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Abstract: 

Due to the estimated increase in population, the limited fossil resources, the concerns about nuclear 

energy and above all the global warming issues, scientists are triggered to come up with solutions. One 

of the suggested replacements for fossil fuels is hydrogen gas. However, the presence of hydrogen in 

metals is known to be detrimental for the overall performance and more specific the ductility of the 

materials. Unpredictable failure still occurs and although decades of research have been performed, 

still open questions remain. During the recent developments of material’s design, precipitates play an 

important role since they can strengthen the material and enhance the resistance against this hydrogen 

induced failure. Well-designed hydrogen trapping sites might be a relevant strategy to enhance the 

resistance to hydrogen embrittlement. 

 

The present work considers four types of carbides in three Fe-C-X alloys with increasing carbon 

content: Ti, Cr, Mo and V-based precipitates. Two conditions were compared for each composition to 

evaluate the effect of these precipitates: as quenched and quenched and tempered, carbides were 

introduced during tempering. The material/hydrogen interaction was fully characterized. In-situ tensile 

tests were performed to evaluate the sensitivity to hydrogen embrittlement. Thermal desorption 

spectroscopy was done to evaluate the hydrogen trapping capacity of the precipitates, whereas 

hot/melt extraction was performed to determine the hydrogen content. All tests were done after 

hydrogen pre-charging till saturation. 

 

The degree of hydrogen embrittlement was correlated with the amount of hydrogen present in the 

alloys. Three different types of hydrogen, determined by the strength by which they were trapped, 

were analyzed by combining the different hydrogen characterization techniques. It was established 

that hydrogen trapped at dislocations played a determinant role. This further confirmed the importance 

of an enhanced dislocation mobility in the presence of hydrogen, which is a solid experimental proof 

of the HELP mechanism. On the contrary, hydrogen trapped by the precipitates did not show a 

considerable impact of the hydrogen induced mechanical degradation. For all carbides, the addition 

was beneficial to enhance the resistance since they were able to deeply trap a significant amount of 

hydrogen. 
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Introduction  

 

The detrimental effect of hydrogen (H) on the mechanical properties of steel has been 

reported to impede the development of high strength steels [1]. Although the H induced 

damage was already discussed in 1875 by Johnson [2], no complete understanding of the 

phenomenon has been obtained so far. Several mechanisms have been proposed to describe 

the occurrence, but none has been solely accepted since multiple indications linked to the 

different mechanisms have been observed or experimental evidence is lacking. The three most 

cited mechanisms are the Hydrogen Enhanced DEcohesion (HEDE) [3], the Hydrogen 

Enhanced Localized Plasticity (HELP) [4] and Adsorption Induced Dislocation Emission 

(AIDE) theory [5].  

 

A relevant topic in steel alloy development has been the role of carbides [6], since they, on 

the one hand, induce material strenghtening due to precipitation hardening and, on the other 

hand, are often mentioned to be beneficial as efficient deep H trapping sites. As such, H is 

avoided to get trapped as highly diffusible H since this type is assumed to be the most 

detrimental one. Even though thermal desorption spectroscopy (TDS) studies revealed the H 

trapping capacity of numerous precipitates [7-14], literature relating their effect to the 

mechanical behavior in the presence of H is limited [15, 16].  

 

However, steels with an increased strength level are considered to be more prone to H 

induced mechanical degradation [17-19]. The interaction of these high strength steels with H 

has been considered thoroughly during the last decade [20-22]. Recently, the research group 

on H at Ghent University has presented results on four industrial multiphase high strength 

steels, i.e. dual phase (DP), transformation induced plasticity (TRIP), ferrite-bainite (FB) and 

high strength low alloy steel (HSLA) [23-28]. The impact of H on the mechanical properties 

was specifically studied in [19] and a significant H induced ductility loss was observed, 

except for the HSLA steel, which was attributed to the presence of Ti- and Nb- carbo-nitrides.  

 

More emphasis has been put on the addition of carbides as effective H trapping sites to 

enhance the susceptibility to H induced material degradation. Trapping diffusible H using 

nano-sized carbides as H traps is generally assumed to be one of the main strategies to 

enhance the resistance against hydrogen embrittlement (HE) [15, 19, 29]. However, the 

complex microstructure of multiphase steels obstructs interpreting H related findings. 

Therefore, specifically designed Fe-C-X alloys were recently investigated by our H-group as 

well. Carbide forming elements, i.e. X = Ti, Cr, Mo and V, were added as ternary alloying 

element [30-33]. Results on each Fe-C-X grade were published separately focusing on one 

specific type of carbide forming element to fully comprehend the underlying mechanism 

taking place for each considered precipitate. The present study however aims to compare the 

different carbides to draw general conclusions in terms of their effect on the H induced 

mechanical degradation.  

 

Experimental procedure 

 

Four different Fe-C-X grades with a stoichiometric amount of a ternary alloying element X 

were processed. Each grade was incrementally cast into three alloys with increasing carbon 

content (cf. Table 1). The carbon increase allows a reliable assessment of the effect of the 

carbides with varying strength level and moreover a confirmation regarding their role in 

different alloys. The Fe-C-X materials were cast, hot rolled and subsequently austenitized at 

1250°C for 10 minutes followed by a brine water quench. This first condition will be referred 
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to as “as-Q”. Furthermore, also a tempering treatment of 1h was applied to introduce small 

carbides in this martensitic microstructure. Secondary hardening due to the precipitation of 

carbides was optimal at 600°C for the Fe-C-Ti, Fe-C-Mo and Fe-C-V alloys and at 550°C for 

the Fe-C-Cr material. The hardness profiles versus tempering temperature can be found 

elsewhere [30-33]. This second condition will be referred to as “Q&T”. The microstructures 

were studied by optical microscopy, scanning electron microscopy and transmission electron 

microscopy (TEM) and the degree of H induced mechanical degradation, the H content and 

TDS measurements were determined as described in detail in [30-33]. Alloy B of each Fe-C-

X cast will be discussed in depth for this comparative study. For the experimental data on 

alloy A and C, we wish to refer the reader to the corresponding publications [30-33].  

 

Table 1: Chemical compositions of the Fe-C-X materials. 

Alloy Fe-C-X wt.% C wt.% X Other elements 

Fe-C-Ti Alloy A 0.099 0.380 Al: 200-300 wt. 

ppm 

Other elements: 

traces 

Alloy B 0.202 

30 

0.740 

Alloy C 0.313 1.340 

Fe-C-Cr Alloy A 0.097 1.300 

Alloy B 0.143 1.800 

Alloy C 0.184 2.200 

Fe-C-Mo Alloy A 0.100 1.700 

Alloy B 0.142 2.380 

Alloy C 0.177 2.990 

Fe-C-V  Alloy A 0.100 0.570 

Alloy B 0.190 1.090 

Alloy C 0.286 1.670 

 

The H/material interaction tests were done on H saturated samples by pre-charging the 

materials in a 1g/L thiourea in a 0.5 M H2SO4 solution at a current density of 0.8 mA/cm2 for 

1 hour. Hot/melt extraction was performed to determine the H content. The samples were 

analysed about one minute after H charging and the measurements were done at 1600°C and 

300°C to determine the total and diffusible H content. TDS was done to identify both the H 

trapping sites and their corresponding activation energy. Therefore, three different heating 

rates were used (200°C/h, 600°C/h and 1200°C/h). The applied procedure required one hour 

between the end of H charging and the start of the TDS measurement as a sufficient vacuum 

needs to be created in the analysis chamber. The effect of H release during this time will be 

further discussed. The degree of H induced mechanical degradation was determined as:  

%𝐻𝐸 = 100 ∙  1 −
𝜀𝑐ℎ
𝜀𝑢𝑛

  
 

with εch and εun being the elongation of the H charged and uncharged tensile sample, 

respectively. Hence, the %HE varies between 0 and 1, with 0 meaning that there is no 

ductility loss and the material is insensitive to HE. When an index of 1 is obtained, the 

ductility drop is 100% and HE is maximal. 

 

Materials characterization 

 

Optical microscopy showed a clear martensitic and Q&T microstructure. The as-Q condition 

of grade Fe-C-Ti alloy B showed still large incoherent carbides since austenitizing at 1250°C 

was not sufficient to dissolve all the present carbides after casting and rolling (cf. Fig. 1 and 

Fig. 2 (a)). For the other grades (Fe-C-Cr, -Mo and –V), all the carbides were dissolved as 

illustrated in Fig. 1, which is based on the thermodynamical calculations to determine the 
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amount of dissolved carbon. Precipitates were introduced during the tempering treatment for 

the Q&T condition. TEM bright field images were taken to confirm their presence as 

presented in Fig. 2 (b-e). Small carbides with sizes less than 10 nm were displayed for the Ti- 

and V-alloy while coarser precipitates were detected for the Mo- and Cr-alloy. Only the as-Q 

condition of Fe-C-Ti alloy B contained undissolved incoherent TiC (cf. Fig. 2 (a)). More 

microstructural details and diffraction patterns for identification of the different carbides (TiC, 

Cr23C6, Mo2C and V4C3) can be found in the corresponding publications [30-33]. 
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Fig. 1: Mass fraction of carbon (ppm) vs. temperature (°C) that can be kept in solid solution 

at each temperature for stoichiometric total contents of C and Ti, Cr, Mo or V. 
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Fig. 2: TEM bright field images for Fe-C-Ti in the as-Q condition (a) and for Fe-C-Ti (b), 

Fe-C-Cr (c), Fe-C-Mo (d) and Fe-C-V (e) in the Q&T condition. 
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Hydrogen induced mechanical degradation 

 

The stress-strain curves for Ti-, Cr-, Mo- and V-alloy B in the as-Q and Q&T condition are 

depicted in Fig. 3. A significantly different HE susceptibility was observed for the four alloys. 

Tempering resulted in an increase in strength level and ductility for the Fe-C-Ti and Fe-C-Mo 

alloy, while a reduction for both was observed for the Fe-C-Cr alloy due the presence of 

coarse particles. A similar observation was made for Fe-C-V although limited plastic 

deformation took place since carbides dissolved fast during austenitizing resulting in a dense 

carbon rich martensitic microstructure and a more brittle material (cf. Fig. 1). The degree of 

HE increased when comparing the as-Q with the Q&T condition for Fe-C-Ti (21 – 60%), Fe-

C-Mo (13 – 23%) and Fe-C-V (28 – 32%), while a decrease was detected for Fe-C-Cr (39 – 

21%). To understand these results, the H/material interaction was studied in much detail. 
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Fig. 3: Stress-strain curves for (a) Fe-C-Ti, (b) Fe-C-Cr, (c) Fe-C-Mo and (d) Fe-C-V alloy B 

at a cross-head deformation speed of 5 mm/min of uncharged (air) and H saturated (charged) 

samples. 

Hydrogen/material interaction 

 

TDS was performed on all Fe-C-X grades in both the as-Q and Q&T condition as summarized 

in Fig. 4. Basically, the first peak was correlated to H trapped by lath boundaries, while the 

other peaks were linked to H trapped by the carbides. Only one peak was observed for the as-

Q conditions, indicating that the incoherent large TiC particles (cf. Fig 2(a)) were not able to 

trap H from electrochemical charging. This confirmed previous results; gaseous H charging at 

elevated temperature is required to charge these large particles [11, 12]. When considering the 

Q&T condition, additional peaks can be detected linked to the presence of tempered induced 

carbides. Especially the small TiC and V4C3 carbides were capable of trapping a lot of H, 

while the coarser Cr23C6 and Mo2C only showed a small peak correlated to H trapped by these 

a b 

c d 
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carbides. A more detailed interpretation of these data including activation energies of the 

deconvoluted peaks can be found elsewhere [30-33].  
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Fig. 4: TDS curves of Fe-C-X grades (alloy B) in the as-Q and Q&T condition (heating rate: 

600°C/h). 
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Hot (at 300°C) and melt (at 1600°C) extraction, which provides the diffusible and total H 

content of the H saturated samples, was performed (cf. Fig. 5). For the Fe-C-Ti and Fe-C-V 

materials, the diffusible and total H content clearly increased when the sample was tempered. 

Consequently, the microstructural changes that occurred during tempering, mainly the 

formation of a considerable amount of small Ti or V-carbides, provided an important increase 

in H trapping sites in the material (as experimentally confirmed by the TDS results). The Mo- 

and Cr-alloys showed a significantly lower H content, while the amount of diffusible H was 

the lowest for the Fe-C-Mo alloy. Moreover, the difference between as-Q and Q&T was also 

rather small, especially for Fe-C-Cr. Although tempering induced significant microstructural 

changes as well and therefore, also in the potential trapping sites, the H trapping capacity of 

both conditions appeared to be similar.  

 

There is a clear difference between the amount of H as determined by hot extraction, i.e. 

diffusible H, and the total area below the TDS curve. Indeed, H was able leave the sample 

before the TDS measurement, as it took about 1 h to reach a sufficiently low vacuum in the 

TDS chamber (cf. experimental procedure). This type of H will be defined as “mobile H” [30-

33]. As demonstrated [25], microstructural defects such as dislocations indeed trap H, but 

loose it before the measurement started. During the in-situ tensile tests, however, this mobile 

H is still present and very relevant for the obtained results as discussed below. An overview 

of the H contents is summarized in Fig. 5. 
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Fig. 5: The total, diffusible and mobile H contents of the Fe-C-X grades (alloy B) in the as-Q 

and Q&T condition. 

 

The HE degree for the Fe-C-Ti alloy in the Q&T condition was higher compared to the as-Q 

state due to the higher amount of H. This could be attributed to the TiC precipitates formed 

during tempering, which not only increased the H trapping capacity as compared to the as-Q 

samples, but also introduced weakly trapped H at the elastic stress fields in the matrix 

surrounding the particle [11, 32]. The as-Q Cr-alloy embrittled more than the Q&T material 

although similar amounts of total and diffusible H were measured. However, due to the 

trapping ability of the carbides in the Q&T state (cf. TDS data), more mobile H was present in 

the as-Q material. Consequently, the Q&T alloy showed a lower susceptibility to HE [30]. 

The Fe-C-Mo alloys showed a decreased resistance against H induced failure when tempered 

induced carbides were present. This can be correlated to higher amounts of H detected in the 

Q&T samples. Finally, the Fe-C-V alloys exposed rather low strain levels and the H charged 
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specimen broke on the edge of the elastic/plastic region of the stress-strain curve. However, 

tempering even increased the sensitivity to HE due to the higher amount of H, trapped by the 

V-carbides. Since hardly any plastic deformation occurred for these alloys, the effect of 

mobile H, trapped at dislocations, is assumed to be minimal [33], as discussed below.  

 

To further analyse the hypothesis on the correlation between the HE degree and the amount of 

mobile H, the relation between the different types of H (i.e. total, diffusible and mobile) and 

HE is plotted together with a linear fitting (cf. Fig. 6 (a)). This was done for alloy A, B and C 

for each Fe-C-X grade in the as-Q and Q&T condition (24 materials). The correlation 

improves for total over diffusible to mobile H. Moreover, when the Fe-C-V materials were 

excluded (cf. Fig. 6 (b)), a R² of 96% between the HE% and the amount of mobile H was 

obtained. This indicated the crucial importance of the amount of H trapped by dislocations 

and the enhancement of the dislocation mobility by the presence of H as proposed by the 

HELP mechanism.  
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Fig. 6: Degree of HE vs. the total, diffusible and mobile H content for Fe-C-X grade – alloy 

A, B and C in the as-Q and Q&T condition (a). The Fe-C-V alloys were excluded in (b) to 

illustrate very nicely the correlation between mobile H and HE for alloys which failed past 

the macroscopic yield strength. 
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Confirmation of the correlation between mobile hydrogen and dislocations 

 

To confirm the origin of the self-defined mobile H to be correlated to H trapped by 

dislocations, the dislocation density was modified for the Fe-C-Ti alloy B in the as-Q 

condition. Cold deformation of 3% was applied and the corresponding TDS spectra were 

analysed to verify whether the increase of dislocation density could be visualized by TDS. 

These tests were performed on two different TDS devices. On the one hand, the same TDS 

apparatus (TDS 1) as described above was used (cf. Fig. 4) requiring one hour between 

charging and measuring due to the necessity of a vacuum condition in the analysis chamber. 

On the other hand, another TDS device (TDS 2) was used where the analysis started one 

minute after H charging, similar as hot/melt extraction. As such, it was possible to detect 

mobile H and the correlation between mobile H and H trapped at dislocations could be 

established. These results are shown in Fig. 7.  

 

Hardly any change was observed when the two samples with a different degree of cold 

deformation were tested by TDS 1. Consequently, the induced increase of dislocation density 

cannot be detected since H trapped at dislocations has already left the sample, which is the 

mobile H, as defined previously. Similar results were observed in [25]. However, when TDS 

2 is used, different observations were made. At first, when considering the sample without 

deformation, an additional peak appeared in front of the peak observed by TDS 1. The content 

of this peak corresponds to the amount of mobile H, i.e. the H which was released and not 

detected when using TDS 1. Moreover, when the sample with cold deformation is considered 

in TDS 2, the first peak clearly increased, indicating that the increase in dislocation density 

resulted in more H trapped by the dislocations. This increase was not detected by TDS 1, 

confirming the correlation between the mobile H and the H trapped by dislocations. 

 

 No deformation Cold deformed 

T
D

S
 1

 

 

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

H
2
 (w

p
p

m
/s

)

Temperature (°C)

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

H
2

 (w
p

p
m

/s
)

Temperature (°C)

0 200 400 600 800
0,000

0,002

0,004

0,006

H
2
 (

w
p
p
m

/s
)

Temperature (°C)

 Experimental

 Fit Peak 1

 Fit Peak 2

 Fit Peak 3

 Cumulative Fit Peak

0 200 400 600 800
0,000

0,002

0,004

0,006

H
2
 (

w
p
p
m

/s
)

Temperature (°C)

 Experimental

 Fit Peak 1

 Fit Peak 2

 Fit Peak 3

 Cumulative Fit Peak

 

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

H
2
 (w

p
p

m
/s

)

Temperature (°C)

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

H
2
 (w

p
p

m
/s

)

Temperature (°C)

0 200 400 600 800
0,000

0,002

0,004

0,006

H
2
 (

w
p

p
m

/s
)

Temperature (°C)

 Experimental

 Fit Peak 1

 Fit Peak 2

 Fit Peak 3

 Cumulative Fit Peak

0 200 400 600 800
0,000

0,002

0,004

0,006

H
2
 (

w
p

p
m

/s
)

Temperature (°C)

 Experimental

 Fit Peak 1

 Fit Peak 2

 Fit Peak 3

 Cumulative Fit Peak

 

T
D

S
 2

 

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

H
2
 (w

p
p

m
/s

)

Temperature (°C)

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020
 Experimental

 Fit Peak 1

 Fit Peak 2

 Cumulative Fit Peak

H
2
 (w

p
p

m
/s

)

Temperature (°C)
 

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

H
2
 (w

p
p

m
/s

)

Temperature (°C)

0 200 400 600 800
0.0000

0.0005

0.0010

0.0015

0.0020
 Experimental

 Fit Peak 1

 Fit Peak 2

 Cumulative Fit Peak

H
2
 (w

p
p

m
/s

)

Temperature (°C)
 

Fig. 7: TDS spectra determined by two different TDS devices (TDS 1 and TDS 2) of the Fe-C-

Ti alloy B in the as-Q condition for the not deformed and cold deformed condition. 
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Conclusion 

 

Four lab cast Fe-C-X materials (with X = Ti, Cr, Mo or V) with three different chemical 

compositions were investigated in both as-Q and Q&T condition. The effect of the present 

carbides on the H trapping and H induced mechanical degradation was evaluated. The 

tempered induced carbides trapped a significant amount of H as observed by TDS. The 

amount of mobile H, associated with H trapped at the dislocations, played a determinant role 

in the degree of HE. This was nicely illustrated by a correlation between the degree of HE and 

the amount of mobile H. The improved relation when the Fe-C-V materials were excluded 

from the correlation indicated the importance of an enhanced dislocation mobility in the 

presence of H, i.e. the HELP mechanism.  

 

A comparative TDS analysis with two different TDS devices on not deformed and cold 

deformed material revealed an additional peak linked to mobile H when H saturated samples 

were tested one minute after charging in TDS 2. Moreover, the increase in dislocation density 

was detectable with TDS 2, while no variation was observed in TDS 1. This confirmed the 

link between mobile H and dislocations. 
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