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Abstract

Structured cellular structures are nowadays printed using additive manufacturing methods like

powder bed fusion. The relative density of the cellular structures has a big role in the suitability

of a lattice for printing due to the minimum printable radius constraint and powder being trapped

inside an inclusion. In this work, the theoretical limits of the printable range of relative density

of different lattice types are found based on the cell size using computer methods by leaving other

process parameters for further research as the current parameters are the most basic ones. The

results are approximated using simple polynomials to enable practical usage.

Keywords: Additive manufacturing, 3D printing, powder bed fusion, structured cellular

structures, lattice, printable relative density

1. Introduction

Cellular structures (a.k.a. foams) are known to have a good strength to weight ratio. They are

used in many engineering applications ranging from passive safety measures to space applications.

By introducing structured foams, engineers have better control in tailoring the overall material

properties according to their needs. However, structured cellular materials are hard to produce

with conventional manufacturing methods. Nonetheless, there are studies about the fabrication of
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periodic cellular materials with conventional methods, such as sheet forming, perforated/slotted

sheet folding/drawing [1–4], extrusion [5], wire assembly [6, 7], and investment casting methods [8–

12], however, these techniques have limited flexibility with respect to structure type and dimensions.

On the other hand, additive manufacturing (AM) allows an improved flexibility in geometry and

size of lattice types. That opens up new possibilities for engineering applications.

Based on engineers’ needs, the unit cell of a structured foam is tailored such that the global

properties of the edifice are adjusted to fulfill the specifications. Type, size and volume fraction of

the unit cell (lattice) are subjected to adjustments to reach the desired properties. Although there

are studies about the mechanical properties of foams [8, 9, 12–38], the printable ranges of the volume

fraction of different lattice types with various cell sizes are not known thoroughly. Intuitively, it is

tempting to think that such a cellular structure is always printable. However, the printable density

limits may change dramatically with respect to the cell size and the type of lattice. Either the

lower limit or the higher limit of printable density may be paramount according to the needs at

hand. The lower printable density limit is based on the minimal feature size that can be printed

by a specific process. The maximum printable density limit is principally based on the density up

to which all raw material can be evacuated after manufacture. Although the entrapment of raw

material formally allows the manufacture, the entrapped material will add mass in comparison with

the designed density, which is considered unacceptable. For better customization, the limits of the

feasibility of printing should be known beforehand. In this work, we will focus on selective powder

bed fusion or sintering, but can equally be applied to several other AM processes.

The printability of lattice structures using powder bed fusion depends on unit cell shape, rela-

tive density (i.e. strut radius) of unit cell, strut inclination, powder particle size, powder material,

machine precision, laser power, laser spot size, laser scanning speed, layer thickness, and hatch

spacing. The effect of spacing between parallel laser scans (a.k.a. hatch spacing) on manufactura-

bility was studied by Zhang et al [39]. They concluded that hatch spacing must be greater than

the laser spot size. They also advised that three times bigger pore diameter than the maximum

powder size must be present because partially melted powder particles stick on strut surfaces.

Sing et al. [40] reported that laser scan speed and laser power did not affect Young’s modulus.
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But strut diameter or lattice type affected the elastic constant significantly while they did not affect

the dimensional accuracy. They also reported that with the increase of laser scan speed or laser

power, the powder adhesion on the struts decreased for Ti6Al4V. Loh et al. [41] found similar

results. Other researchers like Yan et al. [42], Van Bael et al. [43], Pattanayak et al. [44] also

reported strut diameter increase due to powder adhesion. Qiu et al. [45] studied the effect of

laser scanning speed and laser power on strut size, strut morphology, and surface structures. They

compared two different laser power (150 and 400 W). 400 W resulted in thicker powder adhesion to

struts with bigger deviation with respect to the laser power of 150 W for AlSi10Mg. Besides, they

also found out that the scanning speeds below 3000 mm/s affected the strut diameter. Tsopanos et

al. [46] reached similar results. They showed that high laser power led to thicker struts of lattices.

Van Bael et al. [43] claimed three reasons for the deviations from the CAD model: inadequately

chosen beam offset, staircase effect, and loose powder adhesion to struts. Wang et al. [47] marked

the powder adhesion to struts as unavoidable in selective laser melting (SLM). The overhanging

struts increase the problem. Optimizing design and process control can minimize powder adhesion.

Powder adhesion is linked to balling phenomenon giving rise to beads on laser melted surfaces on

building direction front by Yan et al. [42]. Abele et al. [48] claimed that building orientation

has not any meaningful effect on the printability of scaffolds in SLM processes. They also claimed

that powder adhesions have not any meaningful effect. On the other hand, Sallica-Leva et al.

[49] concluded that powder adhesion can act as stress concentrators, which in turn affects fatigue

strength of the porous structures. Hazlehurst et al. [50] concluded that surface waviness variation

and heterogeneities have a big effect on the stiffness of lattice structures fabricated by SLM by

using CoCrMo powder. Kim et al. [51] claimed that post-SLM sintering or jet blasting can result

in localized removal of these powder off the struts without changing the macro-properties of the

scaffolds.

Leary et al. [52] found that downward facing surfaces of inclined struts had higher surface

roughness than upward facing surfaces. They worked on overhanging struts having inclinations of

0, 35.26, 45 and 90◦ being made up of AlSi12Mg by using SLM. They reported that horizontal

struts (0◦ inclined) were not printable for any of the diameters they tested. But they reported that
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reducing the spanned distance can improve manufacturability for low inclination struts. Similar

surface roughness results of Leary et al. were found by Fox et al. [53], Triantaphyllou et al.

[54], Drescher et al. [55], and Suard [56]. For Ti6Al4V, cantilever strut elements were studied

by Mazur et al. [57]. They varied inclination angle in the range of 0–60◦ with 10◦ increments,

and strut diameter of 0.3–1.0 mm with 0.1 mm increments. They found out that the minimum

manufacturable strut angle is 20◦ and the minimum manufacturable strut diameter is 0.3 mm. On

the other hand, they also found out that struts as big as 3 mm are manufacturable while supported

at both ends. But horizontal struts ended up with oversized diameters due to high powder adhesion.

Weissmann et al. [58] studied vertical and 45◦ inclined struts fabricated by SLM and Electron Beam

Melting (EBM). The struts from the SLM process were closer to the target specification than the

EBM-manufactured struts. The 45◦ inclined struts had bigger deviations from the desired.

Rehme and Emmelmann [59] defined an aspect ratio as cell edge length to strut diameter to

assess the manufacturability by changing strut radius, cell size, and cell type. For 316-L stainless

steel, the printable range was in between 3.36 and 22.9 from relatively low to high, respectively.

They also reported that printability increases when strut length gets shorter. About minimum

printable radius, researchers reported several values. The successful production of strut diameter of

0.05 mm were achieved by VanBael et al. [43] and Hao et al. [60] stated that struts with 0.025 mm

radius were possible. The studies investigating manufacturability of lattice structures, to authors’

knowledge, concentrated on specific parameters for small variations and only for a limited number

of lattice types. Only one study [59] mentions explicit limits for one machine precision and powder

type. However, after its publication, other researchers [43, 60] reported results beating those values.

Through the advancements in technology, the printable density limits are changing. On the other

hand, the printable density is dependent on the specifications of each process, and in fact, each

machine and the raw material used. Therefore, there is a need for a tool estimating printable density

limits of lattice structures based on given conditions. In this work, the authors try to estimate those

limits only by using the most fundamental parameters affecting those limits: the machine precision

and powder size for different lattice types by leaving the study of other parameters to later studies.

Since these are the most basic factors in terms of printability and some other parameters can be
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modeled with these, the study can be used as the basis point for further research.

2. Problem formulation

To create the CAD models of the lattices, a preprocessor of a commercial CAE software [61] is

used together with Python scripting language to enable the algorithms presented in this study to

be embodied. The unit cells with cubic outer boundary space are considered. All struts in a lattice

are assumed to have the same circular cross-sectional area. Figure 1 shows the unit cell types used

schematically.

Cubic Bcc Fcc Octahedron CubicBcc CubicFcc BccFcc Octet CubicBccFcc

Figure 1: Unit cell types used.

The numerical prediction of the lower and higher printable density limits of lattice structures

for AM problem can be stated mathematically as follows:

Find : r = r′l r = r′h

Minimizes ρlow = ρ(r, t, L, rmin) Maximizes ρhigh = ρ(r, t, L, Vp)

For : 1) ∀t ∈ T | T = {Cubic,Bcc, Fcc,Octahedron,CubicBcc, CubicFcc,

BccFcc,Octet, CubicBccFcc}

2) ∀L | L ∈ IR+

3) ∀rmin ∈ r̄min | r̄min = {rmin | rmin ∈ IR+ & rmin ≤ L}

4) ∀Vp ∈ V̄p | V̄p = {Vp | Vp ∈ IR3 & 0 < Vp < L3}

Such That : 1) rmin = r ≤ L 1) 0 < r ≤ L

2) nvoid = 1

3) πr2insmax
on ∂Ω ≥ Amin

4) ∃Ωs | Ωs = {P ∈ Ωv ∧ ‖P, γ‖ ≤ rlump}

γ : I → IR3 & γ ⊂ Ωv & I = Iv & min(
1

κ(γ)
) ≥ rlump

(1)
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where r is the strut radius; r′l is the critical strut radius value related to ρlow; ρlow is the lowest

printable relative density; r′h is the critical strut radius value related to ρhigh; ρhigh is the highest

printable relative density; L is the cell size of a lattice; nvoid is the number of independent void

volumes inside the cell; rmin is the minimum printable radius which is a machine specific value; t

is the lattice type; Vp is the volume of the sphere circumscribing the biggest powder particle used;

rinsmax is the radius of the biggest sphere that can fit into every chunk of void volume; Amin is

the corresponding powder cross-sectional area; Ωv is the void volume of a lattice; ∂Ω is the surface

of the cube enclosing a lattice; Ωs is a sub-volume of Ωv ; P is a point; γ is a space curve; ‖‖ is

Euclidean distance operator; rlump is the corresponding radius of Vp; I is the interval over which

γ defined; Iv is the interval over which Ωv defined; κ is the curvature of a curve at every point;

min(
1

κ(γ)
) is the minimum radius of curvature of the curve γ.

More specifically, the main objective of this study is to find the minimum and the maximum

printable relative density for a given lattice type, lattice size, the minimum printable radius, and the

powder lump size. The strut radius values should not be smaller than zero and should not be bigger

than the lattice cell size. While finding the minimum and the maximum printable relative density,

the void volume should be monolithic (See the constraint 2 on the right-hand side of Eqn. 1.). One

may think that a single lattice having disconnected voids can be printable as long as the voids are

connected to one of the faces of the cubic envelope. However, when considering periodic lattices,

and considering that the faces are symmetry planes, these disconnected voids will turn into closed

cavities which entrap powder. By constraining the sub-volume formation, it is ensured that the

powder can go out as long as at least one face is open. Hence, the number of void volumes inside

a lattice should be equal to unity.

The powder used in the AM process has a size. Moreover, the unused powder may form lumps

during printing, which in turn makes their effective radius even bigger, e.g. by partial sintering of

loose particles, or by spatter from the process [62], landing on the unused powder zones. Thus,

having a monolithic void volume is not enough on its own in order to take the powder out. In

Figure 2, a 2D schematic shows how a powder particle can go through the void between two struts.

In order to ensure that the powder in the void spaces can be evacuated after printing, the void
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volume has to have a minimum hole area which is bigger than the corresponding cross-sectional

area of the powder lumps on faces of the lattices (See the constraint 3 on the right-hand side of

Eqn. 1.).

Figure 2: A 2D schematic for powder passage through the void between two struts.

Besides, there has to be enough space for powder inside the void volume to let the powder go

through. To ensure so, a void sub-volume is required, whose branches’ cross-sectional area has to

be equal to the cross-sectional area of the powder lump, at least. A space curve, γ, is employed

to define the sub-volume over the same interval of the void volume. Since the powder is a sphere,

checking the cross-sectional area is not enough to prevent powder entrapment. Hence, the curvature

of the space curve is also constrained as defined in the constraint 4 on the right-hand side of Eqn. 1.

In other words, there should be, at least, a sub-volume, Ωs, inside the void volume whose interval

is the same as the interval the void volume defined over so that it touches the faces of the enclosing

cube. By adding the distance to the formulation of Ωs, a pipe-like volume whose cross-section is

a circle with rlump is created throughout the interval. By checking the curvature of the curve, one

will be sure that the powder sphere will go through the pipe-like sub-volume; therefore the void

volume.

On the other hand, machines are subjected to precision constraints, as well. Hence, they have a

limit of the smallest printable radius. For this reason, the smallest printable radius should be taken

into account for estimating limits of being printable for a lattice. Therefore, in order to find ρlow

for each lattice type, this constraint has to be taken into account (See the constraint-1 of Eqn. 1).
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3. Methodology

The problem defined in Eqn. 1 is, initially, attacked by assuming the powder as infinitesimally

thin, because of the fact that the infinitesimal assumption of the powder gives the limit cases. Be-

sides, it gives the location of the critical points which are inside the lattice at which the formation of

the disconnected void volumes starts. In other words, these critical points are the separation points

(bottlenecks) that keep the void volume monolithic. Then using the results of the infinitesimal

problem, the problem with finite size powder is attacked.

3.1. Infinitesimally thin powder problem

In this scenario, it is assumed that the powder is infinitesimally thin and the machine used has

infinite precision. As a result, it can be considered that any shape is printable, and the powder can

be taken out from a hole as long as its area is bigger than zero regardless of however small it is.

Through this problem, the maximum theoretical printable density can be investigated.

Needless to say, the lower limit, only ρlow(r, t, L), will be zero in this case. Hence, in this case,

the ρhigh(r, t, L) will be calculated. All in all, the problem reduces to the form below:

Maximize ρhigh = ρ(r, t, L,Amin = πε2)

Subjected to : Af on ∂Ω ≥ πε2

nvoid = 1

(2)

Since the powder is infinitesimal, there is no need to check hole area in the void volume as long

as the void volume is monolithic and the void volume can reach the faces. The solution approach

to this problem is to find the maximum ρhigh using only one constraint at a time. Then, it is to

choose the smaller ρhigh among the two solutions found.

Af is a continuous function that shows the hole area on a face of lattice, which is a function

of relative density, ρ, that is, in turn, a function of strut radius, r. To find ρ(r′h), one needs to

find Af (r′h) = πε2. By changing the problem to Af (r) − πε2 = 0, one can solve it by using the

bisection method, which does not need to have a derivative of the function. ε is an infinitesimal

positive quantity, which is taken as 10−5 by considering that the precision of the software to define

a geometric entity is 10−6.
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nvoid is a piece-wise function that shows the number of independent void volumes inside of the

lattice, which is a function of ρ, which is, in turn, a function of strut radius, r. Then, one needs to

find maximum r that satisfies nvoid(r = r′h) = 1. A typical change of nvoid along relative radius,

r̄ =
r

L
, is shown in Figure 3.

r̄

nvoid

r̄′h
r̄ρ=1 1

1

n

Figure 3: Typical number of void volumes versus the relative strut radius in an unit cell.

While having a function like above, nvoid, at hand, finding r̄′h is tricky. First, the function is

piecewise discontinuous. Second, it is not closed-form function of the free variable, r or r̄. At this

juncture, a zeroth order method looms as the most convenient alternative, which does not require

calculation of the derivatives. Therefore, the bisection method is chosen for the search of r̄′h for

the case of nvoid = 1 as well. However, the algorithm needs a modification as described in the next

section.

3.1.1. Modified bisection method

The bisection method is originally intended to find roots for continuous functions like f(x) = 0

on the interval [xl, xu]. Nonetheless, the problem at hand is to find the discontinuity. Turning nvoid

as nvoid := nvoid − 1 will not help finding r̄′h because of the fact that any values between 0 and r̄′h

will be the solution of the bisection method. Therefore, the method is slightly modified to narrow

the search space systematically. In Figure 4, the flow chart of its modified form is illustrated.

In Figure 4 a and b designates the lower and upper bound of the updated interval; c designates

the midpoint of the interval. The modified bisection method first finds the midpoint of the interval

and then evaluates it. If f(c) = 1, then it updates the lower bound of the interval by setting the

midpoint as a = c; if not, it updates the upper bound of the interval by setting the midpoint as
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Initialize a = xl; b = xu

c =
a+ b

2

f(c)

f(c) = 1 ?

a = cb = c

|b− a| < ε ?

Root −→ cStop

yes

no

no

yes

Figure 4: Flow chart of modified bisection method for function at hand which is depicted in Figure 3.

b = c. This loop continues until the difference between b and a is smaller than a specified positive

small value, ε. As can be seen from Figure 4, the original algorithm is modified by changing the

interval update from multiplication of function values, f(a)f(c) < 0, to f(c) = 1.

3.2. Finite size powder problem
3.2.1. Calculation of ρlow

The calculation of ρlow is independent from ρhigh. Therefore, the problem is reduced to

Minimize ρ(r, t, L, rmin)

Subjected to : r = rmin

(3)

To find ρlow, it is only needed to calculate the relative density, ρ, based on the specified the
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minimum printable radius, rmin.

To make the calculations easier, the relative density, ρ, is calculated based on the relative radius,

r̄. Then a polynomial is fit to the data. By plugging the dimensionless minimum printable radius,
rmin
L

, to the polynomial fitted, g, one can find the lower relative density limit, ρlow.

ρlow = g(r̄ =
rmin
L

, t, L) (4)

3.2.2. Calculation of ρhigh

Since the smallest printable radius is introduced, the lower limit of the relative density will be

higher. Likewise, since the constraint of the smallest area in the void volume is imposed for taking

the powder out, the higher limit of the relative density will be lower. To sum up, in this case, the

printable interval of the relative density of lattice structures will be narrower than the infinitesimal

powder problem.

As can be viewed from the results of the infinitesimally thin powder problem (see Table 3

in Section 4.1), there are bottlenecks in the void volume. To calculate the higher limit, ρhigh,

one has to find the locations and the orientations of these bottlenecks, which are the smallest

interconnecting sections that keep the void volume monolithic and determine whether the cross

section lets the powder go through. From the infinitesimally thin powder problem, one already

knows the positions of the bottlenecks. On both sides of these separation points (bottlenecks), the

cross section increases. Therefore, checking the void volume’s cross-sectional area at these points

and normal to the bottleneck axis will be enough to check the powder entrapment. The simplified

problem can then be stated as below:

Maximize ρ(r, t, L, Vp)

Subjected to : nvoid = 1

πr2insmax
on ∂Ω ≥ Amin

πr2insmax
on C.P. ≥ Amin

(5)

where C.P. stands for the cross plane perpendicular through the bottleneck points.

The removal of the powder is based on the fact that the monolithic void volume in each cell
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leads to an interconnected monolithic void in the multi-cell structure. Therefore the removal of

the powder in the voids is possible with help of gravity, vibration and air pressure, as long as the

powder particles can pass through the bottlenecks in the interconnected cell voids.

Void
Cross
Section

Powder

f(x, y)

Figure 5: A few hypothetical scenarios for powder and hole cross-sectional area, which powder can be taken out.

In the infinitesimally thin powder case, the void volume is maintained together only with point

contact. Slightly bigger values than the critical radius, r′h, will result in multiple void volumes

and create twin points on each side of the newly separated void volumes. Using the CAD model

of a lattice for r′h(Vp =
4

3
πε3), one may pinpoint the bottlenecks and their orientations. One

may partition the void volume at the desired location and at the desired orientation such that

one can find the smallest cross-section using CAD representation for any given strut radius, r (see

Figure 3). Finding the biggest radius of a circle that can be inscribed on the smallest section of the

void volume, rinsmax , is yet another optimization problem which can be stated as follows:

Maximize rins

Such that : Y = {(x, y) | x, y ∈ IR ∧ x2 + y2 ≤ f(x, y)}

X = {(x, y) | x, y ∈ IR ∧ (x− xG)2 + (y − yG)2 ≤ r2ins ∧ (x, y) ∈ Y }

(6)

where rins is the radius of an inscribed circle on a arbitrary cross section through the void volume

of a lattice, Ω; IR is real numbers; f(x, y) is the defining function of boundary of the critical

cross-sectional hole shape of a lattice; (xG, yG) is the central location of the inscribed circle.

As depicted in Figure 6, the cross-sectional shape of the void around the separation point (S.P.)

changes like nested polygons depending on the strut radius, r, since the struts of a lattice are

oriented always the same and they have the same radius. Hence, to find the rinsmax reduces to
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r

ε

εε

rr

S.P.

Figure 6: Typical void cross-sectional shape change in terms of strut radius around separation point.

lower r′h(Vp =
4

3
πε3) in § 3.1 as much as the minimum allowed circular hole area specified by rlump.

Mathematically, it can be stated as the following equation:

r′h(Vp =
4

3
πr3lump) = r′h(Vp =

4

3
πε3)− rlump (7)

In dimensionless form, ρhigh can be found using the following equation:

ρhigh = g(
r′h(Vp =

4

3
πε3)

L
−
rlump
L

) (8)

where g is the polynomial function fitted to ρ = ρ(r̄).

4. Results

4.1. Infinitesimally thin powder problem

After calculating the corresponding r′h values for each constraint separately (See Eqn. 2), the

smaller one is taken among the two and by using that value the corresponding relative density is

calculated as explained before. The resultant printable upper-density limits are depicted in Figure 7

for the lattice types given. As can be seen from the figure, ρhigh does not depend on the lattice

size, L.
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Figure 7: Upper limits for several lattice types based on the two criteria together.

In Table 1, upper density limits, ρhigh, and the corresponding critical relative radius values, r′h,

are given. The Octahedron has a very low upper limit of printable density in comparison to the

others. The reason of getting low relative printable density limit for Octahedron is that Octahedron

has struts surrounding an inner cavity. When the struts radius increases, the central cavity easily

gets disconnected from outer cavities, which are still quite large, resulting in a low relative density

limit. On the other hand, Bcc has the highest limit. Here, for Bcc lattice, the struts stem from the

center and for a growing strut radius, the cavities remain connected almost up to the disappearance

of the cavities.

Table 1: Critical relative radius, r′h
L
, values corresponding to upper relative density limits, ρhigh.

Lattice Type r′h
L ρhigh

Cubic 0.5 0.9420
Bcc 0.3553 0.9886
Fcc 0.2887 0.9073
Octahedron 0.2024 0.5849
Cubic Bcc 0.2588 0.8902
Cubic Fcc 0.2071 0.7365
Bcc Fcc 0.2142 0.9065
Octet 0.2041 0.9073
Cubic Bcc Fcc 0.2071 0.9660

In Table 3, the corresponding solid and void volumes are graphically shown from the different
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point of views for all lattice types. As can be seen from Table 3, for Cubic, CubicFcc, and Cu-

bicBccFcc, the bottlenecks are on the face of the corresponding lattice. However, for the rest, the

bottleneck is inside of the corresponding lattice.

Since ρ = ρ(r̄) relationship will be used in all limit calculations (Not only for infinitesimal powder

assumption but also for finite powder assumption as explained in § 3.2.2), ρ versus r̄ is plotted in

Figure 8 for all lattice types. The corresponding data of the printable portion, under infinitesimal

powder assumption, of ρ = ρ(r̄) (see the right plot of Figure 8) is fitted to cubic polynomials in

order to give a practical tool for designers (see Table 2). In other words, the polynomials are valid

until the critical relative radius values specified for every lattice type in Table 1. The polynomial fit

is confined to the printable zone due to the fact that achieving the intended density is not possible

outside of it.

Figure 8: Relative density, ρ, versus relative radius, r̄, of the struts for some lattice types: Left: Full range; Right:
The printable range for the infinitesimally thin powder.
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Table 2: Coefficients of the polynomials, g, fitted to r̄ for ρ.

Lattice Type r̄3 r̄2 R2

Cubic -11.3138 9.4248 0.999
Bcc -39.1919 21.7656 0.999
Fcc -54.6277 26.6574 0.999
Octahedron -61.8194 26.6573 0.999
CubicBcc -69.1653 31.1904 0.999
CubicFcc -91.3146 36.0823 0.999
BccFcc -133.8197 48.4230 0.999
Octet -154.5098 53.3147 0.999
CubicBccFcc -170.5703 57.8478 0.999

where R2 is the coefficient of determination.

4.2. Finite size powder problem

In Figure 9, both lower and upper limits of density are plotted by assuming rmin = 0.2 mm and

rlump = 0.2 mm. These limits are sensitive to the cell size. As the cell size increases, the limits

approach to the infinitesimal case. When it gets smaller, the two curves approach to each other,

which means the printable density range gets smaller, until the two curves cross each other, which

means only one density value is printable. Beyond that crossing point, no lattice having smaller

density value is printable.

Figure 9 shows the curves for only rmin = 0.2 mm and rlump = 0.2 mm. However, the possible

combinations of rmin and rlump values are endless. Hence, it is necessary to build a dimensionless

graph such that one can find the corresponding printable range for given rmin and rlump. In

Figure 10, such a graph is given, whose
rmin
L

and
rlump
L

are plotted on the same axis. However,

completely independent values can be selected for them. The relative density values on the graph

are limited up until the corresponding the highest relative density, ρhigh, of each lattice. In order

to clarify how to use the figure, the printable range is found using L = 5 mm, rmin = 0.2 mm, and

rlump = 0.1 mm for Octet lattice. The resultant range is [0.075, 0.843]. The corresponding values

are marked in Figure 10.

Based on the crossing point of the upper and lower limits, there is a relationship like below

rmin
L

=
r′h(Vp =

4

3
πε3)

L
−
rlump
L

(9)
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Table 3: Solid and void volumes of upper thresholds using infinitesimal powder assumption.
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Figure 9: Thresholds of lattice structures using rmin = 0.2 mm and rlump = 0.2 mm.

Figure 10: Printable thresholds of lattice structures in dimensionless form.

Using this equation, one can calculate the other r value if one is given. Figure 11 shows the

boundary of printable zone in terms of dimensionless parameters
rmin
L

and
rlump
L

. The regions
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under the lines are the printable zones in Figure 11. If a combination is on the boundary then that

means only one value can be printable.

Figure 11: Boundary of printable zones in terms of
rmin

L
and

rlump

L
.

The minimum printable feature radius based on strut inclination can be found either in the

literature or by experiment. In literature, there are several minimum printable radius values in

terms of strut inclination. This constraint can be treated via the machine precision (the minimum

printable radius) terms in this study. That value can be plugged into the equation (Eqn. 4).

Moreover, the manufacturability of horizontal struts was discussed in the literature. Mazur et al.

[57] reported that by using SLM, they achieved to print horizontal struts up to 3 mm if they are

supported at both ends. In the current state-of-the-art, the lattices having horizontal struts (e.g.

Cubic, CubicBcc, CubicFcc, CubicBccFcc) are not printable unless they are smaller than 3mm for

Ti6Al4V. Hence, the reader must be aware of this limitation (can be different for every powder

material) when they are using Figure 10.

Powder adhesion problem can also be taken into the account by the powder lump size. As an

example powder lump size can be taken as a couple of times bigger than the biggest powder size

used. The exact amount has to be investigated for every material. Zhang et al. [39] suggested using
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three times bigger pore sizes. Furthermore, as reported by several authors [52–58], the difference

between the realized and planned diameter of struts is a function of strut inclination. Therefore,

one can expect a lattice having different diameter struts after printing even if a lattice having equal

diameter struts are intended. To guess the printable limits at such conditions, one needs to estimate

radius difference based on inclination angle. After taking the biggest difference expected, one can

hypothetically assume a bigger powder lump as much as the biggest radius difference foreseen to

find the highest printable limit.

Despite having useful estimations of the printable density range based on the assumptions made

here, there is a need for a further study which includes other parameters for manufacturability of

lattice structures. One can say that the real printable density range may be smaller than the one

found here as explained in Eqn. 10

ρreallow = ρlow + ρcorrlow = ρlow(r̄ + r̄corr)

ρrealhigh = ρhigh − ρcorrhigh = ρhigh(r̄ − r̄corr)
(10)

where ρreallow , ρrealhigh are the real lower and upper printable limits, respectively; ρcorr are the corrections

terms.

In order to fabricate lattice structures with precise dimensions, it is important to select appro-

priate processing conditions. Therefore, finding optimized parameters will approach the printable

limits to the ones in this study.

5. Conclusion

The main and novel conclusion of this study is that even if ideal conditions are assumed, there

is a maximum printable density limit for each lattice type. Among the lattice types studied,

Octahedron lags far behind the other lattice types on the highest printable limit while Bcc has the

widest range. In the Octahedron lattice, the void enclosed by the central void quickly get separated

from the relatively large remaining voids in the cell corners.

The printable range is highly dependent on the cell size as well. When unit cell size increases,

the printable range widens and approaches to the limit case of infinitesimal powder case. On the

other hand, the printable range gets narrower when the powder lump size increase and the machine
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precision exacerbates (i.e. increasing rmin). Dimensionless plots are created to enable finding the

printable range for a given cell type, cell size, the minimum printable radius and lump size.

This approach for finding the printable density limits is valid for the lattices having a circular

cross-section, and the same radius for all their struts. For the lattices having cross-sections other

than circle and having the same dimension for all their struts, this approach can also be used by

assuming the strut radius, r, to be equal to the radius of the circumscribing circle of the cross-

section. But, in that case, this approach can be a conservative estimation of the relative density

limits. Yet, it needs verification. For better approximation, the problem defined in Eqn. 6 has to

be solved.

Although printable limits based on only two parameters have been found in this work, further

studies are needed on other process parameters for exact limits. It is easily foreseeable that the real

printable density range will be narrower than the ones found in this work. Furthermore, finding

the optimized process parameters or the advancement of technology will approach the printable

density limits to the ones found in this paper. Therefore, this study can be taken as a basis point

for further investigations.
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