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Summary

The wide application of technologies in recent mechanical, electric and biomedical
systems calls for materials and structures with nonconventional properties. Natu-
rally, also theoretical understanding of the material behaviour and mathematical
modelling is required.

This thesis is devoted to the mathematical modelling of electromagnetism in
solid structures. Development of electromagnetism in matter is done with empha-
sis on material effects which are ascribed to the nonlinear constitutive relations
and memory in time. Many electromagnetic phenomena are nonlinear (e.g. ferro-
magnetic materials). Memory effects occur in most of them and show up through
dispersion and dissipation.

Throughout this thesis we do not assume any deformation of the body. The
investigated system is characterized by a space-time region. This region is occupied
by fields which arise from Maxwell’s equations in the appropriate form.

In order to achieve the self-containedness of the thesis, we present some basic
mathematical background in Chapter 1. Essential definitions and theorems from
the field of functional analysis are followed by the definition of important function
spaces for scalar and vector functions. Then, we briefly introduce the theory of
monotone operators and partial differential equations. Lastly, we present several
key inequalities and identities followed by a short introduction to Maxwell’s equa-
tions. We split our thesis in two separate parts. In the first part we develop several
mathematical models of the induction heating phenomena and provide a rigorous
mathematical analysis of them. In the second part we recover a time dependent
source term appearing in nonlinear Maxwell’s equations from a single boundary
measurement on a part of the considered boundary.

ix



x Summary

Part I

In Chapter 2 we develop a mathematical model for the electromagnetic induction
heating of a continuous medium at rest. The model consists of two parts. The
first part (electromagnetic) is described by Maxwell’s equations. We assume a
nonlinear relation between the magnetic field and the magnetic induction field.
Moreover, the electric conductivity of the material is supposed to be temperature
dependent. The second part (heat transfer) is determined by the nonlinear heat
transfer equation. Induction heating processes create Joule heat in the material.
This term acts as a heat source in the heat transfer equation, therefore, in order to
control it, we apply a truncation function. The coupling between the two parts of
our model is provided through the electric conductivity function on the one hand
and through the Joule heating term on the other hand. The continuous system of
equations is then discretized in time and basic energy estimates are obtained. We
then use the Rothe method to prove the existence of a global solution to the whole
system. The nonlinearities are overcome by the theory of monotone operators and
the technique of Minty-Browder. This chapter is based on the article [68] which
has been published in the journal of Applicable Analysis.

Another mathematical model of the induction heating process is presented in
Chapter 3. The nonlinear relation between the magnetic field and the magnetic
induction field describes the monotone behaviour of these fields. Generally, we can
say that either the magnetic field depends on the magnetic induction field or vice
versa. The latter relation was adopted in previous chapter. In this chapter we
take into account the former nonlinear relation between these two fields, i.e. the
magnetic field depends on the magnetic induction field. This approach leads to
a different equation for the electromagnetic part of our model. The thermal part
is modeled in the same fashion as in Chapter 2. Methods and techniques from
the previous chapter are used to guarantee the existence of a global solution. The
article [22] which has been published in the Journal of Computational and Applied
Mathematics has been an inspiration for this chapter.

A mathematical model of the induction hardening is derived in Chapter 4.
The domains considered in Chapters 2 and 3 are very simple. In this chapter
the domain consists of a sphere where the electromagnetic field is present, a coil
which is connected to a source of an alternating electric current and a workpiece
which is subject to be heated by the process of the electromagnetic induction.
We take into account that the magnetic permeability might behave differently in
various materials e.g. in the air or in the workpiece. This assumption requires a
subtle mathematical analysis. We consider a vector-scalar potential formulation
of Maxwell’s equation to grasp the electromagnetic part of our model. Evolution
of temperature in the coil and the workpiece is modelled with the same truncated



xi

nonlinear heat transfer equation as in Chapters 2 and 3. This formulation yields a
system of three coupled equations. We semi-discretize (time discretization) these
equations and use the Rothe method to show the convergence of Rothe’s functions
towards a weak solution of the whole system. To supplement the theoretical results,
we provide a simple numerical simulation. This chapter has been encouraged by
the article [21] that has been published in the journal of Computer Methods in
Applied Mechanics and Engineering.

Part II

In Chapter 5 we investigate a hyperbolic Maxwell’s equation with an unknown
time dependent source term. We start with a brief introduction to inverse source
problems. In some applications, such as chiral media, meta-material, nonlinear
optics or geophysics the solution values at present time strongly depend on the past.
This phenomenon is expressed with a memory term. We consider a generalized
nonlinear Ohm’s law with memory. The time dependent part of the source term
is reconstructed from a single boundary measurement over a part of the boundary.
We discretize the equation in time and propose a numerical scheme (implicit Euler
scheme) that provides us with a solution at each time step. This scheme is obtained
by the application of Rothe’s method. We then prove the existence of a global
solution. In the case of a regular solution, we also prove its uniqueness. The
Numerical experiment section contains an academic example which demonstrates
the convergent behaviour of the proposed scheme. This chapter has been heavily
influenced by an article that has been submitted to the Journal of Computational
and Applied Mathematics.

The results and findings of this thesis are concluded in Chapter 6 where we
discuss the possible improvements and potential objects of interest for the future
research.
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Samenvatting

De brede toepassing van technologie in nieuwe mechanische, elektrische en biomedis-
che systemen vereist materialen en structuren met niet-conventionele eigenschap-
pen. Uiteraard zijn ook theoretisch begrip van het gedrag van het materiaal en
wiskundige modellering nodig.

Deze thesis is toegewijd aan de wiskundige modellering van elektromagnetisme
in vaste structuren. Elektromagnetisme wordt ontwikkeld met de nadruk op ma-
teriaaleffecten die toegeschreven zijn aan de niet-lineaire constitutieve relaties en
aan gebeurtenissen uit het verleden. Vele elektromagnetische verschijnselen zijn
niet-lineair (bijvoorbeeld ferromagnetische materialen). Bij de meeste van deze
verschijnselen treedt de invloed van het verleden op via disseminatie en dissipatie.

Doorheen deze thesis veronderstellen we geen vervorming van het lichaam en
bijgevolg wordt het onderzochte systeem gekarakteriseerd door een gebied dat vast
is in tijd en ruimte. Deze regio wordt voorzien van velden die ontstaan uit een
geschikte vorm van de Maxwell vergelijkingen.

De wiskundige achtergrond die nodig is om deze thesis vlot te b stellen we voor
in Hoofdstuk 1. Essentiële definities en stellingen uit de functionaalanalyse worden
gevolgd door de definities van belangrijke functieruimten voor scalaire functies en
vectorfuncties. Vervolgens introduceren we kort de theorie van monotone opera-
toren en partiële differentiaalvergelijkingen. Tot slot vermelden we verschillende
noodzakelijke gelijkheden en ongelijkheden en geven we een korte introductie op
de Maxwell vergelijkingen. Deze thesis bestaat uit twee afzonderlijke delen. In
het eerste deel ontwikkelen we verschillende wiskundige modellen voor de (elec-
tromagnetische) inductieverhitting en voorzien we een strikte wiskundige analyse
ervan. In het tweede deel vinden we een tijdsafhankelijke bronterm in niet-lineaire
Maxwell vergelijkingen terug uit één enkele meting op een deel van de rand van
het beschouwde domein.

xiii



xiv Samenvatting

Deel I

In Hoofdstuk 2 ontwikkelen we een wiskundig model voor de elektromagnetische
inductieverhitting van een continu medium in rust. Het model bestaat uit twee
delen. Het eerste deel (elektromagnetisch) wordt beschreven door Maxwell vergelij-
kingen. We veronderstellen een niet-lineaire relatie tussen het magnetisch veld en
het magnetisch inductieveld. Bovendien wordt verondersteld dat de elektrische
geleidbaarheid van het materiaal tijdsafhankelijk is. Het tweede deel (warmteover-
dracht) wordt bepaald door de niet-lineaire warmtevergelijking. Inductie verhit-
tingsprocessen creëren Joule warmte in het materiaal. Deze term gedraagt zich als
een warmtebron in de warmtevergelijking. Bijgevolg passen we een truncatiefunctie
in het rechterlid toe om deze term onder controle te houden. De koppeling tussen
de twee delen van het model wordt gegeven door de elektrische conductiviteits-
functie enerzijds en door de Joule warmte term anderzijds. Het continue systeem
van vergelijkingen wordt vervolgens gediscretiseerd in de tijd en basisafschattingen
voor de energie worden bekomen. Nadien gebruiken we de Rothe methode om
het bestaan van een globale oplossing van het volledige systeem te bewijzen. De
niet-lineariteiten worden behandeld via de theorie van monotone operatoren en de
techniek van Minty-Browder. Dit hoofdstuk is gebaseerd op het artikel [68] dat
gepubliceerd is in het tijdschrift Applicable Analysis.

Een ander wiskundig model voor het inductie verhittingsproces wordt gepre-
senteerd in Hoofdstuk 3. De niet-lineaire relatie tussen het magnetisch veld en het
magnetisch inductieveld beschrijft het monotone gedrag van deze velden. Algemeen
kunnen we stellen dat ofwel het magnetisch veld afhangt van het magnetisch induc-
tieveld of andersom. De laatste relatie werd aangenomen in het vorige hoofdstuk.
In dit hoofdstuk beschouwen we de eerste niet-lineaire relatie tussen deze twee
velden, d.i. het magnetisch veld hangt af van het magnetisch inductieveld. Deze
benadering leidt tot een andere vergelijking voor het elektromagnetisch deel van
ons model. Het thermisch deel wordt gemodelleerd op dezelfde manier als in Hoofd-
stuk 2. Methoden en technieken van het vorige hoofdstuk worden gebruikt om het
bestaan van een globale oplossing te garanderen. Het artikel [22], dat gepubliceerd
is in het tijdschrift Journal of Computational and Applied Mathematics, heeft als
inspiratie gediend voor dit hoofdstuk.

Een wiskundig model van inductieverharding wordt afgeleid in Hoofdstuk 4. De
domeinen die beschouwd werden in Hoofdstukken 2 en 3 waren zeer eenvoudig. In
dit hoofdstuk bestaat het domein uit een bol, waarbinnen het elektromagnetisch
veld aanwezig is, een spoel die verbonden is met een bron van alternerende elek-
trische stroom en een object dat verwarmd moet worden via het proces van de
elektromagnetische inductie. We houden er rekening mee dat magnetische perme-
abiliteit zich mogelijks anders gedraagt in verschillende materialen, d.i. in de lucht
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of in het object. Deze veronderstelling vereist een subtiele wiskundige analyse. We
beschouwen een vector-scalaire potentiaalvorm van de Maxwell vergelijkingen om
het elektromagnetisch deel van ons model te beschrijven. De temperatuursevolutie
in de veer en in het object wordt gemodelleerd met dezelfde niet-lineaire warmtev-
ergelijking met getrunceerd rechterlid als in Hoofdstukken 2 en 3. Deze formuler-
ing leidt tot een systeem van drie gekoppelde vergelijking. We discretiseren deze
vergelijkingen in de tijd en gebruiken de Rothe methode om de convergentie van de
Rothe functies naar een zwakke oplossing van het volledige systeem aan te tonen.
Om de theoretische resultaten te ondersteunen voeren we een eenvoudige numerieke
simulatie uit. Dit hoofdstuk is gebaseerd op het artikel [21] dat gepubliceerd is in
het tijdschrift Computer Methods in Applied Mechanics and Engineering.

Deel II

In hoofdstuk 5 onderzoeken we een hyperbolische Maxwell vergelijking met een
onbekende tijdsafhankelijke bronterm. We starten met een korte introductie op
inverse bronproblemen. In sommige toepassingen, zoals in chirale media, meta-
materiaal, niet-lineaire optiek of geofysica, de waarden van de oplossing in het
heden sterk af van het verleden. Dit verschijnsel wordt uitgedrukt met een term die
afhangt van de waarden van de oplossing op vorige tijdstippen. We beschouwen een
veralgemeende niet-lineaire wet van Ohm met dergelijke term. Het tijdsafhanke-
lijk deel van de bronterm wordt gereconstrueerd op basis van een enkele meting
over een deel van de rand. We discretiseren de vergelijking in tijd en stellen een
numeriek schema (impliciet Euler schema) voor dat ons een oplossing verschaft op
elk tijdstip. Dit schema wordt onmiddellijk geïmpliceerd door de toepassing van
de Rothe methode. Nadien bewijzen we het bestaan van een globale oplossing. In
het geval van een reguliere oplossing bewijzen we ook de uniciteit ervan. De sectie
Numerical experiment bevat een academisch voorbeeld dat het convergentiegedrag
van het voorgestelde schema demonstreert. Dit hoofdstuk werd sterk beïnvloed
door een artikel dat ingediend is bij het tijdschrift Journal of Computational and
Applied Mathematics.

De resultaten en bevindingen van deze thesis worden samengevat in Hoofdstuk
6. We bespreken mogelijke verbeteringen en potentiële onderwerpen voor verder
onderzoek.
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Chapter 1

Mathematical background

To enhance the coherence of this thesis, we provide the reader with some essential
definitions and important theorems from the fields of functional analysis, Sobolev
spaces, monotone operators, partial differential equations and Maxwell’s equations.
We also state several key inequalities and integral identities which are used in the
sequel of the thesis. The reader is expected to be familiar with the following topics:
linear algebra, real mathematical analysis and the theory of Lebesgue measure and
integration.

Let us further make a small remark about notations used in the following chap-
ters. Positive constants are expressed with symbols ε, Cε and C. These constants
depend only on a priori known data and are either very small (ε) or quite large
(Cε, C). We do not distinguish between subsequences and original sequences in the
convergence sections of coming chapters. The right hand side and the left hand
side of an equation are denoted as r.h.s. and l.h.s., respectively. This is done solely
to sustain the clarity and readability of the thesis.

1.1 Functional analysis

The main references, among many others in this section, are [4, 48, 51, 52, 67, 87, 89]
and [90].

Definition 1.1 (Normed vector Space). A vector space X is said to be a normed
vector space if to every x ∈ X there is associated a nonnegative real number ‖x‖,
called the norm of x, in such way that the following holds:

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X,

1



2 Mathematical background

(b) ‖αx‖ = |α| ‖x‖ if x ∈ X and α is a scalar,

(c) ‖x‖ > 0 if x 6= 0.

Every normed vector space may be regarded as metric space, in which the distance
d(x, y) between x and y is ‖x− y‖.

Definition 1.2 (Cauchy sequence). A sequence {xn}∞n=0 in a metric space X is
called Cauchy if for every ε > 0 there exists a nonnegative integer N such that
d(xm, xn) < ε for all m,n ≥ N .

Definition 1.3 (Complete space). A metric space X is called complete if every
Cauchy sequence {xn}∞n=0, xn ∈ X converges to x ∈ X.

Definition 1.4 (Banach space). Every complete normed vector space is a Banach
space.

Definition 1.5 (Inner product space). A vector space X is said to be an inner
product space if to every x, y ∈ X there is a real or complex number px, yqX as-
sociated, called the inner product of x and y, in such way that the following is
true:

(a) px, yq = py, xq ∀x, y ∈ X,

(b) pcx, yq = c px, yq if x, y ∈ X and c is a scalar,

(c) px, xq ≥ 0 if x ∈ X and px, xq = 0 only if x = 0.

Given an inner product we define the norm as ‖x‖X = px, xq
1/2 for all x ∈ X.

Definition 1.6 (Hilbert space). Every inner product space which is complete with
respect to the norm induced by the inner product is called a Hilbert space.

Definition 1.7 (Density). A set Y is called dense in a normed vector space X if
its closure is the whole space X, i.e. Y = X.

Definition 1.8 (Separability). A normed vector space X is called separable if it
contains a countable set of points that is dense.

Definition 1.9 (Compactness). A set Y in a normed vector space X is called
relatively compact if and only if (iff) every sequence in Y contains a convergent
subsequence. If Y is also closed then it is called compact.

Definition 1.10 (Linear bounded functional). A linear functional on a normed
vector space X is a mapping F : X → R (or C), that satisfies the following prop-
erties:



1.1. Functional analysis 3

(a) F (x+ y) = F (x) + F (y) ∀x, y ∈ X,

(b) F (cx) = cF (x) if x ∈ X and c is a scalar.

F is said to be bounded iff there exists a constant C > 0 such that |F (x)| ≤ C ‖x‖X
for all x ∈ X.

If X is an inner product space and y is some fixed vector in X then the mapping
X → F defined as x→ px, yqX represents a linear functional on X.

Definition 1.11 (Dual space). Given any normed vector space X, the dual space
X∗ is defined as the set of all linear functionals on X. The norm in X∗ is defined
as

‖F‖X∗ = sup
‖x‖X≤1, x 6=0

|F (x)|

‖x‖X
.

Theorem 1.1 (Hahn-Banach). Let X be normed vector space over R, and let Y
be a linear subspace of X. Suppose that f ∈ Y ∗ then f can be extended to a linear
functional F ∈ X∗ with ‖F‖X∗ = ‖f‖Y ∗ .

Definition 1.12 (Strong convergence). A sequence {xn}∞n=0 in a normed vector
space X is said to be strongly convergent (or convergent in the norm) if there is an
x ∈ X such that

lim
n→∞

‖xn − x‖X = 0.

This is written as xn → x. The element x is called the strong limit of {xn}∞n=0,
and we say that {xn}∞n=0 converges strongly to x.

Definition 1.13 (Weak convergence). A sequence {xn}∞n=0 in a normed vector
space X is said to be weakly convergent if there is an x ∈ X such that for every
f ∈ X∗ the following holds

lim
n→∞

f(xn) = f(x).

This is written as xn ⇀ x. The element x is called the weak limit of {xn}∞n=0, and
we say that {xn}∞n=0 converges weakly to x.

Definition 1.14 (Reflexivity). Let X be a normed vector space and X∗∗ denote
the second dual vector space of X. The canonical map X → X∗∗ : x → x̂ defined
by x̂(f) = f(x), x ∈ X, f ∈ X∗ gives an isometric linear isomorphism from X
into X∗∗. The space X is called reflexive if this map is surjective.

Theorem 1.2 (Weak compactness of reflexive spaces). Assume that X is a reflex-
ive Banach space and {xn}∞n=0, xn ∈ X a bounded sequence. Then there exists a
subsequence {xnl}∞nl=0 and x ∈ X such that xnl ⇀ x.
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Lemma 1.1 (Lax-Milgram). (see [55, Lemma 2.21]) Let X be a Hilbert space and
assume that A is a bilinear functional and F is a continuous linear functional that
satisfies:

(a) A(v, v) ≥ α ‖v‖2X for some α > 0 and ∀v ∈ X,

(b) |A(v, w)| ≤ C ‖v‖X ‖w‖X for some positive C ∈ R and ∀v, w ∈ X.

Then there is a unique u ∈ X such that A(u, v) = F (v), ∀v ∈ X and the stability
estimate ‖u‖2X ≤

|F (u)|

α holds.

Definition 1.15 (Equicontinuity). Let (X, d) be a compact metric space. Then
the space C(X) is a vector space consisting of all continuous functions f : X → R.
The space C(X) is equipped with the norm ‖f‖ := max{|f(x)| | x ∈ X}. The
family F ⊂ C(X) is called equicontinuous if for every ε > 0 there exists δ > 0
(which depends only on ε) such that for x, y ∈ X:

d(x, y) < δ =⇒ |f(x)− f(y)| < ε ∀f ∈ F .

Definition 1.16 (Equiboundedness). The family F ⊂ C(X) is called equibounded
if there exists a positive constant M < ∞ such that |f(x)| ≤ M for each x ∈ X
and each f ∈ F .

Definition 1.17 (Gâteaux differential). Suppose that X and Y are Banach spaces,
U ⊂ X is open and let F : X → Y be a given map. The Gâteaux differential
DF (u;ψ) of F at u ∈ U in the direction ψ ∈ X is defined as

DF (u;ψ) = lim
τ→0

F (u+ τψ)− F (u)

τ
=

d
dτ
F (u+ τψ)

ˇ

ˇ

ˇ

ˇ

τ=0

.

If the limit exists for all ψ ∈ X, then F is Gâteaux differentiable at u.

1.2 Function spaces

Throughout this chapter the symbol Ω always represents a bounded domain in Rn
with n ≥ 1. The boundary of Ω is denoted as ∂Ω and is assumed to be Lipschitz
continuous.

Definition 1.18. Lp(Ω), 1 ≤ p < ∞, is the set of all measureable functions u in
Ω such that the norm

‖u‖Lp(Ω) =

ˆ∫
Ω

|u(x)|
p dx

˙1/p

is finite. Lp(Ω) is a Banach space.
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Definition 1.19. Lploc(Ω), 1 ≤ p < ∞, is the set of all measurable functions u in
Ω such that

∫
Ω′

|u(x)|
p dx <∞ for any subdomain Ω′ ⊂ Ω such that Ω′ ⊂ Ω.

Definition 1.20. L∞(Ω) is the set of all bounded measurable functions u in Ω
with the norm defined as

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| .

At this point we introduce a multi-index notation for partial derivatives

∂αu =
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαnn

where α = (α1, α2, . . . , αn) is a multi-index with |α| = α1 + α2 + · · · + αn and
αi ∈ N0 for i = 1, . . . , n.

Definition 1.21. C∞0 (Ω) is the class of functions u in Ω such that:

(a) u is infinitely smooth, which means that ∂αu is uniformly continuous in
Ω, ∀α,

(b) u is compactly supported, i.e. supp(u) is a compact subset of Ω.

Theorem 1.3 (Lebesgue’s dominated convergence theorem). Let {fn} be a se-
quence of Lebesgue measurable functions fn : Ω → R. Assume that fn converges
almost everywhere (a.e.) in Ω to a measurable function f . Moreover, assume that
for n ∈ N the function fn is dominated by a function g ∈ Lp(Ω), i.e. |fn| ≤ g a.e.
Then, all fn and f are in Lp(Ω) and the sequence {fn} converges to f in the sense
of Lp, i.e.

lim
n→∞

‖fn − f‖Lp(Ω) = 0.

Definition 1.22 (Weak derivative). Suppose that u, v ∈ L1
loc(Ω), and∫

Ω

u(x)∂αη(x) dx = (−1)|α|

∫
Ω

v(x)η(x) dx, ∀η ∈ C∞0 (Ω).

Then v is called the weak (or distributional) partial derivative of u in Ω and is
denoted by ∂αu.

Definition 1.23 (W l,p(Ω) space). Suppose that u ∈ Lp(Ω) and that there exist
weak derivatives ∂αu for any α with |α| ≤ l, such that

∂αu ∈ Lp(Ω), |α| ≤ l.
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Then we say that u ∈ W l,p(Ω). This space is called the Sobolev space and is
equipped with the standard norm:

‖u‖W l,p(Ω) =

¨

˝

∫
Ω

∑
|α|≤l

|∂αu|
p dx

˛

‚

1/p

.

Remark 1.1. If p = 2, the space W l,2(Ω) is a Hilbert space and is usually denoted
as H l(Ω). The inner product for u, v ∈ H l(Ω) is defined as

pu, vq =

∫
Ω

∑
|α|≤l

∂αu(x)∂αv(x) dx.

Definition 1.24 (W l,p
0 (Ω) space). The closure of C∞0 (Ω) in the norm of W l,p(Ω)

is denoted by W l,p
0 (Ω).

Definition 1.25 (H1(Ω)/R space). The quotient space H1(Ω)/R is defined as

H1(Ω)/R = {u ∈ H1(Ω) :

∫
∂Ω

u dx = 0}.

Definition 1.26 (Continuous embedding). Let X and Y be two Banach spaces.
We say that X is embedded into Y and write X ↪→ Y , if for any u ∈ X, we have
u ∈ Y and ‖u‖Y ≤ C ‖u‖X where the constant C is nonnegative and does not
depend on u ∈ X.
We define the embedding operator J : X → Y which takes u ∈ X into the same
element u considered as an element of Y .

Remark 1.2. The fact that X ↪→ Y is equivalent to the fact that the embedding
operator J : X → Y is continuous linear operator.

If ‖u‖Y ≤ C ‖u‖X , ∀u ∈ X, then ‖J‖X→Y ≤ C.

Definition 1.27 (Compact embedding). If X ↪→ Y and the embedding operator
J : X → Y is a compact operator, then we say that X is compactly embedded into
Y .

Remark 1.3. The compactness of operator J is equivalent to the fact that any
bounded set in X is a compact set in Y .

Theorem 1.4 (Embedding theorem for W l,p(Ω)). Let Ω ⊂ Rn be a bounded Lip-
schitz domain.

(a) If p ≥ 1, 1 ≤ q <∞, 0 ≤ r ≤ l, l− r− n
p + n

q ≥ 0, then W l,p(Ω) ↪→W r,q(Ω).
If l − r − n

p + n
q > 0, then this embedding is compact.
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(b) If p(l − r) > n, then W l,p(Ω) ↪→ Cr(Ω) and this embedding is compact.

Definition 1.28 (Bochner space). Let X be a Banach space and 0 < T <∞. The
space Lp((0, T );X) consists of all measurable functions u : [0, T ]→ X with

(a) ‖u‖Lp((0,T );X) :=
´∫ T

0
‖u(t)‖pX dt

¯1/p

<∞ for 1 ≤ p <∞, and

(b) ‖u‖L∞((0,T );X) := ess sup
0≤t≤T

‖u(t)‖X <∞ for p =∞.

The space Lp((0, T );X) is also called a Bochner space.

Definition 1.29. The space C([0, T ];X) comprises all continuous functions u :
[0, T ]→ X with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖X <∞.

Definition 1.30. Assume that X is a reflexive Banach space. By Cw((0, T );X)
we denote the set of all u : (0, T )→ X satisfying 〈f, u(t)〉 ∈ C(0, T ) for all f ∈ X∗.
Theorem 1.5 (Generalized Arzelà-Ascoli theorem). Let X and Y be reflexive
Banach spaces and let the embedding X ↪→ Y be compact.

(i) If the sequence {un}∞n=0, un : (0, T ) → X is equibounded and equicontinu-
ous. Then there exists u ∈ Cw((0, T );X) ∩ L∞((0, T );X) and a subsequence
{unk}∞nk=0 such that unk ⇀ u(t) in X for all t ∈ (0, T ).

(ii) If the sequence {un}∞n=0, un : (0, T )→ X is equibounded and un : (0, T )→ Y
is equicontinuous, then there exists u ∈ C((0, T );Y ) ∩ L∞((0, T );X) and a
subsequence {unk}∞nk=0 such that unk → u in C((0, T );Y ) and unk ⇀ u in X
for a.e. t ∈ (0, T ).

1.3 Sobolev spaces for vector fields

The inner product in L2(Ω) can be simply extended to vector functions. Suppose
that u = (u1, u2, u3) ∈ L2(Ω) := (L2(Ω))3 and v = (v1, v2, v3) ∈ L2(Ω). Then, we
define the inner product in L2(Ω) as

pu,vq =

∫
Ω

3∑
i=1

uivi dx.

Norm in this space is induced by its inner product, i.e.

‖u‖L2(Ω) =

˜∫
Ω

3∑
i=1

|ui|
2 dx

¸1/2

.
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Definition 1.31 (The curl and the divergence operator). Let v ∈ (C∞0 (Ω))∗. Then
the curl operator is defined as

∇× v =

ˆ

∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

˙

.

And the divergence operator is defined as

∇ · v =

3∑
i=1

∂vi
∂xi

.

Definition 1.32. The standard Sobolev spaces for vector fields H1(Ω), H(curl ; Ω)
and H(div; Ω) are defined as

H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))3×3},
H(curl ; Ω) := {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)},

H(div; Ω) := {u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)}

with the associated norms

‖u‖H1(Ω) =
´

‖u‖2L2(Ω) + ‖∇u‖2(L2(Ω))3×3

¯1/2

,

‖u‖H(curl ;Ω) =
´

‖u‖2L2(Ω) + ‖∇ × u‖2L2(Ω)

¯1/2

,

‖u‖H(div;Ω) =
´

‖u‖2L2(Ω) + ‖∇ · u‖2L2(Ω)

¯1/2

where ‖∇u‖2(L2(Ω))3×3 =
∑3
i=1 ‖∇ui‖

2
L2(Ω) =

∑3
j=1

∑3
i=1

∥∥∂xjui∥∥2

L2(Ω)
.

Theorem 1.6. Suppose that n is a unit outward normal vector on the boundary
∂Ω. Then

H0(curl ; Ω) = {u ∈ H(curl ; Ω) : u× n = 0 on ∂Ω},
H0(div,Ω) = {u ∈ H(div; Ω) : u · n = 0 on ∂Ω}.

The following spaces are commonly associated with solutions of problems de-
rived from Maxwell’s equations.

Definition 1.33.

XN = {u ∈ H(curl ; Ω) ∩H(div; Ω) : n× u = 0 on ∂Ω},
XN,0 = {u ∈XN : ∇ · u = 0 in Ω}.
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Theorem 1.7 (Friedrich’s inequality for vector fields, [30]). Assume that Ω is also
simply-connected. Then there exists a positive constant C such that:

‖u‖2L2(Ω) ≤ C ‖∇ × u‖
2
L2(Ω) ∀u ∈XN,0.

Now, we define norms for the spaces mentioned above.

Definition 1.34. Norm in the space XN is a usual graph norm, i.e.

‖u‖XN
= ‖u‖L2(Ω) + ‖∇ × u‖L2(Ω) + ‖∇ · u‖L2(Ω) .

Using the Friedrich’s inequality above we furnish the space XN,0 with the norm

‖u‖XN,0
= ‖∇ × u‖L2(Ω) .

The following theorem is crucial for the mathematical approach used in this
thesis. For more details, we refer the reader to [35, Theorem 3.7] and [3, Theorem
2.12].

Theorem 1.8. The space XN and the space XN,0 are continuously embedded into
H1(Ω).

Remark 1.4. The embedding above holds true also for a convex domain Ω. For
more details, we refer the reader to [3, Theorem 2.17].

Theorem 1.9. The embedding of XN into L2(Ω) is compact.

For more details about Sobolev spaces for scalar and vector valued functions
we refer the reader to [31, 49, 55] and [73].

1.4 Monotone operators

Let X be a real Banach space. In this section we present the main theorem on
monotone operators from [91] (for more details on monotone operators we refer
the reader to [56, 79]). First, let us introduce the subject of the study that is the
following operator equation

Au = b for u ∈ X, (1.1)

where A : X → X∗. Theory of monotone operators is sometimes used to overcome
the nonlinearities in partial differential equations so the existence of a unique so-
lution can be provided. More in depth theory can be found in the work of Minty
and Browder (see [54] and [18]) and in Zeidler [91]. Before we introduce the main
theorem it is necessary to present some key definitions.
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Definition 1.35 (Monotone operator). A is called monotone iff

〈Au−Av, u− v〉 ≥ 0 ∀u, v ∈ X.

Definition 1.36 (Strictly monotone operator). A is called strictly monotone iff

〈Au−Av, u− v〉 > 0 ∀u, v ∈ X with u 6= v.

Definition 1.37 (Strongly monotone operator). A is called strongly monotone iff
there is a C > 0 such that

〈Au−Av, u− v〉 ≥ C ‖u− v‖2X ∀u, v ∈ X.

Definition 1.38 (Coercive operator). A is called coercive iff

lim
‖u‖X→∞

〈Au, u〉
‖u‖X

= +∞.

Definition 1.39 (Demicontinuous operator). A is said to be demicontinuous iff

un → u as n→∞

implies Aun ⇀ Au as n→∞.

Definition 1.40 (Hemicontinuous operator). A is said to be hemicontinuous iff
the real function

t 7→ 〈A(u+ tv), w〉

is continuous on [0, 1] for all u, v, w ∈ X.

Theorem 1.10 (Main theorem on monotone operators). Let A : X → X∗ be a
monotone, coercive and hemicontinuous operator on the real, separable, reflexive
Banach space X. Then the following assertions hold:

(a) For each b ∈ X∗, equation (1.1) has a solution.

(b) If the operator A is strictly monotone then equation (1.1) has a unique solu-
tion.

(c) If A is strictly monotone then the inverse operator A−1 : X∗ → X exists.
This operator is strictly monotone, demicontinuous, and bounded.
If A is strongly monotone then A−1 is Lipschitz continuous.
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1.4.1 Potential of a vector field

Since potentials of vector fields will be used throughout Chapters 2, 3 and 4 we
would like to introduce the formal definition of it. Moreover, we present a theo-
rem that provides a crucial inequality which is used to obtain necessary a priori
estimates in the following chapters.

Definition 1.41. We say that ΦH (x) is a potential of the vector field H(x) if the
Gâteaux differential of ΦH (x) in the direction y ∈ Ω is H(x) · y, i.e.

DΦH (x;y) = lim
τ→0

ΦH (x+ τy)− ΦH (x)

τ
= H(x) · y for any x,y ∈ Ω.

Theorem 1.11 (from [79]). Let ΦH (y) be the potential introduced above and
let H be a strictly monotone vector field. Assume that ΦH (y) is twice Gâteaux
differentiable and also that the following holds

D2 ΦH (y;h,h) = lim
τ→0

DΦH (x+ τh;h)−DΦH (x;h)

τ
≥ 0 for any y,h ∈ Ω.

Then
H(x) · (x− y) ≥ ΦH (x)− ΦH (y) for any x,y ∈ Ω.

1.5 Partial differential equations

A partial differential equation (PDE) is an equation involving an unknown function
of two or more variables and some of its partial derivatives. There are many books
which provide an excellent introduction to the theory of PDE. For that reason, we
name only few. Great insight can be obtained in [17, 28, 60] or in [80].

Definition 1.42. Let k ≥ 1, k ∈ N and let Ω denote an open subset of Rn for
some n ≥ 1, n ∈ N. Then an expression of the form

F (∂ku(x), ∂k−1u(x), . . . , ∂u(x), u(x), x) = 0 (x ∈ Ω) (1.2)

is called a kth-order partial differential equation where

F : Rn
k

× Rn
k−1

× . . .× Rn × R× Ω→ R

is given and
u : Ω→ R

is the unknown.
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We introduce four basic classifications of partial differential equations.

Definition 1.43. (a) The PDE (1.2) is called linear if it has the form∑
|α|≤k

ωα(x)∂αu = f(x)

for given functions ωα (|α| ≤ k), f . This linear PDE is homogeneous if
f ≡ 0.

(b) The PDE (1.2) is semilinear if it has the form∑
|α|=k

ωα(x)∂αu+ ω0

`

∂k−1u, . . . , ∂u, u, x
˘

= 0.

(c) The PDE (1.2) is quasilinear if it has the form∑
|α|=k

ωα
`

∂k−1u, . . . , ∂u, u, x
˘

∂αu+ ω0

`

∂k−1u, . . . , ∂u, u, x
˘

= 0.

(d) The PDE (1.2) is fully nonlinear if it depends nonlinearly upon the highest
order derivatives.

If some u satisfies (1.2) we say that u solves the PDE. In general, partial differ-
ential equations have infinitely many solutions. In order to obtain a unique solution
we need to apply additional constraints in the form of initial and boundary condi-
tions.

Initial conditions are used in evolution (partial) differential equations. These
equations can be used to model various physical phenomena. If the initial state
of our solution is given then they describe how the solution evolves in time. To
guarantee a unique solution we need to prescribe how the solution looks like at the
initial time (t = 0).

If the PDE (1.2) is paired together with a set of additional constraints on the
boundary of Ω then we speak about a boundary value problem. There are several
types of boundary conditions. We list them in the example below.

Example 1.1. Let Ω be a bounded domain in Rn for n ≥ 1, n ∈ N. The boundary
of Ω is denoted as ∂Ω. Suppose that function g : ∂Ω → R is given. Let ∂Ω1 and
∂Ω2 be subsets of ∂Ω such that ∂Ω1 ∩ ∂Ω2 = ∅ and ∂Ω1 ∪ ∂Ω2 = ∂Ω and let n
denote a unit outward normal vector associated with the boundary ∂Ω. Then we
can interpret different boundary conditions as:

u = g on ∂Ω, (Dirichlet)
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∂u

∂n
= g on ∂Ω, (Neumann)

au+ b
∂u

∂n
= g on ∂Ω, a, b 6= 0 and a, b ∈ R, (Robin)

u = g on ∂Ω1
∂u

∂n
= g on ∂Ω2. (Mixed)

If the PDE (1.2) associated with one of the boundary conditions above has a
unique solution u, then we say that it is a classical solution. This solution has
continuous derivatives up to k-th order. However, in some cases a classical solution
cannot be provided. Then we need to reformulate the problem and look for the
solution in a broader function space. This is usually done by multiplying (1.2)
with a test function from an appropriate function space. Then integrating over
the domain Ω, taking into account all boundary conditions and using the Green
theorem, we obtain a new formulation of the original problem, called the variational
formulation. An advantage of the variational formulation is that it weakens the
assumptions on our solution u, i.e. it does not need to be as regular as a classical
solution. If u satisfies the variational formulation for all test functions we say that
u is a weak solution of the original problem.

1.6 Some important (in)equalities and identities

The following inequalities and identities are used extensively in theoretical parts of
the thesis and form the cornerstone of our modus operandi.

Discrete Hölder’s inequality. Suppose that n ∈ N, p > 1 and 1
p + 1

q = 1.
If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers then

n∑
i=1

|aibi| ≤

˜

n∑
i=1

|ai|
p

¸1/p˜ n∑
i=1

|bi|
q

¸1/q

.

Remark 1.5. If p = q = 2 then the inequality above is called Cauchy’s inequality.

Continuous Hölder’s inequality. Suppose that n ∈ N, p > 1 and 1
p + 1

q = 1. If
f and g are integrable functions on Ω ⊂ Rn (or Cn) then∫

Ω

|f(x)g(x)| dx ≤
ˆ∫

Ω

|f(x)|
p dx

˙1/pˆ∫
Ω

|g(x)|
q dx

˙1/q

.

Remark 1.6. If p = q = 2 then the inequality above is called Cauchy-Schwarz’s
inequality.
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Abel’s summation rule. Assume that a0, a1, . . . , an is a set of real numbers
then

n∑
i=1

(ai − ai−1)ai =
1

2

˜

a2
n − a2

0 +

n∑
i=1

(ai − ai−1)2

¸

.

Young’s inequality. Assume that a and b are nonnegative real numbers and p
and q are positive real numbers such that 1

p + 1
q = 1 with p ≥ 1, then

ab ≤ ap

p
+
bq

q
.

Young’s inequality with ε. Taking p = 2 = q, a = a?
ε
and b =

?
εb in the

inequality above for some ε > 0, we obtain

ab ≤ a2

2ε
+
εb2

2

or
ab ≤ C(ε′)a2 + ε′b2

where ε′ = 2ε and C(ε′) = 1
4ε′ .

Curl identity. If φ is a scalar valued function and F is a vector field then

∇× (φF ) = ∇φ× F + φ∇× F .

Lemma 1.2 (Discrete version of Grönwall’s lemma, from [6]). Let {yn} and {gn}
be nonnegative sequences and C a nonnegative constant. If

yn ≤ C +

n−1∑
i=0

giyi for n ≥ 0,

then

yn ≤ C exp

˜

n−1∑
i=0

gi

¸

for n ≥ 0.

Lemma 1.3 (Continuous version of Grönwall’s lemma, from [6]). Let y and g be
nonnegative integrable functions and C a nonnegative constant. If

y(t) ≤ C +

∫ t

0

g(s)y(s) ds for t ≥ 0,

then

y(t) ≤ C exp

ˆ∫ t

0

g(s) ds
˙

for t ≥ 0.
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Theorem 1.12 (Green’s integral identity for vector fields). Let Ω be a bounded do-
main in R3 with n being a unit outward normal vector associated with the Lipschitz
continuous boundary ∂Ω. Suppose that f ∈ H(curl ; Ω) and g ∈ H1(Ω), then∫

∂Ω

(n× f) · g dx =

∫
Ω

∇× f · g dx−
∫

Ω

f · ∇ × g dx.

Theorem 1.13 (Poincaré-Wirtinger inequality, from [1]). Assume that 1 ≤ p ≤ ∞
and that Ω is a Lipschitz domain in Rn. Then there exists a positive constant C,
depending only on Ω and p such that for every u ∈W 1,p(Ω)

‖u− uΩ‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω)

where
uΩ =

1

|Ω|

∫
Ω

u(x) dx.

Theorem 1.14 (Nečas inequality, from [26] or [57]). Let Ω ⊂ Rn be a bounded
Lipschitz domain. Moreover, let Γ ⊂ ∂Ω be a part of the boundary with |Γ| > 0.
Then

‖w‖2L2(Γ) ≤ ε ‖∇w‖
2

+ Cε ‖w‖2 , ∀w ∈ H1(Ω), 0 < ε < ε0.

Theorem 1.15 (Mean value theorem). Suppose that f : [a, b]→ R is a continuous
function which is also differentiable on the open interval (a, b). Then there is a real
number c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

1.7 Maxwell’s equations

Maxwell’s equations were introduced by Maxwell in 1873 in his publication Treatise
on Electricity and Magnetism [53]. These equations consist of two pairs of cou-
pled integral (partial differential) equations relating six fields, two of which model
sources of electromagnetism.

Let Ω be a bounded domain in R3 and let Σ be any surface. Then ∂Ω and
∂Σ denote boundaries of Ω and Σ, respectively. The integral version of Maxwell’s
equations are as follows:

∫
∂Ω

D · ds =

∫
Ω

ρ dx, (Gauss’ law)∫
∂Ω

B · ds = 0, (Gauss’ law for the magnetic charge)
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∫
∂Σ

E · dl = − d
dt

∫
Σ

B · ds, (Faraday’s law)∫
∂Σ

H · dl =
d
dt

∫
Σ

D · ds+

∫
Σ

J · ds (Ampère’s law)

where

E = Electric field intensity vector,
B = Magnetic field flux density vector (Magnetic induction field),
H = Magnetic field intensity vector,
D = Electric field flux density vector (Displacement current),

and the current and charge sources are described by

J = Electric current flux density vector,
ρ = Electric charge density.

The first equation above says that the electric flux leaving a volume is proportional
to the charge inside. The second one states that there are no magnetic monopoles,
i.e. the total magnetic flux through a closed surface is zero. The meaning of the
third equation is that the voltage induced in a closed circuit is proportional to the
rate of change of the magnetic flux it encloses. Lastly, the fourth equation says
that the magnetic field induced around a closed loop is proportional to the electric
current plus displacement current (rate of change of electric field) it encloses.

We can rewrite Maxwell’s equations in their differential form as follows:

∇ ·D = ρ, (1.3)
∇ ·B = 0, (1.4)
∇×E = −∂tB, (1.5)
∇×H = ∂tD + J . (1.6)

The above equations are known as point form because each equality is true at every
point in space. From now on this will be our reference point regarding Maxwell’s
equations since all mathematical models contained in this thesis are obtained from
the equations above.

1.7.1 Constitutive relations

The electric and magnetic flux densities D,B are related to the field intensities
E,H via the constitutive relations whose precise form depends on the material in
which the fields exist. In vacuum, they take their simplest form:

D = ε0E,
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B = µ0H,

where ε0, µ0 are the permittivity and permeability of vacuum.

More generally, constitutive relations may be inhomogeneous, anisotropic, non-
linear, frequency dependent (dispersive), or all of the above. In inhomogeneous
materials the permittivity ε and permeability µ depend on the location within the
material:

D(x, t) = ε(x)E(x, t),

B(x, t) = µ(x)H(x, t).

In anisotropic materials ε and µ depend on the x, y, z direction and the consti-
tutive relations may be written component-wise in matrix (or tensor) form:

¨

˝

Dx

Dy

Dz

˛

‚=

¨

˝

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

˛

‚

¨

˝

Ex
Ey
Ez

˛

‚,

¨

˝

Bx
By
Bz

˛

‚=

¨

˝

µxx µxy µxz
µyx µyy µyz
µzx µzy µzz

˛

‚

¨

˝

Hx

Hy

Hz

˛

‚.

In nonlinear materials, ε and µ may depend on the fields E and H, i.e.

D = ε(E)E,

B = µ(H)H.

In a conducting material the electromagnetic field itself gives rise to currents.
If the field strengths are not large, we can assume that Ohm’s law holds so that:

J = σE + F (1.7)

where σ is called the electric conductivity and it is a non-negative function of
position. The vector function F describes the applied current density.

1.7.2 Boundary and interface conditions

Equations (1.3)-(1.6) are not a complete classical description of the electromagnetic
field since the equations do not hold at boundaries between different materials
where either µ or ε are discontinuous (for instance a steel-air interface). For that
reason we need to define interface conditions.

Let us consider the case of two materials with different electric and magnetic
properties separated by a surface S with a unit normal vector n pointing from the
region of the first material to the region of the second material (see Fig. 1.1).
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Figure 1.1: Geometry of two materials with different electromagnetic properties.

For ∇ × E to be well defined, we must have the tangential component of the
electric field to be continuous across S and so n×E is continuous across S. Thus,
if E1 denotes the limiting value of the electric field as S is approached from the
region of the first material and E2 denotes the limit of the field from the other
region we must have

n×E1 = n×E2 on S.

On the other hand, for B to have well defined divergence, the normal components
of B must be continuous across S so that

n ·B1 = n ·B2 on S.

The continuity conditions above hold for any electromagnetic field. However,
we cannot assume that the analogue holds for the magnetic field. In general,

n× (H1 −H2) = JS

where this relation defines the tangential vector field JS , the surface current den-
sity. In most cases the magnetic field has continuous tangential components (i.e.
JS = 0). This is true unless the surface S models a thin conductive layer giving
rise to the conductive boundary condition. Hence, it is usually assumed that

n×H1 = n×H2 on S.
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The presence of singularities in the electric charge density ρ may cause jumps in
the normal component of D. It holds that

n · (D1 −D2) = ρS on S

where ρS denotes the surface charge density.

A particularly important case occurs when one of the materials discussed above
is a perfect conductor. Looking at Ohm’s law, we see that if σ → ∞ and we
want J stay bounded then E → 0. In other words, this suggests that in a perfect
conductor the electric field vanishes. Therefore, if the second material in Fig. 1.1
is a perfect conductor then E2 = 0 and we obtain the perfect conducting boundary
condition for E1,

n×E1 = 0 on S.

1.7.3 Potential formulation

Potential formulation is quite common for electromagnetic problems. It efficiently
reduces the number of variables and simplifies the whole system (1.3)-(1.6). Let us
make an additional assumption on Ω and assume that it is also simply-connected.
Since equation (1.4) is valid in the whole domain Ω, we have a vector potential
A ∈ H(curl ; Ω) such that:

B = ∇×A in Ω. (1.8)

Combining the equation above with equation (1.5), we arrive at

∇× pE + ∂tAq = 0 in Ω.

Now, using [35, Theorem 2.9] we obtain a scalar potential φ ∈ H1(Ω) such that:

E + ∂tA = −∇φ in Ω

or

E = −∂tA−∇φ in Ω. (1.9)

Maxwell’s equations and constitutive laws specify E and B uniquely, they do
not specify A and φ uniquely. The nonuniqueness of the potentials is summarized
by gauge transformations. Suppose that we have two vector potentials A1,A2 and
two scalar potentials φ1, φ2 satisfying equations (1.8) and (1.9), respectively. The
relation between these potentials can be then expressed through a scalar function
q ∈ H1(Ω) in the following way:

A1 = A2 +∇q,
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φ1 = φ2 − ∂tq.

The nonuniqueness of A and φ enables us to put additional constraints which
have no physical significance, but results in mathematical convenience through a
process called gauge-fixing. Gauge-fixing usually consists of imposing an additional
constraint in the form of a linear differential operator acting on A and φ.

One of these gauge-fixings is called the Coulomb gauge. Suppose that

∇ ·A1 = 0 in Ω.

Then, we have

∇ ·A1 −∇ ·A2 = ∇ · (A1 −A2) = ∇ · ∇q = 0.

The function q is now constrained to be a harmonic function. This, together with
suitable boundary conditions on A, force q to be a constant. Therefore, using the
Coulomb gauge, we specify A uniquely.

Below, we propose two important theorems from [35] which will be used later
in Chapter 4.

Theorem 1.16. Assume that Ω is a simply-connected Lipschitz domain. Let n
be a unit outward normal vector associated with boundary ∂Ω. Then each function
u ∈ L2(Ω) satisfying

∇ · u = 0 in Ω

has at most one divergence-free vector potential A ∈ H(curl ; Ω) that satisfies:

n×A = 0 on ∂Ω.

Theorem 1.17. Assume that Ω is a simply-connected Lipschitz domain. Then a
function u ∈ L2(Ω) satisfies:

∇× u = 0 in Ω

iff there exists a unique function φ ∈ H1(Ω)/R such that:

u = −∇φ.

Since we offer only a compressed introduction to the electromagnetism in con-
tinuous media, we refer the reader to M. Fabrizio and A. Morro [29] and to L.
D. Landau and E. M. Lifshitz [50]. These books present a detailed derivation of
mathematical models of electromagnetic solids.



Part I

Mathematical modelling of the
induction heating phenomena
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Chapter 2

Solvability of the induction
heating model including
nonlinear magnetic field flux
density and restrained Joule
heat

This chapter is based on the article [68] that has been published in the journal of
Applicable Analysis.

2.1 Introduction

Induction heating is a non-contact heating process. A large alternating current is
passing through the coil, which is known as the work coil. This generates a very
intense and rapidly changing magnetic field in the space within the work coil. The
workpiece to be heated is placed within this intense alternating magnetic field. The
alternating magnetic field induces a current flow in the conductive workpiece. This
is known as eddy current. These currents flow against the electrical resistivity of
the material, generating precise and localized heat. This heating occurs with both
magnetic and non-magnetic materials and is often referred to as the Joule heat.

Induction heating is frequently used in industrial applications such as metal

23
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hardening and preheating for forging operations. The investigation of an induction
heating system usually relies upon a series of expensive, long, and complicated
experiments. The mathematical analysis and numerical simulation for induction
heating play an important role in the designing process.

Induction heating involves two different types of physics: electromagnetism and
heat transfer. Some material properties are temperature dependent. Hence, their
attributes change when heat is applied. In such event, we consider the two physical
phenomena coupled. The analysis of this full system is quite complicated. In
some situations (when the electric field is given by a certain special time-harmonic
form) one can decouple Maxwell’s equations from the heat problem and then study
the heat equation alone. The microwave heating process is partly based on this
approximation.

Numerous articles are devoted to the induction heating phenomena. Most of
them present various numerical schemes for computation, e.g. [2, 11, 12, 27, 32,
44, 75]. Nevertheless, only a few articles perform theoretical study about the well-
posedness of the problem, e.g. [13, 83, 84, 85, 86]. The common feature of all these
works are linear constitutive laws in Maxwell’s equations. The most extensive study
has been carried out in [38, 39], and [16] where authors have proven the existence
of a weak solution to the mathematical model with linear dependent magnetic
induction field B, i.e. B = µH with µ being a positive constant.

In this chapter we derive and investigate a mathematical model of induction
heating. We assume that the electric conductivity present in the Ohm law is
temperature dependent. Moreover, the constitutive relation between the fields B
and H is assumed to be nonlinear.

2.2 Derivation of the mathematical model

Let Ω ⊂ R3 be a bounded domain which is occupied by an electromagnetic ma-
terial (ferromagnetic). The boundary ∂Ω is assumed to be Lipschitz continuous.
The symbol n stands for the outer normal vector associated with ∂Ω. The electro-
magnetic phenomena are modeled with Maxwell’s equations (1.3)-(1.6).

As in eddy current problems the change of electric displacement in time is not
significant the term ∂tD in (1.6) is not included. We adopt the Ohm law in the
same form as in (1.7), i.e.

J = σ(T )E + F (2.1)

where σ(T ) denotes the temperature dependent electric conductivity. This function
is strictly positive and bounded from above and below, i.e. there exist positive
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Figure 2.1: Magnetization curve.

constants σ∗ and σ∗ such that

0 < σ∗ ≤ σ(s) ≤ σ∗ <∞, ∀s ≥ 0. (2.2)

We also introduce the function γ := 1/σ which is also bounded (i.e. 0 < γ∗ ≤ γ ≤
γ∗ <∞). According to (2.1), we express E in the following way

E = J/σ − F /σ := γJ − γF . (2.3)

Magnetization curve for ferromagnets shows a monotone character (see Fig. 2.1).
Therefore, we assume a nonlinear relation between the vector fields B and H. It
can be expressed either as

B := B(H) (2.4)

or

H := H(B). (2.5)

We adopt a nonlinear relation between B and H in the form of (2.4). Then, after
eliminating other variables in (1.5) and (1.6), we conclude that the magnetic field
H is determined by the solution of the following nonlinear PDE:

∂tB(H) +∇× pγ(T )∇×Hq = ∇× pγ(T )F q a.e. in QT := Ω× (0, T ) (2.6)

with the initial condition

H(x, 0) = H0(x) in Ω. (2.7)
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We assume that the boundary ∂Ω is a perfect conductor. This means that the
tangential component of H vanishes on the boundary, i.e.

n×H = 0 on ∂Ω. (2.8)

Looking at the Gauss’ law for the magnetic charge (1.4), we see that

∇ ·B(H(0)) = 0 in Ω. (2.9)

The choice of which form of the nonlinear constitutive relation between H and B
is adopted is very important. As we can see, the adoption of (2.4) has led to the
nonlinear PDE (2.6) with nonlinear term being under the time derivative. However,
as we will see later in Chapter 3, the adoption of (2.5) moves the nonlinearity under
the curl operator. Let us demonstrate the importance of this choice in the following
example.

Example 2.1. The relation between the two vector fieldsH and B can be expressed
by a nonlinear vector field M , i.e. if B = M(H), then H = M−1(B) (assuming
that M−1 exists). Suppose that

M(x) = m(|x|)x ∀x ∈ R3,

where 0 ≤ m(s) for s ≥ 0. Then, we have

y = B(x) = m(|x|)x

|y| = m(|x|) |x|

g−1(|y|) = |x| , (g(s) = m(s)s).

Now, we define M−1 as follows

M−1(y) =
g−1(|y|)

|y|
y.

The nonlinear nature of M and M−1 is characterized by functions m(|x|) and
g−1(|x|), respectively. Let us model the nonlinear relation between B and H using
the function m(|x|) = |x|

4. Then the inverse function of g(|x|) equals to g−1(|x|) =

|x|
1/5. We can see these two functions pictured in Fig. 2.2. Looking at the function

g−1, we observe that it is rather steep in the neighbourhood of 0. Therefore, in
order to avoid unstable numerical schemes, we would suggest using the relation
B = M(H) = |H|

4
H instead of H = M−1(B) = |B|

1/5
B. However, it all

depends on the choice of the vector field M (or M−1). In some cases it is better
to use the former relation (2.4) while for the other cases the second relation (2.5)
works better.
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Figure 2.2: Functions m(x) and g−1(x).

The problem defined by (2.6), (2.7) and (2.8) models the electromagnetic part
of our induction heating model.

The equation to be solved for the heat transfer in Ω is the following diffusion
PDE:

ρcp∂tT = ∇ · (λ∇T ) +Q (2.10)

where ρ is the material mass density, cp the specific heat and λ the thermal con-
ductivity of the conductor. The term Q acts as a source (in our case it is a source
of heat). Joule heat generated by eddy currents is responsible for the heating up.
Hence, it plays the role of Q in (2.10) and it is expressed in the following way:

Q = γ |J |
2

= γ |∇×H|
2
.

For the sake of simplicity we assume a homogeneous Dirichlet boundary condition

T (x, t) = 0 on ∂Ω.

To guarantee well-posedness we need to introduce an initial condition:

T (x, 0) = u0(x) for x ∈ Ω.

Equation (2.10) is nonlinear because all three coefficients ρ, cp and λ are, in
general, temperature dependent. However, the temperature dependences of ρ and
cp are usually weak. Therefore, we neglect it. To overcome the nonlinear term λ
in equation (2.10), we introduce the Kirchhoff transformation [34]

u(x, t) = u0(x) +
1

λ(u0(x))

∫ T (x,t)

u0(x)

λ(s) ds.
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After the application of the Kirchhoff transformation to equation (2.10), we obtain
the following

ˆ

λ0ρcp
λ(u)

˙

∂tu+∇ · (λ0∇u) = γ(u) |∇×H|
2
.

We define the real continuous function θ(u) as

θ′(u) =
λ0ρcp
λ(u)

for all u ∈ R.

Now, we rewrite the PDE above together with boundary and initial conditions:

∂tθ(u)−∇ · (λ0∇u) = γ(u) |∇×H|
2 in QT ,

u(x, 0) = u0(x) in Ω, (2.11)
u(x, t) = 0 on ∂Ω.

The function λ0(x) is supposed to be strictly positive and bounded, i.e.

0 < λ∗ ≤ λ0 ≤ λ∗ <∞ for some positive constants λ∗, λ∗. (2.12)

If C and θ∗ are positive constants then the function θ(u) is assumed to obey the
following

θ(0) = 0, 0 < θ∗ ≤ θ′(s), |θ(s)| ≤ C(1 + |s|) for all s ∈ R. (2.13)

Coupling between the electromagnetic and heat transfer part of our model is
provided through the term γ(u) in (2.6) and the Joule heat term in (2.11). Espe-
cially the source term in the heat equation has to be treated carefully. Induction
heating may cause temperature blow-ups in a workpiece under some circumstances.
In many applications the whole process is controlled by the current flowing through
the induction coil. This current is shut down after a given time which prohibits the
temperature blowing-up. This process is expressed by the application of a trunca-
tion to the Joule heat term in (2.11). The truncation function (see illustration in
Fig. 2.3) is defined as

Rr(x) :=

 r if x > r,
x if |x| ≤ r,
−r if x < −r

(2.14)

where r is a positive constant. We truncate the Joule heat term in (2.11) such that
the heat transfer equation becomes:

∂tθ(u)−∇ · (λ0∇u) = Rr(γ(u) |∇×H|
2
) in QT ,
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Figure 2.3: Illustration of the truncation function Rr applied on a general function
g.

u(x, 0) = u0(x) in x ∈ Ω, (2.15)
u(x, t) = 0 on ∂Ω.

The equation above coupled with the model of the electromagnetic part (2.6), (2.7)
and (2.8) form the induction heating model.

2.2.1 Weak formulation

In order to write the variational formulation of the coupled system introduced in the
previous section we need to multiply (2.6) by a vector function ϕ from the space
H0(curl ; Ω). Then, integrate it over the whole domain Ω, apply the boundary
condition (2.8) and use the Green integral identity for vector fields, cf. Theorem
1.12. Identical steps can also be applied to (2.15), then, the weak formulation of
(2.6) and (2.15) reads as:
Find H ∈ L2((0, T ); H0(curl ; Ω)) and u ∈ C([0, T ]; L2(Ω)) ∩ L∞((0, T );H1

0 (Ω))
with ∂tu ∈ L2((0, T );L2(Ω)) such that

p∂tB pHq ,ϕq + pγ(u)∇×H,∇×ϕq = pγ(u)F ,∇×ϕq , (2.16)
H(x, 0) = H0(x) in Ω,

p∂tθ(u), ψq + pλ0∇u,∇ψq =
´

Rr
´

γ(u) |∇×H|
2
¯

, ψ
¯

, (2.17)

u(x, 0) = u0(x) in Ω

holds true for any ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω).
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2.2.2 Assumptions

The vector field B is supposed to be potential, hemicontinuous and strongly mono-
tone. We recall the Definition 1.41 and denote the potential of B as ΦB , i.e.
DΦB = B. Throughout this chapter we assume that

pB(x)−B(y)q · px− yq ≥ b∗ |x− y|
2
, b∗ > 0 ∀x,y ∈ R3,

B(0) = 0,
|B(x)| ≤ C(1 + |x|) ∀x ∈ R3,

ΦB−1(B(x)) ≥ C0 |x|
2 ∀x ∈ R3.

(2.18)

The strong monotonicity of B implies its invertibility and Lipschitz continuity of
the inverse field B−1, namely

b∗ |x− y|
2 ≤ pB(x)−B(y)q · px− yq ≤ |B(x)−B(y)| |x− y|

and
b∗ |x− y| ≤ |B(x)−B(y)| . (2.19)

This can be rewritten as
ˇ

ˇB−1(x)−B−1(y)
ˇ

ˇ ≤ 1

b∗
|x− y| . (2.20)

The potential ΦB is strictly convex, cf. [79, Theorem 5.1] . Moreover, following
Theorem 1.11, we have

ΦB(x)− ΦB(y) ≥ B(y) · px− yq ∀x,y ∈ R3. (2.21)

A similar inequality is valid also for ΦB−1

ΦB−1(x)− ΦB−1(y) ≥ B−1(y) · px− yq ∀x,y ∈ R3. (2.22)

By the chain rule we deduce that

d

dt
ΦB−1 pB(x)q = B−1

pB(x)q · dB(x)

dt
= x · dB(x)

dt
. (2.23)

An easy calculation gives

ΦB(x) =

∫ 1

0

B(tx) · x dt =

∫ 1

0

t−1B(tx) · tx dt

(2.18a)

≥
∫ 1

0

t−1b∗ |tx|
2 dt =

b∗
2

|x|
2
, (2.24)
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ΦB−1(x) =

∫ 1

0

B−1(tx) · x dt =

∫ 1

0

t−1B−1(tx) ·B
`

B−1(tx)
˘

dt

(2.18a)

≥
∫ 1

0

t−1b∗
ˇ

ˇB−1(tx)
ˇ

ˇ

2
dt ≥ 0 (2.25)

and

ΦB−1(x) =

∫ 1

0

B−1(tx) · x dt ≤
∫ 1

0

ˇ

ˇB−1(tx)
ˇ

ˇ |x| dt
(2.20)

≤ 1

b∗

∫ 1

0

|tx| |x| dt =
1

2b∗
|x|

2
.

(2.26)

Example 2.2. A typical example of a magnetic field that satisfies (2.18) could be
B(x) = x+ b(|x|)x where the real function b obeys:

0 ≤ b1 ≤ b(s) ≤ b2, 0 ≤ (b(s)s)′ ≤ C.

One can easily check that

pB(x)−B(y)q · (x− y) = |x− y|
2

+ pb(|x|)x− b(|y|)yq · (x− y)

= |x− y|
2

+ b(|x|) |x|
2

+ b(|y|) |y|
2 − b(|x|)x · y − b(|y|)y · x

≥ |x− y|
2

+ b(|x|) |x|
2

+ b(|y|) |y|
2 − b(|x|) |x| |y|− b(|y|) |x| |y|

= |x− y|
2

+ pb(|x|) |x|− b(|y|) |y|q p|x|− |y|q

≥ |x− y|
2

and

ΦB(x) =
1

2
|x|

2
+

∫ |x|

0

b(s)s ds.

Indeed, for the Gâteaux derivative in the direction y, we have

dΦB(x;y) = lim
t→0

ΦB(x+ ty)− ΦB(x)

t
= x · y + b(|x|)x · y = B(x) · y.

The inverse field B−1 for B(x) = x+ b(|x|)x is defined as

B−1(y) =
g−1(|y|)

|y|
y with g(s) = [1 + b(s)]s.

Then, using the mean value theorem, we may write for some η ∈ (0, |tx|)

ΦB−1(x) =

∫ 1

0

B−1(tx) · x dt =

∫ 1

0

g−1(|tx|) |x| dt
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=

∫ 1

0

`

g−1
˘′

(η) |x|
2
t dt.

Because 1 ≤ g′(s) ≤ Lg, we get

1

2Lg
|x|

2 ≤ ΦB−1(x).

Further, we have

b2∗
2Lg

|x|
2

(2.19)

≤ 1

2Lg
|B(x)|

2 ≤ ΦB−1(B(x)).

Since θ(0) = 0 and it is also monotonically increasing, we define its potential
by

Φθ(z) =

∫ z

0

θ(s)ds for any z ∈ R.

The potential defined above is clearly convex. If θ is also Lipschitz continuous with
the coefficient Lθ, then the following inequalities hold true, cf. [70]

θ2(z)

2Lθ
≤ Φθ(z) ≤

z2Lθ
2

, (2.27)

θ(z1)(z2 − z1) ≤ Φθ(z2)− Φθ(z1) ≤ θ(z2)(z2 − z1) (2.28)

for any z, z1, z2 ∈ R such that z1 6= z2.

2.3 Time discretization

This part is devoted to the time discretization of (2.16) and (2.17). We design a
nonlinear time-discrete approximation scheme based on the method of lines (im-
plicit Euler scheme or Rothe’s method), cf. [45, 61, 65]. Consider a number of time
steps n ∈ N. We introduce a time discretization of [0, T ] in the following sense:

[0, T ] =
⋃

0≤i≤n−1

[ti, ti+1], where ti = iτ, 0 ≤ i ≤ n, nτ = T.

The value of any function f at ti is denoted as fi. To approximate the time
derivative of f at ti, we use the backward Euler method, i.e.

∂tf(ti) ≈ δfi =
fi − fi−1

τ
.
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Using this notations, we approximate the variational formulations (2.16) and (2.17)
as

pδB phiq ,ϕq + pγ(ui−1)∇× hi,∇×ϕq = pγ(ui−1)F i,∇×ϕq (2.29)

pδθ(ui), ψq + pλ0∇ui,∇ψq =
´

Rr
´

γ(ui−1) |∇× hi|2
¯

, ψ
¯

, (2.30)

at every time step ti for i = 1, . . . , n, ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω).

Let us make a short comment on the suggested scheme. The time continuous
problem is approximated by a recurrent system of steady-state settings. Taking
γ(ui−1) in (2.29), we have decoupled this relation from (2.30). Therefore, the
pseudoalgorithm reads as:

Algorithm 1 Implicit Euler
Require: h0, u0, n
1: for i = 1, i ≤ n do
2: hi ← Solve: (2.29)
3: ui ← Solve: (2.30)
4: i← i+ 1

5: return {h1, u1}, . . . , {hn, un}

The main difficulty for this algorithm is the convergence proof of {hi, ui} to-
wards the solution {H, u}. The most difficult term to handle is γ(ui−1) |∇× hi|2
which appears in argument of the truncation function Rr. Therefore, in order
to pass to the limit in the truncated term, we have to show the a.e. pointwise
convergence of ui and ∇× hi.

The existence of a unique solution {hi, ui} of (2.29) and (2.30) at each time
step ti for i = 1, . . . , n is guaranteed by Theorem 1.10. We compile our statements
in the following Lemma.

Lemma 2.1. Let (2.13) and (2.18) hold true. Moreover, assume thatH0 ∈ L2(Ω),
u0 ∈ L2(Ω), F : [0, T ] → L2(Ω), F ∈ L2((0, T ); L2(Ω)). Then there exists a
uniquely determined pair hi ∈ H0(curl ; Ω) and ui ∈ H1

0 (Ω) solving (2.29) and
(2.30) for any i = 1, . . . , n.

Proof. Let us define the operators Fγ : H0(curl ; Ω)→ pH0(curl ; Ω)q
∗ and

G : H1
0 (Ω)→

`

H1
0 (Ω)

˘∗

〈Fγ(h),ϕ〉 :=

ˆ

B(h)

τ
,ϕ

˙

+ pγ∇× h,∇×ϕq ,
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〈G(u), ψ〉 :=

ˆ

θ(u)

τ
, ψ

˙

+ pλ0∇u,∇ψq .

We need to show that these operators are strictly monotone, coercive and hemi-
continuous.

Hemicontinuity follows from continuity of B and θ. The next step is to show
monotonicity of both operators. Since B is supposed to be strongly monotone
(which also implies strict monotonicity), we have for some positive constant C and
τ ∈ (0, 1)

〈Fγ(h1)− Fγ(h2),h1 − h2〉 =

ˆ

B(h1)−B(h2)

τ
,h1 − h2

˙

+ pγ(∇× h1 −∇× h2),∇× h1 −∇× h2q

≥ b∗
τ
‖h1 − h2‖2 + γ∗ ‖∇ × h1 −∇× h2‖2

≥ C ‖h1 − h2‖2H(curl ;Ω) > 0

for any h1,h2 ∈ H0(curl ; Ω), h1 6= h2. Thus, the operator Fγ is strictly mono-
tone. To show that also G is strictly monotone, we use (2.13) and the Mean value
Theorem 1.15. Then, we have for τ ∈ (0, 1), some positive constant C and ξ ∈ (0, 1)

〈G(u1)−G(u2), u1 − u2〉 =

ˆ

θ′[u1 + ξ(u2 − u1)]

τ
, |u1 − u2|

2

˙

+ pλ0(∇u1 −∇u2),∇u1 −∇u2q

≥ θ∗ ‖u1 − u2‖2 + λ∗ ‖∇u1 −∇u2‖2

≥ C ‖u1 − u2‖2H1(Ω) > 0

for any u1, u2 ∈ H1
0 (Ω), u1 6= u2. Coercivity of these operators is guaranteed since

B(0) = 0 and θ(0) = 0. We have

〈Fγ(h),h〉 =

ˆ

B(h)−B(0)

τ
,h− 0

˙

+ pγ∇× h,∇× hq ≥ C ‖h‖2H(curl ;Ω) ,

〈G(u), u〉 =

ˆ

θ(u)− θ(0)

τ
, u− 0

˙

+ pλ0∇u,∇uq ≥ C ‖u‖2H1(Ω) .

Thus,

lim
‖h‖

H(curl ;Ω)
→∞

〈Fγ(h),h〉
‖h‖H(curl ;Ω)

≥ +∞ and lim
‖u‖H1(Ω)→∞

〈G(u), u〉
‖u‖H1(Ω)

≥ +∞.
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We have shown that the operators Fγ and G are strictly monotone, hemicontinuous
and coercive. Now, we rewrite our pseudoalgorithm scheme with the operator
notation as follows

Algorithm 2 Implicit Euler

Require: h0 ∈ H0(curl ; Ω), u0 ∈ H1
0 (Ω), n ∈ N

1: for i = 1, i ≤ n do

2: hi ← Solve:
〈
Fγ(ui−1)(hi),ϕ

〉
=

´

B(hi−1)
τ ,ϕ

¯

+ pγ(ui−1)F i,∇×ϕq .

Since the r.h.s. is from H0(curl ; Ω)∗, we can use Theorem 1.10

3: ui ← Solve: 〈G(ui), ψ〉 =
´

θ(ui−1)
τ , ψ

¯

+
´

Rr
´

γ(ui−1) |∇× hi|2
¯

, ψ
¯

.

Since the r.h.s. is from H1
0 (Ω)∗, we can use Theorem 1.10

4: i← i+ 1

5: return {h1, u1}, . . . , {hn, un}

2.3.1 A priori energy estimates

This section is devoted to the introduction of several lemmas which provide the
basic energy estimates for functions hi and ui.

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then there exists a
positive constant C such that

(i) max
1≤j≤n

‖hj‖2 +

n∑
i=1

‖∇ × hi‖2 τ ≤ C,

(ii)

n∑
i=1

‖δB(hi)‖2H−1(curl ;Ω) τ ≤ C.

Proof. (i) Set ϕ = hiτ in (2.29) and sum it up for i = 1, . . . , j to obtain

j∑
i=1

pB(hi)−B(hi−1),hiq +

j∑
i=1

pγ(ui−1)∇× hi,∇× hiq τ =

=

j∑
i=1

pγ(ui−1)F i,∇× hiq τ.
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For the first term we deduce that

j∑
i=1

pB(hi)−B(hi−1),hiq =

j∑
i=1

`

B(hi)−B(hi−1),B−1
pB(hi)q

˘

(2.22)

≥
j∑
i=1

∫
Ω

”

ΦB−1(B(hi))− ΦB−1(B(hi−1))
ı

dx

=

∫
Ω

”

ΦB−1(B(hj))− ΦB−1(B(H0))
ı

dx
(2.18d)

≥ C0 ‖hj‖2 − ΦB−1(B(H0))
(2.26),(2.18c)

≥ C0 ‖hj‖2 − C.

With the previously made assumption (2.2), we write

j∑
i=1

pγ(ui−1)∇× hi,∇× hiq τ ≥ γ∗
j∑
i=1

‖∇ × hi‖2 τ.

Using Cauchy’s and Young’s inequalities, we get that

j∑
i=1

pγ(ui−1)F i,∇× hiq τ ≤
j∑
i=1

‖F i‖ ‖∇ × hi‖ τ ≤ Cε + ε

j∑
i=1

‖∇ × hi‖2 τ.

Putting all partial results above together and fixing a sufficiently small 0 < ε, we
arrive at

‖hj‖2 +

j∑
i=1

‖∇ × hi‖2 τ ≤ C.

(ii) From (2.29), we have for any ϕ ∈ H0(curl ; Ω) that

pδB(hi),ϕq = pγ(ui−1)F i,∇×ϕq− pγ(ui−1)∇× hi,∇×ϕq

≤ C p‖F i‖+ ‖∇ × hi‖q ‖ϕ‖H(curl ;Ω)

which gives
‖δB(hi)‖H−1(curl ;Ω) ≤ C p‖F i‖+ ‖∇ × hi‖q

and
n∑
i=1

‖δB(hi)‖2H−1(curl ;Ω) τ ≤ C
n∑
i=1

‖∇ × hi‖2 τ ≤ C,

where we used the previously obtained estimate result from (i).
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Lemma 2.3. Let the assumptions of Lemma 2.1 be fulfilled. In addition, suppose
that (2.9) is satisfied as well. Then

∇ · (B(hi)) = 0,

for any i = 1, . . . , n.

Proof. Set ϕ = ∇Φ ∈ H0(curl ; Ω), for any Φ ∈ C∞0 (Ω) in (2.29). Since∇×∇Φ = 0
we have

pδB(hi),∇Φq = 0.

We use the Green identity to obtain the following

p∇ ·B(hi), Φq = p∇ ·B(H0), Φq

for any i = 1, . . . , n and Φ ∈ C∞0 (Ω). The space C∞0 (Ω) is dense in the space
H1

0 (Ω). As a result, the above equality is true for all Φ ∈ H1
0 (Ω) or, in other words,

∇ ·B(hi) = ∇ ·B(H0) = 0 in H−1(Ω) = (H1
0 (Ω))∗ for any i = 1, . . . , n.

Lemma 2.4. Let the assumptions of Lemma 2.1 be satisfied. Moreover, assume
that u0 ∈ H1

0 (Ω) and that τ ≤ τ∗ < +∞. Then there exists a positive constant Cr
which depends on the parameter r of the cut-off function Rr such that

(i) max
1≤j≤n

‖uj‖2 +

n∑
i=1

‖∇ui‖2 τ ≤ Cr,

(ii)

n∑
i=1

‖δui‖2 τ + max
1≤j≤n

‖∇uj‖2 +

n∑
i=1

‖∇ui −∇ui−1‖2 ≤ Cr,

(iii) max
1≤j≤n

‖δθ(uj)‖H−1(Ω) ≤ Cr.

Proof. (i) Set ψ = uiτ in (2.30) and sum it up for i = 1, . . . , j to obtain that

j∑
i=1

pθ(ui)− θ(ui−1), uiq +

j∑
i=1

pλ0∇ui,∇uiq τ

=

j∑
i=1

´

Rr
´

γ(ui−1) |∇× hi|2
¯

, ui

¯

τ.

We bound the first term on the left-hand side using the technique from Lemma 2.2.

j∑
i=1

pθ(ui)− θ(ui−1), uiq =

∫
Ω

j∑
i=1

(θ(ui)− θ(ui−1))θ−1(θ(ui)) dx
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(2.28)
≥

∫
Ω

j∑
i=1

rΦθ−1(θ(ui))− Φθ−1(θ(ui−1))s dx

=

∫
Ω

Φθ−1(θ(uj)) dx−
∫

Ω

Φθ−1(θ(u0)) dx

(2.27)
≥ C0 ‖uj‖2 − C.

Using Cauchy’s and Young’s inequalities, we estimate
j∑
i=1

´

Rr
´

γ(ui−1) |∇× hi|2
¯

, ui

¯

τ ≤ Cr + C

j∑
i=1

‖ui‖2 τ.

The rest of the proof is obtained from the application of the Grönwall Lemma 1.2,
since λ∗ ≤ λ0.

(ii) We set ψ = δuiτ in (2.30) and sum again for i = 1, . . . , j

j∑
i=1

pδθ(ui), δuiq τ +

j∑
i=1

pλ0∇ui,∇ui −∇ui−1q

=

j∑
i=1

´

Rr
´

γ(ui−1) |∇× hi|2
¯

, δui

¯

τ.

Using Abel’s summation, we have
j∑
i=1

pλ0∇ui,∇ui −∇ui−1q =

∫
Ω

λ0

j∑
i=1

(∇ui −∇ui−1) · ∇ui dx

=

∫
Ω

λ0

2

˜

|∇uj |2 − |∇u0|
2

+

j∑
i=1

|∇ui −∇ui−1|
2

¸

dx

≥ λ∗
2

˜

‖∇uj‖2 − ‖∇u0‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2
¸

.

From the Mean value Theorem 1.15, we deduce that for some ξ ∈ (0, 1)

j∑
i=1

pδθ(ui), δuiq τ =

j∑
i=1

pθ′(ui + ξ(ui−1 − ui))[ui − ui−1], δuiq ≥ θ∗
j∑
i=1

‖δui‖2 τ.

Finally, the r.h.s. is estimated via Cauchy’s and Young’s inequalities similarly as
in part (i)

j∑
i=1

´

Rr
´

γ(ui−1) |∇× hi|2
¯

, δui

¯

τ ≤ Cr + ε

j∑
i=1

‖δui‖2 τ.
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If we take ε ∈ (0, θ∗) and collect all estimates above then it brings us to

(θ∗ − ε)
j∑
i=1

‖δui‖2 τ +
λ∗
2
‖∇uj‖2 +

λ∗
2

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ Cr +
λ∗

2
‖∇u0‖2

and
j∑
i=1

‖δui‖2 τ + ‖∇uj‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2 ≤ Cr

which is the desired estimate (ii).

(iii) Using (2.30) we deduce

pδθ(ui), ψq = − pλ0∇ui,∇ψq +
´

Rr
´

γ(ui−1) |∇× hi|2
¯

, ψ
¯

≤ C ‖∇ui‖ ‖∇ψ‖+ Cr ‖ψ‖
(ii)

≤ Cr ‖ψ‖H1(Ω) .

Thus,

‖δθ(ui)‖H−1(Ω) = sup
ψ∈H1

0 (Ω)
‖ψ‖H1(Ω)≤1

pδθ(ui), ψq ≤ Cr.

2.4 The existence of a global solution

The existence proof of a weak solution {H, u} of (2.16) and (2.17) is provided
in this section. We split the proof into two parts. In the first part we use well
known results from the functional analysis valid in evolution problems containing
the evolution (Gelfand’s) triple (cf. [45, 66]). In this manner, we establish the
convergence results for the approximate solution of temperature. In the second
part we profit from the monotone character of the nonlinear vector field B and use
the method of Minty-Browder (more details in [28, 79]) to overcome the nonlinearity
when passing to the limit. Finally, we prove the existence of a weak solution of
(2.16) and (2.17).

We construct piece-wise linear and piece-wise constant in time functions in the
following manner.

fn(0) = fn(0) = f0,

fn(t) = fi for t ∈ (ti−1, ti],
fn(t) = fi−1 + (t− ti−1)δfi for t ∈ (ti−1, ti].
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Figure 2.4: Rothe’s functions of a general function f(t).

These functions are also called Rothe’s functions. We include a simple example for
better interpretation in Fig. 2.4. Using this new notations, we rewrite (2.29) and
(2.30) in a continuous form for the whole time interval [0, T ] as follows

p∂tBn,ϕq +
`

γn(t− τ)∇× hn,∇×ϕ
˘

=
`

γn(t− τ)F n,∇×ϕ
˘

, (2.31)

p∂tθn, ψq + pλ0∇un,∇ψq =
´

Rr
´

γn(t− τ)
ˇ

ˇ∇× hn
ˇ

ˇ

2
¯

, ψ
¯

(2.32)

for any ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω). Please note that

δθ(ui) = ∂t {θ(ui−1) + (t− ti−1)δθ(ui)} = ∂tθn(t) for t ∈ (ti−1, ti]

and also

δB(hi) = ∂t {B(hi−1) + (t− ti−1)δB(hi)} = ∂tBn(t) for t ∈ (ti−1, ti].

Before we proceed to the existence theorem itself let us introduce Lemma 1.3.13
from [45] which represents a powerful tool to work within the proof of the existence
theorem.

Lemma 2.5. Let V, Y be reflexive Banach spaces and let the embedding V ↪→ Y
be compact. If the estimates∫ T

0

‖∂tun(t)‖2Y dt ≤ C, max
t∈[0,T ]

‖un(t)‖V ≤ C

hold for all n ≥ n0 > 0 then there exist u ∈ C([0, T ];Y ) ∩ L∞((0, T );V ) with
∂tu ∈ L2((0, T );Y ) (u is differentiable a.e. in (0, T )) and a subsequence {unk} of
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{un} such that

unk → u in C([0, T ];Y ),
unk(t) ⇀ u(t) in V for all t ∈ [0, T ],
unk(t) ⇀ u(t) in V for all t ∈ [0, T ],
∂tunk ⇀ ∂tu in L2((0, T );Y ).

Proof. Detailed proof can be found in [45].

Theorem 2.1. Suppose that all assumptions of Lemma 2.1 are fulfilled. Moreover,
assume (2.9), u0 ∈ H1

0 (Ω), and γ is a global Lipschitz continuous function and
also F is Lipschitz continuous in time. Then there exist u ∈ C([0, T ];L2(Ω)) ∩
L∞((0, T );H1

0 (Ω)) with ∂tu ∈ L2((0, T );L2(Ω)) and H ∈ L2((0, T ); H0(curl ; Ω))
and subsequences of un and hn (still denoted as n) such that

(i) un → u, un → u in C([0, T ];L2(Ω)),

(ii) un(t) ⇀ u(t) in H1
0 (Ω),∀t ∈ [0, T ],

(iii) γn → γ(u), γn(t− τ)→ γ(u) in L2((0, T );L2(Ω)),

(iv) θn − θn → 0 in C
`

[0, T ], H−1(Ω)
˘

,

(v) θn → θ(u) in L2((0, T );L2(Ω)),

(vi) Bn −Bn → 0 in L2((0, T ); H−1(curl ; Ω)),

(vii) hn ⇀H, Bn ⇀ B(H) in L2((0, T ); L2(Ω)),

(viii) hn →H in L2((0, T ); L2(Ω)),

(ix) hn ⇀H in L2((0, T ); H0(curl ; Ω)),

(x) ∂tBn ⇀ ∂tB(H) in L2((0, T ); H−1(curl ; Ω)),

(xi) F n → F in L2((0, T ); L2(Ω)),

(xii) u andH solve (2.16),

(xiii) hn →H in L2((0, T ); H(curl ; Ω)),

(xiv) u andH solve (2.17).

Proof. Lemma 2.4 implies that maxt∈[0,T ] ‖un‖H1(Ω)+
∫ T

0
‖∂tun‖2 dt ≤ Cr. There-

fore, we use Lemma 2.5 with V = H1
0 (Ω) and Y = L2(Ω) to prove (i) and (ii).

(iii) From the part (i) we get that un, un → u a.e. in QT . The Lipschitz
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continuity of the function γ yields

lim
n→∞

∫ T

0

‖γn(t)− γ(u(t)‖2 dt = lim
n→∞

∫ T

0

‖γ(un(t))− γ(u(t)‖2 dt

≤ C lim
n→∞

∫ T

0

‖un(t)− u(t)‖2 dt

= 0

and ∫ T

0

‖γn(t− τ)− γn(t)‖2 dt ≤ Cτ2

∫ T

0

‖∂tun‖2 dt = O
`

τ2
˘

.

Therefore,

lim
n→∞

∫ T

0

‖γn(t− τ)− γ(u(t)‖2 dt = 0.

(iv) Again, we use Lemma 2.4 to obtain
ˇ

ˇ

`

θn − θn, ψ
˘
ˇ

ˇ ≤ τ |p∂tθn, ψq| ≤ τ ‖∂tθn‖H−1(Ω) ‖ψ‖H1(Ω) ≤ Crτ ‖ψ‖H1(Ω) ,

which implies (iv).

(v) The assertion follows from (i), from the continuity of θ, and Lebesgue’s
dominated convergence Theorem 1.3.

(vi) Lemma 2.2 implies that
ˇ

ˇ

`

Bn −Bn,ϕ
˘
ˇ

ˇ ≤ τ | p∂tBn,ϕq | ≤ τ ‖∂tBn‖H−1(curl ;Ω) ‖ϕ‖H(curl ;Ω) .

Thus, by Lemma 2.2, we get
ˇ

ˇ

ˇ

ˇ

ˇ

∫ T

0

`

Bn −Bn,ϕ
˘

ˇ

ˇ

ˇ

ˇ

ˇ

dt = O pτq ‖ϕ‖H(curl ;Ω)

and
∥∥Bn −Bn

∥∥
L2((0,T );H−1(curl ;Ω))

= O pτq→ 0 as n goes to infinity.

(vii) Thanks to estimates in Lemma 2.2 and Theorem 1.2, we obtain a weak
convergence for hn and Bn in L2((0, T ); L2(Ω)), i.e.

hn ⇀H, Bn ⇀ U in L2((0, T ); L2(Ω))

where U is from L2((0, T ); L2(Ω)). Moreover, the results of Lemma 2.2 and Lemma
2.3 yield ∫ T

0

∥∥hn∥∥2

H(curl ;Ω)
dt ≤ C,
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∫ T

0

´

‖∂tBn‖2H−1(curl ;Ω) + ‖∇ ·Bn‖2 + ‖Bn‖2
¯

dt ≤ C.

Thus, by applying [69, Lemma 3.1(iii)], we get

lim
n→∞

∫ T

0

`

Bn, ξhn
˘

dt =

∫ T

0

pU , ξHq dt (2.33)

for any ξ ∈ C∞0 (Ω). The following inequality is true for any ω ∈ L2((0, T ); L2(Ω))
and any non-negative ξ ∈ C∞0 (Ω) thanks to monotone character of B. Please take
into account that Bn = B(hn) = B(hi) for t ∈ (ti−1, ti]. Looking at (2.18), we
have for any w ∈ L2((0, T ); L2(Ω)) and ξ ∈ C∞0 (Ω)∫ T

0

`

B(hn)−B(ω), ξ(hn − ω)
˘

dt ≥ 0 (2.34)

We split the integral above into four integrals, i.e.

P1 :=

∫ T

0

`

Bn, ξhn
˘

dt, P2 :=

∫ T

0

`

Bn, ξω
˘

dt,

P3 :=

∫ T

0

`

B(ω), ξhn
˘

dt, P4 :=

∫ T

0

pB(ω), ξωq dt.

We rewrite the first integral P1 in the following manner

P1 =

∫ T

0

`

Bn, ξhn
˘

dt+

∫ T

0

`

Bn −Bn, ξhn
˘

dt.

Now, using (vi) and Lemma 2.2, we conclude that∫ T

0

`

Bn −Bn, ξhn
˘

≤ C
∫ T

0

∥∥hn∥∥2

H(curl ;Ω)

∫ T

0

∥∥Bn −Bn

∥∥2

H−1(curl ;Ω)

n→∞→ 0.

Thus, using (2.33), we have

lim
n→∞

P1 =

∫ T

0

pU , ξHq dt.

The space L2((0, T ); C∞(Ω)) is dense in L2((0, T ); L2(Ω)). Thus, for any ε > 0
there exists ωε ∈ L2((0, T ); C∞(Ω)) such that ‖ω − ωε‖L2((0,T );L2(Ω)) ≤ ε. Let us
now investigate the following identity

P2 =

∫ T

0

`

Bn −Bn, ξωε
˘

dt+

∫ T

0

`

Bn −Bn, ξ(ω − ωε)
˘

dt



44 On the induction heating model considering the nonlinear magnetic flux

+

∫ T

0

pBn, ξωq dt.

Using (vi) and the statement above, we bound the first two terms of P2 as follows
ˇ

ˇ

ˇ

ˇ

ˇ

∫ T

0

`

Bn −Bn, ξωε
˘

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C
∫ T

0

∥∥Bn −Bn

∥∥2

H−1(curl ;Ω)

∫ T

0

‖ωε‖2H(curl ;Ω)

≤ Cε
∫ T

0

∥∥Bn −Bn

∥∥2

H−1(curl ;Ω)

n→∞→ 0

and
ˇ

ˇ

ˇ

ˇ

ˇ

∫ T

0

`

Bn −Bn, ξ(ω − ωε)
˘

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C
∫ T

0

∥∥Bn −Bn

∥∥2
∫ T

0

‖ω − ωε‖2

≤ Cε.

Since ω ∈ L2((0, T ); L2(Ω)), we have

lim
n→∞

∫ T

0

pBn, ξωq dt =

∫ T

0

pU , ξωq dt.

Therefore, we pass to the limit in

lim
n→∞

ˇ

ˇ

ˇ

ˇ

ˇ

P2 −
∫ T

0

pBn, ξωq dt

ˇ

ˇ

ˇ

ˇ

ˇ

≤ Cε ε→0→ 0.

Hence,

lim
n→∞

P2 =

∫ T

0

pU , ξωq dt.

Passing to the limit for n→∞ in the remaining terms, we obtain

lim
n→∞

P3 =

∫ T

0

pB(ω), ξHq dt, lim
n→∞

P4 =

∫ T

0

pB(ω), ξωq dt.

Returning to (2.34), we see that

lim
n→∞

∫ T

0

`

B(hn)−B(ω), ξ(hn − ω)
˘

dt =

∫ T

0

pU −B(ω), ξ(H − ω)q dt ≥ 0.
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Since ω has been chosen arbitrarily, we set ω = H + εq where ε > 0 and q ∈
L2((0, T ); L2(Ω)). Then we have∫ T

0

pU −B(H + εq), ξqq dt ≤ 0.

Now, passing with ε to 0 yields∫ T

0

pU −B(H), ξqq dt ≤ 0.

And, since q has been chosen arbitrarily, we set it to q = −q. Hence, also the
reverse inequality holds true. That implies the following∫ T

0

pU −B(H), ξqq dt = 0.

This is true for any q ∈ L2((0, T ); L2(Ω)) and any non-negative ξ ∈ C∞0 (Ω). There-
fore, U = B(H) a.e. in Ω× (0, T ), i.e. Bn ⇀ B(H) in L2((0, T ); L2(Ω)).

(viii) Let ξ ∈ C∞0 (Ω) be non-negative. It holds that∫ T

0

`

B(hn)−B(H), ξ(hn −H)
˘

dt ≥ b∗
∫ T

0

´

ξ,
ˇ

ˇhn −H
ˇ

ˇ

2
¯

dt.

Passing to the limit for n → ∞, using Lemma 3.1 (div-curl lemma) from [69], we
get in a similar way as in (vii)

0 = lim
n→∞

∫ T

0

`

B(hn)−B(H), ξ(hn −H)
˘

dt ≥ b∗ lim
n→∞

∫ T

0

´

ξ,
ˇ

ˇhn −H
ˇ

ˇ

2
¯

dt.

This relation is valid for any non-negative ξ ∈ C∞0 (Ω), which implies that

hn →H in L2((0, T ); L2(Ω)).

(ix) Take any ϕ ∈ H0(curl ; Ω). It holds that

lim
n→∞

∫ T

0

`

∇× hn,ϕ
˘

dt = lim
n→∞

∫ T

0

`

hn,∇×ϕ
˘

dt

=

∫ T

0

pH,∇×ϕq dt =

∫ T

0

p∇×H,ϕq dt.

(x) Thanks to Lemma 2.2 and reflexivity of L2((0, T ); H−1(curl ; Ω)), we get
the existence of z ∈ L2((0, T ); H−1(curl ; Ω)) such that

pBn(t),ϕq− pBn(0),ϕq =

∫ t

0

p∂sBn,ϕq ds n→∞−−−−→
∫ t

0

pz,ϕq ds. (2.35)
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Moreover, we have an estimate

|pBn(t),ϕq| =

ˇ

ˇ

ˇ

ˇ

pBn(0),ϕq +

∫ t

0

p∂sBn(s),ϕq ds
ˇ

ˇ

ˇ

ˇ

≤ C ‖ϕ‖+ C ‖ϕ‖H(curl ;Ω)

∫ t

0

‖∂sBn(s)‖2H−1(curl ;Ω) ds

Lemma 2.2
≤ C ‖ϕ‖H(curl ;Ω) .

Thus, the sequence Bn(t) is equibounded in H−1(curl ; Ω) for any n ∈ N. This
sequence is also equicontinuous in the same space.

|pBn(t1),ϕq− pBn(t2),ϕq| =

ˇ

ˇ

ˇ

ˇ

∫ t1

t2

p∂sBn(s),ϕq ds
ˇ

ˇ

ˇ

ˇ

≤ ‖ϕ‖H(curl ;Ω)

∫ t1

t2

‖∂sBn(s)‖H−1(curl ;Ω) ds

≤
a

|t1 − t2| ‖ϕ‖H(curl ;Ω)

∫ T
0

‖∂sBn‖2H−1(curl ;Ω)

Lemma 2.2
≤ C

a

|t1 − t2| ‖ϕ‖H(curl ;Ω) .

Considering (viii) and applying the modification of Arzelà-Ascoli Theorem 1.5-(i),
we obtain

lim
n→∞

pBn(t),ϕq = pB(H(t)),ϕq ,

for any ϕ ∈ H0(curl ; Ω) and for any t ∈ [0, T ]. Looking back at (2.35), we see
that ∫ t

0

p∂sB(H(s)),ϕq ds = B(H(t))−B(H(0))

= lim
n→∞

{Bn(t)−Bn(0)} =

∫ t

0

pz,ϕq ds.

Therefore, z = ∂tB(H) a.e. in Ω× (0, T ).

(xi) Thanks to the Lipschitz continuity of F , we have

‖F (t1)− F (t2)‖ ≤ C |t1 − t2|

for any t1, t2 ∈ [0, T ]. Therefore,∫ T

0

∥∥F n(t)− F (t)
∥∥2

dt =

n∑
i=1

∫ ti

ti−1

‖F (ti)− F (t)‖2 dt ≤ Cτ2 n→∞−→ 0.
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(xii) We start from (2.31) considering ϕ ∈ C∞0 (Ω). Let us integrate in time to
obtain the following∫ η

0

p∂tBn,ϕq +

∫ η

0

`

γn(t− τ)∇× hn,∇×ϕ
˘

=

∫ η

0

`

γn(t− τ)F n,∇×ϕ
˘

.

In virtue of the parts (iii), (ix), (x), and (xi) we easily pass to the limit for n→∞
to arrive at∫ η

0

p∂tB(H),ϕq dt+

∫ η

0

pγ(u)∇×H,∇×ϕq dt =

∫ η

0

pγ(u)F ,∇×ϕq dt.

Taking into account the density of C∞0 (Ω) in H0(curl ; Ω), and differentiating in
time, we conclude this part of the proof.

(xiii) We use strict positiveness of the function γ and (2.31) to prove that
∇× hn → ∇×H in L2((0, T ); L2(Ω)). Following (viii), we see that hn →H a.e.
in QT . Take any η ∈ (0, T ) for which hn(η) → H(η) a.e. in Ω. Please note that
the set of such η is dense in (0, T ).

Now, let us examine the following inequality

0 ≤ γ∗
∫ η

0

∫
Ω

ˇ

ˇ∇× hn −∇×H
ˇ

ˇ

2 ≤
∫ η

0

∫
Ω

γn(t− τ)
ˇ

ˇ∇× hn −∇×H
ˇ

ˇ

2

=

∫ η

0

`

γn(t− τ)∇× hn,∇× hn
˘

+

∫ η

0

pγn(t− τ)∇×H,∇×Hq

− 2

∫ η

0

`

γn(t− τ)∇× hn,∇×H
˘

. (2.36)

In the grounds of (iii) and the Lebesgue dominated Theorem 1.3, we get

lim
n→∞

∫ η

0

pγn(t− τ)∇×H,∇×Hq dt =

∫ η

0

pγ(u)∇×H,∇×Hq dt. (2.37)

According to (iii), (ix), and the Lebesgue dominated Theorem 1.3, we deduce

lim
n→∞

∫ η

0

`

γn(t− τ)∇× hn,∇×H
˘

dt =

∫ η

0

pγ(u)∇×H,∇×Hq dt. (2.38)

Using (2.31), we are allowed to say that (η ∈ (tj−1, tj ])∫ η

0

`

γn(t− τ)∇× hn,∇× hn
˘

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

−
∫ η

0

`

∂tBn,hn
˘

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

−
∫ tj

0

`

∂tBn,hn
˘

−
∫ η

tj

`

∂tBn,hn
˘



48 On the induction heating model considering the nonlinear magnetic flux

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

−
j∑
i=1

pB(hi)−B(hi−1),hiq−
∫ η

tj

`

∂tBn,hn
˘

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

−
j∑
i=1

`

B(hi)−B(hi−1),B−1
pB(hi)q

˘

−
∫ η

tj

`

∂tBn,hn
˘

(2.22)

≤
∫ η

0

`

γn(t− τ)F n,∇× hn
˘

+

j∑
i=1

∫
Ω

”

ΦB−1(B(hi−1))− ΦB−1(B(hi))
ı

−
∫ η

tj

`

∂tBn,hn
˘

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

+

∫
Ω

”

ΦB−1(B(H0))− ΦB−1(B(hj))
ı

−
∫ η

tj

`

∂tBn,hn
˘

=

∫ η

0

`

γn(t− τ)F n,∇× hn
˘

+

∫
Ω

”

ΦB−1(B(H0))− ΦB−1(B(hn(η))
ı

−
∫ η

tj

`

∂tBn,hn
˘

. (2.39)

Collecting (2.36)-(2.39) and passing to the limit for n→∞, we get

γ∗ lim
n→∞

∫ η

0

∥∥∇× hn −∇×H∥∥2 ≤
∫ η

0

pγ(u)F ,∇×Hq

+

∫
Ω

”

ΦB−1(B(h0))− ΦB−1(B(H(η))
ı

−
∫ η

0

pγ(u)∇×H,∇×Hq

=

∫ η

0

pγ(u)F ,∇×Hq−
∫ η

0

∫
Ω

dΦB−1(B(H))

dt

−
∫ η

0

pγ(u)∇×H,∇×Hq (2.40)

(2.23)
=

∫ η

0

pγ(u)F ,∇×Hq−
∫ η

0

p∂tB(H)),Hq

−
∫ η

0

pγ(u)∇×H,∇×Hq

(xii)
= 0.

This relation is valid for any η ∈ (0, T ) for which hn(η)→H(η) a.e. in Ω. Due to
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the fact that the set of such η is dense in (0, T ), we conclude that ∇×hn → ∇×H
in L2((0, T ); L2(Ω)).

(xiv) To show that H and u solve (2.17), we integrate (2.32) in time

`

θn(t), ψ
˘

− pθn(0), ψq +
`

θn(t)− θn(t), ψ
˘

+

∫ t

0

pλ0∇un,∇ψq ds

=

∫ t

0

´

Rr
´

γn(s− τ)
ˇ

ˇ∇× hn
ˇ

ˇ

2
¯

, ψ
¯

ds.
(2.41)

According to (iv), we see that

lim
n→∞

`

θn(t)− θn(t), ψ
˘

= 0 for every t ∈ (0, T ).

Due to (iii), (xiii), and the fact that the function Rr is continuous and bounded
we apply Lebesgue’s dominated convergence Theorem 1.3 to pass to the limit on
the r.h.s. and obtain

lim
n→∞

∫ t

0

´

Rr
´

γn(s− τ)
ˇ

ˇ∇× hn
ˇ

ˇ

2
¯

, ψ
¯

ds =

∫ t

0

´

Rr
´

γ(u) |∇×H|
2
¯

, ψ
¯

ds.

Combination of the convergence results above, (ii), and (v) let us pass to the limit
for n→∞ in the variational equation (2.41). Thus, we have

pθ(u(t)), ψq− pθ(u(0)), ψq +

∫ t

0

pλ0∇u,∇ψq =

∫ t

0

´

Rr
´

γ(u) |∇×H|
2
¯

, ψ
¯

.

Differentiation with respect to the time variable yields (2.17) which also concludes
the proof.



50 On the induction heating model considering the nonlinear magnetic flux



Chapter 3

Solvability of the induction
heating model containing
nonlinear magnetic field and
controlled Joule heat

This chapter is based on the article [22] that has been published in
Journal of Computational and Applied Mathematics.

3.1 Derivation of the mathematical model

As we mentioned in the previous chapter, the nonlinear constitutive relation be-
tween the fields H and B can be understood in two ways. The adoption of the
relation (2.4) was the subject of Chapter 2. The adoption of the other relation
(2.5), i.e. H = H(B) will be investigated in this chapter.

We consider the same domain Ω with the Lipschitz continuous boundary ∂Ω.
The boundary is associated with a unit outward normal vector n. Again, the
cornerstone of our model is Maxwell’s equations (1.3)-(1.6). We consider the Ohm
law as in (2.1), i.e.

E = J/σ + F /σ = γJ + γF

where σ, γ and F are same as in Chapter 2. By the adoption of the relation above
and (2.5), we can eliminate other variables in (1.3)-(1.4) and we conclude that the

51
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magnetic induction field B is determined by the solution of the following nonlinear
PDE:

∂tB +∇× pγ(u)∇×H(B)q = ∇× pγ(u)F q in QT (3.1)

with the initial condition

B(x, 0) = B0(x) in Ω. (3.2)

Moreover, because of (1.4), we also assume that

∇ ·B0(x) = 0 in Ω.

The boundary ∂Ω is assumed to be a perfect conductor. Hence,

n×H = 0 on ∂Ω. (3.3)

The heat transfer part of our model is determined with the same nonlinear PDE
with a truncated r.h.s. as in Chapter 2, one exception being that the Joule heat is
expressed as

Q = γ |J |
2

= γ |∇×H(B)|
2
.

Then, the temperature function u(x, t) is determined by the solution of the follow-
ing boundary value problem:

∂tθ(u)−∇ · (λ0∇u) = Rr
´

γ(u) |∇×H(B)|
2
¯

in QT ,

u(x, 0) = u0(x) in Ω,
u(x) = 0 on ∂Ω.

(3.4)

3.1.1 Weak formulation

The weak formulation of (3.1) coupled with (3.4) reads as:
Find B from the space L2((0, T ); L2(Ω)) with ∂tB ∈ L2((0, T ); H−1(curl ; Ω)) and
H(B) ∈ L2((0, T ); H0(curl ; Ω)) and u ∈ C([0, T ]; L2(Ω))∩L∞((0, T );H1

0 (Ω)) with
∂tu ∈ L2((0, T );L2(Ω)) such that

p∂tB,ϕq + pγ(u)∇×H(B),∇×ϕq = pγ(u)F ,∇×ϕq , (3.5)
B(x, 0) = B0(x) in Ω,

p∂tθ(u), ψq + pλ0∇u,∇ψq =
´

Rr
´

γ(u) |∇×H(B)|
2
¯

, ψ
¯

, (3.6)

u(x, 0) = u0(x) in Ω,

is satisfied for any ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω).
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The main difference between the model introduced in Chapter 2 and the model
(3.1), (3.2), (3.3), and (3.4) is in the position of the nonlinear term. To prove the
existence of a weak solution of (3.5) and (3.6), we require strong convergence of
the argument of the truncation function in (3.6). Hence, the strong convergence of
∇×H was required in Chapter 2. However, in this chapter, we need to show the
strong convergence of the nonlinear vector field ∇×H(B).

3.1.2 Assumptions

Some necessary assumptions on the vector field H(x) have to be made. Namely,
H(x) is supposed to be strongly monotone, Lipschitz continuous, hemicontinuous
and potential, i.e.

pH(x)−H(y)q · px− yq ≥ ωH |x− y|
2

ωH > 0,∀x,y ∈ R3,

|H(x)−H(y)| ≤ CL |x− y| CL > 0,∀x,y ∈ R3, (3.7)
H(0) = 0.

The strong monotonicity of H(x) implies the existence of the inverse field
H−1(x) which is also strongly monotone and Lipschitz continuous.

Similarly, as in the previous chapter, we need to make a few calculations re-
garding the potential ΦH of the vector field H

ΦH (x) =

∫ 1

0

H(sx) · x ds =

∫ 1

0

s−1H(sx) · sx ds

(3.7)a

≥
∫ 1

0

s−1ωH |sx|
2 ds =

ωH
2

|x|
2 (3.8)

and

ΦH (x) =

∫ 1

0

H(sx) · x ds ≤
∫ 1

0

|H(sx)| |x| ds

(3.7)b

≤ CL

∫ 1

0

|sx| |x| ds =
CL
2

|x|
2
. (3.9)

3.2 Time discretization

Using the same technique and notations as in Section 2.3, we introduce a time-
discretized decoupled version of the variational formulations (3.5) and (3.6)

pδbi,ϕq + pγ(ui−1)∇×H(bi),∇×ϕq = pγ(ui−1)F i,∇×ϕq , (3.10)
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pδθi, ψq + pλ0∇ui,∇ψq =
´

Rr
´

γ(ui−1) |∇×H(bi)|
2
¯

, ψ
¯

(3.11)

at each time step ti for i = 1, . . . , n, ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω).

Existence of a unique solution of the variational formulation above at each time
step ti, i = 1, . . . , n is covered by the following lemma.

Lemma 3.1. Let (2.13) and (3.7) hold true. Moreover, assume that B0 ∈ L2(Ω),
∇ · B0 = 0, u0 ∈ L2(Ω), F : [0, T ] → L2(Ω) and F ∈ L2((0, T ); L2(Ω)). Then
there exist uniquely determined bi ∈ L2(Ω), H(bi) ∈ H0(curl ; Ω) and ui ∈ H1

0 (Ω)
solving (3.10) and (3.11) for any i = 1, . . . , n.

Proof. Let us define the operators Mγ and N in the following manner

〈Mγ(v),ϕ〉 :=

ˆ

H−1(v)

τ
,ϕ

˙

+ pγ∇× v,∇×ϕq ,

〈N(u), ψ〉 :=

ˆ

θ(u)

τ
, ψ

˙

+ pλ0∇u,∇ψq .

We need to show that operators defined above are hemicontinuous, strictly mono-
tone and coercive (for 0 < τ < 1). Hemicontinuity follows from the Lipschitz
continuity of H−1(v) and the continuity of θ(u), cf.[79, Definition 1.8]. The next
step is to show strict monotonicity. We start with the operator Mγ (we use strong
monotonicity of the vector field H−1(v)):

〈Mγ(v1)−Mγ(v2),v1 − v2〉

=

ˆ

H−1(v1)−H−1(v2)

τ
,v1 − v2

˙

+ pγ(∇× v1 −∇× v2),∇× v1 −∇× v2q

≥ ωH−1 ‖v1 − v2‖2 + γ∗ ‖∇ × v1 −∇× v2‖2

≥ min{ωH−1 , γ∗} ‖v1 − v2‖2H(curl ;Ω)

> 0

for any v1,v2 ∈ H0(curl ; Ω), v1 6= v2. Hence, the operator Mγ is strongly mono-
tone. Strong monotonicity of the operator N is shown correspondingly

〈N(u1)−N(u2), u1 − u2〉

=

ˆ

θ(u1)− θ(u2)

τ
, u1 − u2

˙

+ pλ0(∇u1 −∇u2),∇u1 −∇u2q

=

ˆ

θ′(ξ)
u1 − u2

τ
, u1 − u2

˙

+ pλ0(∇u1 −∇u2),∇u1 −∇u2q
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≥ θ∗ ‖u1 − u2‖2 + λ∗ ‖∇u1 −∇u2‖2

≥ min{θ∗, λ∗} ‖u1 − u2‖2H1(Ω)

> 0

for any u1, u2 ∈ H1
0 (Ω), u1 6= u2. Coercivity of both operators follows from the

fact that H−1(0) = 0 and θ(0) = 0. Indeed,

〈Mγ(v),v〉 =

ˆ

H−1(v)−H−1(0)

τ
,v − 0

˙

+ pγ∇× v,∇× vq

≥ ωH−1 ‖v‖2 + γ∗ ‖∇ × v‖2

≥ min{ωH−1 , γ∗} ‖v‖2H(curl ;Ω)

and

〈N(u), u〉 =

ˆ

θ′(ξ)(u− 0)

τ
, u− 0

˙

+ pλ0∇u,∇uq

≥ θ∗ ‖u‖2 + λ∗ ‖∇u‖2

≥ min{θ∗, λ∗} ‖u‖2H1(Ω) .

Thus,

lim
‖v‖H(curl ;Ω)→∞

〈Mγ(v),v〉
‖v‖H(curl ;Ω)

≥ +∞

and
lim

‖u‖H1(Ω)→∞

〈N(u), u〉
‖u‖H1(Ω)

≥ +∞.

To conclude the proof, we present a pseudoalgorithm which provides a unique
solution pair at each time step:

Algorithm 3 Implicit Euler

Require: v0 := H(B0) ∈ H0(curl ; Ω), u0 ∈ H1
0 (Ω), n ∈ N . vi := H(bi)

1: for i = 1, i ≤ n do

2: vi ← Solve:
〈
Mγ(ui−1)(vi),ϕ

〉
=

ˆ

H−1
(vi−1)
τ ,ϕ

˙

+ pγ(ui−1)F i,∇×ϕq

3: bi−1 ←H−1(vi−1) . bi−1 ∈ L2(Ω)
4: bi ←H−1(vi) . bi ∈ L2(Ω), H(bi) ∈ H0(curl ; Ω)

5: ui ← Solve: 〈N(ui), ψ〉 =
´

θ(ui−1)
τ , ψ

¯

+
´

Rr
´

γ(ui−1) |∇×H(bi)|
2
¯

, ψ
¯

6: i← i+ 1

7: return {b1, u1}, . . . , {bn, un}
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3.2.1 A priori energy estimates

Since the evolution of temperature in Ω is modeled with the same nonlinear PDE
as in Chapter 2, the energy estimates for the functions ui remain the same. For
this reason, we find it unnecessary to state the same lemma again and we refer the
reader to Lemma 2.4.

The basic energy estimates and stability results for the functions bi and H(bi)
are covered by the following lemma.

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then there exists a
positive constant C such that

(i) max
1≤j≤n

‖bj‖2 +

n∑
i=1

‖∇ ×H(bi)‖2 τ ≤ C,

(ii)

n∑
i=1

‖δbi‖2H−1(curl ;Ω) τ ≤ C,

(iii) ∇ · bi = 0 for i = 1, . . . , n.

Proof. (i) Set ϕ = H(bi)τ in (3.10) and sum it up for i = 1, . . . , j, to obtain

j∑
i=1

pbi − bi−1,H(bi)q +

j∑
i=1

pγ(ui−1)∇×H(bi),∇×H(bi)q τ

=

j∑
i=1

pγ(ui−1)F i,∇×H(bi)q τ. (3.12)

With the help of Cauchy-Schwarz’s and Young’s inequalities, we are able to handle
the r.h.s. in (3.12)

j∑
i=1

pγ(ui−1)F i,∇×H(bi)q τ ≤ Cε
j∑
i=1

‖F i‖2 τ + ε

j∑
i=1

‖∇ ×H(bi)‖2 τ.

The second term on the l.h.s. in (3.12) can be bounded from below since the
function γ is bounded and positive

j∑
i=1

pγ(ui−1)∇×H(bi),∇×H(bi)q ≥ γ∗
j∑
i=1

‖∇ ×H(bi)‖2 τ.

The trickiest term in (3.12) is the first one. First, we use the fact that the potential
ΦH is convex, cf. [79, Theorem 1.6] and then the monotonicity and Lipschitz



3.2. Time discretization 57

continuity of the vector field H to obtain that

j∑
i=1

pbi − bi−1,H(bi)q =

j∑
i=1

∫
Ω

(bi − bi−1) ·H(bi) dx

Theorem 1.11
≥

j∑
i=1

∫
Ω

ΦH (bi)− ΦH (bi−1) dx

=

∫
Ω

ΦH (bj) dx−
∫

Ω

ΦH (B0) dx

(3.8),(3.9)

≥ ωH
2
‖bj‖2 −

CL
2
‖B0‖2 .

Collecting all estimates, we get

ωH
2
‖bj‖2 + (γ∗ − ε)

j∑
i=1

‖∇ ×H(bi)‖2 τ ≤
CL
2
‖B0‖2 + Cε

j∑
i=1

‖F i‖2 τ.

Taking ε ∈ (0, γ∗), we arrive at

‖bj‖2 +

j∑
i=1

‖∇ ×H(bi)‖2 τ ≤ C.

(ii) From (3.10), we have for any ϕ ∈ H0(curl ; Ω) that

pδbi,ϕq = pγ(ui−1)F i,∇×ϕq− pγ(ui−1)∇×H(bi),∇×ϕq

≤ C(‖F i‖+ ‖∇ ×H(bi)‖) ‖ϕ‖H(curl ;Ω) .

This, together with the definition of the norm in the space H−1(curl ; Ω), gives us

‖δbi‖H−1(curl ;Ω) ≤ C(‖F i‖+ ‖∇ ×H(bi)‖).

Estimates obtained in (i) allow us to write
n∑
i=1

‖δbi‖2H−1(curl ;Ω) τ ≤ C.

(iii) Take any Φ ∈ H1
0 (Ω). Put ϕ = ∇Φ in (3.10) to find out that

0 = pδbi,∇Φq = − p∇ · δbi,Φq = − pδ∇ · bi,Φq .

Hence,
p∇ · bi,Φq = p∇ · bi−1,Φq = · · · = p∇ · b0,Φq = 0.

From this we conclude that ∇ · bi = 0 for i = 1, . . . , n.
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3.3 The existence of a global solution

Following the same notations as in Section 2.4, we rewrite (3.10) and (3.11) on the
whole time frame [0, T ] as

p∂tbn,ϕq +
`

γn(t− τ)∇×H(bn),∇×ϕ
˘

=
`

γn(t− τ)F n,∇×ϕ
˘

, (3.13)

p∂tθn, ψq + pλ0∇un,∇ψq =
´

Rr
´

γn(t− τ)
ˇ

ˇ∇×H(bn)
ˇ

ˇ

2
¯

, ψ
¯

(3.14)

for any ϕ ∈ H0(curl ; Ω) and ψ ∈ H1
0 (Ω).

Theorem 3.1. Suppose that all assumptions of Lemma 3.1 are fulfilled. In ad-
dition, assume that γ is a global Lipschitz continuous function and F is Lipschitz
continuous in time. Then there exist u from C([0, T ];L2(Ω)) ∩ L∞((0, T );H1

0 (Ω))
with ∂tu being in L2((0, T );L2(Ω)) and B from L2((0, T ); L2(Ω)) with ∂tB being
in L2((0, T );L2((0, T ); H−1(curl ; Ω))) andH(B) being in L2((0, T ); H0(curl ; Ω))
and subsequences of un and bn (still denoted as n) such that

(A)


un → u in C([0, T ];L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω),∀t ∈ [0, T ],

γn(t− τ)→ γ(u) in L2((0, T );L2(Ω)),

θn → θ(u) in L2((0, T );L2(Ω)),

(B)

 bn → B in L2((0, T ); L2(Ω)),
∂tbn ⇀ ∂tB in L2((0, T ); H−1(curl ; Ω)),

H(bn)→H(B) in L2((0, T ); H(curl ; Ω)),

(C) u and B solve (3.5) and (3.6).

Proof. We prove the theorem in three main parts. In the first part, we provide
some convergence results for functions un and un and mark these partial results
for further reference. Next, we prove the convergence results for functions bn and
bn. Finally, in the last part, we prove the existence of the solution pair {u, b} of
(3.5) and (3.6).

Part (A): We omit the proof of this part since it has been proven in Theorem
2.1.

Part (B): Using the second part of Lemma 3.2, we write
ˇ

ˇ

`

bn − bn,ϕ
˘
ˇ

ˇ ≤ τ |p∂tbn,ϕq| ≤ τ ‖∂tbn‖H−1(curl ;Ω) ‖ϕ‖H(curl ;Ω) .

Therefore,

(i)
∥∥bn − bn∥∥L2((0,T );H−1(curl ;Ω))

≤ τ
∫ T

0

‖∂tbn‖2H−1(curl ;Ω) dt ≤ τC n→∞→ 0.
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Due to the Lipschitz continuity of the vector field H and Lemma 3.2, we have∫ T

0

∥∥H(bn)
∥∥2

dt =

n∑
i=1

τ

∫
Ω

|H(bi)|
2 dx ≤ C

n∑
i=1

τ

∫
Ω

|bi|
2 dx

= C

n∑
i=1

‖bi‖2 τ ≤ C

and ∫ T

0

‖bn‖2 dt =

n∑
i=1

∫ ti

ti−1

‖bi−1 + (t− ti−1)δbi‖2 dt

≤
n∑
i=1

´

‖bi−1‖2 + ‖bi − bi−1‖2
¯

τ

≤ ‖B0‖2 + C

n∑
i=1

‖bi‖2 τ ≤ C.

Now, combining the estimates above with Lemma 3.2, we get∫ T

0

´∥∥H(bn)
∥∥2

+
∥∥∇×H(bn)

∥∥2
¯

dt ≤ C,∫ T

0

´

‖bn‖2 + ‖∇ · bn‖2 + ‖∂tbn‖2H−1(curl ;Ω)

¯

dt ≤ C.

Moreover, the space L2((0, T ); L2(Ω)) is a reflexive Banach space, therefore, there
exist vector fields p and B and subsequences of H(bn) and bn (still denoted with
n) such that H(bn) ⇀ p and bn ⇀ B in that space. With all this considered, we
prompt Lemma 3.1 from [69] to prove that

lim
n→∞

∫ T

0

`

H(bn), Φbn
˘

dt =

∫ T

0

pp, ΦBq dt (3.15)

for any Φ ∈ C∞0 (Ω). Because of the monotonicity of H, we have

lim
n→∞

∫ T

0

`

H(bn)−H(q), Φ(bn − q)
˘

dt ≥ 0

where q ∈ L2((0, T ); L2(Ω)) is arbitrary and Φ ∈ C∞0 (Ω) is non-negative. The
basic idea to investigate the limit of the term above is to split it into four parts
and examine them separately, i.e.

I1 :=

∫ T

0

`

H(bn), Φbn
˘

dt, I2 :=

∫ T

0

`

H(q), Φbn
˘

dt,
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I3 :=

∫ T

0

`

H(bn), Φq
˘

dt, I4 :=

∫ T

0

pH(q), Φqq dt.

We rewrite the first term as follows

I1 =

∫ T

0

`

H(bn), Φ(bn − bn)
˘

dt+

∫ T

0

`

H(bn), Φbn
˘

dt.

From Lemma 3.2 and (i), we get
ˇ

ˇ

ˇ

ˇ

ˇ

∫ T

0

`

H(bn), Φ(bn − bn)
˘

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C
∫ T

0

∥∥H(bn)
∥∥2

H(curl ;Ω)

∫ T

0

∥∥bn − bn∥∥2

H−1(curl ;Ω)

≤ C
∥∥bn − bn∥∥L2((0,T );H−1(curl ;Ω))

n→∞→ 0.

Hence, we have

lim
n→∞

I1 = lim
n→∞

∫ T

0

`

H(bn), Φbn
˘

dt
(3.15)

=

∫ T

0

pp, ΦBq dt.

We can pass to the limit for n→∞ in the remaining terms and see that

lim
n→∞

I2 =

∫ T

0

pH(q), ΦBq dt, lim
n→∞

I3 =

∫ T

0

pp, Φqq dt,

lim
n→∞

I4 =

∫ T

0

pH(q), Φqq dt.

Therefore, gathering all partial results, we get

lim
n→∞

∫ T

0

`

H(bn)−H(q), Φ(bn − q)
˘

dt =

∫ T

0

pp−H(q), Φ(B − q)q dt ≥ 0.

Now, let us set q = B + εv, where v ∈ L2((0, T ); L2(Ω)) and ε > 0, to obtain∫ T

0

pp−H(B + εv), Φvq dt ≤ 0.

Passing to ε→ 0 brings us to∫ T

0

pp−H(B), Φvq dt ≤ 0.



3.3. The existence of a global solution 61

Due to the fact that the inequality above is valid for any v ∈ L2((0, T ); L2(Ω)), we
replace v with −v and see that the reversed inequality holds also. Hence, we get∫ T

0

pp−H(B), Φvq dt = 0

that is true for any v ∈ L2((0, T ); L2(Ω)) and all non-negative Φ ∈ C∞0 (Ω). There-
fore, p = H(B) a.e. in Ω× (0, T ), i.e.

(ii) H(bn) ⇀H(B) in L2((0, T ); L2(Ω)).

Let Φ ∈ C∞0 (Ω) be non-negative. From (3.7), we have∫ T

0

`

H(bn)−H(q), Φ(bn − q)
˘

dt ≥ ωH
∫ T

0

´

Φ,
ˇ

ˇbn − q
ˇ

ˇ

2
¯

dt ≥ 0.

Setting q = B and using the same reasoning as in (ii), we conclude

0 = lim
n→∞

∫ T

0

`

H(bn)−H(B), Φ(bn −B)
˘

≥ ωH lim
n→∞

∫ T

0

´

Φ,
ˇ

ˇbn −B
ˇ

ˇ

2
¯

≥ 0.

This inequality is valid for any non-negative Φ ∈ C∞0 (Ω), therefore

(iii) bn → B in L2((0, T ); L2(Ω)).

Consider ϕ ∈ H0(curl ; Ω), then the following holds

(iv) lim
n→∞

∫ T

0

`

∇×H(bn),ϕ
˘

= lim
n→∞

∫ T

0

`

H(bn),∇×ϕ
˘

=

∫ T

0

pH(B),∇×ϕq =

∫ T

0

p∇×H(B),ϕq .

The space L2((0, T ); H(curl ; Ω)) is reflexive, this combined with Lemma 3.2 guar-
antees the existence of z ∈ L2((0, T ); H(curl ; Ω)) such that∫ t

0

p∂sBn,ϕq ds n→∞→
∫ t

0

pz,ϕq ds.

The sequence bn(t) is equibounded in H−1(curl ; Ω), i.e. for any n ∈ N it holds
that

pbn(t),ϕq− pbn(0),ϕq =

∫ t

0

p∂sbn,ϕq ds (3.16)
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≤
∫ t

0

‖∂sbn‖H−1(curl ;Ω) ‖ϕ‖H(curl ;Ω) ds (3.17)

≤ C ‖ϕ‖H(curl ;Ω) .

Hence, we have

pbn(t),ϕq ≤ C ‖ϕ‖H(curl ;Ω) + pB0,ϕq ≤ C ‖ϕ‖H(curl ;Ω) (3.18)

which brings us to
‖bn(t)‖H−1(curl ;Ω) ≤ C.

The same sequence is also equicontinuous. Indeed, for any t1, t2 ∈ [0, T ], the
following holds

|pbn(t2)− bn(t1),ϕq| =

ˇ

ˇ

ˇ

ˇ

∫ t2

t1

p∂sbn,ϕq

ˇ

ˇ

ˇ

ˇ

≤
∫ t2

t1

‖∂sbn‖H−1(curl ;Ω) ‖ϕ‖H(curl ;Ω)

≤

d∫ t2

t1

12

d∫ t2

t1

‖∂tbn‖2H−1(curl ;Ω) ‖ϕ‖H(curl ;Ω)

≤ C
a

|t2 − t1| ‖ϕ‖H(curl ;Ω) . (3.19)

Therefore, we get

‖bn(t2)− bn(t1)‖H−1(curl ;Ω) ≤ C |t2 − t1|
1
2 .

Using Theorem 1.5-(i) yields

lim
n→∞

pbn(t),ϕq = pB(t),ϕq for any ϕ ∈ H0(curl ; Ω) and for any t ∈ [0, T ].

Now, we conclude that z = ∂tB a.e. in Ω× (0, T )

(v)

∫ t

0

p∂sB,ϕq ds = pB(t)−B0,ϕq = lim
n→∞

pbn(t)− bn(0),ϕq

= lim
n→∞

∫ t

0

p∂sbn,ϕq ds =

∫ t

0

pz,ϕq ds.

The Lipschitz continuity of F implies that

(vi) F n → F in L2((0, T );L2(Ω)).

From (iii), we see that bn → B in L2((0, T ); L2(Ω)). The continuity of H and
the Lebesgue dominated convergence theorem imply that H(bn) → H(B) in the
space L2((0, T ); L2(Ω)).
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Now, we have to show that ∇ × H(bn) → ∇ × H(B) in L2((0, T ); L2(Ω)).
We know that bn → B in L2((0, T ); L2(Ω)). Let us take any ξ ∈ [0, T ] such that
bn(ξ) → B(ξ) in L2(Ω). The set of such ξ is dense in [0, T ]. The positiveness of
the function γ allows us to write

0 ≤ γ∗
∫ ξ

0

∫
Ω

ˇ

ˇ∇×H(bn)−∇×H(B)
ˇ

ˇ

2 ≤

≤
∫ ξ

0

∫
Ω

γn(t− τ)
ˇ

ˇ∇×H(bn)−∇×H(B)
ˇ

ˇ

2
(3.20)

=

∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×H(bn)
˘

+

∫ ξ

0

pγn(t− τ)∇×H(B),∇×H(B)q

− 2

∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×H(B)
˘

.

Using the results from Part (A), (iv), and Lebesgue’s dominated convergence
theorem, we pass to the limit for n→∞ in the second and the third term on the
r.h.s. in (3.20)

lim
n→∞

∫ ξ

0

pγn(t− τ)∇×H(B),∇×H(B)q =

∫ ξ

0

pγ(u)∇×H(B),∇×H(B)q ,

lim
n→∞

∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×H(B)
˘

=

∫ ξ

0

pγ(u)∇×H(B),∇×H(B)q .

We can say that ξ ∈ (tj−1, tj ]. Now, let us rewrite the first term on the r.h.s. in
(3.20) using (3.13) as follows∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×H(bn)
˘

=

= −
∫ ξ

0

`

∂tbn,H(bn)
˘

+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

= −
∫ tj

0

`

∂tbn,H(bn)
˘

+

∫ tj

ξ

`

∂tbn,H(bn)
˘

+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

= −
j∑
i=1

∫
Ω

(bi − bi−1) ·H(bi) +

∫ tj

ξ

`

∂tbn,H(bn)
˘
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+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

Thm. 1.11
≤ −

j∑
i=1

∫
Ω

“

ΦH (bi)− ΦH (bi−1)
‰

+

∫ tj

ξ

`

∂tbn,H(bn)
˘

+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

= −
∫

Ω

“

ΦH (bj)− ΦH (B0)
‰

+

∫ tj

ξ

`

∂tbn,H(bn)
˘

+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

= −
∫

Ω

“

ΦH (bn(ξ))− ΦH (B0)
‰

+

∫ tj

ξ

`

∂tbn,H(bn)
˘

+

∫ ξ

0

`

γn(t− τ)∇× F n,∇×H(bn)
˘

.

Now, using (A), (iv), and (vi), we pass to the limit for n→∞ to obtain

lim
n→∞

∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×H(bn)
˘

ds

≤ −
∫

Ω

“

ΦH (B(ξ))− ΦH (B0)
‰

dx+

∫ ξ

0

pγ(u)∇× F ,∇×H(B)q ds

= −
∫ ξ

0

∫
Ω

dΦH (B)

dt
dx ds+

∫ ξ

0

pγ(u)∇× F ,∇×H(B)q ds

= −
∫ ξ

0

p∂tB,H(B)q ds+

∫ ξ

0

pγ(u)∇× F ,∇×H(B)q ds

(3.5)
=

∫ ξ

0

pγ(u)∇×H(B),∇×H(B)q ds.

Gathering all partial results above, we conclude

0 ≤ lim
n→∞

γ∗

∫ ξ

0

∫
Ω

`

∇×H(bn)−∇×H(B)
˘2

dx ds ≤ 0.

This is valid for any ξ ∈ [0, T ] for which bn(ξ) → B(ξ) in L2(Ω). Density of the
set of such ξ in [0, T ] yields

(xii) ∇×H(bn)→ ∇×H(B) in L2((0, T ); L2(Ω)).
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Part (C): Take ϕ ∈ C∞0 (Ω) in (3.13) and integrate it in time to obtain∫ ξ

0

p∂tbn,ϕq +

∫ ξ

0

`

γn(t− τ)∇×H(bn),∇×ϕ
˘

=

∫ ξ

0

`

γn(t− τ)F n,∇×ϕ
˘

.

Thanks to (A), (iv), (v), and (vi) we pass to the limit for n→∞∫ ξ

0

p∂tB,ϕq +

∫ ξ

0

pγ(u)∇×H(B),∇×ϕq =

∫ ξ

0

pγ(u)F ,∇×ϕq .

Now, considering the fact that C∞0 (Ω) is dense in H0(curl ; Ω) and differentiating
with respect to the time variable we see that B and u solve (3.5).

Let us integrate (3.14) in time

`

θn(t), ψ
˘

− pθn(0), ψq +
`

θn(t)− θn(t), ψ
˘

+

∫ t

0

pλ0∇un,∇ψq ds (3.21)

=

∫ t

0

´

Rr
´

γn(s− τ)
ˇ

ˇ∇×H(bn)
ˇ

ˇ

2
¯

, ψ
¯

ds.

The fact that ∇ ×H(bn) converges strongly to ∇ ×H(B) in L2((0, T ); L2(Ω))
combined with (A), (vi) and Lebesgue’s dominated convergence theorem let us
pass to the limit for n→∞ in the term on the r.h.s. of the equation above. Hence,

lim
n→∞

∫ t

0

´

Rr
´

γn(s− τ)
ˇ

ˇ∇×H(bn)
ˇ

ˇ

2
¯

, ψ
¯

ds

=

∫ t

0

´

Rr
´

γ(u) |∇×H(B)|
2
¯

, ψ
¯

ds.

Due to (A), we also see that

lim
n→∞

`

θn(t)− θn(t), ψ
˘

= 0 for every t ∈ [0, T ].

Collecting all results above and using (A), we finally pass to the limit for n → ∞
in (3.21) to obtain

pθ(u(t)), ψq− pθ(u(0)), ψq +

∫ t

0

pλ0∇u,∇ψq ds

=

∫ t

0

´

Rr
´

γ(u) |∇×H(B)|
2
¯

, ψ
¯

ds.

Now, differentiation in time shows that u and B solve (3.6).
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Chapter 4

A vector-scalar potential
formulation of the induction
hardening model considering a
nonlinear law for the magnetic
field

This chapter is based on an article that has been published in the journal of
Computer Methods in Applied Mechanics and Engineering.

4.1 Introduction

Induction hardening is a form of a heat treatment in which a metal part of the
workpiece is heated by the induction heating and then quenched by cool water. The
quenched metal undergoes a martensitic transformation, increasing the hardness,
strength and fatigue resistance of the metal part. The advantage of the induction
hardening is that it can be applied only on a part of the workpiece (surface, layers,
pins, gears) to sustain the properties of the remaining parts.

The most extensive mathematical study on the induction hardening topic has
been done by Dietmar Hömberg who provided very detailed models of the induction
hardening in [38] and [39]. However, these models did assume neither the monotone

67
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Figure 4.1: Illustration of the domain.

character of the fields H and B nor a temperature dependency of the electric
conductivity function in Ohm’s law (2.1).

Mathematical models introduced in Chapters 2 and 3 were general models of
the induction heating process. We assumed that the domain Ω was occupied by a
conducting magnetic material. In this chapter we present a vector-scalar potential
formulation of a mathematical model of the induction hardening. Again, the non-
linear relation between H and B is assumed and so is the temperature sensitivity
of electric conductivity. We also assume conductive and non-conductive parts in
our domain Ω. This means that material coefficients may have jumps across the
interfaces.

4.2 Derivation of the mathematical model

Our working domain is illustrated in Fig. 4.1. The time frame is denoted by [0, T ].
The area occupied by the electromagnetic field is denoted by Ω. It is supposed to
be a bounded sphere in R3. The workpiece and the coil are represented by Σ and
T , respectively. Both Σ and T are closed subsets of Ω and the following holds

Σ ∩ T = ∅, and ∂Σ, ∂T, ∂Ω are of class C1,1. (4.1)

Conductors are affected by temperature, therefore, we separate them from the rest
of the domain Ω by denoting π = Σ ∪ T . Current in the coil is supplied through
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the area denoted as Γ. This is modeled via an interface condition on Γ. By n we
denote the standard outer normal unit vector associated with the surfaces of the
materials under consideration.

We present a nonlinear relation between H and B in the following form:

H := µM(B) =
1

µ∗
m(|B|)B. (4.2)

Remark 4.1. The vector fieldH has a monotone character in the conductive parts
of our domain. Hence, in those parts it is expressed as (4.2). However, in non-
conductive parts the relation betweenH and B is linear. Therefore, (4.2) simplifies
to H = µB.

The magnetic permeability µ = 1
µ∗ might behave differently in the workpiece

and in the air, therefore, we need to specify it as a split function

µ(x) =

{
µπ(x), if x ∈ π,
µA(x), if x ∈ Ω \π. (4.3)

Both µπ and µA are strictly positive and bounded. There is no jump in the tan-
gential component of H along the boundaries between different materials, i.e.

rn× µM(B)s∂π = 0.

The boundary ∂Ω is assumed to be a perfect conductor. Hence, the tangential
component of B vanishes across the boundary, i.e.

n×B = 0 on ∂Ω.

The vector field M is supposed to be potential, strongly monotone and Lipschitz
continuous. The Ohm law is adopted in the following form:

J = σE. (4.4)

The function σ represents the electric conductivity and it is defined as follows

σ(u(x, t)) =

{
σπ(u(x, t)), if x ∈ π, t ∈ (0, T ),
0, if x ∈ Ω \π, t ∈ (0, T )

(4.5)

where u(x, t) is the function of temperature in the workpiece and in the coil. We
consider σ to be continuous, bounded and strictly positive inπ. Since Ω is a simply-
connected domain and (1.4) is true in the whole domain Ω, we use Theorem 1.16
to obtain exactly one magnetic vector potential A ∈ H(curl ; Ω) with the following
properties:

B = ∇×A, ∇ ·A = 0, n×A = 0 on ∂Ω. (4.6)
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Substituting (4.6) into (1.5), we get

∇× (E + ∂tA) = 0 in Ω. (4.7)

Using (4.7), we apply Theorem 1.17 to acquire a unique scalar potential φ ∈
H1(Ω)/R such that:

E + ∂tA = −∇φ. (4.8)

Combining (4.8), (4.6), (4.4), (4.2), and (1.6), we arrive at the following boundary
value problem for the vector potential A:

σ(u)∂tA+∇× µM(∇×A) + σ(u)χT∇φ = 0 a.e. in Ω× (0, T ) = QT ,

n×A = 0 on ∂Ω, (4.9)
A(x, 0) = A0(x) in Ω.

The characteristic function χT has value 1, if x ∈ T and 0 otherwise. We use it
because the external source of the current which is defined by the gradient of the
scalar potential is present only in the coil T (see Fig. 4.1). Combination of (4.4)
and (4.8) gives us an expression for the total current density J

J = −σ(u)∂tA− σ(u)χT∇φ.

The impressed part Jsource = −σ(u)χT∇φ is caused by the external source and
the induced part J induced = −σ(u)∂tA is caused by the magnetic induction field
B in the coil. Demanding that the continuity equation holds for the source current
Jsource, i.e.

∇ · Jsource = 0,

we define the scalar potential φ by the following elliptic equation with homogeneous
Neumann boundary condition on ∂T and interface condition on Γ, cf. [38]:

−∇ · (σπ(u)∇φ) = 0 a.e. in T,

−σπ(u)
∂φ

∂n
= 0 a.e. on ∂T,

„

−σπ(u)
∂φ

∂n



Γ

= j a.e. in Γ.

(4.10)

External source current density is represented by the function j(x, t) which is
assumed to be Lipschitz continuous in time. Jump across the interface Γ is indicated
by [·]Γ.

Evolution of temperature in π is modeled similarly as in Chapters 2 and 3. The
Joule heat term is expressed as

σπ(u) |E|
2 (4.8)

= σπ(u) |∂tA+ χT∇φ|
2
. (4.11)
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To simulate the cooling effect on the boundary ∂Σ, we need to involve a Robin
boundary condition for the temperature evolution function u(x, t), i.e.

λ0
∂u

∂n
= α(u− uc) on ∂π (4.12)

where uc is temperature of cooling water, λ0 is same as in (2.12) and α is the heat
transfer coefficient defined as

α(x, t) :=

{
0 on ∂T × (0, T ),
αΣ(t) on ∂Σ× (0, T ).

The coefficient αΣ(t) is 0 during the heating time. After the current is switched-
off and cooling water is applied αΣ(t) becomes positive. We restrict ourselves
to model only the heating part of the induction hardening process and omit the
cooling effects. Hence, the boundary value problem for the temperature evolution
function u(x, t) reads as:

∂tθ(u)−∇ · (λ0∇u) = Rr
´

σπ(u) |∂tA+ χT∇φ|
2
¯

in π × (0, T ),

−λ0
∂u
∂ν = 0 on ∂π,

u(x, 0) = u0(x) in π

(4.13)

where Rr and θ are same as in (2.14) and (2.15), respectively.

Equations (4.9), (4.10) and (4.13) model the process of induction hardening in
our simplified domain Ω.

4.2.1 Weak formulation

We recall the space XN,0, which has been properly defined in Section 1.3

XN,0 = {ϕ ∈ H(curl ; Ω); ∇ ·ϕ = 0, and ϕ× n = 0 on ∂Ω}.

The norm in this space is defined as

‖ϕ‖XN,0
= ‖∇ ×ϕ‖L2(Ω) .

Taking into account (4.1), we use Theorem 1.8 to conclude that XN,0 is a closed
subspace of H1(Ω)∗.

∗This is a very important embedding, since H1(Ω) is compactly embedded in L2(Ω), cf. The-
orem 1.9. The inclusion XN,0 ⊂ H1(Ω) is also valid for convex domains (with non-smooth
boundary). In such case we rely on [3, Theorem 2.17]
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Figure 4.2: Dissection of T .

Multiplying (4.9) by a test function ϕ ∈XN,0, integrating over Ω, using Green’s
Theorem 1.12, and taking into account the boundary conditions, we obtain the
variational formulation for the vector potential A:

pσπ∂tA,ϕqπ + pµM(∇×A),∇×ϕqΩ + pσπ∇φ,ϕqT = 0, (4.14)

for any ϕ ∈ XN,0. Please note that the scalar product of any two given functions
f and g in the domain ♥ is defined as

pf , gq♥ =

∫
♥
f · g dx.

To obtain the variational formulation for (4.10), we split T in two separate parts
T1 and T2. Flux of the scalar potential on the new interface Γ∗ is supposed to be
continuous. Moreover, Γ∗ ∩ Γ = ∅ and T1 ∩ T2 = Γ∗ ∪ Γ (see Fig. 4.2). Now, we
multiply (4.10) by a test function ξ ∈ H1(T )/R and integrate in T1 and T2. Using
Green’s theorem and continuous condition on Γ∗, we get∫

T1

σπ∇φ · ∇ξ +

∫
T2

σπ∇φ · ∇ξ −
∫

Γ

σπ
∂∇φ
∂n
−
∫

Γ

σπ
∂∇φ
∂n−

=

∫
T

σπ∇φ · ∇ξ −
∫

Γ

„

σπ
∂∇φ
∂n



Γ

.

Here, n− denotes a unit outward normal vector with opposite orientation as n.
Taking into account the interface condition (4.10) we arrive at the following varia-
tional formulation for scalar potential φ:

pσπ∇φ,∇ξqT + pj, ξqΓ = 0 (4.15)

for any ξ ∈ H1(T )/R†. From now on the set of all functions φ+c, where φ ∈ H1(T )
and c is a constant is marked as φc
†The choice of the test space H1(T )/R is just to obtain a unique solvability.
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Lemma 4.1. There are positive constants c1 and c2 such that:

c1 ‖φc‖2H1(T )/R ≤ ‖∇φ‖
2
L2pT q

≤ c2 ‖φc‖2H1(T )/R .

Proof. The norm in H1(T )/R is defined as ‖φc‖H1(T )/R := inf
φ∈φc

‖φ‖H1(T ). This

norm is minimal for c = − 1
|T |

∫
T
φ dx, indeed, let us take a closer look.

0 =
d

dc

ˆ∫
T

(φ+ c)2 + |∇φ|
2

˙

dx

= 2

∫
T

φ dx+ 2

∫
T

c dx

=⇒ c = − 1

|T |

∫
T

φ dx.

Now, we write ‖φc‖H1(T )/R =
∥∥∥φ− 1

|T |

∫
T
φ dx

∥∥∥
H1(T )

. Employing the Poincaré-

Wirtinger inequality, cf. Theorem 1.13, we conclude the following:

‖φc‖2H1(T )/R =

∥∥∥∥φ− 1

|T |

∫
T

φ dx
∥∥∥∥2

L2pT q

+ ‖∇φ‖2L2pT q

≤ cPW ‖∇φ‖2L2pT q
+ ‖∇φ‖2L2pT q

= (cPW + 1) ‖∇φ‖2L2pT q

where cPW is a positive constant. Taking c2 = 1 and c1 = 1
1+cPW

, the proof is
completed.

For equation (4.13) we follow identical steps as above, using ψ ∈ H1(π) as a
test function, brings us to the variational formulation for the function u:

p∂tθ(u), ψqπ + pλ0∇u,∇ψqπ =
´

Rr
´

σπ |∂tA+ χT∇φ|
2
¯

, ψ
¯

π
(4.16)

for any ψ ∈ H1(π).

The weak formulation of our model (4.9), (4.10), and (4.13) then reads as:
Find A ∈ L2((0, T );XN,0) with ∂tA ∈ L2((0, T ); L2 pπq), u ∈ C([0, T ]; L2(Ω)) ∩
L∞((0, T );H1

0 (Ω)) with ∂tu ∈ L2((0, T );L2(Ω)) and φ ∈ L2((0, T );H1(T )/R) such
that they satisfy (4.14), (4.16), and (4.15) for any ϕ ∈ XN,0, ψ ∈ H1(π) and
ξ ∈ H1(T )/R.
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4.2.2 Assumptions

To achieve better clarity and readability of this chapter, we list all assumptions
together:

(a1) 0 < µπ∗ ≤ µπ(x) ≤ µ∗π <∞ ∀x ∈ Σ,

(a2) 0 < µA∗ ≤ µA(x) ≤ µ∗A <∞ ∀x ∈ Ω \ Σ,

(b) µ∗ = min {µπ∗, µA∗}, µ∗ = max {µ∗π, µ∗A},

(c1) µ ∈ H1(π),

(c2) µ ∈ H1(Ω \π),

(d) 0 < σ∗ ≤ σ(u(x, t)) ≤ σ∗ <∞ ∀(x, t) ∈ π × (0, T ),

(e) |j(x, t2)− j(x, t1)| ≤ Cj |t2 − t1| Cj > 0,∀x ∈ Γ,∀t2, t1 ∈ (0, T ),

(f) j ∈ L2((0, T );H−1/2(Γ)),

∫
Γ

j(t) dγ = 0 ∀t ∈ (0, T ),

(g) u0 ∈ H1
0 (π),

(h) A0 ∈XN,0,

(i) θ is continuous, θ(0) = 0, (4.17)
|θ(x)| ≤ Cθ(1 + |x|), 0 < θ∗ ≤ θ′(x) Cθ > 0,∀x ∈ R,

(j1) (M(x)−M(y)) · (x− y) ≥ cM |x− y|
2

cM > 0,∀x,y ∈ R3,

(j2) |M(x)−M(y)| ≤ CM |x− y| CM > 0,∀x,y ∈ R3,

(j3) M(0) = 0.

Following [79, Theorem 5.1], we see that the potential ΦM of the vector field M
with properties (j1)− (j3) is strictly convex. Applying Theorem 1.11, we get

M(x) · (x− y) ≥ ΦM (x)− ΦM (y) ∀x,y ∈ R3. (4.18)

Thanks to (j1) and (j2), we bound ΦM from below

ΦM (x) =

∫ 1

0

M(xp) · x dp =

∫ 1

0

M(xp) · (xp)p−1 dp

≥
∫ 1

0

cM |xp|
2
p−1 dp =

cM
2

|x|
2 (4.19)

and from above

ΦM (x) =

∫ 1

0

M(xp) · x dp ≤
∫ 1

0

|M(xp)| |x| dp
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≤ CM
∫ 1

0

|xp| |x| dp =
CM
2

|x|
2
. (4.20)

4.3 Time discretization

In this section we discretize the time interval [0, T ] and solve a system of steady-
state differential equations at each time step similarly as in Chapter 2. Using the
same notation for any function f

fi = f(ti), δfi =
fi − fi−1

τ
,

we split the time interval in n equidistant parts, i.e. nτ = T , where n ∈ N. Now,
we approximate the system (4.14)-(4.16) at every time step ti = τi for i = 1, . . . , n

pσπ(ui−1)∇φci ,∇ξqT + pji, ξqΓ = 0, (4.21)

pσπ(ui−1)δAi,ϕqπ + pµM(∇×Ai),∇×ϕqΩ + pσπ(ui−1)∇φci ,ϕqT = 0, (4.22)

pδθ(ui), ψqπ + pλ0∇ui, ψqπ =
´

Rr
´

σπ(ui−1) |δAi + χT∇φci |
2
¯

, ψ
¯

π
(4.23)

for any ξ ∈ H1(T )/R,ϕ ∈XN,0 and ψ ∈ H1(π).

Remark 4.2. In system (4.21)-(4.23) we use ui−1 as an argument for the function
σ. The reason to take this action is to be able to decouple the whole system. As we
will see in the sequel, this small adjustment does not affect the convergence results.

The solvability at each time step is proven in the following lemma.

Lemma 4.2. Assume that (4.17) holds. Then for any i = 1 . . . n, there exists a
uniquely determined triplet φci ∈ H1(T )/R, Ai ∈ XN,0 and ui ∈ H1(π) solving
system (4.21)-(4.23).

Proof. Let us define operators: Fσ : XN,0 → (XN,0)∗ and G : H1(π)→ (H1(π))∗

〈Fσ(A),ϕ〉 :=

ˆ

σ
A

τ
,ϕ

˙

π

+ pµM(∇×A),∇×ϕqΩ ,

〈G(u), ψ〉 :=

ˆ

θ(u)

τ
, ψ

˙

π

+ pλ0∇u,∇ψqπ .

Assuming that τ is small enough, i.e. 0 < τ < 1, we show strict monotonicity,
coercivity, and hemicontinuity of these operators in the same way as in Lemmas
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2.1 and 3.1. The rest of the proof serves as a guideline for obtaining a solution-
triplet at every time step t = ti, for i = 1, . . . , n. Applying the Lax-Milgram Lemma
1.1 to (4.21), we obtain a unique solution φci ∈ H1(π)/R at a time step t = ti
(ui−1 is known on this time step).

To obtain a unique solution Ai at a time step ti, we have to solve the following
identity:

〈
Fσπ(ui−1)(Ai),ϕ

〉
=

ˆ

σπ(ui−1)
Ai−1

τ
,ϕ

˙

π

− pσπ(ui−1)∇φci ,ϕqT .

Since the r.h.s. is known, we use Theorem 1.10 to provide the solution. Now, we
involve the same theorem again to acquire a unique solution ui ∈ H1(π) of the
setting below (taking into account that the r.h.s. is known)

〈G(ui), ψ〉 =

ˆ

θ(ui−1)

τ
, ψ

˙

π

+
´

Rr
´

σπ(ui−1) |δAi + χT∇φci |
2
¯

, ψ
¯

π
.

This provides us with the solution-triplet {φci ,Ai, ui} at a time step t = ti, for
i = 1 . . . n.

To wrap everything together, we introduce a pseudoalgorithm for obtaining the
solution-triplet {φci ,Ai, ui} at every time step t = ti:

Algorithm 4 Implicit Euler

Require: A0 ∈XN,0, u0 ∈ H1
0 (π), j ∈ L2((0, T );H−1/2(Γ)), n ∈ N

1: for i = 1, i ≤ n do

2: ∇φci ← Solve: pσπ(ui−1)∇φci ,∇ξqT + pji, ξqΓ = 0

3: Ai ← Solve:
´

σπ(ui−1)Ai

τ ,ϕ
¯

π
+ pµM(∇×Ai),∇×ϕqΩ =

´

σπ(ui−1)Ai−1

τ ,ϕ
¯

π
− pσπ(ui−1)∇φci ,ϕqT

4: ui ← Solve:
´

θ(ui)
τ , ψ

¯

π
+ pλ0∇ui,∇ψqπ =

´

θ(ui−1)
τ , ψ

¯

π
+

´

Rr
´

σπ(ui−1) |δAi + χT∇φci |
2
¯

, ψ
¯

π

5: i← i+ 1

6: return {∇φc1 ,A1, u1}, . . . , {∇φcn ,An, un}
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4.3.1 A priori energy estimates

Before we proceed to the convergence part, we have to derive some basic energy
estimates for φci ,Ai and ui. They are covered by the following lemmas.

Lemma 4.3. Assume (4.17). Then there exists a positive constant C such that

n∑
i=1

‖∇φci‖
2
L2pT q

τ ≤ C.

Proof. Take ξ = φciτ in (4.21) and sum it up for i = 1, . . . , l ≤ n to get

l∑
i=1

pσπ(ui−1)∇φci ,∇φciqT τ = −
l∑
i=1

pji, φciqΓ τ.

We can bound the l.h.s. from below

σ∗

l∑
i=1

‖∇φci‖
2
L2pT q

τ ≤
l∑
i=1

pσπ(ui−1)∇φci ,∇φciqT τ.

Using Cauchy-Schwarz’s and Young’s inequalities, we bound the r.h.s. by

l∑
i=1

pji, φciqΓ τ ≤
1

2ε

l∑
i=1

‖ji‖2H−1/2(Γ) τ +
ε

2

l∑
i=1

‖φci‖
2
H1/2(Γ) τ

≤ Cε + ε

l∑
i=1

‖φci‖
2
H1/2(Γ) τ

where ε > 0. Since H1(T )/R ⊂ H1/2(Γ), we use Lemma 4.1 to write

l∑
i=1

‖φci‖
2
H1/2(Γ) τ ≤ C

l∑
i=1

‖∇φci‖
2
L2pT q

τ.

Now, fixing a sufficiently small ε, we conclude the proof.

Lemma 4.4. Assume (4.17). Then there exists a positive constant C such that

(i)
n∑
i=1

‖δAi‖2L2pπq
τ + max

1≤l≤n
‖∇ ×Al‖2L2(Ω) ≤ C

(ii)
n∑
i=1

‖∇ × pµM(∇×Ai)q‖2L2pπq
τ ≤ C.
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Proof. (i) Taking ϕ = δAiτ in (4.22) and summing up for i = 1, . . . , l ≤ n yields

l∑
i=1

pσπ(ui−1)δAi, δAiqπ τ +

l∑
i=1

pµM(∇×Ai),∇×Ai −∇×Ai−1qΩ

= −
l∑
i=1

pσπ(ui−1)∇φci , δAiqT τ.

Using Lemma 4.3, Cauchy-Schwarz’s, and Young’s inequalities, we bound the first
term on the l.h.s. and the term on the r.h.s. as follows

σ∗

l∑
i=1

‖δAi‖2L2pπq
τ ≤

l∑
i=1

pσπ(ui−1)δAi, δAiqπ τ

and

−
l∑
i=1

pσπ(ui−1)∇φci , δAiqT τ ≤
σ∗

2ε

l∑
i=1

‖∇φci‖
2
L2pT q

τ +
εσ∗Cπ

2

l∑
i=1

‖δAi‖2L2pπq
τ

≤ Cσ
∗

2ε
+
εσ∗Cπ

2

l∑
i=1

‖δAi‖2L2pπq
τ.

To estimate the second term on the l.h.s., we take into account (4.19) and (4.20)

l∑
i=1

∫
Ω

µ {M(∇×Ai) · (∇×Ai −∇×Ai−1)} dx

≥
l∑
i=1

∫
Ω

µ(ΦM (∇×Ai)− ΦM (∇×Ai−1)) dx

=

∫
Ω

µΦM (∇×Al) dx−
∫

Ω

µΦM (∇×A0) dx

≥ cMµ∗
2
‖∇ ×Al‖2L2pΩq

− CMµ
∗

2
‖∇ ×A0‖2L2pΩq

.

We relocate the terms to get

´

σ∗ −
ε

2
σ∗Cπ

¯

l∑
i=1

‖δAi‖2L2pπq
τ +

cMµ∗
2
‖∇ ×Al‖2L2pΩq

≤ Cσ
∗

2ε
+
CMµ

∗

2
‖∇ ×A0‖2L2pΩq

.
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Fixing ε ∈
´

0, 2σ∗
σ∗Cπ

¯

and assuming that A0 ∈XN,0, we obtain that

l∑
i=1

‖δAi‖2L2pπq
τ + ‖∇ ×Al‖2L2pΩq

≤ C.

This is valid for any 1 ≤ l ≤ n which concludes the proof of (i).

(ii) Take ϕ ∈ C∞0 (π). It holds that

pσπ(ui−1)δAi,ϕqπ + pσπ(ui−1)∇φci ,ϕqT = − pµM(∇×Ai),∇×ϕqΩ

Green′s theorem
= − p∇× pµM(∇×Ai)q ,ϕqΩ .

Based on Lemma 4.3 and Lemma 4.4 (i), we see that the l.h.s. can be seen as
a linear bounded functional in L2((0, T ); L2 pπq). According to the Hahn-Banach
Theorem 1.1, the same holds true for the r.h.s., i.e.

n∑
i=1

‖∇ × pµM(∇×Ai)q‖2L2pπq
τ ≤ C.

Lemma 4.5. Let (4.17) be fulfilled. Then there exists a positive constant Cr,
depending only on parameter r of truncation function Rr such that

(i)

n∑
i=1

‖δui‖2L2pπq
τ +

n∑
i=1

‖∇ui −∇ui−1‖2L2pπq
+ max

1≤i≤n
‖∇ui‖L2pπq

≤ Cr,

(ii) max
1≤i≤n

‖ui‖2L2pπq
≤ Cr,

(iii) max
1≤i≤n

‖δθ(ui)‖2pH1(π)q∗ ≤ Cr.

Proof. We omit the proof since it follows the same pattern as the proof of Lemma
2.4.

4.4 The existence of a global solution

We construct piece-wise constant and piece-wise linear in time functions in the
same manner as in Chapter 2, i.e.

fn(t) = fi for t ∈ (ti−1, ti],
fn(t) = fi−1 + (t− ti−1)δfi for t ∈ (ti−1, ti],

fn(0) = fn(0) = f0.
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Using this notation, we rewrite (4.21), (4.22), and (4.23) for t ∈ [0, T ] as follows

`

σπn(t− τ)∇φn,∇ξ
˘

T
+
`

jn, ξ
˘

Γ
= 0, (4.24)

pσπn(t− τ)∂tAn,ϕqπ +
`

µM(∇×An),∇×ϕ
˘

Ω

+
`

σπn(t− τ)∇φn,ϕ
˘

T
= 0, (4.25)

p∂tθn, ψqπ + pλ0∇un, ψqπ =
´

Rr
´

σπn(t− τ)
ˇ

ˇ∂tAn + χT∇φn
ˇ

ˇ

2
¯

, ψ
¯

π
(4.26)

for any ψ ∈ H1(π),ϕ ∈XN,0 and ξ ∈ H1(T )/R.
The proof of existence of a solution to (4.14)-(4.16) is very long from the tech-

nical point of view, therefore, we split it into three parts.

Proposition 4.1. Suppose (4.17). Moreover, assume that σ is globally Lipschitz
continuous. Then there exists u ∈ C([0, T ];L2 pπq)∩L∞((0, T );H1

0 (π)) with ∂tu ∈
L2((0, T );L2 pπq) and a subsequence of un (denoted by the same symbol again) such
that

(i) un → u in C
`

[0, T ];L2 pπq
˘

,
un(t) ⇀ u(t) in H1(π), ∀t ∈ [0, T ],
un → u in L2((0, T );L2 pπq),

(ii) σπn → σπ(u), σπn(t− τ)→ σπ(u) in L2((0, T );L2 pπq),

(iii) θn − θn → 0 in C
`

[0, T ]; (H1(π))∗
˘

,

(iv) θn → θ(u) in L2((0, T );L2 pπq),

(v) jn → j in L2((0, T );H−1/2(Γ)).

Proof. Statements (i) − (iv) of this proposition are proved in the same fashion as
in the Part (A) in Theorem 3.1.

(v) Assuming that j is Lipschitz continuous in time, we are allowed to write

∫ T
0

∥∥jn − j∥∥2

H−1/2(Γ)
dt =

n∑
i=1

∫ ti

ti−1

‖j(ti)− j(t)‖2H−1/2(Γ) dt ≤ Cτ2 n→∞→ 0.

Proposition 4.2. Suppose that all assumptions of Proposition 4.1 are satisfied.
Then there exists A ∈ L2((0, T );XN,0) with ∂tA ∈ L2((0, T ); L2 pπq) and a subse-
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quence of An (denoted by the same symbol again) such that

(i) An ⇀ A, ∇×An ⇀ ∇×A in L2((0, T ); L2 pΩq),
µM(∇×An) ⇀ µM(∇×A) in L2((0, T ); L2 pΩ \πq),
An → A in C

`

[0, T ]; L2 pπq
˘

,
An(t) ⇀ A(t), An(t) ⇀ A(t) in H1(π), ∀t,
∂tAn ⇀ ∂tA in L2((0, T ); L2 pπq),

(ii) M(∇×An) ⇀M(∇×A) in L2((0, T ); L2 pπq),

(iii) ∇×An → ∇×A in L2((0, T ); L2 pπq),
M(∇×An)→M(∇×A) in L2((0, T ); L2 pπq).

Proof. (i) Lemma 4.4 yields ∫ T
0

∥∥An

∥∥2

XN,0
dt ≤ C.

Since L2((0, T );XN,0) is reflexive, we use Theorem 1.2 to obtain a subsequence
such that An ⇀ A in that space. One can easily see that

An ⇀ A, ∇×An ⇀ ∇×A in L2((0, T ); L2 pΩq),

due to the density of C∞0 (Ω) in L2(Ω), see [49, Theorem 2.6.1]. Take now ϕ ∈
C∞0 (Ω \π). Using µ ∈ H1(Ω \π) and taking into account Remark 4.1, we have∫ T

0

`

µM(∇×An),ϕ
˘

Ω\π =

∫ T
0

`

µ∇×An,ϕ
˘

Ω\π =

∫ T
0

`

An,∇× pµϕq
˘

Ω\π .

Passing to the limit for n→∞, we get

lim
n→∞

∫ T
0

`

µ∇×An,ϕ
˘

Ω\π =

∫ T
0

pA,∇× pµϕqqΩ\π =

∫ T
0

pµ∇×A,ϕqΩ\π .

Using the density argument of C∞0 (Ω \π) in L2(Ω \π), we have that

µM(∇×An) = µ∇×An ⇀ µ∇×A = µM(∇×A) in L2((0, T ); L2 pΩ \πq).

Lemma 4.4 together with XN,0 ⊂ H1(Ω) implies that∫ T
0

‖∂tAn‖2L2pπq
dt ≤ C,

∥∥An

∥∥
H1(π)

≤
∥∥An

∥∥
H1(Ω)

≤ C.
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Employing Lemma 2.5 for V = H1(π) and Y = L2 pπq, we get for a subsequence
that

An → A in C
`

[0, T ]; L2 pπq
˘

;
An(t) ⇀ A(t), An(t) ⇀ A(t) in H1(π), ∀t;
∂tAn ⇀ ∂tA in L2((0, T ); L2 pπq).

(ii) The sequence M(∇ × An) is bounded in L2((0, T ); L2 pΩq). Therefore,
there exists p from L2((0, T ); L2 pΩq) such thatM(∇×An) ⇀ p in that space (for
a subsequence). Now let us investigate the following inequality

0 ≤
∫ T

0

`

M(∇×An)−M(b), ψµ
`

∇×An − b
˘˘

Ω
dt = I1 + I2 + I3 + I4 (4.27)

where

I1 :=

∫ T
0

`

M(∇×An), ψµ∇×An

˘

Ω
dt, I2 :=

∫ T
0

`

M(b), ψµ∇×An

˘

Ω
dt,

I3 :=

∫ T
0

`

M(∇×An), ψµb
˘

Ω
dt, I4 :=

∫ T
0

pM(b), ψµbqΩ dt.

This inequality holds true for any b ∈ L2((0, T ); L2 pΩq) and any non-negative
ψ ∈ C∞0 (π). We want to pass to the limit for n→∞ in (4.27). We do it for each
term in (4.27) separately.

It holds that

I1 =

∫ T
0

`

M(∇×An), ψµ∇×An

˘

Ω
dt

=

∫ T
0

`

M(∇×An), ψµ∇×
`

An −A
˘˘

Ω
dt+

∫ T
0

`

M(∇×An), ψµ∇×A
˘

Ω
dt

=

∫ T
0

`

∇×
“

ψµM(∇×An)
‰

,An −A
˘

Ω
dt+

∫ T
0

`

M(∇×An), ψµ∇×A
˘

Ω
dt

=

∫ T
0

`

ψ∇×
“

µM(∇×An)
‰

,An −A
˘

Ω
dt

+

∫ T
0

`

∇ψ ×
“

µM(∇×An)
‰

,An −A
˘

Ω
dt+

∫ T
0

`

M(∇×An), ψµ∇×A
˘

Ω
dt.

Here, we used the Green Theorem 1.12 and the Curl identity from Section 1.6.
We know that An → A in the space C

`

[0, T ]; L2 pπq
˘

and ∂tAn is bounded in
the space L2((0, T ); L2 pπq). Therefore, also An → A in C

`

[0, T ]; L2 pπq
˘

. Thus,
using µ ∈ H1(π), it is not difficult to see that

lim
n→∞

I1 =

∫ T
0

pp, ψµ∇×AqΩ dt.
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Clearly,

lim
n→∞

I2 =

∫ T
0

pM(b), ψµ∇×AqΩ dt,

lim
n→∞

I3 =

∫ T
0

pp, ψµbqΩ dt,

lim
n→∞

I4 =

∫ T
0

pM(b), ψµbqΩ dt.

Assembling these auxiliary results, we arrive at

lim
n→∞

∫ T
0

`

M(∇×An)−M(b), ψµ
`

∇×An − b
˘˘

Ω
dt

=

∫ T
0

pp−M(b), ψµ p∇×A− bqqΩ dt ≥ 0.

Since b was taken as an arbitrary element of L2((0, T ); L2 pΩq), we choose it as
b = ωq +∇×A where q ∈ L2((0, T ); L2 pΩq) is again arbitrary and ω > 0. Using
this substitution in the equation above, we obtain that∫ T

0

pp−M(∇×A+ ωq), µψ p−ωqqqΩ dt ≥ 0 / multiply by
1

ω
,∫ T

0

pp−M(∇×A+ ωq), µψ p−qqqΩ dt ≥ 0 / pass to the limit ω → 0,∫ T
0

pp−M(∇×A), µψ p−qqqΩ dt ≥ 0 / since q is arbitrary

we choose it as q = −q∫ T
0

pp−M(∇×A), µψ p−qqqΩ dt ≤ 0.

The conclusion is that
∫ T

0
pp−M(∇×A), µψqqΩ dt = 0 for any non-negative

ψ ∈ C∞0 (π) and every q ∈ L2((0, T ); L2 pΩq). Hence, p = M(∇ × A) a.e. in
(0, T )×π and M(∇×An) ⇀M(∇×A) in L2((0, T ); L2 pπq).

(iii) Analogously as in (ii), using the strong monotonicity of M (j1), we con-
clude

0 = lim
n→∞

∫ T
0

`

M(∇×An)−M(∇×A), µψ
`

∇×An −∇×A
˘˘

Ω
dt

≥ lim
n→∞

cM

∫ T
0

´

µψ,
ˇ

ˇ∇×An −∇×A
ˇ

ˇ

2
¯

Ω
dt ≥ 0.
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Therefore, lim
n→∞

∫ T
0

´

µψ,
ˇ

ˇ∇×An −∇×A
ˇ

ˇ

2
¯

Ω
dt = 0 for every 0 ≤ ψ ∈ C∞0 (π)

which implies ∇×An → ∇×A in L2((0, T ); L2 pπq). The vector field M is also
Lipschitz continuous, hence, M(∇ ×An) → M(∇ ×A) in L2((0, T ); L2 pπq) as
well.

Now, we are in the position to state our convergence theorem.

Theorem 4.1. Suppose that Proposition 4.1 holds. Then there exists a solution-
triplet {φ,A, u} with φ being from the space L2((0, T );H1(T )/R), A being from
the space L2((0, T );XN,0) with ∂tA ∈ L2((0, T ); L2 pπq) and u being from the
space C([0, T ];L2 pπq)∩L∞((0, T );H1

0 (π)) with ∂tu ∈ L2((0, T );L2 pπq) and sub-
sequences of φn, An and un (denoted by the same symbol again) such that

(i) φ and u solve (4.15),

(ii) ∇φn → ∇φ in L2((0, T ); L2 pT q),

(iii) φ, u and A solve (4.14),

(iv) ∂tAn → ∂tA in L2((0, T ); L2 pπq),

(v) φ, u and A solve (4.16).

Proof. (i) Existence of a potential φ ∈ H1(T )/R such that ∇φn ⇀ ∇φ in the space
L2((0, T ); L2 pT q) follows from the reflexivity of L2((0, T ); L2 pT q) and Theorem
1.2. The function φ has in fact a zero mean over T , cf. proof of Lemma 4.1.

Take ξ ∈ H1(T )/R in (4.24) and integrate in time∫ ζ

0

`

σπn(t− τ)∇φn, ξ
˘

T
ds+

∫ ζ

0

`

jn, ξ
˘

Γ
ds = 0.

Thanks to Proposition 4.1 (ii), and (v), we pass to the limit for n→∞ to get∫ ζ

0

pσπ(u)∇φ, ξqT ds+

∫ ζ

0

pj, ξqΓ ds = 0.

Now, differentiating with respect to time, we see that φ and u solve (4.15).

(ii) It holds that

0 ≤ σ∗
∫ T

0

∥∥∇ “

φn − φ
‰∥∥2

L2(T )
dt
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≤
∫ T

0

`

σπn(t− τ)∇
“

φn − φ
‰

,∇
“

φn − φ
‰˘

T
dt

=

∫ T
0

pσπn(t− τ)∇φ,∇φqT dt+

∫ T
0

`

σπn(t− τ)∇φn,∇φn
˘

T
dt

− 2

∫ T
0

`

σπn(t− τ)∇φn,∇φ
˘

T
dt

(4.24)
=

∫ T
0

pσπn(t− τ)∇φ,∇φqT dt−
∫ T

0

`

jn, φn
˘

Γ
dt

− 2

∫ T
0

`

σπn(t− τ)∇φn,∇φ
˘

T
dt.

Passing to the limit, we conclude that

0 ≤ lim
n→∞

σ∗

∫ T
0

∥∥∇ “

φn − φ
‰
∥∥2

L2(T )
≤ −

∫ T
0

pσπ(u)∇φ,∇φqT −
∫ T

0

pj, φqΓ

(i)
= 0.

Therefore, ∇φn → ∇φ in L2((0, T ); L2 pT q).

(iii) We integrate (4.25) in time to get∫ ζ

0

pσπn(t− τ)∂tAn,ϕqπ ds+

∫ ζ

0

`

µM(∇×An),∇×ϕ
˘

Ω
ds

+

∫ ζ

0

`

σπn(t− τ)∇φn,ϕ
˘

T
ds = 0.

Using Proposition 4.1 (ii), Proposition 4.2, and Theorem 4.1 (ii), we pass to the
limit for n→∞ to see∫ ζ

0

pσπ(u)∂tA,ϕqπ +

∫ ζ

0

pµM(∇×A),∇×ϕqΩ +

∫ ζ

0

pσπ(u)∇φ,ϕqT = 0.

Thus, φ, u and A solve (4.14).

(iv) The strong convergence of ∇ × An → ∇ × A in L2((0, T ); L2 pπq) is
guaranteed by Proposition 4.2 (iii). Let us take any ζ ∈ [0, T ] such that ∇ ×
An(ζ) → ∇×A(ζ) in L2 pπq. This set is dense in [0, T ]. Take any non-negative
ψ ∈ C∞0 (π). We use the positiveness of σ to estimate the following

0 ≤ σ∗
∫ ζ

0

∫
π

ψ |∂tAn − ∂tA|
2 dx ds

≤
∫ ζ

0

∫
π

ψσπn(t− τ) |∂tAn − ∂tA|
2 dx ds
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= −2

∫ ζ

0

pψσπn(t− τ)∂tAn, ∂tAqπ ds+

∫ ζ

0

pψσπn(t− τ)∂tA, ∂tAqπ ds

+

∫ ζ

0

pψσπn(t− τ)∂tAn, ∂tAnqπ ds.

We use Lebesgue’s dominated convergence Theorem 1.3 combined with Proposition
4.1 (ii) and Proposition 4.2 (i) to pass to the limit for n→∞ in the first two terms

lim
n→∞

−2

∫ ζ

0

pψσπn(t− τ)∂tAn, ∂tAqπ ds = −2

∫ ζ

0

pψσπ(u)∂tA, ∂tAqπ ds,

lim
n→∞

∫ ζ

0

pψσπn(t− τ)∂tA, ∂tAqπ ds =

∫ ζ

0

pψσπ(u)∂tA, ∂tAqπ ds.

We can assume that ζ ∈ (tj−1, tj ] and use variational formulation (4.25) to rewrite
the third term as∫ ζ

0

pψσπn(t− τ)∂tAn, ∂tAnqπ ds =

= −
∫ ζ

0

`

µM(∇×An),∇× pψ∂tAnq
˘

Ω
ds−

∫ ζ

0

`

σπn(t− τ)∇φn, ψ∂tAn

˘

T
ds

= −
∫ ζ

0

`

ψµM(∇×An),∇× ∂tAn

˘

Ω
ds−

∫ ζ

0

`

µM(∇×An),∇ψ × ∂tAn

˘

Ω
ds

−
∫ ζ

0

`

σπn(t− τ)∇φn, ψ∂tAn

˘

T
ds

=: R1 +R2 +R3.

Let us rewrite the first term on the r.h.s. and examine it closely

R1 = −
∫ tj

0

`

ψµM(∇×An),∇× ∂tAn

˘

Ω
+

∫ tj

ζ

`

ψµM(∇×An),∇× ∂tAn

˘

Ω

= −
j∑
i=1

∫
Ω

ψµM(∇×Ai) · p∇×Ai −∇×Ai−1)q

+

∫ tj

ζ

`

∇×
`

ψµM(∇×An)
˘

, ∂tAn

˘

Ω

(4.18)
≤ −

j∑
i=1

∫
Ω

ψµ
`

ΦM (∇×Ai)− ΦM (∇×Ai−1)
˘

+

∫ tj

ζ

`

∇ψ ×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω
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+

∫ tj

ζ

`

ψ∇×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω

= −
∫

Ω

ψµΦM (∇×Aj) +

∫
Ω

ψµΦM (∇×A0)

+

∫ tj

ζ

`

∇ψ ×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω

+

∫ tj

ζ

`

ψ∇×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω

= −
∫

Ω

ψµΦM (M(∇×An(ζ)) +

∫
Ω

ψµΦM (∇×A0)

+

∫ tj

ζ

`

∇ψ ×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω

+

∫ tj

ζ

`

ψ∇×
`

µM(∇×An)
˘

, ∂tAn

˘

Ω
.

Now, we are able to pass to the limit for n→∞ to find that

lim
n→∞

R2 = −
∫ ζ

0

pµM(∇×A),∇ψ × ∂tAqΩ ds,

lim
n→∞

R3 = −
∫ ζ

0

pσπ(u)∇φ, ψ∂tAqT ds,

and

lim
n→∞

R1 ≤ −
∫

Ω

ψµΦM (∇×A(ζ)) dx+

∫
Ω

ψµΦM (∇×A(0)) dx

= −
∫ ζ

0

∫
Ω

ψµ
dΦM (∇×A)

dt
dx ds

= −
∫ ζ

0

∫
Ω

ψµM(∇×A) · ∂t p∇×Aq dx ds

= −
∫ ζ

0

pµM(∇×A), ψ∇× p∂tAqqΩ ds.

Thus,

lim
n→∞

R1 +R2 +R3 ≤ −
∫ ζ

0

pµM(∇×A),∇× pψ∂tAqqΩ ds

−
∫ ζ

0

pσπ(u)∇φ, ψ∂tAqT ds
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(4.14)
=

∫ ζ

0

pψσπ(u)∂tA, ∂tAqπ ds.

Thus, collecting all estimates above, we see that

0 ≤ lim
n→∞

∫ ζ

0

∫
π

ψ |∂tAn − ∂tA|
2 dx ds ≤ 0.

Please note that this is valid for any non-negative ψ ∈ C∞0 (π). Since the set
of ζ ∈ [0, T ] for which ∇ × An(ζ) → ∇ × A(ζ) in L2 pΩq is dense in [0, T ], we
achieve a strong convergence of ∂tAn in L2((0, T ); L2 pπq), i.e. ∂tAn → ∂tA in
L2((0, T ); L2 pπq).

(v) Take ψ ∈ H1(π) in (4.26) and integrate in time to get

`

θn(t)− θn(0), ψ
˘

π
+
`

θn(t)− θn(t), ψ
˘

π
+

∫ t

0

pλ0∇un,∇ψqπ ds

=

∫ t

0

´

Rr
´

σπn(s− τ)
ˇ

ˇ∂tAn + χT∇φn
ˇ

ˇ

2
¯

, ψ
¯

π
ds.

Lebesgue’s dominated convergence Theorem 1.3 together with Proposition 4.1-(ii),
Theorem 4.1-(ii), and (iv) let us pass to the limit for n → ∞ on the r.h.s. of the
equation above

lim
n→∞

∫ t

0

´

Rr
´

σπn(s− τ)
ˇ

ˇ∂tAn + χT∇φn
ˇ

ˇ

2
¯

, ψ
¯

π
ds =

=

∫ t

0

´

Rr
´

σπ(u) |∂tA+ χT∇φ|
2
¯

, ψ
¯

π
ds.

Proposition 4.1 lets us pass to the limit for n → ∞ on the l.h.s. of the equation
above. Please note that the term

`

θn(t)− θn(t), ψ
˘

π
vanishes since lim

n→∞

`

θn(t)− θn(t), ψ
˘

π
=

0 for every t ∈ [0, T ]. Therefore, gathering all results above brings us to

pθ(u(t))− θ(u(0)), ψqπ +

∫ t

0

pλ0∇u,∇ψqπ ds

=

∫ t

0

´

Rr
´

σπ(u) |∂tA+ χT∇φ|
2
¯

, ψ
¯

π
ds.

After differentiation with respect to the time variable, we see that φ, u and A solve
(4.16).
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Figure 4.3: Meshed domain.

4.5 Numerical simulation

To support our proposed numerical scheme obtained from the variational formula-
tion (4.23) - (4.21), we provide a numerical simulation of the induction hardening
process. The domain used in the simulation is reported in Fig. 4.3. This domain
is more complex than its simplified version in Fig. 4.1, but our theoretical results
for this type hold regardless, because the inclusion XN,0 ⊂ H1(Ω) holds true also
for convex domains (without a smooth boundary). Since we want our simulation
to be realistic, we use physical constants:

cfe = 502.4 [J/kg] specific heat of steel,
ρfe = 7850 [kg/m3] density of steel,
λfe = 43 [W/m] thermal conductivity of steel,
σfe = 6.21× 106 [S/m] electric conductivity of steel,
µfe = 1.26× 10−4 [H/m] magnetic permeability of steel,
µair = 1.256× 10−6 [H/m] magnetic permeability of air.

Unknown functions representing nonlinearities are chosen accordingly to satisfy
(4.17):

σπ(u) = 2σfe + σfe

˜

2−
ˆ

1 +
1

1 + u

˙1+u
¸

,
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θ(u) = ρfecfe
?
u,

M(∇×A) = m(|∇×A|)∇×A =
´

1 + e−|∇×A|
¯

∇×A.

The range of the electric conductivity function σπ(u) is

0 ≤ σc(4− e) < σπ(u) ≤ 2σc for u ≥ 0.

Thus, σπ(u) satisfies the assumption (d) (it is positive and bounded) from Section
4.2.2. The function θ(u) defined above is of a linear growth, its derivative is always
positive and it also satisfies the condition θ(0) = 0. We need the vector field M
to satisfy the condition M(0) = 0, to be Lipschitz continuous and also strongly
monotone. Clearly, the first condition is met. To check the second condition, we
need to compute the gradient of M(x) in the h direction, i.e.

〈gradM(x),h〉 = 〈grad m(|x|)x,h〉 = m′(|x|)
h · x
|x|

x+m(|x|)h.

Using the mean value theorem for vector functions, we obtain for some ξ ∈ (0, 1)

|M(x)−M(y)| = |〈gradM(x+ ξ(y − x)),x− y〉|

=

ˇ

ˇ

ˇ

ˇ

m′ p|x+ ξ(y − x)|q
(x− y) · (x+ ξ(y − x))

|x+ ξ(y − x)|
(x+ ξ(y − x))

+m(|x+ ξ(y − x)|)(x− y)|

≤ |x− y| {|m(|x+ ξ(y − x)|)|

+ |m′(|x+ ξ(y − x)|)| |x+ ξ(y − x)|}

= |x− y|

{
1 + e−|x+ξ(y−x)| + e−|x+ξ(y−x)| |x+ ξ(y − x)|

}
≤ 2 |y − x| ∀ x,y ∈ R3 x 6= y

since the function f(s) = 1 + e−s + e−ss reaches its global maximum at s = 0 and
it is equal to 2. It only remains to show the strongly monotone character ofM(x).
Again, using the mean value theorem, we have for some ξ ∈ (0, 1)

rM(x)−M(y)s · (x− y) = 〈gradM(x+ ξ(y − x)),x− y〉 · (x− y)

= m′(|x+ ξ(y − x)|)
p(x− y) · (x+ ξ(y − x))q

2

|x+ ξ(y − x)|

+m(|x+ ξ(y − x)|) |x− y|
2

≥ |x− y|
2 {m(|x+ ξ(y − x)|)

− |m′(|x+ ξ(y − x)|)| |x+ ξ(y − x)|}
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= |x− y|
2
{

1 + e−|x+ξ(y−x)|

−e−|x+ξ(y−x)| |x+ ξ(y − x)|

}
≥

ˆ

1− 1

e2

˙

|x− y|
2 ∀ x,y ∈ R3, x 6= y,

because the function p(s) = 1 + e−s − e−ss reaches its global minimum at s = 2
and it is equal to

`

1− 1
e2

˘

.

We split the time interval [0, T ] = [0, 0.02] in 1280 equidistant parts (τ =
1.5625e10−5) and use the open source finite element environment Gmsh/GetDP
[25, 33], available online on http://www.onelab.info, to solve the system (4.23)
- (4.21) at each time step after spatial discretization using Whitney finite elements
on tetrahedra (edge elements for the magnetic vector potential, nodal elements for
the electric scalar potential and the temperature) [15]. The mesh contained 26765
tetrahedra, leading to a total of 29714 unknowns. We denote the obtained solutions
for the magnetic induction field and the temperature function as reference solutions
bref and uref , respectively. Typical solutions are plotted in Fig. 4.4 and Fig. 4.5.

Figure 4.4: Magnetic induction field. Figure 4.5: Temperature.

Figure 4.6: Reference solutions in time t = 0.015.

To show that our scheme is converging to bref and uref , we compute other
numerical solutions for number of time steps 10, 20, 40, 80, 160, 320 and 640 and
compare them with bref and uref . We analyze these solutions in certain mea-
surement points of our domain (see Fig. 4.7) and at certain time steps, namely
ti = 0.002i, where i = 1, . . . , 10. Relative errors of a given numerical solution
bn from the reference solution bref and un from uref are then calculated in the
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following manner

|bref | =
∑
Pj∈P

10∑
i=1

|bref (Pj , ti)| ,

|uref | =
∑
Pj∈P

10∑
i=1

|uref (Pj , ti)| ,

|bref − bn| =
∑
Pj∈P

10∑
i=1

|bref (Pj , ti)− bn(Pj , ti)| ,

|uref − un| =
∑
Pj∈P

10∑
i=1

|uref (Pj , ti)− un(Pj , ti)| ,

rel bn =
|bref − bn|

|bref |
and rel un =

|uref − un|

|uref |

where P is the set of measurement points.

Figure 4.7: Measurement points.

Please bear in mind that the index n refers to the numerical solution computed
on a mesh with 2n−1 · 10 time steps. The evolution of these errors with increasing
number of time steps is shown in Fig. 4.8 and Fig. 4.9.
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Figure 4.8: Relative error of the mag-
netic induction field B with respect to
a decreasing time step τ .

Figure 4.9: Relative error of the tem-
perature function u with respect to a
decreasing time step τ .

If the error of a given numerical solution fτ from the exact solution f depends
smoothly on a time step τ then there exist an error coefficient D such that

fτ − f = Dτp +O(τp+1)

where p represents the order of convergence. Using the fact that the difference of
fτ − fτ/2 decays to zero with the same speed as fτ − f , we can estimate the order
of convergence without knowing the exact solution f , i.e.

fτ − fτ/2
fτ/2 − fτ/4

=
Dτp −D(τ/2)p +O(τp+1)

D(τ/2)p −D(τ/4)p +O(τp+1)
= 2p +O(τ).

Which gives us

log2

ˆ

fτ − fτ/2
fτ/2 − fτ/4

˙

= p+O(τ).

Applying the formula above to our numerical solutions, we obtain an estimation
for the order of convergence of {un} and {bn}

pu ≈ 0.9830 and pb ≈ 1.0010.

This provides a strong indication that the convergence of our numerical scheme is
linear.
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Part II

On an inverse source problem
in Maxwell’s equations

95





Chapter 5

Reconstruction of a time
dependent source term from a
single boundary measurement
considering nonlinear
generalized Ohm’s law

5.1 Introduction to inverse (source) problems

An inverse problem assumes a direct problem that is a well-posed problem of math-
ematical physics. In other words, if we know completely a physical device, we have
a mathematical description of this device including uniqueness, stability, and the
existence of a solution of the corresponding mathematical problem. But, if one of
the (functional) parameters describing this device is to be found from additional
boundary (or experimental) data then we arrive at an inverse problem.

Many inverse problems arise naturally and have important applications. As a
rule, these problems are rather difficult to solve for two reasons: they are nonlinear
and they are improperly posed.

Most direct problems can be reduced to finding values y = Ax of a continuous
(not necessarily linear) operator A operating from a Banach space X onto a Banach
space Y . The inverse problem is then connected with the inverse operator or with

97
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solving the equation

Ax = y. (5.1)

Many direct problems are equivalent to such an equation. A related problem is said
to be well-posed in the sense of Hadamard if the following conditions are satisfied:

(i) for any y ∈ Y there is no more than one x ∈ X satisfying (5.1) (uniqueness),

(ii) for any y ∈ Y there exists a solution x ∈ X (existence),

(iii) a solution x to Equation (5.1) is stable, i.e., if ȳ → y in Y , then related
solutions x̄→ x in X (continuous dependence on data).

If one of the conditions (i) − (iii) is not satisfied, the problem (5.1) is called
ill-posed.

The conditions above are of different degrees of importance. For instance, if
we cannot guarantee the uniqueness of a solution under any reasonable choice of
X, then the inverse problem does not make much sense. On the other hand, the
condition (ii) does not appear as restrictive since it only shows that we cannot
describe conditions that guarantee the existence of a solution. Even without these
conditions we can produce a stable numerical algorithm for finding x for given y.
Hadamard especially stressed the meaning of the stability condition. In practice
it is important because of the inevitable errors when calculating or measuring
something.

A problem described by (5.1) is said to be conditionally correct (according to
Tikhonov [78]) in a correctness class W if the following conditions are satisfied:

(i)∗ a solution x to Equation (5.1) is unique in W , i.e., if Ax1 = Ax2, x1, x2 ∈W ,
then x1 = x2 (uniqueness in W ),

(ii)∗ a solution is stable on W , i.e., x̄ → x in X if x̄, x ∈ W and Ax̄ → Ax in Y
(conditional stability).

Uniqueness questions are central in the theory of conditionally correct problems,
nevertheless, the existence theorem are of importance as well since they guarantee
that we do not use extra data.

Inverse source problems (ISP) are a special subclass of Inverse problems. In
ISP we have to find the right-hand side (source). Identification problems can often
be reduced to an ISP.
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There is a broad range of applications, for instance, geophysics, physics, chem-
istry, medicine, optics, machine learning, signal processing, astronomy and med-
ical imaging. For more details, we refer the reader to the books and articles of
[7, 14, 19, 46, 58, 59, 76] and [77].

Many mathematical papers are dealing with ISP in hyperbolic PDEs. There
are different techniques used to reconstruct the source term, for instance Carleman
estimates have been used in [20, 47]. If the source is also space dependent, then an
extra measurement in space (e.g. solution at the final time) is needed, cf. [42, 71].
Linear problems have been addressed in [37, 43, 82]. Source reconstructions from
additional boundary measurements were studied in [62, 63, 64].

In some applications (geophysics), we can reach only certain parts of the con-
sidered domain and the rest remains unreachable. Hence, the electric and magnetic
fields can be measured only on the reachable part. It can be a part of the considered
domain or boundary (for better interpretation see Fig. 5.1). In this chapter we
study an ISP in a nonlinear hyperbolic setting derived from the Maxwell equations
(1.3)-(1.6). The additional measurement consists of a single boundary measure-
ment on a part of the considered boundary.

Figure 5.1: Example of a boundary measurement on a part of the boundary.

5.2 The mathematical model and ISP formulation

We assume that our domain Ω ⊂ R3 is either smooth, i.e. Ω ∈ C1,1 or convex.
The boundary of Ω is denoted by ∂Ω = Γ and the symbol n stands for the unit
outward normal vector on the boundary Γ. We work in the time frame [0, T ].

The constitutive relations between the four vector fields B,H,D,E were de-
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scribed in Section 1.7.1. Their exact form depends on the particular physical phe-
nomenon we are modelling. In many cases the present values of solutions depend
on their previous values. These dependencies are expressed with a memory term.
There are plenty of applications, for instance in chiral media [74], meta-materials
[40, 41], nonlinear optics [8, 9, 10] or geophysics [23, 24, 72, 88]. The physical
phenomenon which is often observed in geophysics is charge accumulation in rocks
that serve as capacitors. The charge then decays, and this introduces an effective
change to the traditional Ohm law that does not assume capacitance. Hence, it
becomes a convolution in time, cf. [36].

Let us again consider the Maxwell equations (1.3)-(1.6). They form the cor-
nerstone of our mathematical model. We adopt the generalized Ohm law in the
following nonlinear form

J(t) = (σ ∗E)(t)− p1 ∗N(E)q (t) + F (x, t)

where the symbol ∗ stands for the usual convolution in time, e.g.

(f ∗ g(x))(t) =

∫ t

0

f(t− s)g(x, s) ds.

The vector function F describes the source current andN(E) is a nonlinear vector
function of E.

The electric conductivity term σ is assumed to be separable, i.e.

σ(x, t) = σ̂(x)σ(t).

Both σ̂(x) and σ(t) are known. We assume σ̂(x) to be a positive constant. Time
dependent part σ(t) is assumed to be Lipschitz continuous and bounded, e.g. 0 <
σ∗ ≤ σ ≤ σ∗ <∞. The nonlinear function N is supposed to be globally Lipschitz
continuous and it also fulfills the following boundary condition

N(E(t))× n = 0 on Γ, ∀t ∈ (0, T ). (5.2)

The domain Ω is occupied by a homogeneous dielectric material. Hence, the con-
stitutive relations become

B = µH, D = εE

where µ and ε are positive constants. Elimination of H in Maxwell’s equations
then yields

ε∂2
tE + σ̂∂t(σ ∗E) +∇×

ˆ

1

µ
∇×E

˙

= N(E)− ∂tF in Ω.
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We assume that the tangential component of E is continuous across the boundary,
i.e.

n×E(t) = 0 on Γ, ∀t ∈ (0, T ). (5.3)

And the initial data are prescribed as follows

E(x, 0) = E0(x), ∂tE(x, 0) = W 0(x) in Ω. (5.4)

Time derivative of the source term F is assumed to be separable, i.e.

−∂tF = h(t)f(x).

Here, the function f(x) is given but h(t) is unknown. We suppose that

f × n = 0 on Γ.

For the sake of simplicity, let us assume that µ ≡ ε ≡ σ̂ ≡ 1. Then the PDE
becomes

∂2
tE + ∂t(σ ∗E) +∇×∇×E = h(t)f(x) +N(E) in Ω. (5.5)

The inverse source problem reads as finding a couple {E(x, t), h(t)}. The mea-
surement introduced below will be used to recover the time dependent part of the
source term h(t) ∫

Γ

φE · n dΓ = m(t). (5.6)

Here, φ is a function from C∞(Ω) with meas{supp(φ)∩Γ} > 0. After applying the
measurement operator to equation (5.5) and assuming that

∫
Γ
f(x) · nφ dΓ 6= 0,

we eliminate h(t) to obtain

h(t) =
m′′(t) + (σ ∗m)′(t) +

∫
Ω
∇×∇×E · ∇φ dx−

∫
Γ
N(E) · nφ dΓ∫

Γ
f(x) · nφ dΓ

. (5.7)

We used the fact that ∂t(f ∗ g)(t) = (f ∗ ∂tg)(t) + f(t)g(0) for any given functions
f, g and applied the Green theorem in the following way∫

Γ

(∇×∇×E · n)φ =

∫
Ω

∇×∇×E · ∇φ+

∫
Ω

∇ · (∇×∇×E)φ

=

∫
Ω

∇×∇×E · ∇φ. (5.8)
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Figure 5.2: Vertical cut of the measured part of the boundary.

We measure only the normal component of E on a part of the boundary Γ which
is modelled by the function φ. Let us explain the purpose of this function in more
detail. Assume that the measurement is done on a part of the boundary denoted
as η. Naturally, η is a subset of Γ, i.e. η ⊂ Γ. Then the function φ is defined as
φ(x) = 1 if x ∈ η and meas{supp(φ) ∩ η} = |η|, moreover, meas{supp(φ) ∩ Γ} =
|η| + ε, for some small and positive ε. For better interpretation see Fig. 5.2. The
implementation of φ in our measurement is solely due to mathematical reasons.
With this addition, we can use the Green theorem as in equation (5.8).

5.2.1 Weak formulation

Let us recall the functional space XN
∗ defined in Section 1.3

XN = {ϕ ∈ H(curl ; Ω) ∩H(div; Ω) : n×ϕ = 0 on Γ}.

With its norm defined as

‖ϕ‖XN
= ‖ϕ‖+ ‖∇ ×ϕ‖+ ‖∇ ·ϕ‖ .

Space XN is associated with the solution of (5.5). To obtain the weak formulation
of (5.9), we multiply it by a test function ϕ ∈ H0(curl ; Ω). Then integrate over
Ω, take into account boundary condition (5.3) and use Green’s theorem to obtain

`

∂2
tE,ϕ

˘

+ p∂t(σ ∗E),ϕq + p∇×E,∇×ϕq = h(t) pf(x),ϕq

+ pN(E),ϕq , (5.9)

∗This space is embedded in H1(Ω), cf. Theorem 1.8. This embedding is very important since
H1(Ω) is compactly embedded in L2(Ω). The embedding above also holds for a convex domain
Ω (cf. [3, Theorem 2.17]).
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for any ϕ ∈ H0(curl ; Ω). Then, the weak formulation of problem (5.3), (5.4), (5.5)
and (5.6) reads as:
Find a solution pair {h(t),E(x, t)} satisfying equation (5.7) and (5.9) such that
h(t) ∈ L2((0, T )),E ∈ C([0, T ]; L2(Ω)) ∩ L∞((0, T );XN ) with its first order time
derivative ∂tE ∈ L2((0, T ); L2(Ω))∩C([0, T ];X∗N ) and second order time derivative
∂2
tE ∈ L2((0, T ); (H0(curl ; Ω))∗).

5.3 Time discretization

To discretize our continuous formulation of equations (5.5) and (5.7), we start by
splitting the time interval [0, T ] into n ∈ N equidistant parts with the time step
τ = T/n. Following the same notation as in the previous chapters, we write for
any function w

ti = iτ, wi = w(ti), δwi =
wi − wi−1

τ
, δ2wi =

δwi − δwi−1

τ2
.

Please bear in mind that we approximate the second order time derivative in the
following way

∂2
tw = ∂t(∂tw) ≈ δ(δwi) = δ2wi.

The discretized convolution for any given functions f, g is then defined as

(f ∗ g)i =

i∑
k=0

fi−kgkτ.

This also implies

δ(f ∗ g)i =
(f ∗ g)i − (f ∗ g)i−1

τ
= f0gi +

i−1∑
k=0

δfi−kgkτ, for i ≥ 1.

Now, we consider a system with unknown variables {ei, hi} and approximate our
ISP at each time step ti for i = 1, . . . , n as follows

δ2ei + (σ ∗ δe)i +∇×∇× ei = N(ei−1) + hif − σiE0 in Ω
ei × n = 0 on Γ

e0 = E0

δe0 = W 0

(DPi)

and

hi =
m′′i + (σ ∗m′)i + σim0 + p∇×∇× ei−1,∇φq−

∫
Γ
N(ei−1) · nφ∫

Γ
f(x) · nφ

. (DMPi)
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The scheme above is linear and decoupled. The pseudo-algorithm for obtaining the
solution pair {ei, hi} at each time step ti reads as

Algorithm 5 Implicit Euler
Require: m,σ,f , δe0 = E0, δe = W 0, n ∈ N
1: for i = 1, i ≤ n do
2: hi ← Solve: (DMPi)
3: ei ← Solve: (DPi)
4: i← i+ 1

5: return {h1, e1}, . . . , {hn, en}

We now proceed with a lemma that guarantees the existence of a unique solution
pair {ei, hi} at each time step ti for i = 1, . . . , n.

Lemma 5.1. Let Ω ∈ C1,1 or Ω be convex. Moreover, assume that N is globally
Lipschitz continuous, φ ∈ C∞0

¯(Ω) with meas{supp(φ) ∩ Γ} > 0, f ∈ XN ,E0 ∈
XN ,∇ × ∇ × E0 ∈ L2(Ω),W 0 ∈ XN ,m ∈ C2([0, T ]), and

∫
Γ
f(x) · nφ dΓ 6= 0

and also 0 < σ∗ ≤ σ(t) ≤ σ∗ < ∞ for any t ∈ [0, T ]. Then for any i = 1, . . . , n
there exists a unique pair {ei, hi} solving (DPi) and (DMPi). Furthermore, hi ∈
R, ei ∈XN ,∇×∇× ei ∈ L2(Ω) and ∇×∇× ei × n = 0 on Γ.

Proof. For a given ∇ × ∇ × ei−1 ∈ L2(Ω) and ei−1 ∈ XN , we compute hi from
(DMPi). We also see that

|hi|
2 ≤ C

´

1 + ‖∇φ‖2C(Ω) ‖∇ ×∇× ei−1‖2 + ‖φ‖2C(Ω) ‖N(ei−1)‖2L2pΓq

¯

≤ C
´

1 + ‖∇ ×∇× ei−1‖2 + ‖ei−1‖2L2pΓq

¯

H1(Ω)⊂L2
pΓq

≤ C
´

1 + ‖∇ ×∇× ei−1‖2 + ‖ei−1‖2H1(Ω)

¯

XN⊂H1(Ω)

≤ C
´

1 + ‖∇ ×∇× ei−1‖2 + ‖ei−1‖2XN

¯

≤ Ci.

Now, assume that e1, . . . , ei−1 ∈XN and let us take a look at (DPi)

ei

ˆ

σ0 +
1

τ2

˙

+∇×∇× ei =
δei−1

τ
+ ei−1

ˆ

σ0 +
1

τ2

˙

+N(ei−1)

+ hif −
i−1∑
k=0

σi−kδekτ − σiE0 ∈ L2(Ω).
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Thus, applying the Lax-Milgram Lemma 1.1, we obtain a unique ei ∈ H0(curl ; Ω).
After applying the divergence operator to the equation above, we also see that

∇ · ei = ∇ · ei−1 +
τ

1 + σ0τ2
∇ · δei−1

+
τ2

1 + σ0τ2

˜

∇ ·N(ei−1) + hi∇ · f −
i−1∑
k=0

σi−1∇ · δekτ − σi∇ ·E0

¸

.

Since
ˇ

ˇ

ˇ

τ
1+σ0τ2

ˇ

ˇ

ˇ
≤ C and

ˇ

ˇ

ˇ

τ2

1+σ0τ2

ˇ

ˇ

ˇ
≤ C, we obtain the following estimate for ∇ · ei

‖∇ · ei‖ ≤ ‖∇ · ei−1‖+ C
´

1 + ‖∇ · δei−1‖+ ‖ei−1‖H1(Ω)

¯

+ C

˜

Ci ‖∇ · f‖+

i−1∑
k=0

‖∇ · δek‖ τ + ‖∇ ·E0‖

¸

XN⊂H1(Ω)

≤ Ci(1 + ‖ei−1‖XN
) ≤ Ci.

Therefore, ei ∈XN . Furthermore, we see that

∇×∇× ei = N(ei−1) + hif − σiE0 − δ2ei − (σ ∗ δe)i ∈ L2(Ω),

∇×∇× ei × n = N(ei−1)× n+ hif × n− σiE0 × n
− δ2ei × n− (σ ∗ pδe× nq)i

= 0 on Γ

which concludes our proof.

5.3.1 A priori energy estimates

Several energy estimates for the functions ei and hi are provided in the following
lemmas.

Lemma 5.2. Let the assumptions of Lemma 5.1 be fulfilled. Moreover, assume
that τ ≤ τ∗ < +∞. Then there exists a positive constant C such that

max
1≤j≤n

‖δej‖2 +

n∑
i=1

‖δei − δei−1‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

,

max
1≤j≤n

‖∇ × ej‖2 +

n∑
i=1

‖∇ × ei −∇× ei−1‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

.
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Proof. We multiply (scalar multiplication) (DPi) by δeiτ , integrate over Ω, use the
Green theorem and sum up for i = 1, . . . , j to get

j∑
i=1

`

δ2ei, δei
˘

τ +

j∑
i=1

p(σ ∗ δe)i, δeiq τ +

j∑
i=1

p∇× ei, δ∇× eiq τ

=

j∑
i=1

pN(ei−1), δeiq τ +

j∑
i=1

phif , δeiq τ −
j∑
i=1

σi pE0, δeiq τ.

The convolution term on the l.h.s. is bounded in the following way
ˇ

ˇ

ˇ

ˇ

ˇ

j∑
i=1

p(σ ∗ δe)i, δeiq τ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C + C

j∑
i=1

‖δei‖2 τ.

Now, using Abel’s summation formula, we rewrite the terms on the l.h.s. as follows

j∑
i=1

`

δ2ei, δei
˘

τ =

j∑
i=1

pδei − δei−1, δeiq

=
‖δej‖2

2
− ‖W 0‖2

2
+

1

2

j∑
i=1

‖δei − δei−1‖2

and

j∑
i=1

p∇× ei, δ∇× eiq τ =
‖∇ × ej‖2

2
− ‖∇×E0‖2

2

+
1

2

j∑
i=1

‖∇ × ei −∇× ei−1‖2 .

The first term on the r.h.s. is handled via Lipschitz continuity of N , Young’s and
Cauchy’s inequalities and the identity ei = E0 +

∑i
k=1 δekτ

j∑
i=1

pN(ei−1), δeiq τ ≤ C
j∑
i=1

(1 + ‖ei−1‖) ‖δei‖ τ

= C

j∑
i=1

«

1 +

∥∥∥∥∥E0 +

i−1∑
k=1

δekτ

∥∥∥∥∥
ff

‖δei‖ τ

≤ C
j∑
i=1

r1 + ‖E0‖s ‖δei‖ τ + C

j∑
i=1

i∑
k=1

‖δek‖ ‖δei‖ τ2



5.3. Time discretization 107

≤ C + C

j∑
i=1

‖δei‖2 τ.

The rest of the r.h.s. is estimated using Young’s and Cauchy’s inequalities once
again

ˇ

ˇ

ˇ

ˇ

ˇ

j∑
i=1

phif , δeiq τ −
j∑
i=1

σi pE0, δeiq τ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C
j∑
i=1

h2
i ‖f‖

2
τ + σ∗C ‖E0‖2 + C

j∑
i=1

‖δei‖2 τ

≤ C

˜

1 +

j∑
i=1

h2
i

¸

+ C

j∑
i=1

‖δei‖2 τ.

Collecting all partial results above, we obtain

‖δej‖2 + ‖∇ × ej‖2 +

j∑
i=1

‖δei − δei−1‖2 +

j∑
i=1

‖∇ × ei −∇× ei−1‖2

≤ C

˜

1 +

j∑
i=1

h2
i τ

¸

+ C

j∑
i=1

‖δei‖2 τ.

The rest of the proof follows from the application of the discrete version of Grön-
wall’s Lemma 1.2.

Remark 5.1. Identity ej = E0 +
∑j
i=1 δeiτ and Lemma 5.2 above also imply

max
1≤j≤n

‖ej‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

.

Lemma 5.3. Let the assumptions of Lemma 5.2 be fulfilled. Then there exists a
positive constant C such that

max
1≤jn

‖∇ · δej‖2 +

n∑
i=1

‖∇ · δei −∇ · δei−1‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

.

Proof. First, we apply a divergence operator on (DPi), then multiply by ∇ · δeiτ ,
integrate over Ω and sum up for i = 1, . . . , j. We obtain the following

j∑
i=1

`

∇ · δ2ei,∇ · δei
˘

τ =

j∑
i=1

p∇ ·N(ei−1),∇ · δeiq τ +

j∑
i=1

hi p∇ · f ,∇ · δeiq τ
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−
j∑
i=1

pσi∇ ·E0,∇ · δeiq τ −
j∑
i=1

p(σ ∗ ∇ · δe)i,∇ · δeiq τ.

The l.h.s. can be rewritten using Abel’s summation formula

j∑
i=1

`

∇ · δ2ei,∇ · δei
˘

τ =
‖∇ · δej‖2

2
− ‖∇ ·W 0‖2

2

+
1

2

j∑
i=1

‖∇ · δei −∇ · δei−1‖2 .

The first term on the r.h.s. is estimated as
j∑
i=1

p∇ ·N(ei−1),∇ · δeiq τ ≤
j∑
i=1

‖∇ ·N(ei−1)‖ ‖∇ · δei‖ τ

≤ C
j∑
i=1

‖ei−1‖H1(Ω) ‖∇ · δei‖ τ ≤ C
j∑
i=1

‖ei−1‖XN
‖∇ · δei‖ τ

= C

j∑
i=1

(‖ei−1‖+ ‖∇ × ei−1‖+ ‖∇ · ei−1‖) ‖∇ · δei‖ τ

Lemma 5.2
≤ C

˜

1 +

j∑
i=1

h2
i τ

¸

+ C

j∑
i=1

‖∇ · δei‖2 τ

+ C

j∑
i=1

‖∇ · ei‖ ‖∇ · δei‖ τ

≤ C

˜

1 +

j∑
i=1

h2
i τ +

j∑
i=1

‖∇ · δei‖2 τ

¸

+ C

j∑
i=1

∥∥∥∥∥∇ ·E0 +

i∑
k=1

∇ · δekτ

∥∥∥∥∥ ‖∇ · δei‖ τ
≤ C

˜

1 +

j∑
i=1

h2
i τ +

j∑
i=1

‖∇ · δei‖2 τ

¸

.

The other terms on the r.h.s. are estimated using Cauchy’s and Young’s inequali-
ties. Therefore, gathering all partial results, we arrive at

‖∇ · δej‖2 +

j∑
i=1

‖∇ · δei −∇ · δei−1‖2 ≤ C

˜

1 +

j∑
i=1

h2
i τ +

j∑
i=1

‖∇ · δei‖2 τ

¸

.
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An application of discrete version of the Grönwall Lemma 1.2 and taking maximum
over 1 ≤ j ≤ n yields to the desired result.

Remark 5.2. Using identity ∇·ei = ∇·E0 +
∑i
j=1∇·δejτ and Lemma 5.3 above

we obtain an estimate for ∇ · ei, i.e.

max
1≤j≤n

‖∇ · ej‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

.

Lemma 5.4. Suppose that all assumptions of Lemma 5.2 are met. Then there
exists a positive constant C such that

max
1≤j≤n

‖∇ × δej‖2 +

n∑
i=1

‖∇ × δei −∇× δei−1‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

,

max
1≤j≤n

‖∇ ×∇× ej‖2 +

n∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 ≤ C

˜

1 +

n∑
i=1

h2
i τ

¸

.

Proof. We start by applying the curl operator to (DPi), then we multiply it with
∇× δeiτ , integrate over Ω, implement the Green Theorem (Lemma 5.1 guarantees
∇×∇× ei × n = 0 on Γ) and sum up for i = 1, . . . , j to obtain that

j∑
i=1

`

∇× δ2ei,∇× δei
˘

τ +

j∑
i=1

p∇×∇× ei,∇×∇× δeiq τ

+

j∑
i=1

p(σ ∗ ∇ × δe)i,∇× δeiq τ

=

j∑
i=1

p∇×N(ei−1),∇× δeiq τ +

j∑
i=1

hi p∇× f ,∇× δeiq τ

−
j∑
i=1

pσi∇×E0,∇× δeiq τ.

To bound the first two terms on the l.h.s., we employ Abel’s summation rule once
again, i.e.

j∑
i=1

`

∇× δ2ei,∇× δei
˘

τ =
‖∇ × δej‖2

2
− ‖∇×W 0‖2

2

+
1

2

j∑
i=1

‖∇ × δei −∇× δei−1‖2
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and
j∑
i=1

p∇×∇× ei,∇×∇× δeiq τ =
‖∇ ×∇× ej‖2

2
− ‖∇×∇×E0‖2

2

+
1

2

j∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 .

The last term on the l.h.s. is bounded as follows
ˇ

ˇ

ˇ

ˇ

ˇ

j∑
i=1

p(σ ∗ ∇ × δe)i,∇× δeiq τ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ C

˜

1 +

j∑
i=1

‖∇ × δei‖2 τ

¸

.

Afterwards, we continue with estimates for the r.h.s., starting with the first term,
we obtain

j∑
i=1

p∇×N(ei−1),∇× δeiq τ

≤ C

˜

‖E0‖2H1(Ω) +

j∑
i=1

‖ei‖2H1(Ω) τ

¸

+ C

j∑
i=1

‖∇ × δei‖2 τ

≤ C

˜

‖E0‖2XN
+

j∑
i=1

‖ei‖2XN
τ

¸

+ C

j∑
i=1

‖∇ × δei‖2 τ

Lemma 5.2,5.3

≤ C

˜

1 +

j∑
i=1

h2
i τ

¸

+ C

j∑
i=1

‖∇ × δei‖2 τ.

The rest of the r.h.s. terms can be bounded via Cauchy’s and Young’s inequalities

j∑
i=1

hi p∇× f ,∇× δeiq τ ≤ C
j∑
i=1

h2
i ‖f‖

2
τ + C

j∑
i=1

‖∇ × δei‖2 τ

≤ C
j∑
i=1

h2
i τ + C

j∑
i=1

‖∇ × δei‖2 τ

and
ˇ

ˇ

ˇ

ˇ

ˇ

j∑
i=1

pσi∇×E0,∇× δeiq τ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ CTσ∗ ‖∇ ×E0‖2 + C

j∑
i=1

‖∇ × δei‖2 τ

≤ C

˜

1 +

j∑
i=1

‖∇ × δei‖2 τ

¸

.
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Now, we congregate all partial results above to see that

‖∇ × δej‖2 +

j∑
i=1

‖∇ × δei −∇× δei−1‖2 + ‖∇ ×∇× ej‖2

+

j∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2

≤ C

˜

1 +

j∑
i=1

h2
i τ

¸

+ C

j∑
i=1

‖∇ × δei‖2 τ.

Using Grönwall’s argument and taking maximum over 1 ≤ j ≤ n, we conclude the
proof.

Lemma 5.5. Let all assumptions of Lemma 5.2 be fulfilled. Then there exists a
positive constant C such that

(i) max
1≤j≤n

‖ej‖2XN
+ max

1≤j≤n
‖∇ ×∇× ej‖2 ≤ C

(ii) max
1≤j≤n

|hj |
2 ≤ C

(iii) max
1≤j≤n

∥∥δ2ej
∥∥

(H0(curl ;Ω))∗
≤ C.

Proof. (i) According to the proof of Lemma 5.1 and (DMPi), we have

h2
i ≤ C(1 + ‖∇ ×∇× ei−1‖2 + ‖ei−1‖2XN

)

=⇒
j∑
i=1

h2
i τ ≤ C

˜

1 +

j∑
i=1

‖∇ ×∇× ei−1‖2 τ +

j∑
i=1

‖ei−1‖2XN
τ

¸

.

Lemmas 5.2, 5.3 and 5.4 together with the bound above yield

‖ej‖2XN
+ ‖∇ ×∇× ej‖2 ≤ C

˜

1 +

j∑
i=1

h2
i τ

¸

≤ C

˜

1 +

j∑
i=1

‖ei−1‖2XN
τ +

j∑
i=1

‖∇ ×∇× ei−1‖2 τ

¸

.

Thus, employing Grönwall’s lemma again and taking maximum over 1 ≤ j ≤ n,
the first statement of Lemma 5.5 is proven.

(ii) The second statement is directly implied by (i).
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(iii) We take ϕ ∈ H0(curl ; Ω) and make a scalar multiplication with (DPi).
Then, we integrate in Ω and use the Green theorem to observe that

`

δ2ei,ϕ
˘

= pN(ei−1),ϕq + hi pf ,ϕq

− pσiE0,ϕq− p(σ ∗ δe)i,ϕq− p∇× ei,∇×ϕq .

Using statements (i), (ii), and Lemma 5.2, we conclude
ˇ

ˇ

`

δ2ei,ϕ
˘
ˇ

ˇ ≤ C ‖ϕ‖+ C ‖∇ ×ϕ‖ ≤ C ‖ϕ‖H0(curl ;Ω) .

Therefore, ∥∥δ2ej
∥∥

(H0(curl ;Ω))∗
≤ C.

5.4 The existence of a global solution

We construct piece-wise constant and piece-wise linear in time functions and show
the convergence of subsequences of these functions towards a weak solution {E, h}
which satisfies equation (5.9) and (5.7). They are created in the same fashion as
in the previous chapters, i.e.

En(t) = ei t ∈ (ti−1, t],
En(t) = ei−1 + (t− ti−1)δei t ∈ (ti−1, t],
En(0) = En(0) = E0,
W n(t) = δei t ∈ (ti−1, t],
W n(t) = δei−1 + (t− ti−1)δei t ∈ (ti−1, t],
W n(0) = W n(0) = W 0,

hn(t) = hi t ∈ (ti−1, t],
mn(t) = mi, m′n(t) = m′i, m

′′
n(t) = m′′i t ∈ (ti−1, t],

σn(t) = σi t ∈ (ti−1, t].

Now, we rewrite (DPi) and (DMPi) in a continuous form (for t ∈ (ti−1, ti])

∂tW n(t) + (σn ∗W n)(ti) +∇×∇×En(t) = N(En(t− τ)) + hn(t)f − σn(t)E0

En(t)× n = 0

En(0) = E0 (DP)
W n(0) = W 0,

hn(t) =
1∫

Γ
f(x) · nφ

{
m′′n(t) + (σn ∗m′n)(ti) + σnm(0)



5.4. The existence of a global solution 113

+

∫
Ω

∇×∇×En(t− τ) · ∇φ−
∫

Γ

N(En(t− τ)) · nφ
}
. (DMP)

Then the variational formulation of (DP) has the following structure for any t ∈
(ti−1, ti] and ϕ ∈ H0(curl ; Ω)

p∂tW n(t),ϕq +
`

(σn ∗W n)(ti) + σn(t)E0,ϕ
˘

+
`

∇×En(t),∇×ϕ
˘

=
`

N(En(t− τ)),ϕ
˘

+ hn(t) pf(x),ϕq . (5.10)

Theorem 5.1. Let Ω ∈ C1,1 or Ω be convex. Assume that N and σ are global
Lipschitz continuous functions and f ∈XN ,E0 ∈XN ,W 0 ∈XN ,∇×∇×E0 ∈
L2(Ω),m ∈ C2([0, T ]),

∫
Γ
f(x)·nφ dΓ 6= 0, φ ∈ C∞(Ω̄) with meas{supp(φ)∩Γ} > 0

and 0 < σ∗ ≤ σ ≤ σ∗ < ∞. Then there exists a weak solution pair {E, h} that
satisfies equation (5.9) and (5.7). Furthermore, we have h ∈ L2((0, T )), E ∈
C([0, T ]; L2(Ω)) ∩ L∞((0, T );XN ) with ∂tE ∈ L2((0, T ); L2(Ω)) ∩ C([0, T ];X∗N ),
∂2
tE ∈ L2((0, T ); (H0(curl ; Ω))∗) and ∇×∇×E ∈ L∞((0, T ); L2(Ω)).

Proof. The Lipschitz continuity of σ implies

σn → σ in L2([0, T ]). (5.11)

Lemma 5.5 says that
∫ T

0

ˇ

ˇhn(s)
ˇ

ˇ

2
ds ≤ C. From reflexivity of the space L2((0, T )),

we have a subsequence of hn which converges weakly to h in this space, i.e.

hn(t) ⇀ h(t) in L2((0, T )). (5.12)

From Theorem 1.8, we have the following compact embedding for any Lipschitz
domain Ω

XN Ť L2(Ω).

Deducing from Lemmas 5.2, 5.3, 5.4, and 5.5, we obtain∫ T

0

‖∂tEn(t)‖2 dt ≤ C, ‖En(t)‖XN
≤ C ∀t ∈ [0, T ].

Using Lemma 2.5 with V = XN and Y = L2(Ω), we obtain the existence of a vector
field E from C([0, T ]; L2(Ω)) ∩ L∞((0, T );XN ) with ∂tE ∈ L2((0, T ); L2(Ω)) and
a subsequence of En for which the following convergence results hold

En → E in C([0, T ]; L2(Ω))
En → E in L2((0, T ); L2(Ω))
En(t) ⇀ E(t) in XN , ∀t ∈ [0, T ]
En(t) ⇀ E(t) in XN , ∀t ∈ [0, T ]
W n = ∂tEn ⇀ ∂tE in L2((0, T ); L2(Ω)).

(5.13)
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Lemma 5.5 together with XN ↪→ H0(curl ; Ω) ↪→ (H0(curl ; Ω))∗ ↪→X∗N implies

‖∂tW n‖X∗N ≤ C ‖∂tW n‖(H0(curl ;Ω))∗ ≤ C.

Now, thanks to the embedding XN Ť L2(Ω) =⇒ L2(Ω) Ť X∗N , and Lemma 5.2,
we also have for t ∈ (ti−1, ti]

‖W n‖X∗N ≤ C ‖W n‖ = C
∥∥δei−1 + (t− ti−1)δ2ei

∥∥
≤ C(‖δei‖+ ‖δei−1‖) ≤ C.

Hence, the sequence W n is equibounded in C([0, T ];X∗N ). Moreover, for any
t, s ∈ [0, T ] with t 6= s and any ϕ ∈XN , we have

|pW n(t)−W n(s),ϕq| =

ˇ

ˇ

ˇ

ˇ

∫ t

s

p∂tW n(z),ϕq dz
ˇ

ˇ

ˇ

ˇ

≤ |t− s| ‖∂tW n‖X∗N ‖ϕ‖XN

≤ C |t− s| ‖ϕ‖XN
.

Thus, the sequence W n is also equicontinuous in C([0, T ];X∗N ) and so applying a
modification of Arzelà-Ascoli Theorem 1.5 (ii), we conclude that the sequence is
compact, i.e.

W n →W in the space C([0, T ];X∗N ). (5.14)

Now, for any t ∈ (ti−1, ti] and any ϕ ∈XN , we have

ˇ

ˇ

`

W n −W n,ϕ
˘ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

∫ ti

t

p∂tW n(s),ϕq ds
ˇ

ˇ

ˇ

ˇ

≤ τ ‖∂tW n‖X∗N ‖ϕ‖XN

≤ Cτ ‖ϕ‖XN

n→∞−→ 0.

Therefore,

W n →W in C([0, T ];X∗N ). (5.15)

Using this and the convergence results of (5.13), we conclude the following for any
ϕ ∈XN∫ T

0

p∂tE,ϕq dt = lim
n→∞

∫ T

0

`

W n(t),ϕ
˘

dt =

∫ T

0

pW ,ϕq dt =⇒ ∂tE = W .
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Lemma 5.5 implies ∂tW n ∈ L2((0, T ); (H0(curl ; Ω))∗). Since this space is reflex-
ive, there exists a function z from the space ∈ L2((0, T ); (H0(curl ; Ω))∗) such that
∂tW n ⇀ z in this space. Using the previous results for the sequence W n, we
conclude for any ϕ ∈ H0(curl ; Ω)∫ t

0

`

∂2
tE(s),ϕ

˘

ds = pW (t)−W (0),ϕq

= lim
n→∞

pW n(t)−W n(0),ϕq

= lim
n→∞

∫ t

0

p∂tW n(s),ϕq ds

=

∫ t

0

pz(s),ϕq ds.

Therefore, ∂2
tE = z, i.e. ∂tW n ⇀ ∂2

tE in L2((0, T ); (H0(curl ; Ω))∗). For the
convolution term we have the following estimate for any ϕ ∈XN and t ∈ (ti−1, ti]
ˇ

ˇ(σn ∗
`

W n,ϕ
˘

)(ti)− (σn ∗
`

W n,ϕ
˘

)(t)
ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫ ti

0

`

W n(ti − s),ϕ
˘

σn(s) ds−
∫ t

0

`

W n(t− s),ϕ
˘

σn(s) ds
ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫ t

0

`

W n(ti − s)−W n(t− s),ϕ
˘

σn(s) ds−
∫ ti

t

`

W n(ti − s),ϕ
˘

σn(s) ds
ˇ

ˇ

ˇ

ˇ

≤ Cτ
∥∥W n(ti)

∥∥
X∗N
‖ϕ‖XN

+ Cσ∗
∫ t

0

∥∥W n(ti − s)−W n(t− s)
∥∥
X∗N
‖ϕ‖XN

ds.

First term on the r.h.s. is estimated as Cτ ‖ϕ‖XN
since

∥∥W n

∥∥
X∗N
≤ C. Consider

t ∈ (ti−1, ti]. Then, we bound the second term in the following manner∥∥W n(ti − s)−W n(t− s)
∥∥
X∗N

=
∥∥W n(ti − s)−W n(t− s) +W n(t− s)−W n(t− s)

∥∥
X∗N

≤
∥∥W n(ti − s)−W n(t− s)

∥∥
X∗N

+
∥∥W n(t− s)−W n(t− s)

∥∥
X∗N

≤ Cτ ‖∂tW n(ti)‖X∗N
= Cτ

∥∥δ2ei
∥∥
X∗N

≤ Cτ
∥∥δ2ei

∥∥
(H0(curl ;Ω))∗

≤ Cτ.

This implies

Cσ∗
∫ t

0

∥∥W n(ti − s)−W n(t− s)
∥∥
X∗N
‖ϕ‖XN

ds ≤ Cτ ‖ϕ‖XN
.
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Therefore,
ˇ

ˇ(σn ∗
`

W n,ϕ
˘

)(ti)− (σn ∗
`

W n,ϕ
˘

)(t)
ˇ

ˇ ≤ Cτ ‖ϕ‖XN

n→∞−→ 0.

Now, using the convergence results of (5.11), (5.15), and the Lebesgue dominated
convergence Theorem 1.3, we conclude for any ϕ ∈XN and t ∈ (ti−1, ti]

lim
n→∞

(σn ∗
`

W n,ϕ
˘

)(ti) = lim
n→∞

(σn ∗
`

W n,ϕ
˘

)(t) = (σ ∗ p∂tE,ϕq)(t).

Thanks to Lemma 5.2 and the Lipschitz continuity of N , we have for any t ∈
(ti−1, ti] and ϕ ∈XN

ˇ

ˇ

`

N(En(t− τ))−N(En(t)),ϕ
˘
ˇ

ˇ ≤ C
∥∥En(t− τ)−En(t)

∥∥ ‖ϕ‖
= C ‖ei − ei−1‖ ‖ϕ‖
= C ‖δei‖ ‖ϕ‖ τ ≤ Cτ ‖ϕ‖ .

Since En → E in L2((0, T ); L2(Ω)) also N(En(t− τ))→N(E) in this space.
Now, we integrate equation (5.10) in time over t ∈ [0, ξ] ⊂ [0, T ] and according to
the results above, we pass to the limit for n→∞ and ϕ ∈XN to obtain

p∂tE(ξ),ϕq− pW 0,ϕq +

∫ ξ

0

p(σ ∗ ∂tE)(t) + σ(t)E0,ϕq dt

+

∫ ξ

0

p∇×E(t),∇×ϕq dt

=

∫ ξ

0

pN(E(t)),ϕq dt+

∫ ξ

0

h(t) pf ,ϕq dt.

Then differentiation with respect to the time variable ξ yields
`

∂2
tE,ϕ

˘

+ p(σ ∗ ∂tE) + σE0,ϕq + p∇×E,∇×ϕq = pN(E),ϕq

+ h(t) pf ,ϕq .

The equation above is true a.e. in [0, T ] and for any ϕ ∈XN . Space XN is dense
in H0(curl ; Ω), therefore, equation (5.9) is valid for any ϕ ∈ H0(curl ; Ω) and
∂2
tE ∈ (H0(curl ; Ω))∗ a.e. in [0, T ].

The next step is to pass to the limit for n→∞ in (DMP). Since m ∈ C2([0, T ])
and σ is bounded, we deduce

ˇ

ˇ(σn ∗m′n)(ti)− (σn ∗m′n)(t)
ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫ ti

0

m′n(ti − s)σn(s) ds−
∫ t

0

m′n(t− s)σn(s) ds
ˇ

ˇ

ˇ

ˇ
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=

ˇ

ˇ

ˇ

ˇ

∫ t

0

(m′n(ti − s)−m′n(t− s))σn(s) ds−
∫ ti

t

m′n(ti − s)σn(s) ds
ˇ

ˇ

ˇ

ˇ

≤ O(τ) +

∫ ti

t

ˇ

ˇ(m′n(ti − s)−m′n(t− s))σn(s)
ˇ

ˇ ds

n→∞−→ 0.

Taking into account the convergence results of (5.11), we observe the following

(σn ∗m′n)(t)
n→∞−→ (σ ∗m′)(t).

Thanks to Lemma 5.5 and the convergence results of (5.13), we have for any ϕ ∈
C∞0 (Ω) and t ∈ [0, T ]

`

∇×∇×En(t),ϕ
˘ Green′s theorem

=
`

∇×En(t),∇×ϕ
˘

Green′s theorem
=

`

En(t),∇×∇×ϕ
˘

n→∞−→ pE(t),∇×∇×ϕq = p∇×∇×E(t),ϕq .

Since the space C∞0 (Ω) is dense in the space H0(curl ; Ω) and also in the space
L2(Ω), we conclude that

`

∇×∇×En(t),ϕ
˘

→ p∇×∇×E(t),ϕq for any ϕ ∈
H0(curl ; Ω) and for any t ∈ [0, T ]. Again, thanks to Lemma 5.4 and Lemma 5.5,
we have ∫ ξ

0

∥∥∇×∇×En(t)−∇×∇×En(t− τ)
∥∥2

dt

≤
n∑
i=1

‖∇ ×∇× ei −∇×∇× ei−1‖2 τ

≤ Cτ
n→∞−→ 0.

Using this and the fact that φ ∈ H1(Ω) for any φ ∈ C∞0 (Ω), we obtain the following
convergence result

lim
n→∞

∫ ξ

0

`

∇×∇× Ēn(t− τ),∇φ
˘

dt =

∫ ξ

0

p∇×∇×E(t),∇φq dt.

Lemma 5.2, Lemma 5.3 and the embedding XN ⊂ H1(Ω) gives us an estimate for
En, i.e. ∥∥En(t)

∥∥2

H1(Ω)
≤ C.
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Strong convergence of En(t) towards E(t) in L2(Ω) for any t ∈ [0, T ], cf. (5.13)
and the Nečas inequality (1.14) imply that∥∥En(t)−E(t)

∥∥2

L2pΓq
≤ ε

∥∥En(t)−E(t)
∥∥2

H1(Ω)
+ Cε

∥∥En(t)−E(t)
∥∥2

≤ ε+ Cε
∥∥En(t)−E(t)

∥∥2
.

Thus,

lim
n→∞

∥∥En(t)−E(t)
∥∥2

L2pΓq
≤ ε ε→0−→ 0.

Hence, En(t)→ E(t) in the space L2 pΓq for any t ∈ [0, T ]. Using Lemma 5.2 and
the same technique as above, we conclude the following for t ∈ [ti−1, ti]∥∥En(t)−En(t− τ)

∥∥2

L2pΓq

≤ ε
∥∥En(t)−En(t− τ)

∥∥2

H1(Ω)
+ Cε

∥∥En(t)−En(t− τ)
∥∥2

≤ ε+ Cε ‖δei‖2 τ2 τ→0−→ ε
ε→0−→ 0.

Now, we integrate (DMP) in time over t ∈ [0, ξ] ⊂ [0, T ], consider all convergence
results above, take into account that m ∈ C2([0, T ]) and the Lipschitz continuity
of N and pass to the limit for n→∞ to obtain

lim
n→∞

∫ ξ

0

hn =
1∫

Γ
f(x) · nφ dΓ

{∫ ξ

0

m′′(t) +

∫ ξ

0

[(σ ∗m′)(t) + σ(t)m(0)]

+

∫ ξ

0

∫
Ω

∇×∇×E · ∇φ dx−
∫ ξ

0

∫
Γ

N(E) · nφ dΓ

}
.

Differentiation with respect to the time variable ξ yields equation (5.7) that also
concludes our proof.

5.5 The uniqueness of a solution

Due to the nonlinear term N we are not able to provide the uniqueness proof
without any further regularity assumptions on the solution E. Thus, we assume
E ∈ H1,∞(Ω). Taking this into account and also presume that N is supposedly
smooth, i.e. N ∈ C2, we conclude the following for any vector fields u,v : R3 → R3

and some ξ1, ξ2, ξ3 ∈ [0, 1]

N(u)−N(v) =

¨

˝

N1(u)−N1(v)
N2(u)−N2(v)
N3(u)−N3(v)

˛

‚=

¨

˝

∇N1(v + ξ1(u− v)) · (u− v)
∇N2(v + ξ2(u− v)) · (u− v)
∇N3(v + ξ3(u− v)) · (u− v)

˛

‚.
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Assuming that u,v ∈ H1,∞(Ω), we use the Cauchy-Schwarz inequality to obtain
an estimate for derivatives

|∂xj(N(u)−N(v))| ≤
3∑
i=1

|∂xj∇N i(v + ξi(u− v))| |∂xj(v + ξi(u− v))| |u− v|

+ |∇N i(v + ξi(u− v))| |∂xj(u− v)|

≤ C(|u− v| + |∂xj(u− v)|)

where the norm |·| is defined as |u| =
b∑3

i=1 |ui|
2. Now, we provide some further

estimates that are obtained in the similar manner as the estimate above

‖∇ × (N(u)−N(v))‖ ≤ C ‖u− v‖H1(Ω) ifN ∈ C2, u,v ∈ H1,∞(Ω) (5.16)

and

‖∇ · (N(u)−N(v))‖ ≤ C ‖u− v‖H1(Ω) ifN ∈ C2, u,v ∈ H1,∞(Ω). (5.17)

We pass on with the uniqueness theorem.

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied. Moreover, pre-
sume that N ∈ C2. Then there exists at most one weak solution {E, h} to the
problem (5.5), (5.3), (5.4) and (5.7) fulfilling h ∈ L2((0, T )),E ∈ C([0, T ]; L2(Ω))∩
L∞((0, T ); H1,∞(Ω)) with its first order time derivative ∂tE ∈ L2((0, T ); L2(Ω)) ∩
C([0, T ];X∗N ), second order time derivative ∂2

tE ∈ L2((0, T ); (H0(curl ; Ω))∗) and
∇×∇×E ∈ L∞((0, T ); L2(Ω)).

Proof. Let us have two solutions {E, h} and {G, g} to the problem (5.5), (5.3),
(5.4), (5.7) and denote

E −G = P , h(t)− g(t) = p(t).

Since E(x, 0) = G(x, 0) = E0 and ∂tE(x, 0) = ∂tG(x, 0) = W 0, we have
P (x, 0) = 0 and ∂tP (x, 0) = 0. Moreover, E × n = G × n = 0 on Γ, there-
fore, P × n = 0 on Γ as well. Our goal is to show that P = 0 a.e. in Ω × (0, T )
and p = 0 a.e. in (0, T ). Measurements for both solutions are the same. Therefore,
we have

p(t) =
p∇×∇× P (t),∇φq−

∫
Γ
(N(E(t))−N(G(t))) · nφ dΓ∫

Γ
f(x) · nφ dΓ

. (5.18)

Subtracting equation (5.5) for E and G yields

∂2
tP + (σ ∗ ∂tP ) +∇×∇× P = fp+N(E)−N(G). (5.19)
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We now proceed with several energy estimates implied by equations (5.18) and
(5.19).
Part (A) : Considering relation (5.18), taking into account the embedding H1(Ω) ⊂
L2 pΓq and the Lipschitz continuity of N , we obtain

|p(ξ)|
2 ≤ C ‖P (ξ)‖2H1(Ω) + C ‖∇ ×∇× P (ξ)‖2 . (A)

Part (B) : We multiply equation (5.19) with ∂tP , integrate over Ω, use the Green
theorem and then integrate in time to deduce

1

2
‖∂tP (ξ)‖2 +

1

2
‖∇ × P (ξ)‖2

≤
∫ ξ

0

|p| ‖f‖ ‖∂tP ‖+

∫ ξ

0

‖N(E)−N(G)‖ ‖∂tP ‖+

∫ ξ

0

‖(σ ∗ ∂tP )‖ ‖∂tP ‖ .

We also have the following bounds for the terms on the r.h.s.∫ ξ

0

|p| ‖f‖ ‖∂tP ‖ ≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

‖∂tP ‖2 ,∫ ξ

0

‖(σ ∗ ∂tP )‖ ‖∂tP ‖ ≤ Cσ∗
∫ ξ

0

‖∂tP ‖2 ,∫ ξ

0

‖N(E)−N(G)‖ ‖∂tP ‖ ≤ C
∫ ξ

0

‖P ‖ ‖∂tP ‖ ≤ CT
∫ ξ

0

‖∂tP ‖2 .

Here, we used the traditional Cauchy and Young inequalities, boundedness of σ,
the Lipschitz continuity ofN , and ‖P (t)‖ =

∥∥∥∫ t0 ∂tP (s)
∥∥∥ ≤ T ‖∂tP (t)‖. Collecting

all partial results and applying Grönwall’s lemma, we conclude

‖∂tP (ξ)‖2 + ‖∇ × P (ξ)‖2 ≤ C
∫ ξ

0

|p|
2
. (B)

Remark 5.3. This result also implies ‖P (ξ)‖2 ≤ C
∫ ξ

0
|p|

2.

Part (C) :We apply ∇· operator to equation (5.19), then multiply it by ∇·∂tP
and integrate in space and time to obtain

1

2
‖∇ · ∂tP (ξ)‖2 ≤

∫ ξ

0

|p| ‖∇ · f‖ ‖∇ · ∂tP ‖+

∫ ξ

0

‖(σ ∗ ∇ · ∂tP )‖ ‖∇ · ∂tP ‖

+

∫ ξ

0

‖∇ · (N(E)−N(G))‖ ‖∇ · ∂tP ‖ .
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First two terms on the r.h.s. are estimated via the Young inequality, i.e.∫ ξ

0

|p| ‖∇ · f‖ ‖∇ · ∂tP ‖+

∫ ξ

0

‖(σ ∗ ∇ · ∂tP )‖ ‖∇ · ∂tP ‖

≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

‖∇ · ∂tP ‖2 .

For the last term, we use inequalities (5.17), (B), the embedding XN ⊂ H1(Ω),
and the identity ‖∇ · P (t)‖ =

∥∥∥∫ t0 ∇ · ∂sP (s) ds
∥∥∥∫ ξ

0

‖∇ · (N(E)−N(G))‖ ‖∇ · ∂tP ‖

≤ C
∫ ξ

0

‖P ‖H1(Ω) ‖∇ · ∂tP ‖

≤ C
∫ ξ

0

‖P ‖XN
‖∇ · ∂tP ‖

= C

∫ ξ

0

(‖P ‖+ ‖∇ × P ‖) ‖∇ · ∂tP ‖+ C

∫ ξ

0

‖∇ · P ‖ ‖∇ · ∂tP ‖

≤ C
∫ ξ

0

‖P ‖2 + ‖∇ × P ‖2 + C

∫ ξ

0

‖∇ · P ‖2 + C

∫ ξ

0

‖∇ · ∂tP ‖2

≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

∫ t

0

‖∇ · ∂sP ‖2 + C

∫ ξ

0

‖∇ · ∂tP ‖2

≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

‖∇ · ∂tP ‖2 .

We employ Grönwall’s lemma to get

‖∇ · ∂tP (ξ)‖2 ≤ C
∫ ξ

0

|p|
2 and ‖∇ · P (ξ)‖2 ≤ C

∫ ξ

0

|p|
2
. (C)

Part (D) : We apply ∇× operator to equation (5.19), multiply it by ∇ × ∂tP ,
then integrate in Ω and use the Green theorem and then integrate in time to attain

1

2
‖∇ × ∂tP (ξ)‖2 +

1

2
‖∇ ×∇× P (ξ)‖2

≤
∫ ξ

0

|p| ‖∇ × f‖ ‖∇ × ∂tP ‖+

∫ ξ

0

‖(σ ∗ ∇ × ∂tP )‖ ‖∇ × ∂tP ‖

+

∫ ξ

0

‖∇ × (N(E)−N(G))‖ ‖∇ × ∂tP ‖ .
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Again, we use Young’s inequality to handle the first two terms on the r.h.s.∫ ξ

0

|p| ‖∇ × f‖ ‖∇ × ∂tP ‖+

∫ ξ

0

‖(σ ∗ ∇ × ∂tP )‖ ‖∇ × ∂tP ‖

≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

‖∇ × ∂tP ‖2 .

The last term on the r.h.s. is estimated with the help of inequalities (5.16), (B),
(C), and the embedding XN ⊂ H1(Ω)∫ ξ

0

‖∇ × (N(E)−N(G))‖ ‖∇ × ∂tP ‖

≤ C
∫ ξ

0

‖P ‖H1(Ω) ‖∇ × ∂tP ‖

≤ C
∫ ξ

0

‖P ‖XN
‖∇ × ∂tP ‖

≤ C
∫ ξ

0

‖P ‖2 + ‖∇ · P ‖2 + ‖∇ × P ‖2 + C

∫ ξ

0

‖∇ × ∂tP ‖2

≤ C
∫ ξ

0

|p|
2

+ C

∫ ξ

0

‖∇ × ∂tP ‖2 .

Using the Grönwall lemma, we achieve the following estimate

‖∇ × ∂tP (ξ)‖2 + ‖∇ ×∇× P (ξ)‖2 ≤ C
∫ ξ

0

|p|
2
. (D)

Summary : The embedding XN ⊂ H1(Ω) together with the results from (A),
(B), (C), and (D) gives us

‖P (ξ)‖2H1(Ω) + ‖∇ ×∇× P (ξ)‖2 ≤ C
∫ ξ

0

|p|
2

≤ C
∫ ξ

0

´

‖P ‖2H1(Ω) + ‖∇ ×∇× P ‖2
¯

.

Thus, employing the Grönwall lemma one more time, we see that P = 0 a.e. in
Ω× (0, T ) and from inequality (A) we conclude that p = 0 a.e. in (0, T ).

5.6 Numerical simulation

The main goal of this section is to support the theoretical results presented above.
We want to demonstrate the convergence of the numerical scheme proposed in
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Section 5.3. Since Rothe’s method is semi-discrete, we only analyze the time de-
pendent part of the error of the numerical solution. To show the convergence of
our numerical scheme, we consider the following test problem:
Find the solution {E(x, t), h(t)} such that: †

∂2
tE(x, t) + (σ ∗ ∂tE)(t) + σ(t)E(x, 0) +∇×∇×E(x, t)

= f(x)h(t) +N(E(x, t)) +U(x, t) in Ω× (0, T )

E(x, t)× n = 0 in Γ× (0, T )

f(x)× n = 0 on Γ. (5.20)

With initial data prescribed as

E(x, 0) = E0(x), ∂tE(x, 0) = W 0(x)

and additional measurement in the form of (5.6).

5.6.1 Setting of the experiment

Let Ω be a sphere in R3 with radius r = 1, i.e. the domain Ω can be expressed
as Ω =

{
x = (x, y, z) ∈ R3|x2 + y2 + z2 < 1

}
and t ∈ (0, T ) with T = 1. To show

the convergence of our scheme, we need an exact solution {E(x, t), h(t)}, so, we
compute the error of the numerical solution. For that reason, we define the exact
solution as

E(x, t) = et

¨

˝

x
y
z

˛

‚, h(t) = et.

Remaining functions are determined accordingly to satisfy (5.20)

σ(t) = 4t3 + 8t2 + 16t+ 24,

N(E(x, t)) = |E(x, t)|
−1/2

E(x, t) +E(x, t),

f(x) = 80

¨

˝

x
y
z

˛

‚, U(x, t) = −
ˆ

1

(x2 + y2 + z2)1/4
+ 12t2 + 40t+ 56

˙

¨

˝

x
y
z

˛

‚.

In order to examine the nature of the error (whether it is diminishing with
the decreasing time step) of our numerical solution {Enumerical, hnumerical}, we
†If the vector field U(x, t) is sufficiently smooth then all theoretical results achieved in previous

sections remain true. Hence, we add this term to the r.h.s. in (5.20).
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compute multiple solutions for various time steps τ . In our experiment it is τ =
[0.2, 0.1, 0.05, 0.025, 0.0125]. The spatial part of our solution is then calculated in
a free computing platform for PDE - FEniCS. The space-time domain is divided
into 553 cells (tetrahedra) with diameters ranging from 0.38513 to 0.65231. We use
Lagrange FEM (finite element method) of order 2 at each time step to provide a
numerical solution. This leads to a system with 16590 DoF (degrees of freedom).

Part of the boundary where the measurement (5.6) was taken is displayed in
Fig. 5.3.

Figure 5.3: Boundary measurement.
Figure 5.4: Reconstruction of the source
term h(t) = et.

Figure 5.5: τ dependency of the error
for Enumerical.

Figure 5.6: τ dependency of the error for
hnumerical.
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Figure 5.7: Source reconstruction using noisy data.

Errors for the numerical solutions are computed in the following manner

Eerror =
‖Enumerical −Eexact‖2L2((0,T );L2(Ω))

‖Eexact‖2L2((0,T );L2(Ω))

,

herror =

d∫ T

0

|hnumerical − hexact|2 dt.

The numerical reconstruction of the source term h(t) is shown in Fig. 5.4. We
can see the time step dependency of the errors for Enumerical and hnumerical in
Fig. 5.5 and Fig. 5.6 above. The performance of our algorithm with noise in the
measurement is pictured in Fig. 5.7. As we can see, the reconstruction of the
source term was quite good for 1% and 5% noise in the data. However, when 15%
of noise was present, our reconstruction was slightly off. To reconstruct the source,
we also need the information about the first and second order time derivatives
of the function m(t) (measurement). Therefore, if the noise in the data is too
high (15%), the smoothness of m(t) is not sufficient. This causes the errors in the
reconstruction.
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Chapter 6

Discussion and future research

The first part of the thesis presents a development of mathematical models for
the induction heating phenomena. These physical events are described by the
coupled system of nonlinear partial differential equations which is derived from
Maxwell’s equations and the heat transfer equation. In the second part an inverse
source problem for Maxwell’s equations is proposed and investigated. This chapter
generates a discussion of obtained results in the previous chapters. Some ideas and
improvements for the future research in the investigated areas are also proposed.

Part I

In Chapters 2 and 3 we develop and investigate similar mathematical models of the
induction heating phenomena. To describe the electromagnetic part of the induc-
tion heating process, we use Maxwell’s equations. The evolution of temperature
in the considered domain is characterized by the nonlinear heat transfer equation.
The difference between the mathematical model investigated in Chapter 2 and the
model in Chapter 3 lies in the adopted constitutive relation between the magnetic
field and the magnetic induction field. We propose two possible alternatives which
are investigated separately in Chapter 2 and Chapter 3. We then define the weak
formulation of the mathematical model and introduce a semi-discrete implicit Eu-
ler scheme (Rothe’s method) which provides a unique solution at each time step.
Lastly, the convergence of Rothe’s functions towards a weak solution is shown, i.e.
the existence of a global solution is proven.

The mathematical models investigated in Chapters 2 and 3 capture a broad
range of the induction heating employment, such as induction cooking, induction

127
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brazing, induction sealing or induction hardening. In Chapter 4 we develop and
investigate the mathematical model of the induction hardening process. Using a
vector-scalar potential formulation to model the electromagnetic part and a nonlin-
ear heat transfer equation to determine the temperature evolution in the workpiece
and the coil, we obtain a coupled system of three partial differential equations. We
put emphasis on the nonlinear nature of the constitutive relation between the mag-
netic field and the magnetic induction field in Maxwell’s equations. Therefore,
we obtain a strongly nonlinear system. We discretize the system in time (semi-
discretization) and propose a decoupled numerical scheme to compute the solution
at each time step. The existence of a global solution of the whole system is then
demonstrated via Rothe’s method. To supplement the theoretical results achieved
in this chapter, we present a simple numerical simulation of the induction hardening
process. We code the numerical scheme in the open source finite element environ-
ment Gmsh/GetDP and compute the solution using real physical constants.

The mathematical models introduced in Chapters 2, 3 and 4 share the same
aspects of future improvements because of their similarities. For that reason, we
tackle the questions regarding the future improvements in one bundle for all three
mathematical models.

The uniqueness question

Although we provide the existence of a global solution for each mathematical model,
we could not guarantee the existence of a unique solution. Terms containing either
γ or σ seem to be the most difficult to handle when approaching this goal. The
thermal dependency of γ/σ creates obstacles which prevent us from obtaining the
desired energy estimates needed to prove the uniqueness of the solution.

Necessity of the truncation function

The next inherent question is whether we really need to apply the truncation
function on the source term in the heat equation. If we did not apply the cut-
off function we would not be able to control the source term. Let us demonstrate
this statement on the mathematical model from Chapter 2. Better regularity of
the solution would be needed to provide the same a priori estimates as in Lemma
2.4 These estimates are necessary to prove the existence of a weak solution. Let us
consider (2.30) without the truncation, so it becomes

pδθ(ui), ψq + pλ0∇ui,∇ψq =
´

γ(ui−1) |∇× hi|2 , ψ
¯

. (6.1)

To obtain the same a priori estimates as in Lemma 2.4, we would need to set
ψ = uiτ in (6.1) and sum it for i = 1, . . . , j. Then, we can bound the l.h.s. in the
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same fashion as in Lemma 2.4. The r.h.s. can be estimated via the Cauchy and
Young inequalities, i.e.

j∑
i=1

∫
Ω

γ(ui−1) |∇× hi|2 uiτ ≤ γ∗
j∑
i=1

d∫
Ω

|∇× hi|4
b

|ui|
2
τ

≤ ε
j∑
i=1

‖ui‖2 τ + Cε

j∑
i=1

‖∇ × hi‖4L4pΩq
τ.

Here, we can see that in order to control the source term we would need ∇ ×H
to be in the space L2((0, T ); L4 pΩq) which we could not guarantee without any a
priori estimates on the solution.

Moving conductor

In Chapter 4 we have considered a static conductor. In the case of a moving
conductor, we need to take into account the Lorentz force

F = q(E + v ×B).

The equation above describes the force F acting on a particle of electric charge
q with instantaneous velocity v. When the conductor is moving, the new electric
field E′ in Maxwell’s equations becomes

E′ = E + v ×B.

Assuming the above relation in the vector-scalar potential formulation in Chapter
4, we would obtain the following nonlinear partial differential equation describing
the electromagnetic phenomena:

σ∂tA+∇× µM(∇×A) + σ∇φ− σv ×∇×A = 0

n×A = 0

A(x, 0) = A0(x).

The implementation of a moving conductor in the mathematical model would make
it even more realistic. Mathematical models of induction heating with moving con-
ductor have been investigated in [81] and [5]. Authors of [81] has provided numeri-
cal simulations of transverse flux induction heating with moving-strips. Moreover,
authors of [5] has presented a FEM approach to simulate the moving induction
heating in weld-based additive manufacturing. However, they do not analyze the
theoretical aspects of the problem, such as the existence or uniqueness of the so-
lution. Therefore, it is a great direction to focus on in the further research of the
induction hardening models.
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Part II

In Chapter 5 we have investigated an inverse source problem for Maxwell’s equa-
tions of hyperbolic type. We have considered a single boundary measurement as
an additional information to reconstruct the missing time-dependent part of the
source term. The main advantage of our measurement is that it is not necessary
to measure the whole boundary but only a part of it. We have proposed a de-
coupled numerical scheme (backward Euler scheme) to compute the solution and
the missing source. The existence of a weak solution has been proven by using
Rothe’s method and the important embedding XN ⊂ H1(Ω). The uniqueness has
been shown in the case of a regular solution. In addition to the theoretical results,
we have presented a numerical experiment showing convergence of the proposed
numerical scheme.

(Non)linear media with memory

The material occupying the considered domain in Chapter 5 has been assumed to
be homogeneous and dielectric. Because of that, the constitutive relations have
taken the following form

B = µH, D = εE.

However, in the case of a linear material with memory (for instance chiral media
[74]) these relations become more complicated, i.e.

D = εE + ε1 ∗E + ξ ∗H,

B = µH + µ1 ∗H + η ∗E.

where ∗ is defined as α ∗ U =
∫ t

0
α(x, s)U(x, t − s) ds. We could consider an

even more general case. A nonlinear material with memory. Then the constitutive
relations would become

D = εE + ε1 ∗E + ξ ∗H + ε2f1(|E|
2
)E,

B = µH + µ1 ∗H + η ∗E + µ2f2(|H|
2
)H.

An interesting subject for further research would be the implementation of the
above constitutive relations in the mathematical model which has been investigated
in Chapter 5. Consideration of the generalized Ohm law with the below expression

J = σ ∗E + F
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and assumption of a linear material with memory in Chapter 5 would lead us to
the following coupled system:

∇×H = ∂t pεE + ε1 ∗E + ξ ∗Hq + σ ∗E + f(x)h(t),

∇×E = −∂t pµH + µ1 ∗H + η ∗Eq

where h(t) is the missing time-dependent part of the source to be reconstructed.
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