix one eigenvalue and eigenvector of the matrix
R. In fact, the other directions of R at the boundary do not
appear in physical expectation values and can thus not be
fixed from physical considerations. In order to eliminate
any interplay with the gauge transformation, we will ‘pro-
mote’ the boundary conditions in a gauge invariant manner
by imposing them as identity matrix, e.g. R(x1) = a1D
in the case of Eq. (10a). Note that there are no separate
boundary condition on Q(x), as these degrees of freedom
can be interpreted as pure gauge degrees of freedom. The
boundary conditions then also affect the TDVP equation
for the boundary vectors. For the case of Dirichlet condi-
tions [R(x1) = a11D and R(x2) = b11D], we find

i∂tv
†
1 − iv†1P (x1) = −av†1DxR(x1) (11a)

i∂tv2 + iP (x2)v2 = +bDxR(x2)v2 (11b)
where the left hand side contains the covariant time deriva-
tive in the conjugate and fundamental representation, re-
spectively. These equations are also valid for the Neumann
conditions, where the right hand side becomes zero.

Symplectic structure — Let us now discuss in more de-
tail the mathematical structure of the QGPE. Since it con-
tains the quantities ρL,R(x), which are defined by inte-
grating Eq. (17), it forms a set of coupled non-linear par-
tial integro-differential equations[46] containing first order
time derivatives and second order space derivatives. It is a
non-commutative generalization of the normal GPE in that
it is defined in terms of matrix variables. Indeed, the nor-
mal GPE is recovered from Eq. (7) in the limit D = 1
by setting R(x) = φ(x) and observing that commutators
then vanish. In that limit,

∫ x2

x1
Q(x) dx acts as on overall

scalar factor (norm and phase) that can be absorbed in the
boundaries.

Just like the normal GPE and essentially any
TDVP equation, the real-time QGPE evolu-
tion forms a classical Hamiltonian system where
〈Ψ[Q,R,v1,v2]|Ĥ|Ψ[Q,R,v1,v2]〉 plays the role
of the classical Hamiltonian. The resulting differen-
tial equations are therefore symplectic and the energy
expectation value is a constant of motion when Ĥ is
time-independent[37][47]. When using the QGPE with
imaginary time evolution t → −iτ to find a cMPS ap-
proximation for the quantum ground state, this symplectic
structure is of course lost and the energy expectation value
decreases monotonically until convergence.

Numerical integration — Developing a stable numerical
integration scheme for the QGPE is challenging. Firstly,
there are the inherent complexities associated with solv-
ing a set of non-linear partial integro-differential equations.
Because of the second order spatial derivative and first
order time derivative, the Courant-Friedrichs-Levy con-
dition limits the time step of explicit schemes. A typi-
cal workaround for the GPE is to use a splitting scheme
[13, 15, 17], where the evolution is decomposed into the
local terms (external potential and interaction) and the ki-
netic term. The linearity of the latter allows for a solution
using a Crank-Nicolson method [48] or in Fourier space
[49]. While the QGPE is still linear in the second order
spatial derivative, it has non-linear terms containing first-
order spatial derivatives, which cannot easily be integrated
in Fourier space. Another complication of the QGPE, as
formulated in Eq. (11), is that it depends on the inverses
of the density matrices ρL(x) and ρR(x). These become
rank deficient near respectively the left and right boundary,
as is clear from the definition in Eq. (17). It is well known
in the tensor network community that the gauge degrees
of freedom in the underlying matrix product state have to
be exploited to transform these density matrices into iden-
tity matrices [50]. This was implemented only recently for
the TDVP equation for matrix product states [51], using
a non-trivial decomposition of the tangent space projector
that allows to split the non-linear differential equation for
all variables into a set of linear differential equations for the
individual MPS tensors [52], which is made possible by the
fact that the MPS parameterization is multilinear. Here too,
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we have to face complications introduced by the intrinsic
nonlinearity in the cMPS parameterization. A final chal-
lenge is to develop suitable continuum analogous of the
factorization routines such as the QR- or singular value de-
composition, which are exploited in the MPS simulations
to robustly implement the required gauge transformations.
Note, in addition, that in order to exploit gauge freedom,
the discretization of the QGPE should not break gauge in-
variance. Hereto, ideas from lattice gauge theory can serve
as inspiration. In the translation invariant setting (when Q
and R become x-independent matrices), several of these
difficulties disappear.

Quantum Bogoliubov-de Gennes equations — In the
case of small perturbations around a translational invariant
Hamiltonian, it might therefore be useful to linearize the
QGPE around the translation invariant cMPS. The ensu-
ing equations are “quantum” versions of the Bogoliubov-
de Gennes equations. As an example, let us assume that
we have found a variational minimum R0, Q0 and corre-
sponding ρL0 = Î and ρR0 for the ground state of a trans-
lation invariant Hamiltonian H0. We now wish to study
the response of the system when applying an external po-
tential εV (x, t). We can readily expand the arguments of
the QGPE (11) to first order R(x, t) = R0 + εR̃(x, t),

Q(x, t) = Q0 + εR̃(x, t), ρR(x, t) = ρR0 + ερ̃R(x, t)
and obtain linear equations for all new variables. As the
QGPE mixesRwith its conjugate, the corresponding equa-
tions decouple all different Fourier modes from each other
except those with opposite momenta, leading to a simple
linear set of equations with 2D2 unknowns. In particular,
if we consider a time-dependent perturbation of the form
Ĥ1 =

∫
dxv(t) cos (kx− ωt)ψ†(x)ψ(x), the equation

for R̃ = ei(kx−ωt)R+ + e−i(kx−ωt)R− becomes [53][
ω 0

0 −ω

] [
R+

R†−

]
=

[
Heff Meff

M †
eff Heff

] [
R+

R†−

]
+

[
v1

v2

]
. (12)

The matrix appearing on the right hand side of the
above expression is (the momentum ±k block of) the
Hessian of the energy functional E(R0, Q0, R0, Q0) =

〈Ψ[Q0, R0]|Ĥ0|Ψ[Q0, R0]〉, whereas the inhomogeneous
vector [ v1 v2 ] contains the driving terms from Ĥ1. Note
that Eq. (31) reduces to a normal eigenvalue problem when
Ĥ1 = 0 and is related to the ansatz for excitations intro-
duced in Ref. [45], which is capable of faithfully reproduc-
ing Type II Lieb-Liniger excitations.

As an application, let us use this formalism to compute
the change in particle density δ 〈ρ(x)〉 = 〈ρ(x)〉 − ρ on
top of translation invariant Lieb Liniger solutions with con-
stant density ρ for a small static (ω = 0) perturbation with
varying wave vector k, for different values of the interac-
tion strength g. Because we have linearized the QGPE in
order to arrive at the above equation, the density fluctuation
δ 〈ρ(x)〉 will be directly proportional to the strength v of
the perturbation in the potential, which we set equal to unit
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Figure 1. Top: The response amplitude α = maxx δ 〈ρ(x)〉 for
different values of γ = g/ρ as a function of the momentum k.
The dashed and solid line without markers are the classical Bo-
goliubov results for γ = 0.17 and γ = 1.35 respectively. Bot-
tom: Density fluctuation δ 〈ρ(x)〉 = 〈ρ(x)〉 − ρ at γ = 311.5 and
k = 2kF. All calculations in both panels were done with cMPS
bond dimension D = 64.

value for convenience. We study the linear response ampli-
tude as function of the interaction strength γ = g/ρ and as
a function of the wave vector k of the perturbation. This re-
sponse should be observable in experiments akin to those
of Refs. [54–56]. Our simulation results are presented in
Fig. 1.

The Bogoliubov mean field result is given by

〈δρ(x)〉 = − 2ρk2

k4 + 4γρ2k2
v cos(kx) (13)

with the fraction representing the mean field result for the
response amplitude α shown in the top panel of Fig. 1. It
only matches our solution for small values of γ. For larger
values of γ (stronger interactions), our results indicate a
strong response around k = 2kF , with kF = πρ the Fermi
momentum. This can be well understood from the Tonks-
Girardeau limit γ → ∞ [30]. This response peak is thus
a clear signature of the effect of Lieb’s Type II excitations
[27], which effectively arise on top of the strongly corre-
lated ground state induced by the interactions and cannot
be captured by Bogoliubov’s theory. In contrast, the mean
field result is dominated by the Type I excitations. Indeed,
the mean field dispersion relation appears in the denomina-
tor of the fraction in Eq. (13). In summary, our framework
provides results which are consistent throughout the whole
range of interaction strengths.

Conclusion and outlook — We have developed a natu-
ral generalization of the GPE based on the formalism of
cMPS suited for the study of one-dimensional quantum
systems where entanglement plays an important role and
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the mean-field ansatz underlying the GPE is not justified.
While it would be interesting to have a complete math-
ematical study of the existence, uniqueness (up to gauge
transformations) and stability of the solutions of the QGPE
for given boundary conditions, this is beyond the goal and
scope of this paper. It would also be enlightening to investi-
gate whether there exist quantum generalization of certain
exact solutions of the GPE, such as the dark soliton so-
lution, and how they relate to the integrability of the full
Lieb-Liniger Hamiltonian or to the topological excitations
constructed using the related ansatz of Ref. 45. Note that
integrable matrix versions of the GPE were already for-
mulated for the mean-field description of multicomponent
Bose-Einstein condensates [57–59]. In addition, it would
be instructive to compare the predictions of the QGPE to
existing beyond-mean field studies such as e.g. Ref. 60.
Like the phase space methods here proposed, the QGPE
might similarly be restricted to short simulation times for
dynamical problems. The underlying physical reason is
however completely different and caused by the growth of
entanglement in such settings, which cannot be captured by
the underlying variational cMPS ansatz.

As the cMPS ansatz is a versatile variational ansatz that
can readily be extended to bosonic and fermionic sys-
tems with e.g. multiple particle species [40, 61–63], the
QGPE equations generalize straightforwardly to such sys-
tems. Moreover, the approach described in this paper is
in no way restricted to the Lieb-Liniger Hamiltonian, but
is applicable to arbitrary Hamiltonians in one spatial di-
mension. cMPS methods have already been used to study
(1+1) dimensional relativistic theories for fermions [61]
and bosons [64] in a translationally invariant setting. Using
the regularisation method described in Ref. 64, the deriva-
tion of the QGPE presented in this paper extends straight-
forwardly to such systems, enabling in principle the study
of general bosonic non-linear σ-models with boundaries.
Non-linear σ-models are of significant interest for the high
energy physics community, for example, providing the un-
derlying description of bosonic strings [65, 66] propagating
on curved backgrounds. Given that cMPS methods are in-
trinsically non-perturbative, the approach of this paper has
the potential to be particularly useful in the study of such
models in the limit of large curvature, when perturbative
quantization schemes fail. It is furthermore very encour-
aging that the implementation of Dirichlet and Neumann
conditions in the quantum theory is straightforward, and
we thus expect that the boundary condition implementation
described in this paper can be used “as is” for the descrip-
tion of strings with either freely propagating endpoints, or
with endpoints restricted to lie on D-branes [67, 68]. Fi-
nally, a challenging open problem would be to construct
a higher-dimensional generalization of this QGPE. This
would arise as the TDVP equation for the variational set
of continuous projected-entangled pair states [69], which
are less well studied and understood.
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and H.-C. Nägerl, Physical review letters 115, 085301
(2015).

[57] T. Tsuchida and M. Wadati, Journal of the
Physical Society of Japan 67, 1175 (1998),
http://dx.doi.org/10.1143/JPSJ.67.1175.

[58] J. Ieda, T. Miyakawa, and M. Wadati, Phys. Rev. Lett. 93,
194102 (2004).

[59] D. A. Takahashi, Journal of the Physical Society of Japan,
Journal of the Physical Society of Japan 80, 015002 (2010).

[60] U. V. Poulsen and K. Mølmer, Phys. Rev. A 63, 023604
(2001).

[61] J. Haegeman, J. I. Cirac, T. J. Osborne, H. Verschelde, and
F. Verstraete, Phys. Rev. Lett. 105, 251601 (2010).

[62] F. Quijandrı́a, J. J. Garcı́a-Ripoll, and D. Zueco, Phys. Rev.
B 90, 235142 (2014), arXiv:1409.4709 [quant-ph].

[63] S. S. Chung, K. Sun, and C. J. Bolech, ArXiv e-prints
(2015), arXiv:1501.00228 [cond-mat.str-el].

[64] V. Stojevic, J. Haegeman, I. P. McCulloch, L. Tagliacozzo,
and F. Verstraete, Phys. Rev. B 91, 035120 (2015).

[65] E. S. Fradkin and A. A. Tseytlin, Nuclear Physics B 261, 1
(1985).

[66] M. B. Green, J. H. Schwarz, and E. Witten, Superstring the-
ory, vol. 1, 2, Vol. 469 (Cambridge University Press, 1987).

[67] J. Polchinski, Physical Review Letters 75, 4724 (1995).
[68] J. Polchinski, String theory. Vol. 1: An introduction to

the bosonic string, Vol. 402 (Cambridge University Press,
1998).

[69] D. Jennings, J. Haegeman, T. J. Osborne, and F. Verstraete,
ArXiv e-prints (2012), arXiv:1212.3833 [quant-ph].

http://dx.doi.org/10.1103/PhysRevLett.85.3745
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://arxiv.org/abs/http://www.sciencemag.org/content/305/5687/1125.full.pdf
http://dx.doi.org/ 10.1103/PhysRevLett.91.250402
http://dx.doi.org/ 10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1007/3-540-10579-4
http://dx.doi.org/10.1007/3-540-10579-4
http://dx.doi.org/10.1103/PhysRevB.88.085118
http://arxiv.org/abs/1211.3935
http://arxiv.org/abs/1211.3935
http://dx.doi.org/ 10.1103/PhysRevLett.111.020402
http://dx.doi.org/ 10.1103/PhysRevLett.111.020402
http://arxiv.org/abs/1212.1114
http://arxiv.org/abs/1408.5056
http://arxiv.org/abs/1408.5056
http://dx.doi.org/ 10.1038/nature12958
http://arxiv.org/abs/1402.2958
http://dx.doi.org/10.1143/JPSJ.67.1175
http://dx.doi.org/10.1143/JPSJ.67.1175
http://arxiv.org/abs/http://dx.doi.org/10.1143/JPSJ.67.1175
http://dx.doi.org/10.1103/PhysRevLett.93.194102
http://dx.doi.org/10.1103/PhysRevLett.93.194102
http://dx.doi.org/ 10.1143/JPSJ.80.015002
http://dx.doi.org/10.1103/PhysRevA.63.023604
http://dx.doi.org/10.1103/PhysRevA.63.023604
http://dx.doi.org/ 10.1103/PhysRevB.90.235142
http://dx.doi.org/ 10.1103/PhysRevB.90.235142
http://arxiv.org/abs/1409.4709
http://arxiv.org/abs/1501.00228
http://dx.doi.org/ 10.1103/PhysRevB.91.035120
http://arxiv.org/abs/1212.3833


7

SUPPLEMENTARY MATERIAL: DERIVATION OF THE QUANTUM GROSS-PITAEVSKII EQUATION AND THE
QUANTUM BOGOLIUBOV-DE GENNES EQUATIONS

Quantum Gross-Pitaevskii equation — We start from the fully generic cMPS definition

|Ψ[Q,R,v1,v2]〉 = v†1Pe
∫ x2
x1

Q(x)⊗1̂+R(x)⊗ψ̂†(x) dx
v2 |Ω〉 (14)

with virtual dimension D, and the Lieb-Liniger Hamiltonian

Ĥ =

∫ x2

x1

dx
dψ̂†

dx
(x)

dψ̂

dx
(x) + v(x)ψ̂†(x)ψ̂(x) + gψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (15)

The energy expectation value was computed in Refs. 38 and 40 and is given by

〈Ψ|Ĥ|Ψ〉 =

∫
dx 〈ρL(x)|DxR(x)⊗DxR(x) + v(x)R(x)⊗R(x) + gR(x)2 ⊗R(x)

2
|ρR(x)〉 (16)

with the left and right density matrices ρL(x) and ρR(x) defined by

ρL(x1) = v1v
†
1,

dρL
dx

(x) = Q(x)†ρL(x) + ρL(x)Q(x) +R(x)†ρL(x)R(x), (17a)

ρR(x2) = v2v
†
2,

dρR
dx

(x) = −
[
Q(x)ρR(x) + ρR(x)Q(x)† +R(x)ρR(x)R(x)†

]
(17b)

and with

DxR(x) =
dR

dx
(x) + [Q(x), R(x)] (18)

the spatial covariant derivative of R(x).

To facilitate the rest of the derivation, we also introduce the notation M̂(y, z) = Pe
∫ z

y
dxQ(x)⊗1̂+R(x)⊗ψ̂†(x). A general

tangent vector is obtained by computing the variation in the state |Ψ[Q,R,v1,v2]〉 under a generic variation Q(x) →
Q(x) + δQ(x), R(x)→ R(x) + δR(x), v1,2 → v1,2 + δv1,2. The result is denoted as the state |Φ〉 given by

|Φ[δQ, δR, δv1, δv2]〉 =

∫ x2

x1

v†1M̂(x1, x)
[
δQ(x)⊗ 1̂ + δR(x)⊗ ψ̂†(x)

]
M̂(x, x2) |Ω〉 dx

+δv†1M̂(x1, x2)v2 |Ω〉+ v†1M̂(x1, x2)δv2 |Ω〉 .
(19)

To properly deal with the boundary conditions, it is useful to derive the QGPE following the general recipe of the TDVP,
i.e. as the Euler-Lagrange equations corresponding to extremizing the classical action

S[Q,R,v1,v2] =

∫
dt

∫ x2

x1

dx 〈Ψ[Q,R,v1,v2]|i d

dt
− Ĥ|Ψ[Q,R,v1,v2]〉 (20)

We can easily derive the Euler-Lagrange equations by considering variations with respect to the complex conjugates of
the variational parameters, which are treated as independent and appear only in the bra. Using our definition of tangent
vectors, this immediately leads to the condition (using dots for time derivatives)

i 〈Φ[δQ, δR, δv1, δv2]|Φ[Q̇, Ṙ, v̇1, v̇2]〉 = 〈Φ[δQ, δR, δv1, δv2]|Ĥ|Ψ[Q,R,v1,v2]〉 (21)

for any possible variation. This is indeed equivalent to the geometric formulation of the TDVP in Eq. (3) of the main text.
More generally, it tells us that we can find the tangent space projection |Φ[V,W,w1,w2]〉 = P̂Ψ |Θ〉 of an arbitrary state
|Θ〉—not necessarily Ĥ |Ψ[Q,R,v1,v2]〉— by choosing V (x), W (x) and w1,2 such that

〈Φ[V
′
,W

′
,w′1,w

′
2]|Φ[V,W,w1,w2]〉 = 〈Φ[V

′
,W

′
,w′1,w

′
2]|Θ〉 (22)
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for all possible V
′
(x) = δQ(x), W

′
(x) = δR(x) and w′1,2 = δv1,2. The left hand side contains the overlap of two

different tangent vectors and is given by

〈Φ[V ′,W ′,w′1,w
′
2]|Φ[V,W,w1,w2]〉 =

∫ x2

x1

dx 〈ρL(x)|W (x)⊗W ′
(x)|ρR(x)〉

+

∫ x2

x1

dx

∫ x2

x

dy 〈ρL(x)|
(
V (x)⊗ 11 +W (x)⊗R(x)

)
E(x, y)

(
11⊗ V ′(y) +R(y)⊗W ′

(y)
)
|ρR(y)〉

+

∫ x2

x1

dx

∫ x

x1

dy 〈ρL(y)|
(

11⊗ V ′(y) +R(y)⊗W ′
(y)
)
E(y, x)

(
V (x)⊗ 11 +W (x)⊗R(x)

)
|ρR(x)〉

+

∫ x2

x1

dx[v†1 ⊗w′†1 ]E(x1, x)
(
V (x)⊗ 11 +W (x)⊗R(x)

)
|ρR(x)〉

+

∫ x2

x1

dx 〈ρL(x)|
(
V (x)⊗ 11 +W (x)⊗R(x)

)
E(x, x2)[v2 ⊗w′2]

+

∫ x2

x1

dy [w†1⊗v
†
1]E(x1, y)

(
11⊗V ′(y)+R(y)⊗W ′

(y)
)
|ρR(x)〉+[w†1⊗w

′†
1 ] |ρR(x1)〉+[w†1⊗v

†
1]E(x1, x2)[v2⊗w′2]

+

∫ x2

x1

dy 〈ρL(y)|
(

11⊗V ′(y) +R(y)⊗W ′
(y)
)
[w2⊗ v2] + 〈ρL(x2)| [w2⊗w′2] + [v†1⊗w′†1 ]E(x1, x2)[w2⊗ v2]

where the terms on the first 5 lines corresponds to all contributions of non-zero V and W , and the terms on lines 6 and 7
correspond to non-zero w1 and non-zero w2, respectively. Here, we have introduced a new notation

E(x, y) = P exp

(∫ y

x

Q(z)⊗ 11 + 11⊗Q(z) +R(z)⊗R(z) dz

)
. (23)

It is the continuum equivalent of the (product of) MPS transfer matrices and allows to e.g. write
〈ρL(x)| = [v†1 ⊗ v†1]E(x1, x), |ρR(x)〉 = E(x, x2)[v2 ⊗ v2]. (24)

Let us now first compute Ĥ |Ψ[Q,R,v1,v2]〉 itself. Using the rules from Ref. [40] and by applying partial integration
to the kinetic energy term, we obtain

Ĥ |Ψ[Q,R,v1,v2]〉 =

∫ x2

x1

v†1M̂(x1, x)
(
−D2

xR(x) + v(x)R(x)
)
⊗ ψ̂†(x)M̂(x, x2)v2 |Ω〉 dx

+

∫ x2

x1

v†1M̂(x1, x)
(
gR(x)2 − [R(x),DxR(x)]

)
⊗
(
ψ̂†(x)

)2
M̂(x, x2)v2 |Ω〉 dx

− v†1DxR(x1)⊗ ψ†(x1)M̂(x1, x2)v2 |Ω〉+ v†1M̂(x1, x2)DxR(x2)⊗ ψ†(x2)v2 |Ω〉 . (25)
Given the linearity of the tangent space projector, we can compute the projection of the 4 different terms separately and
add the result:

1. The first term of Eq. (25) is already in the explicit form of a tangent vector |Φ[V,W,w1,w2]〉 with W (x) =
−D2

xR(x) + v(x)R(x) and V (x) = 0, w1,2 = 0. It does not need to be projected.

2. The second term is of the form |Θ〉 =
∫ x2

x1
v†1M̂(x1, x)B(x) ⊗

(
ψ̂†(x)

)2
M̂(x, x2)v2 |Ω〉 dx, where B(x) =

gR(x)2 − [R(x),DxR(x)]. We obtain

〈Φ[V ′,W ′,w′1,w
′
2]|Θ〉 =

∫ x2

x1

dx 〈ρL(x)|B(x)⊗
(
R(x)W

′
(x) +W

′
(x)R(x)

)
|ρR(x)〉

+

∫ x2

x1

dx

∫ x2

x

dy 〈ρL(x)|
(
B(x)⊗R(x)2

)
E(x, y)

(
11⊗ V ′(y) +R(y)⊗W ′

(y)
)
|ρR(y)〉

+

∫ x2

x1

dx

∫ x

x1

dy 〈ρL(y)|
(

11⊗ V ′(y) +R(y)⊗W ′
(y)
)
E(y, x)

(
B(x)⊗R(x)2

)
|ρR(x)〉

+

∫ x2

x1

dx[v†1 ⊗w′†1 ]E(x1, x)
(
B(x)⊗R(x)2

)
|ρR(x)〉

+

∫ x2

x1

dx 〈ρL(x)|
(
B(x)⊗R(x)2

)
E(x, x2)[v2 ⊗w′2]
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One can easily verify that by choosing

V (x) = −ρL(x)−1R(x)†ρL(x)B(x)ρR(x)R(x)†ρR(x)−1

W (x) = +ρL(x)−1R(x)†ρL(x)B(x) +B(x)ρR(x)R(x)†ρR(x)−1

w†1 = 0

w2 = 0

every single line of 〈Φ[V ′,W ′,w′1,w
′
2]|Θ〉 matches with the corresponding line in the first lines of

〈Φ[V ′,W ′,w′1,w
′
2]|Φ[V,W,w1,w2]〉, whereas the last two lines of the latter vanish because of the choice of

w1,2 = 0.

3. Next we deal with the third term |Θ〉 = −v†1DxR(x1)⊗ ψ†(x1)M̂(x1, x2)v2 |Ω〉, resulting in

〈Φ[V ′,W ′,w′1,w
′
2]|Θ〉 = −[v†1 ⊗ v†1]DxR(x1)⊗W ′

(x1) |ρR(x1)〉

−
∫ x2

x1

dy[v†1 ⊗ v†1]DxR(x1)⊗R(x1)E(x1, y)
(

11⊗ V ′(y) +R(y)⊗W ′
(y)
)
|ρR(y)〉

− [v†1 ⊗w′†1 ]DxR(x1)⊗R(x1) |ρR(x1)〉
− [v†1 ⊗ v†1]DxR(x1)⊗R(x1)E(x1, x2)[v2 ⊗w′2]

Now we have to consider the effect of the boundary conditions. If R(x1) is fixed as R(x1) = a11 (Dirichlet
condition), then the corresponding variation W

′
(x1) = 0 such that the first term vanishes and the remaining terms

match the sixth line of 〈Φ[V ′,W ′,w′1,w
′
2]|Φ[V,W,w1,w2]〉 by choosing

V (x) = 0, W (x) = 0, w†1 = −av†1DxR(x1), w2 = 0.

Indeed, this boundary condition corresponds to fixing the value of the field operator ψ̂(x1) = a, so that |Θ〉
can explicitly be rewritten as |Θ〉 = −av†1DxR(x1)M̂(x1, x2)v2 |Ω〉, which exactly equals the tangent vector
|Φ[V,W,w1,w2]〉 for this choice of the parameters.

Alternatively, if we do not fix R(x1), then the variation W
′
(x1) automatically enforces the Neumann conditions

v†1DxR(x1) = 0 at any point in time, provided that ρR(x1) is full rank. Under this condition, we also obtain
|Θ〉 = 0, which corresponds to inserting DxR(x1) = 0 in the parameters above.

4. The last term of Eq. (25) can be dealt with similarly and is an explicit tangent vector corresponding to the choice

V (x) = 0, W (x) = 0, w†1 = 0, w2 = bDxR(x2)v2.

in case of the Dirichlet condition R(x2) = b11. In the case of the Neumann condition, it is also zero.

Hence, for the boundary conditions here considered, only the second term of Eq. (25) needed to be projected onto the
tangent space and, when considering the full Schrödinger equation, would be responsible for taking the exact evolution
out of the manifold.

Grouping everything together gives rise to |Φ[V,W,w1,w2]〉 = P̂ΨĤ |Ψ[Q,R,v1,v2]〉 with

V (x) =− ρL(x)−1R(x)†ρL(x)
(
gR(x)2 − [R(x),DxR(x)]

)
ρR(x)R(x)†ρR(x)−1

W (x) =−D2
xR(x) + v(x)R(x)

+ ρL(x)−1R(x)†ρL(x)
(
gR(x)2 − [R(x),DxR(x)]) +

(
gR(x)2 − [R(x),DxR(x)]

)
ρR(x)R(x)†ρR(x)−1

w†1 =− av†1DxR(x1)

w2 = + bDxR(x2)v2

which we have to equate to i |Φ[Q̇, Ṙ, v̇1, v̇2]〉. Matching the parameters as Q̇ = V etc gives rise to the gauge covariatn
QGPE of the main text for the specific choice of P = 0, though this choice is not unique. Indeed, one can note that the
physical tangent vector |Φ[V,W,w1,w2]〉 does not change under a substitution

V (x)→ V (x) + [P (x), Q(x)], W (x)→W (x) + [P (x), R(x)], w†1 → w†1 − v†1P (x1), w2 → w2 + P (x2)v2.
(26)

which is how the fully gauge covariant formulation of the QGPE is obtained.
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Derivation of the quantum Bogoliubov-de Gennes Equations — A stationary solution Q0 and R0 of the QGPE pa-
rameterizes a variationally optimal cMPS ground state approximation for a given Hamiltonian Ĥ0. Upon applying a
perturbation Ĥ1 (possibly time-dependent), we can expand the QGPE to first order around Q0 and R0. In the following,
we set Ĥ0 equal to the translation invariant Lieb-Liniger Hamiltonian (v(x) = v0 = −µ with µ the chemical potential) in
the thermodynamic limit, so that the stationary solution correspond to x (and t) independent matrices Q0 and R0, which
we assume to be in the left-canonical form, i.e. Q0 + Q†0 + R†0R0 = 0. Associated with this solution is a right density
matrix ρR,0 satisfying

Q0ρR,0 + ρR,0Q
†
0 +R0ρR,0R

†
0 = 0

and a matrix P0 = −iR†0[Q0, R0] + iF0 where F0 is the solution of the linear system
−Q†0F0 − F0Q0 −R†0F0R0 = [Q0, R0]†[Q0, R0]− µR†0R0 + g(R†0)2R2

0.

We now consider a perturbation given by Ĥ1(t) = ε
∫

dx ṽ(x, t)ψ̂†(x)ψ̂(x). The ansatz for the new solution of the
QGPE is then given by
R(x, t) = R0 + εR̃(x, t), Q(x, t) = Q0 + εQ̃(x, t), ρR(x, t) = ρR,0 + ερ̃R(x, t), ρL(x, t) = 11 + ερ̃L(x, t)

(27)
where ρL,R(x, t) are the left and right density matrices. By expanding the relevant equations to first order in ε, we obtain

∂xρ̃L(x, t)−Q†0ρ̃L(x, t) + ρ̃L(x, t)Q0 +R†0ρ̃L(x, t)R0 = Q̃(x, t) + Q̃†(x, t) +R†0R̃(x, t) + R̃†(x, t)R0 (28)

∂xρ̃R(x, t) +Q0ρ̃R(x, t) + ρ̃R(x, t)Q†0 +R0ρ̃R(x, t)R†0 = −
[
Q̃(x, t)ρR,0 + ρR,0Q̃

†(x, t)

+ R̃(x, t)ρR,0R
†
0 +R0ρR,0R̃

†(x, t)
]

(29)
We furthermore choose

P (x, t) = P0 + εP̃ (x, t) = P0 + ε
(
− iR̃†[Q0, R0]− iR†0R̃kin(x, t) + iF̃ (x, t)

)
with R̃kin(x, t) = [Q̃(x), R0] + [Q0, R̃(x)] + ∂xR̃(x) and F̃ (x, t) the solution of

∂xF̃ = F̃Q0 + F0Q̃+ Q̃†F0 +Q†0F̃ + R̃†F0R0 +R†0F̃R0 +R†0F0R̃+ [Q0, R0]†R̃kin + R̃†kin[Q0, R0]

+g
(
R̃†R†0R0R0 +R†0R̃

†R0R0 +R†0R
†
0R̃R0 +R†0R

†
0R0R̃

)
+ v0R̃

†R0 + v0R
†
0R̃+ ṽR†0R0,

(30)

where we henceforth omit the (x, t) dependence of the ·̃ quantities. With this choice, we are assured that ∂tQ̃+R†0∂tR̃ = 0

and, integrating this from the initial time when Q̃ = R̃ = 0, we obtain Q̃ + R†0R̃ = 0. This equality assures that Q(x)
and R(x) form a left canoncial representation to first order in ε. In particular, this makes the right hand side of Eq. (28)
equal to zero, so that the solution of that equation is given by ρ̃L = 0.

The linearized QGPE itself is then given by
i∂tR̃ ρR,0 =− ∂2

xR̃ρR,0 − 2[Q0, ∂xR̃]ρR,0 − [∂xQ̃, R0]ρR,0

− [Q̃, [Q0, R0]]ρR,0 − [Q0, [Q̃, R0]]ρR,0 − [Q0, [Q0, R̃]]ρR,0 − [Q0, [Q0, R0]]ρ̃R

+ g
(

(R̃†R2
0 +R†0R̃R0 +R†0R0R̃)ρR,0 +R†0R

2
0ρ̃R + R̃R0ρR,0R

†
0 +R0R̃ρR,0R

†
0 +R2

0ρ̃RR
†
0 +R2

0ρR,0R̃
†
)

+ v0R̃ρR,0 + v0R0ρ̃R + ṽR0ρR,0

+
[
R̃kin, R0

]
ρR,0R

†
0 +

[[
Q0, R0

]
, R̃
]
ρR,0R

†
0 +

[[
Q0, R0

]
, R0

]
ρ̃RR

†
0 +

[[
Q0, R0

]
, R0

]
ρR,0R̃

†

+
[
R̃, R†0

][
Q0, R0

]
ρR,0 +

[
R0, R̃

†][Q0, R0

]
ρR,0 +

[
R0, R

†
0

]
R̃kinρR,0 +

[
R0, R

†
0

][
Q0, R0

]
ρ̃R

+
[
F̃ , R0

]
ρR,0 +

[
F0, R̃

]
ρR,0 +

[
F0, R0

]
ρ̃R (31)

where we can further substitute Q̃ = −R†0R̃. Equations (29), (30) and (31) form a set of linear partial differential
equations with as only source term the perturbed potential ṽ(x, t) and with mixing between R̃ and R̃†. Therefore, if
ṽ(x, t) = cos(kx− ωt) for certain k and ω, we can make the ansatz
R̃(x) = ei(kx−ωt)R+ + e−i(kx−ωt)R−, F̃ (x) = ei(kx−ωt)F+ + e−i(kx−ωt)F−, ρ̃R(x) = ei(kx−ωt)ρ+ + e−i(kx−ωt)ρ−,

Note that both F̃ (x) and ρ̃R(x) are hermitian matrices which means that F †− = F+ and ρ†− = ρ+. Inserting this ansatz
into the relevant equations allows to express everything in terms ofR± and finally gives rise to the quantum Bogoliubov-de
Gennes equation [Eq. (10) in the main text]. This equation can be iteratively solved at a computational cost of O(D3).
The same approach still works if ṽ(x, t) contains N different Fourier modes, where the complexity will increase linearly
with N .
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